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Abstract

We propose a unified framework for adaptive routing in multitask, multimodal
prediction settings where data heterogeneity and task interactions vary across sam-
ples. We introduce a routing-based architecture that dynamically selects modality
processing pathways and task-sharing strategies on a per-sample basis. Our model
defines multiple modality paths, including raw and fused representations of text
and numeric features, and learns to route each input through the most informa-
tive modality-task expert combination. Task-specific predictions are produced by
shared or independent heads depending on the routing decision, and the entire
system is trained end-to-end. We evaluate the model on both synthetic data and
real-world psychotherapy notes, predicting depression and anxiety outcomes. Our
experiments show that our method consistently outperforms fixed multitask or
single-task baselines, and that the learned routing policy provides interpretable
insights into modality relevance and task structure. This addresses critical chal-
lenges in personalized healthcare by providing per-subject adaptive information
processing that accounts for data and task correlation heterogeneity.

1 Introduction

Modern predictive models increasingly operate in settings with multiple heterogeneous input modali-
ties and correlated outputs. In domains such as clinical informatics and behavioral health (Preis et al.,
2022), data arrive in diverse formats that include structured numerical features (clinical scales, sensor
measurements) and unstructured text (clinician notes, patient narratives) (Baltrušaitis et al., 2018;
Rajkomar et al., 2018). These modalities differ in structure, coverage, semantic density, and sample-
level informativeness. On the other hand, multiple predictive targets (for example, depression and
anxiety scores) often correlate but do not overlap entirely. This combination motivates multimodal
multitask learning models that integrate heterogeneous inputs while modeling structured relationships
across tasks.

Multimodal learning aims to learn joint representations from diverse data sources. However, most
existing approaches assume fixed fusion strategies and complete modality availability (Ruder, 2017;
Liu et al., 2022). Similarly, multitask learning (MTL) typically relies on globally shared architec-
tures, applying the same parameter sharing scheme to all inputs. However, these assumptions are
often violated in real-world settings. Modality quality and informativeness can vary substantially
across samples, and task relationships may differ depending on latent factors such as individual
behavior, context, or data completeness. Ignoring these forms of heterogeneity leads to suboptimal
representations and reduced predictive performance and generalization.
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To address these limitations, we propose a unified framework that performs adaptive expert routing
over both modality and task configurations (Shazeer et al., 2017; Ma et al., 2018; Rosenbaum et al.,
2017). Our model defines a set of modality transformation paths, including unimodal and fused
representations, and a set of prediction heads corresponding to single-task and multitask supervision
structures. A learnable routing mechanism selects a personalized expert pathway for each input by
modeling a probabilistic mixture over modality-task combinations, capturing both input-dependent
modality preferences and task-level interaction structure. This approach generalizes conditional
computation and mixture-of-experts (MoE) frameworks (Liu et al., 2024a) to settings where latent
structure exists across inputs, supervision targets, and representational hierarchies.

The routing policy is parameterized by neural networks and trained jointly with all expert modules
using backpropagation. To promote policy diversity and mitigate expert collapse (where a subset
of experts get nearly all the traffic), we incorporate an entropy regularization term (Fedus et al.,
2022). This design enables sample-specific selection of both data representations and task decoders,
effectively adapting the computation graph to underlying data geometry and supervision structure.

We validate the proposed framework through a series of experiments on synthetic and real-world
data. In synthetic data with controlled variation in modality relevance and task correlation, our
model outperforms fixed multitask and single-task baselines while recovering interpretable routing
policies. In real-world psychotherapy data with structured assessments and unstructured clinician
notes (Benton et al., 2017; Niu et al., 2024), the model improves prediction of anxiety and depression
outcomes and reveals routing decisions that align with intuitive task-modality interactions. These
results demonstrate that adaptive routing over representation and supervision structure is a powerful
mechanism for modeling heterogeneous, multimodal prediction tasks.

In summary, our major contributions are: (1) we develop a modular architecture supporting multiple
modality transformation paths and adaptive task-sharing schemes, (2) we design a probabilistic
routing mechanism that dynamically selects, for each input, both optimal modality pathways and task
configurations based on input and output structure, and (3) we demonstrate significant improvements
in both prediction accuracy and interpretability across synthetic and real-world clinical datasets. Our
approach consistently outperforms standard multitask and single-task baselines, with immediate po-
tential applications for enhancing decision support in mental healthcare and broader medical contexts.
The framework’s ability to adapt to heterogeneous data while modeling structured relationships across
tasks makes it particularly valuable for real-world clinical environments where data heterogeneity and
quality vary (across patients, clinicians, sites, etc.) and outcome measures are often interdependent
(e.g., multiple clinical scales or physiological measurements). Open source code is available at:
https://github.com/Grosenick-Lab-Cornell/learning-to-route.

2 Related work

2.1 Multimodal learning in clinical and mental health contexts

A growing body of research investigates multimodal learning with structured clinical data (e.g.,
electronic health records, standardized assessments) and unstructured text (e.g., clinician notes) to
improve outcome prediction. In general medical AI, combining tabular EHR features with narrative
notes has led to measurable gains in predictive performance (Lyu et al., 2022). In the mental
health domain, fusion of structured and unstructured data has yielded similar benefits. For instance,
Garriga et al. (2023) predicted 28-day psychiatric crisis risk using both structured EHR variables and
clinical note text, reporting that models leveraging both modalities outperformed unimodal baselines.
Other studies have found that incorporating text embeddings derived from models like BERT into
structured-input pipelines improves accuracy across various clinical tasks (Ye et al., 2024).

However, the gains from multimodal fusion are not consistent across settings. For example, Kotula
et al. (2025) found that augmenting vital signs and lab values with concept-extracted notes led to
only marginal improvements for ICU deterioration prediction. These mixed results suggest that the
informativeness of unstructured text and the chosen fusion strategy can critically impact performance.
Our approach addresses this limitation by supporting adaptive fusion (Sahu and Vechtomova, 2021;
Xue and Marculescu, 2023; Ajirak et al., 2023b). Instead of using a fixed integration schema, the
model determines how to combine structured and unstructured inputs separately for each sample.
This enables more flexible use of the available modalities, depending on their informativeness for the
individual case.
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2.2 Multitask learning for mental health prediction

Multitask learning (MTL) (Kendall et al., 2018) offers a principled approach for modeling multiple
correlated clinical outcomes. Conditions such as major depressive disorder and generalized anxiety
frequently co-occur and exhibit overlapping symptom profiles, yet clinical models often treat them as
independent targets or apply joint statistical models that fail to capture their structured dependencies.
MTL enables parameter sharing across tasks, which supports the learning of shared representations
that can improve generalization and predictive performance. Prior work has demonstrated the
effectiveness of this approach in mental health settings. For example, Buddhitha and Inkpen (2023)
constructed a shared encoder with both hard and soft parameter sharing to jointly model mental
illness and suicide ideation risk, outperforming task-specific baselines. In another study, Saylam and
İncel (2024) showed that jointly predicting depression, anxiety, and stress levels led to performance
gains for depression and stress compared to single-task models. These findings show that MTL
architectures with shared encoders and task-specific decoders can leverage cross-task structure while
preserving task specialization.

Task-relatedness plays a central role in the effectiveness of multitask learning. When tasks are closely
correlated or reflect underlying causal relationships, multitask models often achieve positive transfer
(Standley et al., 2020). In contrast, unrelated tasks can lead to negative transfer and representation
interference (Zhang and Yang, 2021). To address this, recent work has introduced methods that learn
task relationships directly from data. The Multi-gate Mixture-of-Experts (MMoE) architecture, for
example, assigns each task a dedicated gating network that selects among a shared pool of experts,
thereby enabling flexible combinations of shared and task-specific computation (Ma et al., 2018).
These designs relax the binary distinction between fully shared and fully independent decoders and
support a continuum of sharing that adapts to task similarity (Ruder, 2017). In the context of mental
health prediction, where tasks often reflect partially overlapping symptom dimensions, such flexibility
is especially important. We build on this idea by introducing an adaptive routing mechanism that
integrates with MTL and selects the appropriate degree of sharing across tasks based on sample-level
signals.

2.3 Adaptive routing and mixture-of-experts for heterogeneous inputs/tasks

Recent advances in adaptive routing (Rosenbaum et al., 2017) and Mixture-of-Experts (MoE) (Jacobs
et al., 1991) architectures offer flexible strategies for modeling heterogeneity across both inputs and
tasks. MoE models consist of multiple specialized subnetworks (“experts”) and a trainable router
that assigns each input to a subset of these experts based on their characteristics (Mu and Lin, 2025;
Liu et al., 2024b). This setup enables conditional computation, where different experts can focus
on different regions of the input space or specialize in particular tasks. In large-scale language and
vision models, sparsely activated MoEs have improved computational efficiency and generalization
compared to densely connected alternatives (Zhou et al., 2022).

In clinical applications, conditional routing offers practical benefits for handling input variability. For
instance, a model can assign a sample with detailed textual notes to a text-specialized expert, while
directing a sample with only numerical features to a numerical-specialized expert. This flexibility
supports personalized prediction pipelines without requiring separate models for every data configu-
ration. Recent work in medical machine learning has applied these principles to multimodal tasks.
The dynamic routing framework proposed by Wu et al. (2025) selects modality-task combinations
on a per-sample basis, capturing the dependencies between clinical outcomes and input modalities.
Their model learns a modality fusion strategy using mutual information regularization, which guides
the decomposition of each sample’s data into shared and distinct components.

Routing mechanisms have also been applied to task-level adaptation. For example, Rosenbaum
et al. (2017) introduced routing networks that learn input-dependent paths through modular function
blocks. This architecture allows the model to activate shared components when beneficial and to fall
back on task-specific routes when task interference arises. These methods collectively demonstrate
the value of flexible routing schemes in domains with complex, variable inputs and overlapping
prediction objectives. Our work builds on this foundation by integrating sample-level routing over
both modalities and tasks, enabling a unified framework for adaptive multimodal multitask learning.

3



3 Methodology

3.1 Bidirectional Transformation Between Structured and Unstructured Modalities

Our approach addresses the multimodal nature of psychotherapy datasets by introducing flexible,
bidirectional transformations between structured numerical data and unstructured text. Rather than
treating each modality as isolated, we design a unified architecture capable of transforming and
integrating representations across formats. This enables the model to operate uniformly across
patients with different modality availability, data missingness, or data quality.

Let Xnum ∈ Rdnum represent the structured numerical input, and Xtext ∈ T denote unstructured textual
data. We define two learned transformation functions:

fnum2text : Rdnum → T , (1)

ftext2num : T → Rdtext , (2)

where fnum2text converts numerical input into semantically meaningful natural language, and ftext2num
encodes text into numerical embeddings. Here, ftext2num can be implemented using sentence em-
bedding models such as MPNet (Song et al., 2020) or Sentence-BERT (Reimers and Gurevych,
2019). The generated embedding is a structured numerical representation that can be integrated with
traditional statistical models or deep learning architectures designed for numerical inputs.

We define the following four cases:

1. Text-only (T1): Use only Xtext. Numerical input is ignored or unavailable.

2. Numerical-only (N1): Use only Xnum. Text input is ignored or unavailable.

3. Textualized Numerical + Text (T2): Apply fnum2text(Xnum) to produce X(text)
num , and con-

catenate with original text:

X = concattext(X
(text)
num , Xtext), (3)

forming a unified textual input passed to a text-native model (e.g., transformer). This allows
us to employ pre-trained language models such as BERT (Devlin, 2018) and MPNet (Song
et al., 2020) to process text data.

4. Numerical + Text Embedding (N2): Apply ftext2num(Xtext) to produce X(num)
text , and con-

catenate with original numerical features:

X = concatnum(X
(num)
text , Xnum), (4)

resulting in a unified numerical representation passed to a numerical backbone.

These paradigms enable flexible fusion strategies that are adaptable to data quality, availability, and
downstream model compatibility. Figure 4 illustrates these conversions and concatenation. The
two-way conversion creates a flexible bridge between data types. It lets structured data be understood
in natural language terms (textualization) while also transforming text into numerical formats that
work with traditional data models.

3.2 Multitask vs. Single-Task Learning Objectives

We adopt a multitask learning (MTL) framework to address correlated clinical outcomes (depression,
anxiety) of psychotherapy (Ruder, 2019). The performance of commonly used multitask models often
depends on the relationships between tasks. Therefore, studying the trade-offs between task-specific
objectives and inter-task dependencies is crucial. We focus on predicting two common key clinical
outcomes: Depression (measured with the Patient Health Questionnaire-9 [PHQ-9] (Kroenke et al.,
2001)) and anxiety (Generalized Anxiety Disorder-7 [GAD7] (Spitzer et al., 2006)). These measures
are correlated and so can provide both distinct and redundant information about a patient’s symptoms.
Our approach therefore, supports both single-task learning (STL) and multitask learning (MTL):

1. Single-Task Learning (STL): Trains two independent models, one per outcome. Each
model fk(X(i)) predicts both the outcome ŷk and its log-variance log σ2

k, where
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k ∈ {PHQ,GAD} and X(i) is the modality-transformed input for paradigm i ∈
{T1,N1,T2,N2}. For each task:

fk(X
(i)) =

(
ŷk(X

(i)), log σ2
k(X

(i))
)
, (5)

the heteroscedastic loss for task k is:

LSTL,k(X
(i), yk) =

1

2
· (yk − ŷk(X

(i)))2

σ2
k(X

(i))
+

1

2
log σ2

k(X
(i)), (6)

and the total STL loss is:
LSTL = LSTL,PHQ + LSTL,GAD. (7)

2. Multi-Task Learning (MTL): Uses a shared encoder followed by task-specific heads. The
shared encoder produces a latent representation z = fshared(X

(i)).
Each task head then outputs both a mean prediction and log-variance:

fk(z) =
(
ŷk(z), log σ

2
k(z)

)
, k ∈ {PHQ,GAD}, (8)

with the heteroscedastic loss per task being:

LMTL,k(z, yk) =
1

2
· (yk − ŷk(z))

2

σ2
k(z)

+
1

2
log σ2

k(z), (9)

and the total MTL loss is:

LMTL =
∑

k∈{PHQ,GAD}

LMTL,k(z, yk). (10)

MTL improves generalization when tasks share underlying signals, while STL is preferred if task-
specific features dominate or tasks conflict.

3.3 Modeling sample heterogeneity via probabilistic expert routing

Psychotherapy data includes inherent heterogeneity. First, there is variation across patients due to both
individual heterogeneity in patient biology and symptom presentation, as well as due to data modality,
missingness, and quality per patient, clinician, or site (Preis et al., 2023; Ajirak et al., 2023a). Second,
there is variability in the extent to which measured outcomes correlate. For example, some patients
may present with both depression and anxiety symptoms that change in tandem during treatment,
while others may experience specific changes to just anxiety or depression symptoms. Rather than
applying a fixed modality paradigm or learning strategy across all samples, we assume samples
vary in modality informativeness and task relevance. To model this heterogeneity, we introduce a
hierarchical mixture-of-experts architecture that probabilistically routes each sample to one of eight
expert paths: {T1, T2, N1, N2} × {STL, MTL}.

Routing Architecture: We define a two-stage probabilistic routing mechanism that dynamically
selects among modality paths and task setups on a per-sample basis.

• Modality Router: Given X(i), a gating function rmod outputs a probability distribution over
the four modality paths (T1, T2, N1, N2):

πmod = softmax(rmod(Xnum, Xtext)) ∈ R4. (11)

Each modality path i ∈ {1, 2, 3, 4} corresponds to a specific transformation of the input,
resulting in a modality-specific representation X(i).

• Task Router: For each modality-transformed input X(i), a second gating function rtask
computes a distribution over task strategies (STL or MTL):

π
(i,j)
task = softmax(rtask(X

(i))) ∈ R2. (12)

Here, j ∈ {1, 2} indexes STL and MTL, respectively.
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Figure 1: Overview of our adaptive machine learning framework for mental health prediction. Patient
data, consisting of structured numerical assessments and unstructured therapist notes, is processed
through a probabilistic routing mechanism. Depending on input characteristics, patients are assigned
to specialized experts, single-task (STL) or multitask (MTL) models, optimized for numerical, textual,
or combined modalities. This Mixture of Experts (MoE) approach dynamically adapts to patient
heterogeneity, improving prediction accuracy and clinical relevance.

Each combination of modality path i and task strategy j defines an expert model f (i,j) that outputs
heteroscedastic predictions for both outcomes:

f (i,j)(X(i)) =
(
ŷ
(i,j)
PHQ , log σ

2(i,j)
PHQ , ŷ

(i,j)
GAD , log σ

2(i,j)
GAD

)
.

The overall predictive outputs are computed as a mixture over expert paths:

ŷPHQ =

4∑
i=1

2∑
j=1

π
(i)
mod · π

(i,j)
task · ŷ(i,j)PHQ , (13)

ŷGAD =

4∑
i=1

2∑
j=1

π
(i)
mod · π

(i,j)
task · ŷ(i,j)GAD . (14)

Each expert also contributes to the total uncertainty-aware loss. For soft routing, we compute the
expected loss across all expert paths:

Ltotal =
∑

k∈{PHQ,GAD}

4∑
i=1

2∑
j=1

π
(i)
mod · π

(i,j)
task ·

[
1

2
·
(yk − ŷ

(i,j)
k )2

σ
2(i,j)
k

+
1

2
log σ

2(i,j)
k

]
. (15)

In the case of hard routing, we replace the mixture with discrete selection and only one (i, j) pair
contributes to the prediction and loss. We explore both hard routing (differentiable approximation
to the argmax operator) and soft routing (mixture), trained end-to-end using total task loss. In soft
routing, gradients flow through all paths, encouraging specialization. In hard routing, selection is
treated as discrete via Gumbel-Softmax reparameterization (Jang et al., 2016). This architecture
captures complex heterogeneity in both data representation and outcome structure, automatically
discovering which modality and learning scheme are best suited for each sample.

4 Experimental setup: synthetic multitask regression with adaptive routing

4.1 Synthetic data generation

To evaluate our model’s ability to learn input-dependent routing policies, we construct a synthetic
multitask, multimodal regression benchmark. Each sample consists of two modalities: a numeric
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Figure 2: Routing behavior visualizations. (Left) Average Joint Routing PMF: Heatmap showing
average routing probabilities across all eight (modality by task paradigm) expert combinations. The
model assigns most mass to N2-STL and N2-MTL, indicating a preference for fused numerical+text
representations, especially under MTL. (Middle) Modality Routing Probabilities: Clustered heatmap
of sample-specific routing distributions over four modality paths. The model segments the input space
into distinct routing patterns, reflecting input-dependent computation. (Right) Routing Diagram:
Sankey plot illustrating average routing policy. Edge widths are proportional to route probabilities.
The architecture dynamically allocates across experts based on input characteristics.

vector x(num) ∈ Rdnum and a textual vector x(text) ∈ Rdtext . Both modalities contribute signal to
both tasks, but their relevance varies across the input space.

To simulate this heterogeneity, we define input-dependent latent preferences over modality infor-
mativeness and task relevance. For each sample, we generate two outputs y1 and y2 corresponding
to Task 1 and Task 2. These targets are nonlinear functions of both modalities, with task-specific
coefficients and feature maps:

y1 = α⊤
1 x

(num) + β⊤
1 ϕ(x

(text)) + γ1 · sin(ω⊤
1 x

(num)) + ϵ1,

y2 = α⊤
2 x

(text) + β⊤
2 ψ(x

(num)) + γ2 · cos(ω⊤
2 x

(text)) + ϵ2,

where ϕ and ψ are random Fourier feature maps and ϵk ∼ N (0, σ2) is Gaussian noise. The parameters
αk, βk, γk, ωk are sampled independently for each trial. This setup introduces nonlinear, cross-
modality interactions and supports fine-grained control over the input-task-modality relationships.

Taken together, Figures 2 and 3 illustrate the model’s ability to align routing decisions with the latent
structure of the task-modality landscape. Routes with higher selection probability correspond to
lower predictive error, confirming that the learned policy not only adapts to input characteristics but
also supports improved task performance. These results validate the effectiveness of probabilistic
expert routing as a mechanism for uncovering and exploiting sample-specific patterns in multimodal
multitask prediction.

Figure 3: Task-specific error distributions under hard routing. Boxplots show absolute prediction
errors for each task, stratified by the selected modality path (T2, N2) and task paradigm (STL,
MTL). The T2 and N2 configurations yield the lowest errors overall and dominate the hard routing
assignments. Notably, T1 and N1 routes are effectively pruned by the router, receiving near-zero
selection probability. MTL performs slightly better than STL, but not decisively enough to eliminate
STL paths. These results demonstrate the benefit of adaptive routing across modalities and tasks.
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4.2 Real-world dataset: Mental Health in Healthcare Workers

We applied our approach to an augmented real-world psychotherapy dataset involving healthcare
workers (hereafter “patients" for brevity) who presented with anxiety and/or depression symptoms
during the course of the COVID-19 pandemic (Kanellopoulos et al., 2021; Solomonov et al., 2022).
In this dataset, clinicians documented each session through unstructured notes (textual input, T1) and
completed standardized clinical questionnaires (structured input, N1). Each patient was assessed
using two outcome measures: depression severity (PHQ-9; Task 1) and anxiety severity (GAD-7;
Task 2). To unify modalities, we transformed the structured numerical inputs into natural language
using a fine-tuned text generation model, enabling early fusion with clinical notes to form a joint
textual representation (T2). Figure 4 provides an example of this textualization process. Conversely,
we encoded the unstructured clinical notes into numerical embeddings using a pretrained BERT
model and concatenated these embeddings with the original structured features to construct a fused
numerical representation (N2). This bidirectional transformation supports flexible modality routing
and aligns heterogeneous inputs in a common representation. We evaluate using: (i) the predictive
value of different modality paths, (ii) the benefit of multitask and heteroscedastic training objectives,
and (iii) the effect of adaptive routing in selecting appropriate expert configurations.

“Patient appeared more engaged during today’s session and 
described a recent reconnection with a close friend as 
uplifting. They expressed concern about losing interest in 
long-standing hobbies but noted they are still attending work 
regularly. No signs of acute distress were observed, and the 
patient denied any current or past suicidal ideation. ” + The 
patient slept well last night. They felt nervous, anxious, or 
on edge on several days. The patient experienced little 
interest or pleasure in doing things more than half the 
days. They did not have thoughts of being better off dead 
or of self-harm.

“Patient appeared more engaged during today’s session and 
described a recent reconnection with a close friend as uplifting. 
They expressed concern about losing interest in long-standing 
hobbies but noted they are still attending work regularly. No 
signs of acute distress were observed, and the patient denied 
any current or past suicidal ideation.”

Q: Did you sleep well last night? 0 (No) / 1 (Yes)
Q: Have you felt nervous, anxious, or on edge?
0 (Not at all) / 1 (Several days) / 2 (More than half the days) / 3 (Nearly every day)
Q: How often have you experienced little interest or pleasure in doing things?
0 (Not at all) / 1 (Several days) / 2 (More than half the days) / 3 (Nearly every day)
Q: Thoughts that you would be better off dead or of hurting yourself in some way?
0 (Not at all) / 1 (Several days) / 2 (More than half the days) / 3 (Nearly every day)

Textual Data + Textualized Numerical Data

Figure 4: Example of early fusion modality conversion. (Left) Original data with numerical
responses and therapist notes (not from a real patient to ensure privacy). (Right) Transformed
representation where numerical responses are converted into text and concatenated with the original
text, creating a unified textual modality.

Table 1 summarizes the six expert configurations used in our model, derived from combinations of
modality inputs (text, numerical, or both) and training objectives (STL or MTL). These correspond
to the eight possible (modality by task) pathways in our mixture-of-experts routing scheme. Each
configuration supports different patient profiles (for instance, patients with only clinical notes are
routed to text-only experts, while patients with multiple structured assessments and correlated
outcomes benefit more from MTL).

Table 2 reports the predictive performance (RMSE) for each outcome. T1 (text-only) performs
worst, particularly on PHQ-9, likely due to missing signal in free-text for structured outcomes. N1
(numerical-only) improves performance modestly. T2 (text + textualized numeric) achieves the best
results overall, confirming that converting structured data into natural language and early-fusing it
with notes enhances representation. N2 (numerical + embedded text) also performs well, but slightly
under performs T2, suggesting limitations in treating text as static embeddings rather than contextual
language input.

It also compares models trained with different objectives and routing strategies. STL under-performs
across both outcomes, especially PHQ-9, where inter-task signal is stronger. MTL improves over STL
by learning shared representations. Introducing learned routing improves both tasks, confirming that
adaptive pathway selection benefits generalization. Finally, combining routing and heteroscedastic
loss yields the best overall performance, demonstrating that routing complements uncertainty-aware
weighting. This model dynamically selects both modality and task structure on a per-sample basis
and adjusts supervision strength based on estimated noise.
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Table 1: Overview of expert routes with their functions and ideal patient profiles.
Route Function Interpretation

Numerical (STL) Uses only structured scores (e.g.,
PHQ-9) to predict one outcome.

Patients with only standardized questionnaire scores
(PHQ-9, GAD-7) and no, short, or noisy therapist notes.

Numerical (MTL) Uses structured scores to predict
multiple outcomes.

Patients with multiple structured scores available (PHQ-
9, GAD-7) where outcomes are correlated.

Text (STL) Uses only therapist notes to pre-
dict one outcome.

Patients without or with noisy structured assessments
but with detailed clinical notes, with only one outcome
available or two outcomes with possible low correlation.

Text (MTL) Uses only therapist notes to pre-
dict multiple outcomes.

Patients whose therapist notes describe multiple mental
health problems (e.g., mentions of both depression and
anxiety) without or with noisy structured scores.

Numerical + Text
(STL)

Uses both structured and unstruc-
tured data but predicts only one
outcome at a time.

Patients with both questionnaire scores and therapist
notes with low outcome correlation.

Numerical + Text
(MTL)

Uses both structured and unstruc-
tured data to predict multiple out-
comes jointly.

Patients with both structured scores and clinical text,
where multiple conditions (e.g., depression & anxiety)
need prediction.

Table 2: RMSE on PHQ-9 / GAD-7 for all fixed-path baselines and model-level variants.
Configuration PHQ-9 RMSE GAD-7 RMSE
Modality-path baselines (STL)

T1 (Text-only) 4.60 4.10
N1 (Numerical-only) 4.08 3.85
T2 (Textualized Num + Text) 3.66 3.42
N2 (Num + Embedded Text) 3.80 3.58

Training–objective / routing variants
STL (Independent) 4.28 3.95
MTL (Shared Encoder) 4.12 3.78
Heteroscedastic MTL 3.85 3.52
Routing (Soft, Learned Paths) 3.62 3.34

4.3 Generalization to other domains

To evaluate the generality of our routing framework, we applied it to three diverse datasets: Yelp Re-
views (business feedback, 5,000 samples), RateMyProfessor (academic evaluations, 1,000 samples),
and Customer Satisfaction (structured service surveys, 2,000 samples). All contain both structured
numeric inputs (e.g., ratings, survey scores) and unstructured text (e.g., freeform comments), aligning
with the multimodal multitask structure of our method. We compare three configurations: soft routing
(full model), hard routing, and a non-routing ensemble.

Across all datasets, the full model with soft routing achieves the best performance. Hard routing
performs slightly worse, with an average drop of 0.5–2.0 percentage points in R2. Ablation studies
further show that the text-based paths (T1 and T2) are the most critical, while N2 provides useful
complementary information.

5 Discussion and Limitations

Discussion. Our experiments show that an adaptive routing framework can improve multimodal
multitask prediction under substantial input and task heterogeneity. First, the synthetic benchmark
confirms that the router discovers the latent mapping between modality relevance and task correlation.
The model concentrates probability mass on paths that match the ground-truth data-generation rules
and yields lower RMSE than static baselines. Second, on the psychotherapy data, the framework
selects the textualized-numeric path (T2) for samples with rich notes and numeric scores and prefers
the numeric-only path (N1) when notes provide little extra signal. Routing probabilities align with
clinical expectations: patients whose therapist notes give detailed symptom descriptions rely more on
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Table 3: Generalization across domains. The full model with soft routing achieves the best perfor-
mance across datasets. Hard routing shows a small degradation (0.5–2.0 percentage points), while
removing routing entirely causes a substantial drop (∼20–25%).

Dataset Config R2 (Task 1) R2 (Task 2) ∆ vs. Full Model

Yelp
Soft Routing 0.2406 0.2263 —
Hard Routing 0.2350 0.2200 −0.0056 (−2.3%)
No Routing 0.1790 0.1651 −0.0616 (−25.6%)

RateMyProf
Soft Routing 0.2850 0.2720 —
Hard Routing 0.2800 0.2670 −0.0050 (−1.8%)
No Routing 0.2200 0.2100 −0.0650 (−22.8%)

Customer Sat.
Soft Routing 0.3200 0.3050 —
Hard Routing 0.3150 0.3000 −0.0050 (−1.6%)
No Routing 0.2500 0.2400 −0.0700 (−21.8%)

language models, while patients with minimal notes rely on structured scores. Third, uncertainty-
aware losses complement routing. The heteroscedastic objective discounts high-variance samples and
reduces over-fitting, particularly for PHQ-9, which empirically exhibits greater label noise. Further,
the mixture-of-experts architecture yields interpretable sub-networks. Each expert specializes in
a clearly defined modality–task configuration, which supports post-hoc inspection and potential
deployment in clinical workflows where transparency is essential.

Limitations. The study relies on substantial synthetic data to stress-test routing behavior under
controlled heterogeneity. Synthetic features follow idealized distributions, carry noise-free labels,
and may embed patterns that rarely occur in real notes or questionnaire responses. Also, our “real-
world” evaluation uses a hybrid corpus that augments genuine records with synthetically generated
encounters, which expands data volume but creates distribution drift. Future work should validate on
large untouched real-only test sets, apply importance weighting or domain-adversarial fine-tuning to
reduce synthetic bias, and recalibrate class probabilities to reflect true clinical prevalence.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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by formal proofs provided in appendix or supplemental material.
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of the paper (regardless of whether the code and data are provided or not)?
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dataset, or provide access to the model. In general. releasing code and data is often
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Answer: [Yes]
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7. Experiment statistical significance
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Answer: [Yes]
Justification: Error bars are provided.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computer resources and requirements are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and are in compliance with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Although the approach is most likely to have positive societal impact, we
discuss the possibilities for misuse and harms that could arise in the case of incorrect results
in the Appendix.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model does not present a high risk of misuse. We are not releasing any
patient data used in the study due to HIPAA protections.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include a full author contributions section in the Appendix, all models and
code is original or clearly imported (as open source Python packages), all data in the paper
was collected or generated by the authors, and we will make our code available open source
under the MIT license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new asset in the form of a novel model architecture with
accompanying code. The asset is thoroughly documented using the NeurIPS Asset Metadata
Template, including descriptions of model training procedures, licenses, and known limita-
tions. Documentation is provided alongside the asset as part of the supplementary materials
in an anonymized URL. No personally identifiable information is included in the asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We include full details of the protocol used for data collection in patients in
the Appendix.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
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Justification: We include full IRB and risks incurred details in the Appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We clearly describe the usage of LLMs as tools used by the work for embedding
textual data in the main paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Real-world data collection and usage

Realistic Synthetic Data. The clinical outcomes described here were not used directly for model
training or evaluation in the main manuscript. Instead, they served as the basis of a highly realistic
synthetic dataset that captures key distributional and structural characteristics of the real data.

Ethical oversight. Weill Cornell Medicine’s institutional review board approved the study; a waiver
of informed consent was obtained for this retrospective study because it posed no more than minimal
risk, did not affect care, rights or welfare and was deidentified for the purpose of analyses.

Intervention and Data Collection

• Context. A four-session, remote, skills-based psychotherapy program was launched at a
large academic medical center during the first peak of the COVID-19 pandemic (March
2020–April 2021).

• Participants. N = 534 health care workers (HCWs) self-referred for emotional support.
Role categories (percentages approximated): 35.2% nursing, 24.3% patient support, 22.8%
administrative, 13.8% medical trainees/faculty, 2.4% facilities, 1.3% family members. 70%
were on-site (frontline); 19% worked remotely; 11% unspecified.

• Clinicians. Sixty-seven trained providers (licensed psychologists, psychiatrists, social
workers, and supervised trainees) delivered a total of 1,423 telehealth sessions.

• Measures.
– Patient Health Questionnaire–9 (PHQ-9) and Generalized Anxiety Disorder–7 (GAD-7)

at sessions 1 and 4.
– PHQ-4 at sessions 2 and 3 for interim symptom tracking.
– Columbia Suicide Severity Rating Scale (C-SSRS) at intake and as needed for suicide

risk.

• Safety. Participants with severe symptoms or safety concerns were referred to appropriate
emergency or long-term psychiatric care.

A linear mixed-effects model (random intercept and slope per subject; fixed effect of time) showed
significant reduction in overall symptom burden:

PHQ-4baseline = 5.65± 2.95 −→ PHQ-4final = 3.32± 2.46,

F3,823 = 109.23, p < .001, η2partial = 0.27.

For participants with clinically elevated symptoms at baseline (PHQ-4 ≥ 6), the effect size was
stronger (η2partial = 0.46). Response rates were 42% on GAD-7 and 43% on PHQ-9 (≥ 50% symptom
reduction).

B Computational Efficiency

Our model incorporates a hierarchical routing system to dynamically assign each sample to one of
eight expert pathways, defined by the Cartesian product of four modality configurations (T1, T2, N1,
N2) and two task strategies (STL, MTL). We analyze the computational complexity introduced by
this routing mechanism relative to fixed single-path baselines.

Let P denote the computational cost of a single expert model (i.e., the cost of a forward and backward
pass through one pathway), and let R denote the cost of computing the routing distributions using the
modality and task routers. The routers are shallow MLPs whose cost is negligible relative to P , so
R≪ P .

Fixed Baseline (No Routing). In the simplest configuration, a sample is passed through a fixed
expert (e.g., modality T1 with STL). The total cost per sample is

Cfixed = Θ(P ).
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Soft Routing. In soft routing, all eight experts are evaluated per sample. The model computes
weighted predictions by combining each expert’s output according to the product of modality and
task routing probabilities. Thus, the total cost per sample is:

Csoft = R+

4∑
i=1

2∑
j=1

P (i,j).

Assuming each expert has similar cost P , we have:
Csoft = R+ 8P = Θ(8P +R) ≈ Θ(8P ).

Hard Routing. In hard routing, a sample is assigned to a single expert using a differentiable
approximation of the argmax operation (e.g., via Gumbel-softmax). Only one expert is evaluated,
resulting in:

Chard = R+ P = Θ(P +R) ≈ Θ(P ).

Relative Overhead. Compared to a fixed-path baseline, soft routing incurs an ∼ 8× increase in
per-sample computational cost, while hard routing maintains nearly equivalent cost with a marginal
increase due to the routing networks. A summary is given in Table 4.

Table 4: Per-sample computational cost of different routing strategies.
Routing Strategy Experts Evaluated Cost per Sample Relative to Fixed
Fixed Path (e.g., T1+STL) 1 Θ(P ) 1
Hard Routing 1 Θ(P +R) ≈ 1×
Soft Routing 8 Θ(8P +R) ≈ 8×

In practice, training under soft routing enables all expert paths to specialize jointly and contributes to
improved generalization. However, at inference time, switching to hard routing allows for efficient
deployment by evaluating only a single expert path per input. This separation between training and
inference modes enables a favorable trade-off between flexibility and computational efficiency.

C Scaling to More Tasks and Modalities

Our probabilistic routing architecture introduces non-trivial scaling behavior as the number of input
modalities and prediction tasks increases.

Let m be the number of input modalities. For each modality, we support bidirectional transformations
to every other modality, enabling cross-modal fusion. This results in m(m− 1) transformation-based
fusion paths. Including one native path per modality, the total number of modality-specific pathways
becomes m2.

Let t be the number of outcome tasks. We consider three task-structuring strategies:

1. STL + single MTL: Each modality path is paired with t STL heads and one MTL head
covering all tasks. The total number of experts is

E = m2 × (t+ 1).

2. STL + pairwise MTL: Instead of one MTL model, we train a separate MTL model for each
task pair. The total number of experts becomes

E = m2 ×
(
t+

t(t− 1)

2

)
= m2 × t(t+ 1)

2
,

which grows quadratically with the number of tasks.
3. STL + grouped MTL (recommended for scalability): Tasks are grouped into g seman-

tically related clusters, each modeled by a shared encoder with group-specific heads. The
total number of experts becomes

E = m2 × (t+ g), where g ≪ t(t− 1)

2
.

This strikes a balance between parameter efficiency and the ability to model inter-task
relationships.

21



Let P denote the computational cost of a single expert (forward/backward pass), and R the cost of
computing routing distributions. In soft routing, all experts are evaluated and weighted per sample.
The total per-sample cost is

Csoft = Θ(E · P +R),

where E is the total number of experts. For example:

• Under STL + single MTL: Csoft = Θ
(
m2 · (t+ 1) · P

)
• Under STL + pairwise MTL: Csoft = Θ

(
m2 · t(t+1)

2 · P
)

In hard routing, only one expert is evaluated per sample (selected via argmax or Gumbel-softmax).
The cost reduces to

Chard = Θ(P +R),

independent of the total number of experts, though all expert parameters must still reside in memory.

D Data-Driven (Empirical) Synthetic Data

To support controlled experimentation and model probing, we generated synthetic samples that reflect
“clean” examples from the original dataset. These samples were designed to preserve strong predictive
signal across both GAD and PHQ outcomes. The process is structured to maintain cross-modal
coherence between structured numerical features and free-text clinical notes. The generation process
proceeds in three stages: (1) Sampling structured numerical features from a smoothed approximation
of high-confidence empirical distributions. (2) Generating text conditionally based on these numerical
features using a large language model (LLM) with custom prompting. (3) Filtering generated samples
using our trained multimodal multitask model to retain only those with low predictive uncertainty
and high task-specific confidence.

D.1 Synthetic Numerical Data Generation

We generated synthetic numerical data using three methods, each designed to preserve the statistical
structure of the original dataset.

Gaussian Synthesis. We estimated the mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d from
the original dataset. To ensure numerical stability, a small constant 10−6 was added to the diagonal
of Σ. Synthetic samples were then drawn from a multivariate normal distribution:

xsynthetic ∼ N (µ,Σ), xsynthetic ∈ Rnsamples×d.

Copula-Based Synthesis. We applied a rank-based transformation to map each feature to a standard
normal distribution. The empirical correlation matrix was computed on the transformed data. Syn-
thetic samples were drawn from a multivariate normal distribution with this correlation structure and
subsequently mapped back to the original marginal distributions using a quantile transform. This
method preserved nonlinear dependencies among features.

Kernel Density Estimation (KDE) Synthesis. Continuous features were standardized using
StandardScaler. A Gaussian kernel density estimator was fitted with bandwidth h = n−1/(d+4),
where n is the number of samples and d is the feature dimensionality. New samples were drawn using
KDE-based resampling. Binary features (e.g., dissociate, anger, fear_contam) were thresholded
post-generation:

xsynthetic[binary] = (xsynthetic[binary] > 0.5).astype(int).

For each method, we generated 200 synthetic samples while maintaining the original class distribution
of PHQ-9 and GAD-7 binary outcomes. The synthetic datasets closely matched the original statistical
characteristics, with a mean absolute difference in feature correlation of less than 0.1 and a KL
divergence in class distribution of less than 0.05.
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Synthetic Text Data Generation

To generate synthetic text data that reflect realistic psychotherapy session notes, we employed a
prompt-based generation pipeline using small, open-source large language models (LLMs). The goal
was to create natural language samples that are consistent with the patterns observed in the original
dataset, while maintaining data privacy and avoiding memorization of sensitive content.

Numerical-to-Text Conversion. We first transformed structured numerical features into short natural
language descriptions. For each synthetic numerical instance x ∈ Rd, we constructed a template-
based summary containing key symptom indicators and severity scores (e.g., PHQ-9, GAD-7). An
example of this intermediate representation is:

The patient reported a PHQ-9 score of 15 and a GAD-7 score of 13. They en-
dorsed symptoms such as dissociation and irritability, with no signs of fear of
contamination.

LLM-Based Natural Language Expansion. We used an instruction-tuned language model (Flan-T5
or Phi-2) to expand the structured summaries into fluent and contextually appropriate psychotherapy
notes. Each prompt followed the format:

Patient data: PHQ-9 = 15, GAD-7 = 13, symptoms = [dissociation, irritabil-
ity]. Write a brief therapist note summarizing the patient’s emotional state and
challenges.

The model generated coherent text such as:

The patient presented with moderate symptoms of depression and anxiety, including
dissociative experiences and heightened irritability. They expressed difficulty
managing emotional stressors and reported low energy and trouble sleeping.

Post-Processing and Filtering. We generated one therapist-style note per synthetic numerical input,
resulting in 200 synthetic text samples. To ensure linguistic diversity and clinical plausibility, we
applied basic heuristics to filter out degenerate outputs (e.g., overly repetitive or off-topic content).
The vocabulary and sentence structure were qualitatively consistent with those in the original data,
and generated texts maintained semantic alignment with the associated synthetic numerical features.

Privacy Considerations. All models were run locally without external API calls to ensure HIPAA
compliance. We used only open-access, instruction-tuned models with small memory footprints
(Phi-2), which allowed controlled offline generation and ensured that no real patient data were
exposed or used during synthesis.
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Figure 5: Distribution of synthetic and original data

E Equation-Driven (Analytical) Synthetic Data

Our synthetic benchmark is designed to rigorously test input-dependent routing in multitask, multi-
modal regression. Each sample consists of two modalities, a numeric vector and a text vector, and
two regression targets. Both modalities contribute to both tasks, but the degree and nature of their
informativeness is heterogeneous and input-dependent, simulating real-world complexity.
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Input Features. For each sample, we generate:

• Numeric features x(num) ∈ Rdnum , sampled as N (0, I).

• Text features x(text) ∈ Rdtext , also sampled as N (0, I).

We use dnum = dtext = 16 unless otherwise specified.

Random Fourier Feature Maps. To introduce nonlinear, cross-modal dependencies, we use
random Fourier feature (RFF) maps:

ϕ(x(text)) =

√
2

D
cos(Wϕx

(text) + bϕ),

ψ(x(num)) =

√
2

D
cos(Wψx

(num) + bψ),

where Wϕ,Wψ ∈ RD×16 have entries drawn from N (0, 1), bϕ, bψ ∈ RD are drawn uniformly from
[0, 2π], and D = 32.

Target Construction. For each sample, we generate two targets:

y1 = α⊤
1 x

(num) + β⊤
1 ϕ(x

(text)) + γ1 · sin(ω⊤
1 x

(num)) + ϵ1,

y2 = α⊤
2 x

(text) + β⊤
2 ψ(x

(num)) + γ2 · cos(ω⊤
2 x

(text)) + ϵ2,

where:

• αk, βk ∼ N (0, I) (dimensions match their arguments)

• ωk ∼ N (0, I) (dimension 16)

• γk ∼ Uniform[0.5, 1.5]

• ϵk ∼ N (0, 0.12).

All parameters are independently sampled for each trial, and fixed for all samples within a trial.

Design Rationale. This construction ensures:

• Both modalities are relevant to both tasks, but in different, nonlinear, and cross-modal ways.

• The use of RFFs simulates learned embeddings and increases the complexity of the mapping.

• Sinusoidal nonlinearities further challenge the model, requiring it to capture nontrivial
dependencies.

• The setup allows for controlled ablations (e.g., by zeroing coefficients or removing nonlinear
terms).

Implementation Notes.

• All random seeds are fixed for reproducibility.

• The code for data generation is provided in the supplementary repository.

• The synthetic dataset can be easily extended to more modalities or tasks by following the
same recipe.

Algorithm 1 Synthetic Data Generation

1: Sample x(num), x(text) ∼ N (0, I16)
2: Compute ϕ(x(text)), ψ(x(num)) via RFFs
3: Sample αk, βk, ωk, γk as above
4: Compute y1, y2 as above, add noise ϵk
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def rff(x, W, b):
return np.sqrt(2 / W.shape[0]) * np.cos(W @ x + b)

x_num = np.random.randn(16)
x_text = np.random.randn(16)
W_phi, b_phi = np.random.randn(32, 16), np.random.uniform(0, 2*np.pi, 32)
W_psi, b_psi = np.random.randn(32, 16), np.random.uniform(0, 2*np.pi, 32)
phi_x_text = rff(x_text, W_phi, b_phi)
psi_x_num = rff(x_num, W_psi, b_psi)
# ... sample coefficients and compute y1, y2 as above

E.1 Scenario 1: Sinusoidal/Cosine, Both Modalities

Number of samples: 1000 (train), 1000 (test)
Feature dimensions: d_num = 16, d_text = 16, D (RFF output) = 32

Feature maps:
phi(x_text) = sqrt(2/32) * cos(W_phi x_text + b_phi)
psi(x_num) = sqrt(2/32) * cos(W_psi x_num + b_psi)
W_phi, W_psi ~ N(0, 1), b_phi, b_psi ~ Uniform[0, 2pi]

Target equations:
y1 = alpha1^T x_num + beta1^T phi(x_text) + gamma1 * sin(omega1^T x_num) + epsilon1
y2 = alpha2^T x_text + beta2^T psi(x_num) + gamma2 * cos(omega2^T x_text) + epsilon2

Parameter distributions:
- alpha_k, beta_k ~ N(0, I)
- omega_k ~ N(0, I)
- gamma_k ~ Uniform[0.5, 1.5]
- epsilon_k ~ N(0, 0.1^2)

In this scenario, as expected, the model learns that using MTL yields the best performance (see Figure
6).

E.2 Scenario 2: STL Preferred

Number of samples: 1000 (train), 1000 (test)
Feature dimensions: d_num = 16, d_text = 16, D (RFF output) = 32

Feature maps:
phi(x_text) = sqrt(2/32) * cos(W_phi x_text + b_phi)
psi(x_num) = sqrt(2/32) * cos(W_psi x_num + b_psi)
W_phi, W_psi ~ N(0, 1), b_phi, b_psi ~ Uniform[0, 2pi]

Target equations:
y1 = alpha1^T x_num + gamma1 * sin(omega1^T x_num) + epsilon1
y2 = alpha2^T x_text + gamma2 * cos(omega2^T x_text) + epsilon2

Parameter distributions:
- alpha_k ~ N(0, I)
- omega_k ~ N(0, I)
- gamma_k ~ Uniform[0.5, 1.5]
- epsilon_k ~ N(0, 0.1^2)

In this scenario, each task is generated from a single modality: y1 depends only on the numeric
features and their nonlinear transformation, while y2 depends only on the textual features and their
nonlinear transformation. Since each task is generated independently from its own modality, there
is no shared information or benefit to learning the tasks jointly. As a result, the model learns that
treating each task separately by using STL yields the best performance (see Figure 7).
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E.3 Scenario 3: Fusion-Dominant Routing

Number of samples: 1000 (train), 1000 (test)
Feature dimensions: d_num = 16, d_text = 16, D (RFF output) = 32

Feature maps:
phi(x_text) = sqrt(2/32) * cos(W_phi x_text + b_phi)
psi(x_num) = sqrt(2/32) * cos(W_psi x_num + b_psi)
W_phi, W_psi ~ N(0, 1), b_phi, b_psi ~ Uniform[0, 2pi]

Target equations:
y1 = alpha1^T x_num + beta1^T phi(x_text) + epsilon1
y2 = alpha2^T x_text + beta2^T psi(x_num) + epsilon2

Parameter distributions:
- alpha_k, beta_k ~ N(0, I)
- omega_k ~ N(0, I)
- epsilon_k ~ N(0, 0.1^2)

The results in Figure 8show that the model prefers the T2 (fusion) modality path, especially in
combination with the MTL (multi-task learning) paradigm. The N1 and N2 paths are rarely or never
used for MTL, indicating that the model has learned to avoid these routes in favor of more effective
ones.

F Broader Impact

This work introduces a flexible machine learning framework for adaptively routing data through
multimodal and multitask pathways, with primary application to psychological outcome prediction.
By enabling models to select personalized computation paths based on both input availability and task
structure, this approach has the potential to improve prediction accuracy and robustness in real-world
settings where data is heterogeneous and incomplete.

While our evaluation is framed in the context of mental health prediction, the methodology is broadly
applicable to domains such as clinical decision support, education, and human-centered AI systems
where structured and unstructured inputs coexist and multiple outcomes must be considered jointly.

At the same time, predictive models in healthcare and mental health raise significant ethical concerns.
These include the risk of reinforcing biases present in clinical documentation, the opacity of model
decisions, and the potential for overreliance on algorithmic outputs in high-stakes scenarios. Our
model attempts to mitigate some of these risks by producing interpretable routing decisions, which
may offer insight into modality usefulness and task interactions. Nonetheless, interpretability and
fairness should be further studied before deployment.

Our work uses synthetic data and carefully preprocessed clinical data to demonstrate technical
contributions, and does not aim to inform clinical decisions directly. Future use of this method
in real-world applications must be coupled with appropriate clinical validation, governance, and
safeguards to ensure equitable, transparent, and accountable outcomes.
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(a)

(b)

(c)

(d)

(e)

Figure 6: Scenario 1: Sinusoidal/Cosine, Both Modalities (a) Absolute error by route (soft routing,
weighted by probabilities). (b) Absolute error by route (hard routing, based on most probable path).
(c) Comparison of absolute errors for each route: hard vs. soft routing (note that in hard routing,
boxes do not appear in every case as the router can learn to bypass N1 as a less probable path). (d)
Summary: joint routing PMF, clustered heatmap, and routing Sankey diagram. (e) Distribution of
selected modality and task paradigm by the router.
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(c)

(d)

(e)

Figure 7: Scenario 2: STL Prefered (a) Absolute error by route (soft routing, weighted by probabili-
ties). (b) Absolute error by route (hard routing, based on most probable path). (c) Comparison of
absolute errors for each route: hard vs. soft routing (note that in hard routing, boxes do not appear in
every case). (d) Summary: joint routing PMF, clustered heatmap, and routing Sankey diagram. (e)
Distribution of selected modality and task paradigm by the router.
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Figure 8: Scenario 3: Fusion-Dominant Routing (a) Absolute error by route (soft routing, weighted
by probabilities). (b) Absolute error by route (hard routing, based on most probable path). (c)
Comparison of absolute errors for each route: hard vs. soft routing (note that in hard routing, boxes
do not appear in every case). (d) Summary: joint routing PMF, clustered heatmap, and routing Sankey
diagram. (e) Distribution of selected modality and task paradigm by the router.
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