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Abstract

In Domain Generalization (DG) settings, models trained independently on a given
set of training domains have notoriously chaotic performance on distribution shifted
test domains, and stochasticity in optimization (e.g. seed) plays a big role. This
makes deep learning models unreliable in real world settings. We first show that this
chaotic behavior exists even along the training optimization trajectory of a single
model, and propose a simple model averaging protocol that both significantly boosts
domain generalization and diminishes the impact of stochasticity by improving
the rank correlation between the in-domain validation accuracy and out-domain
test accuracy, which is crucial for reliable early stopping. Taking advantage of
our observation, we show that instead of ensembling unaveraged models (that is
typical in practice), ensembling moving average models (EoA) from independent
runs further boosts performance. We theoretically explain the boost in performance
of ensembling and model averaging by adapting the well known Bias-Variance
trade-off to the domain generalization setting. On the DomainBed benchmark,
when using a pre-trained ResNet-50, this ensemble of averages achieves an average
of 68.0%, beating vanilla ERM (w/o averaging/ensembling) by ∼ 4%, and when
using a pre-trained RegNetY-16GF, achieves an average of 76.6%, beating vanilla
ERM by 6%. Our code is available at https://github.com/salesforce/
ensemble-of-averages.

1 Introduction

Domain generalization (DG, [5]) aims at learning predictors that generalize well on data sampled
from test distributions that are different from the training distribution. Currently, deep learning
models have been shown to be poor at this form of generalization [10], and excel primarily in the IID
setting [51].

While a number of algorithms have been proposed to mitigate this problem (cf [51] for a survey),
[18] demonstrate that models trained using empirical risk minimization (ERM, [43]) along with
proper model selection (i.e. early stopping using validation set), using a subset of data from all
the training domains, largely match or even outperform the performance of most existing domain
generalization algorithms. This suggests that model selection plays an important role in domain
generalization. Despite its importance, there has not been much investigation into the reliability of
model selection. As we demonstrate in Figure 1, the out-domain performance varies greatly along
the optimization trajectory of a model during training, even though the in-domain performance does
not. This instability therefore hurts the reliability of model selection, and can become a problem in
realistic settings where test domain data is unavailable, because it causes the rank correlation between
in-domain validation accuracy and out-domain test accuracy to be weak.

In this paper, we first investigate a simple protocol for model averaging that both boosts DG within
the ERM framework, and mitigates performance instability of deep models on out-domain data,
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Figure 1: Model averaging improves out-domain performance stability. Left: In-domain validation
accuracy and out-domain test accuracy during training of models using ERM. Right: Same as left,
except validation and test predictions are made using a simple moving average of the model being
optimized, along its optimization path. Details: The plots are for the TerraIncognita dataset with
domain L38 used as the test domain, and others as training/validation data, and ResNet-50. Solid lines
denote accuracy, dashed lines denote training loss, and dash-dot lines denote best accuracy achieved
during training and all runs (for reference). Each color denotes a different run with a different random
seed and training/validation split. Gist: Model averaging reduces out-domain performance instability,
and makes the test curves correlate better with the validation curves, making model selection using
in-domain validation set more reliable during optimization. We see a similar pattern when using
ensemble of models, with and without model averaging, in Figure 2.

specifically with respect to in-domain validation data. This makes model selection more reliable.
Next, taking advantage of our observation, we show that ensembling moving average models further
boosts performance, making it a better choice for practical scenarios. Note that we do not claim
that model averaging or ensembling can fully solve the problem of DG. The observation that model
averaging can boost domain generalization performance is not new, and was exposed by SWAD [8],
which inspired our work. Our contribution in this respect are as follows:

1. Hyperparameter-free:In contrast to SWAD, which introduces three additional hyper-parameters
for its model averaging algorithm that need tuning, we show that the simple strategy of maintaining
a simple moving average (SMA) of the model parameters throughout the optimization trajectory,
starting near initialization (Appendix Figure 5), works just as well (when a pre-trained model is used
as initialization). Although model averaging technically requires two hyper-parameters– averaging
frequency and starting iteration, through empirical analysis, we show that setting the frequency to 1
and setting the start iteration close to 0 works well on multiple datasets and architectures, making our
proposal hyperparameter-free in practice.

2. Computationally efficient:SWAD requires computing validation performance more frequently
than is typically done (2x-6x on the DomainBed datasets), which is needed because it needs to
find the start and end iteration between which model averaging is done. This increases compute
requirements. This segment is selected based on the validation performance computed using the
model being trained. Our proposal to instead use the SMA model to perform early stopping and
inference, side-steps this need and does not require frequent validation performance check. We show
that the root cause for this difference is that the model being trained has unstable performance on
OOD data, while the SMA model has a more stable OOD performance (see Figure 1 and Table 2).
Thus this observation results in our hyperparameter-free and more efficient model averaging strategy.

3. EoA: Taking advantage of our efficient model averaging protocol (section 2.2), we find that an
ensemble of moving average models (EoA) outperforms a traditional ensemble of unaveraged models
(Table 4). We also show ablation analysis that the rank correlation between in-domain validation
performance and out-domain test performance is better for the ensemble of average models (Table 3).

4. Theoretical explanation: To explain why both model averaging and ensembling improve OOD
performance under a unified theoretical framework, we adapt the well known Bias-Variance decom-
position to the domain generalization setting, and argue that the expected OOD loss for individual
models comprises of both the bias and the variance term, while the expected OOD loss for ensembles
and averaged models comprises mainly of the bias term only, and is thus strictly lower (section 3.2).
Our explanation is in contrast with SWAD, which uses flat minima to explain the improved OOD
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generalization, which applies to model averaging, but is less straight forward for explaining the boost
by ensembles.

5. Benchmarking: For benchmarking, we experiment with three different pre-trained models as
initializations for DG training, with increasing pre-training dataset size and model size. In these
experiments we find that EoA provides a larger gain over the corresponding ERM baseline with
increasing dataset and model size. These gains range from 4%− 6% (Table 4). Notice that this claim
is different from existing work [20], which states that the baseline ERM performance improves with
larger pre-training data and model size.

2 Model Averaging

2.1 Terminology

Online Model: For a given supervised learning objective function, let fθ(.) denote the deep network
being optimized using gradient based optimizer, where θ denotes the parameters of this model. We
refer to fθ as the online model, or unaveraged model. The output of fθ(.) is a vector of K logits
corresponding to the K classes in the supervised task.

Moving Average (MA) Model: While the online model is being trained, we maintain a moving
average of the online model’s parameters. This process is sometime referred to as iterate averaging in
existing literature. The deep network whose parameters are set to be this moving average is referred
to as the moving average model, or more specifically simple moving average (SMA) model because of
its use in our work. We denote the parameters of this model by θ̂.

2.2 Model Averaging Protocol

We use a simple moving average (SMA) of the online model. Instead of calculating the moving
average starting from initialization (as done in Polyak-Ruppert averaging), we instead start after a
certain number of iterations t0 during training (tail averaging), and maintain the moving average until
the end of training. As we discuss in the next section, t0 is chosen to be close, but not equal to the
initialization when a pre-trained model is used as initialization. At any iteration t, we denote:

θ̂t =

{
θt, if t ≤ t0
t−t0

t−t0+1 · θ̂t−1 +
1

t−t0+1 · θt, otherwise
(1)

where θt is the online model’s state at iteration t. Note that effectively, θ̂t := 1
t−t0+1 ·

∑t
t′=t0

θt′ .
Further, at iteration t, if we need to calculate validation performance, we use θ̂t to do so, and not θt.
As we show in the next section, the benefit of doing so is that the rank correlation between in-domain
validation accuracy and out-domain test accuracy is significantly better when predictions are made
using θ̂t. This makes model selection more reliable for domain generalization. Finally, for a given run,
model selection selects θ̂t∗ for making test set predictions, such that θ̂t∗ achieves the best validation
performance. We discuss some theoretical perspectives on why model averaging can help domain
generalization in section 5.1.

2.3 Ablation Analysis

Here we perform four ablation studies: 1) impact of the start iteration t0 used in our SMA protocol in
Eq. 1; 2) the frequency of model averaging; 3) instability reduction of SMA model compared to the
online mode along the optimization trajectory on out-domain data; 4) correlation between in-domain
and out-domain accuracy across independently trained models.

Due to space limitation, we show experiments for 1,2 and 4 in Appendix section C. In summary, we
find that: 1) starting averaging close to initialization results in improved out-domain performance
(Figure 5 in Appendix) when the parameters are initialized used a pre-trained model; 2) the frequency
of SMA does not have a significant impact on performance, unless sampling is done at too large
intervals (Figure 6 in Appendix); 4) the rank correlation is poor between validation and test accuracy
of independently trained models (Figure 8 in Appendix). An implication of this is that it is difficult to
discover the best model (for out-domain performance) from a pool of independently trained models,
based only on their in-domain validation performance (echoing the findings of [10]).
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Table 1: Spearman correlation (closer to 1 is better) between within-run in-domain validation accuracy
and out-domain test accuracy on multiple datasets. Model averaging improves rank correlation for
both individual models (left) and ensemble of averages (right).

Table 2: Individual Models
TerraIncognita w/o avg w/ avg
L100 0.21 ± 0.07 0.90 ± 0.05
L38 0.12 ± 0.13 0.83 ± 0.05
L43 0.30 ± 0.06 0.67 ± 0.18
L46 0.03 ± 0.11 0.52 ± 0.14

Table 3: Ensembles
TerraIncognita w/o avg w/ avg
L100 0.48 1
L38 0.17 0.95
L43 0.59 0.38
L46 0.08 0.61

2.3.1 Instability Reduction: Rank Correlation

We study the reliability of model selection for domain generalization when using online models vs
moving average models, using rank correlation (see Appendix C.4 for definition). To do so, we train
models on a dataset, both with and without model averaging, and compute Spearman correlation
between the in-domain validation accuracy and out-domain test accuracy sampled at regular intervals
during the training process. Since there are multiple runs where a given domain acts as the test
domain, we calculate the mean and standard error of these values over these runs.

The rank correlations are shown in Table 2 (and Table 8 in Appendix) for the PACS, VLCS, Office-
Home, TerraIncognita and DomainNet datasets. We find that in majority of the cases, using model
averaging results in a significantly better rank correlation compared to using the online model. These
experiments therefore suggest that the reliability of model selection is significantly higher within a
run when using model averaging.

3 Ensemble of Averages (EoA)

[18] propose a rigorous framework for evaluation in the domain generalization setting which accounts
for randomness due to seed and hyper-parameter values, and recommend reporting the average test
accuracy over all the runs computed using a model selection criteria. However, in practice, it is
desirable to have a single predictor that has a high accuracy. An ensemble combines predictions
from multiple models, and is a well known approach for achieving this goal [11] by exploiting
function diversity [14]. However, as we show, even ensembles suffer from instability in the domain
generalization setting. Building on the observations of the previous section, we investigate the
behavior of ensemble of moving average models and find that it mitigates this issue. We begin by
describing the EoA protocol below.

EoA Protocol: We perform experiments with ensemble of multiple independently trained models
(i.e., with different hyper-parameters and seeds). When each of these models are moving average
models from their corresponding runs, we refer to this ensemble in short as the ensemble of averages
(EoA). Identical to how we make predictions for traditional ensembles (specifically the bagging
method [6]), the class ŷ predicted by an EoA for an input x is given by the formula:

ŷ = argmax
k

Softmax(
1

E

E∑
i=1

f(x; θ̂i))k (2)

where E is the total number of models in the ensemble, θ̂i denotes the parameters of the ith moving
average model, and the sub-script (.)k denotes the kth element of the vector argument. Finally, the
state θ̂i of the ith moving average model used in the ensemble is selected from its corresponding run
using its in-domain validation set performance (described in section 2.2). We now investigate the
behavior of EoA compared with ensembles of online models on domain generalization tasks.

3.1 Analysis

Qualitative visualization: For the purpose of contrasting the behavior of traditional ensembles vs
ensemble of averages, we begin by qualitatively studying the stability of out-domain performance of
these two ensembling techniques during the training process. To do so, we use the TerraIncognita
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Figure 2: Ensemble of moving averages (EoA) (right) has better out-domain test performance stability
compared with ensemble of online models (left), w.r.t. in-domain validation accuracy. Details: The
plots are for the TerraIncognita dataset with domain L38 used as the test domain, and others as
training/validation domain, and ResNet-50. Each ensemble has 6 different models from independent
runs with different random seeds, hyper-parameters, and training/validation split.

dataset, and fix one of its domains as the test domain while using the others as training/validation
data. We then train 6 different models independently for 5, 000 iterations with different seeds,
hyper-parameters and training-validation splits identical to the [18] protocol. We also maintain
moving average models corresponding to each of these 6 models. At every 300 iterations, we form
an ensemble of the 6 online models from their corresponding runs and compute the out-domain test
accuracy. Since, each run has a different training-validation split, we calculate the mean validation
accuracy of each of these online models at that iteration. We follow an identical procedure for the
moving average models and plot these performances in Figure 2. We find that the ensemble of
averages has a better stability on out-domain test set compared to the ensemble of online models.

For clarity, note that this procedure for calculating test accuracy at regular intervals is different from
what we proposed earlier for EoA for practical purposes. This experiment is only meant to highlight
the fact that making predictions on out-domain data using an ensemble of online models suffers from
instability along the optimization trajectory, while an ensemble of averages mitigates this issue. For
plots on other domains of TerraIncognita, see Figure 10 in the Appendix.

Rank correlation: We now measure the rank correlation between in-domain validation accuracy
and out-domain test accuracy for a quantitative evaluation. The details of the metric and motivations
behind this experiment are same as those described in section 2.3.1. Here we use the same experimen-
tal setup described in the qualitative analysis above. But in addition, we also conduct experiments
on VLCS, OfficeHome and DomainNet datasets. The results are shown in Table 3 (and Table 9 in
Appendix). We find that in majority of the cases, using EoA results in a significantly better rank
correlation compared to using the online model ensemble. These results show more concretely the
fact that predictions by an ensemble of online models on out-domain data suffers from instability
along the optimization trajectory, and EoA mitigates this problem.

3.2 Why does Ensembling and Model Averaging Improve Performance?

We explain the performance boost achieved by ensemble of averages (see next section) by adapting
the Bias-Variance decomposition [17] to the domain generalization setting. For classification tasks
with one-hot labels, the Bias-Variance decomposition is given as [49],

Ex,yET [CE(y, f(x; T ))] = Ex,y[CE(y, f̄(x))]︸ ︷︷ ︸
Bias2

+Ex,T [KL(f̄(x), f(x; T ))]︸ ︷︷ ︸
Variance

where CE denotes the cross entropy loss, KL denotes KL divergence, T = {(xin
i , yini )}Ni=1 are N

IID samples drawn from the in-domain training distribution Pin, f(x; T ) denotes the prediction of
the model f on sample x such that the model is trained on the dataset T , and f̄(x) = ET [f(x; T )].
Finally (x, y) ∼ Pout where Pout is the out-domain distribution. Notice how T and (x, y) come
from different distributions. For instance, in PACS dataset, Pin could be the union of art, cartoon and
photo domains, and Pout could be the sketch domain.

The L.H.S. of the above equation is the expected cross entropy loss on the out-domain distribution
achieved by individual models, i.e., when we train an individual model on a particular instance of the
training dataset T , the expected out-domain test loss is denoted by L.H.S. Importantly, the Bias term
on the R.H.S. denotes the expected cross entropy loss on the out-domain distribution achieved by the
function f̄(.), which is essentially an ensemble. Finally, the variance term captures how much the
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Figure 3: Left: Effect of ensemble size (number of models in an ensemble) on out-domain perfor-
mance (mean and standard error) for models with and without moving average (MA) parameters for
ResNet-50 pre-trained on ImageNet. Right: Using the performance of ensemble of size 1 (shown
in the left plot) as reference, right plot shows the percentage point improvement for ensembles of
size > 1. The plots show that i) ensemble of averages (solid lines in left plot) are consistently better
than ensemble of models without averaging (dashed lines in left plot); ii) ensemble of averages
consistently improves performance over averaged models (ensemble of size 1 in right plot).

prediction of individual models differs in expectation from the ensemble prediction, which makes
this term strictly greater than zero.

Therefore, the above decomposition tells us that the expected test domain error of an ensemble is
strictly less than that of an individual model. This interpretation directly explains why a traditional
ensemble of unaveraged models can be expected to perform better than individual unaveraged models.
However, it is still not clear why EoA performs better that a traditional ensemble in practice. To
establish this connection, we note that in practice, we typically train a small number of independent
models to form a traditional ensemble due to computational constraints. Thus such ensembles do not
behave identically to the expected ensemble f̄(.) described above. Model averaging on the other hand
has been shown to approximate an ensemble [23]. To see this, consider without any loss of generality
that the ensemble contains models with parameters {θ1, θ2 . . . θT }, and denote θ̂T := 1

T ·
∑T

t=1 θt.
Then note that the second order Taylor’s expansion around θ̂T of each model’s kth dimension’s
prediction is given by,

1

T
·

T∑
t=1

f(θt)k ≈ f(θ̂T )k +
1

T
·

T∑
t=1

(θ̂T − θt)
T ∂f(θ̂T )k

∂θ̂T
+ 0.5(θ̂T − θt)

T ∂2f(θ̂T )k

∂θ̂2T
(θ̂T − θt)
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Figure 4: The scale of terms– moving average
model’s logit and the second order term in Eq.
3. The latter concentrates around 0, suggesting
our model averaging protocol approximates en-
sembles.

Notice that f(.) is the model output and there-
fore the first and second order terms are the
derivatives of the model output and not the loss
gradient and Hessian. The first order term is
zero due to θ̂T := 1

T ·
∑T

t=1 θt. A crucial dif-
ference of our analysis compared to [23] is that
they average model states that lie near different
loss minima, while we perform tail averaging.
Therefore, the term (θ̂T − θt) may not behave
similar to that in their case. To shed light on its
behavior, we plot the histogram of the second
order term and the moving average model’s logit
f(θ̂T )k in Eq. 3 for the first dimension (k = 1)
for test domain data in figure 4 (details and ad-
ditional experiments provided in Appendix D).
The histogram shows that the second order term
concentrates near zeros while the logit values span a wider range, which implies that under the
second order approximation, the model averaging protocol used in our work behaves like an ensemble.
Finally, to study the impact of ensemble size on out-domain performance, we plot the test domain
accuracy as a function of ensemble size in figure 3. The plots show that i. EoA outperforms tradi-
tional ensembles for all ensemble sizes (left); and ii. ensembles of larger size typically have better
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Table 4: Performance benchmarking on 5 datasets of the DomainBed benchmark using two different
pre-trained models. SWAD and MIRO are the previous SOTA. See Table 10 in Appendix for
comparison with more methods. Note that ensembles do not have confidence interval because
an ensemble uses all the models to make a prediction. Gray background shows our proposal. Our
runs implies we ran experiments, but we did not propose it. Experiments use the training-domain
validation protocol from [18].

Algorithm PACS VLCS OfficeHome TerraIncognita DomainNet Avg.
ResNet-50 (25M Parameters, Pre-trained on ImageNet)

ERM (our runs) 84.4 ± 0.8 77.1 ± 0.5 66.6 ± 0.2 48.3 ± 0.2 43.6 ± 0.1 64.0
Ensemble (our runs) 87.6 78.5 70.8 49.2 47.7 66.8
ERM [18] 85.7 ± 0.5 77.4 ± 0.3 67.5 ± 0.5 47.2 ± 0.4 41.2 ± 0.2 63.8
SWAD [8] 88.1 ± 0.4 79.1 ± 0.4 70.6 ± 0.3 50.0 ± 0.4 46.5 ± 0.2 66.9
MIRO [9] 85.4 ± 0.4 79.0 ± 0. 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9
SMA (ours) 87.5 ± 0.2 78.2 ± 0.2 70.6 ± 0.1 50.3 ± 0.5 46 ± 0.1 66.5
EoA (ours) 88.6 79.1 72.5 52.3 47.4 68.0

ResNeXt-50 32x4d [48] (25M Parameters, Pre-trained 1B Images)
ERM (our runs) 88.9 ± 0.3 79.0 ± 0.1 70.9 ± 0.5 51.4 ± 1.2 48.1 ± 0.2 67.7
Ensemble (our runs) 91.2 80.3 77.8 53.5 52.8 71.1
SMA (ours) 92.7 ± 0.3 79.7 ± 0.3 78.6 ± 0.1 53.3 ± 0.1 53.5 ± 0.1 71.6
EoA (ours) 93.2 80.4 80.2 55.2 54.6 72.7

RegNetY-16GF [40] (81M Parameters, Pre-trained on 3.6B Images)
ERM (our runs) 92 ± 0.4 78.6 ± 0.6 73.8 ± 0.5 55.6 ± 0.9 53.1 ± 0.2 70.6
Ensemble (our runs) 95.1 80.6 80.5 59.5 57.8 74.7
ERM [9] 89.6 ± 0.4 78.6 ± 0.3 71.9 ± 0.6 51.4 ± 1.8 48.5 ± 0.6 68.0
SWAD [9] 94.7 ± 0.2 79.7 ± 0.2 80.0 ± 0.1 57.9 ± 0.7 53.6 ± 0.6 73.2
MIRO [9] 97.4 ± 0.2 79.9 ± 0.6 80.4 ± 0.2 58.9 ± 1.3 53.8 ± 0.1 74.1
SMA (ours) 95.5 ± 0.0 80.7 ± 0.1 82.0 ± 0.0 59.7 ± 0.0 60.0 ± 0.0 75.6
EoA (ours) 95.8 81.1 83.9 61.1 60.9 76.6

out-domain performance. See a discussion on functional diversity of ensembles vs model averaging
in Appendix E.

4 Empirical Results

4.1 DomainBed Benchmarking
We now benchmark our model averaging protocol (SMA) and ensemble of averages against online
models (ERM, without MA) and ensemble of online models (ensembles). Note that all these models
are trained using the ERM objective as before. We evaluate on PACS [27], VLCS [13], OfficeHome
[45], TerraIncognita [3] and DomainNet [35] datasets in DomainBed. The training-evaluation
protocols are the same as described in section 2.3 for moving average and online models, and in
section 3 for ensembles. Full details can be found in section B in the Appendix.

Comparison with existing results using ResNet-50 pre-trained on ImageNet: Here we compare
existing methods with our runs. All methods use ResNet-50 (25M parameters) [19] pre-trained on
ImageNet as initialization. Comparing ERM [18] and ERM (our runs), we find that they perform
similarly, especially considering we have used a smaller hyper-parameter space (further discussion
in Appendix E). A comparison between SWAD and SMA shows that SWAD is slightly better (by
0.4% on average). However, recall that our protocol retains the advantage of not tuning any hyper-
parameters while SWAD has 3 additional ones that they tune separately in addition to the optimization
hyper-parameters. Interestingly, traditional ensembles and SMA achieve similar performance (66.8%
and 66.5% respectively). Finally, EoA outperforms all the existing results: ERM by 4% and SWAD
(previous SOTA) by 1.1%. Importantly, note that while all non-ensemble models report the average
test accuracy of multiple models following the protocol of [18], EoA test accuracy is achieved by a
single predictor that combines the output of multiple models.

Experiments with larger pre-training datasets and larger models: In addition to ResNet-50
pre-trained on ImageNet, we now also experiment with ResNeXt-50 32x4d (25M parameters), that is
pre-trained using semi-weakly supervised objective on Instagram 1B images and ImageNet labeled
data [48], and RegNetY-16GF (81M parameters) pre-trained using Instagram 3.6B images. Note that
both ResNet-50 and ResNeXt-50 32x4d have similar number of parameters, while RegNetY-16GF
has more than 3x the number of parameters. On the other hand, also notice that the three architectures
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are respectively pre-trained on an increasing size of datasets. The rationale behind this choice is that
recent trends in deep learning has shown that models pre-trained on larger datasets and architectures
achieve better downstream transfer performance [12, 32, 20]. Therefore, we expect the latter models
to improve the ERM baseline, and our goal is to investigate the out-domain performance gain by
model averaging and EoA relative to the corresponding ERM baseline with increasing pre-training
dataset size and model size.

The experimental results are shown in Table 4. To investigate models with the same size, but one
pre-trained on a larger dataset, we compare the results of ResNet-50 and ResNeXt-50 32x4d. On
average across all five datasets, the gain of SMA over ERM (our runs) is 2.5% for ResNet-50 and
3.9% for ResNeXt-50 32x4d. The gain of EoA over ERM is larger: 4% vs 5% respectively. This
suggests that pre-training the model on a larger dataset increases the gain of model averaging and
EoA over the corresponding ERM baseline, while the ERM performance itself improves.

Next, to investigate the impact of both larger model size and larger pre-training dataset, we compare
the results of ResNeXt-50 32x4d and RegNetY-16GF. On average across all five datasets, the gain
of SMA over ERM (our runs) is 3.9% for ResNeXt-50 32x4d and 5% for RegNetY-16GF. The gain
of EoA over ERM is again larger: 5% vs 6% respectively. This suggests that increasing both model
size and pre-training dataset size allow model averaging and EoA to provide larger out-domain gains
over the corresponding ERM baseline. Notice that these claims are different from existing work [20],
which states that the baseline ERM performance improves with larger pre-training data and model
size.

4.2 In-domain Performance Improvement using Model Averaging

Table 5: SMA outperforms ERM without model
averaging in the IID setting.

Algorithm PACS OfficeHome
ERM (no averaging) 94.39 ± 0.46 77.09 ± 0.57
SMA (ours) 96.77 ± 0.20 83.56 ± 0.21

We study the in-domain test accuracy on PACS
and OfficeHome datasets using ImageNet pre-
trained ResNet-50 with and without our SMA
protocol. In this experiment, we combine all
the domains of PACS and split it into training/-
validation/test splits (0.8/0.1/0.1). We run 10
different runs with different seeds and randomly chosen splits for each dataset. The best model for
each run is chosen using the validation set. The remaining optimization details are identical to those
used in the previous section. The test accuracy mean and standard error using these best models are
shown in Table 5. As expected, SMA outperforms models without averaging.

5 Related Work

5.1 Model Averaging
A theoretical perspective: In our model averaging protocol, we compute a simple moving average
of the model parameters starting early during training. This is known as tail-averaging [24], which is
slightly different from Polyak-Ruppert averaging [36] in that the latter starts averaging from the very
beginning of training. In the context of least square regression in the IID setting, [24] theoretically
study the behavior of tail averaging and show that the excess risk of the moving average model is
upper bounded by a bias and a variance term. This bias term depends on the initialization state of the
parameter, but interestingly, it decays exponentially with t0, where t0 is the iteration at which model
averaging is started. The variance term on the other hand depends on the covariance of the noise
inherent in the data w.r.t. the optimal parameter, and is shown to decay at a faster rate when using
model averaging, as opposed to a slower rate without averaging. This motivated them to propose
tail-averaging.

Model averaging has also been shown to have a regularization effect [34] similar to that of Tikhonov
regularization [42]. This regularization has been classically used in ill-posed optimization problems
(typically least squared regression), which are under-specified. This property provides an interesting
connection between model averaging and the under-specification problem discussed in [10], where the
authors perform large scale experiments showing that the performance of multiple over-parameterized
deep models, trained independently with different hyper-parameters and seeds, have a high variance
on out-domain data, even though their in-domain performances are very close together. Based on this
connection, a simple intuition why one can expect model averaging to help in domain generalization
is its Tikhonov regularization effect. However, this intuition requires a more thorough investigation.
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SWAD [8]: SWAD propose flat minima as a means for improving domain generalization. Following
the intuition of stochastic weight averaging (SWA, [23]), they use model averaging to find flat minima.
However, their proposal is different from sampling model states at regular intervals and towards the
end of training (as done in SWA). SWAD selects contiguous model states along the optimization path
for averaging, based on their validation loss. This is done to prevent including an under-performing
state (determined using the in-domain validation set) in the moving average model. SWAD however
adds additional hyper-parameters of its own: the validation loss threshold below which the the model
states are selected, and patience parameters (number of iterations that determine the start and end
of the averaging process). Note that this also requires computing validation loss more frequently
during training. In this context, we show that instead of finding the start and end period for model
averaging meticulously, we can simply start model averaging early during training and continue
till the end. This difference arises from the fact that SWAD uses the online network to calculate
validation performance while we use the SMA model in our protocol. This is explained further in
section 2.2. The benefit our observations provide over SWAD is that they allow us to take advantage
of model averaging without the additional hyper-parameters and compute required by SWAD.

5.2 Domain Generalization

Existing methods aimed at domain generalization can be broadly categorized into techniques that
perform domain alignment, regularization, data augmentation, and meta-learning. Domain alignment
is perhaps the most intuitive direction, in which methods aim to learn latent representations which
have similar distributions across different domains [41, 30, 39, 37]. There are different variants of
this idea, such as minimizing some divergence metric between the latent representation of different
domains (E.g. DANN [16]), or less strictly, minimizing the difference between the latent statistics of
different domains (E.g. DICA [33], CORAL [41]). In the meta learning category, source domains are
typically split into 2 subsets to be used as the training and test domains in episodes to simulate the
domain generalization setting [28, 29]. Data augmentation is also a popular tool used for improving
domain generalization. It ranges from introducing various types of augmentations to simulate unseen
test domain conditions (E.g. style transfer [50, 52]) to self-supervised learning involving matching
the representations of an image with different augmentations (E.g. [1, 7]). Finally, different ways of
regularizing models (implicit and explicit) have also been developed with the goal of encouraging
domain-invariant feature learning [38, 47, 46]. For instance, invariant risk minimization [2] propose
a regularization such that the classifier is optimal in all the environments. Representation Self-
Challenging [21] propose to suppress the dominant features that get activated on the training data,
which forces the network to use other features that correlate with labels. Risk extrapolation [26]
propose a regularization that minimizes the variance between domain-wise loss, in the hope that it is
representative of the variance including unseen test domains. See [51] for a survey on DG methods.

Our investigation in this work is complementary to all these domain generalization methods. Addi-
tionally, one of our main focus is to also study and improve performance instability on out-domain
data during training, which results in more reliable model selection. This aspect has not received
much attention.

6 Conclusion

We investigated a hyperparameter-free and efficient protocol for model averaging in the ERM
framework, and showed that it provides a significant boost to out-domain performance compared
to un-averaged models. Building on this observation, we showed that an ensemble of moving
average models performs better compared to an ensemble of un-averaged models. Importantly, we
showed that in both cases, model averaging significantly improves the rank correlation between
in-domain validation accuracy and out-domain test accuracy, which is crucial for reliable model
selection using in-domain validation data. We experimented with three pre-trained models with
increasing pre-training dataset and model size, and found that EoA provides a proportionally larger
gain compared to the corresponding ERM baseline, and lies in the range of 4%− 6%. Finally, we
explain the performance boost of EoA by adapting the Bias-Variance trade-off perspective to the
domain generalization setting. Further discussions along with limitations of our work are provided in
Appendix E.
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