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Abstract
End-to-end automatic speech recognition001
(ASR) systems have made significant progress002
in general scenarios. However, it remains chal-003
lenging to transcribe contextual named entities004
(NEs) in the contextual ASR scenario. Previous005
approaches have attempted to address this by006
utilizing the NE dictionary. These approaches007
treat entities as individual tokens and gener-008
ate them token-by-token, which may result in009
incomplete transcriptions of entities. In this pa-010
per, we treat entities as indivisible wholes and011
introduce the idea of copying into ASR. We de-012
sign a systematic mechanism called CopyNE,013
which can copy entities from the NE dictio-014
nary. By copying all tokens of an entity at once,015
we can reduce errors during entity transcrip-016
tion, ensuring the completeness of the entity.017
Experiments demonstrate that CopyNE consis-018
tently improves the accuracy of transcribing en-019
tities compared to previous approaches. Even020
when based on the strong Whisper, CopyNE021
still achieves notable improvements.022

1 Introduction023

End-to-end automatic speech recognition (ASR)024

systems have achieved impressive performance in025

general scenarios (Chan et al., 2016; Rao et al.,026

2017; Gulati et al., 2020; Boulianne, 2022). How-027

ever, in the contextual ASR scenario where speech028

often contains numerous contextual entities, it re-029

mains a challenge for ASR systems to get accu-030

rate transcriptions. For instance, when utilizing031

personal voice assistants like Siri or Alexa, it is032

common to encounter contextual entities such as033

personal names, place names, and organization034

names. ASR models trained solely on speech-text035

data often struggle to transcribe these personalized036

entities due to their infrequent occurrence in the037

training set. Since contextual entities always cover038

a wealth of semantic information. It is important039

to improve the accuracy of transcribing entities040

for downstream natural language processing (NLP)041

input audio

ASR System

安 徽 铜 铃自来他Output:

ānzìláitā huı̄ língtóngPinyin:
他 来 自 安 徽 铜 陵Gold:

He comes from An hui Tong lingEnglish:

铜陵

铜...铜

NE dictionary

Figure 1: An example with homophonic errors. Pinyin
is the Mandarin pronunciation of each token. The red
text indicates the wrongly predicted token.

tasks such as information retrieval and spoken lan- 042

guage understanding (Ganesan et al., 2021; Wu 043

et al., 2022). 044

Recently, researchers have started leveraging the 045

information of textual modality as additional con- 046

textual knowledge to help contextual ASR. The 047

most typical approach, premised on the assump- 048

tion that entities are already known before, use a 049

contextual named entity (NE) dictionary as con- 050

textual knowledge (Chen et al., 2019; Alon et al., 051

2019; Jain et al., 2020; Han et al., 2021; Huber 052

et al., 2021; Fu et al., 2023). Two representative 053

approaches are “contextual listen, attend and spell” 054

(CLAS) (Pundak et al., 2018) and contextual bias 055

attention (CBA) (Zhang and Zhou, 2022). CLAS 056

employs the knowledge of the dictionary to aid the 057

prediction of each token. They use dictionary rep- 058

resentation as extra inputs for token prediction in 059

the decoder. The decoder attends to each entity, 060

and the dictionary representation is an aggregated 061

representation of all entities, weighted by the at- 062

tention scores. CBA extends CLAS and uses an 063

extra training loss. The loss explicitly makes use 064

of the attention scores and force the model attend 065

to a proper entity in the dictionary if the token to 066

be predicted is related with the entity. 067
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Previous methods have achieved considerable068

improvements, especially in transcribing entities.069

However, they all treat entities as individual tokens.070

These models utilize contextual knowledge to aid in071

predicting independent tokens without considering072

the role of these tokens in constituting a complete073

entity. In other words, a multi-token entity is bro-074

ken into isolated tokens during decoding. We argue075

that this is problematic. For instance, model may076

erroneously generate the subsequent tokens of an077

entity, despite correctly producing the preceding to-078

kens. As shown in Figure 1, when transcribing the079

speech “他来自安徽铜陵” (He comes from Anhui080

Tongling), an incorrect output of “他来自安徽铜081

铃” (He comes from Anhui copper bell) is obtained.082

Despite the model’s awareness of the location en-083

tity “铜陵” in the NE dictionary and its accurate084

prediction of the first token “铜”, it mistakenly tran-085

scribes “陵” (ling) as “铃” (bell) during the token-086

level prediction process. This occurs because the087

model predicts tokens independently, neglecting088

the integrity of the token span as a complete entity.089

Furthermore, “陵” and “铃” share the same pronun-090

ciation “líng”, with “铃” being a more frequently091

occurring token in the training data. Consequently,092

the model tends to generate the wrong token “铃”.093

In this paper, we propose a new approach for094

contextual ASR called CopyNE. Unlike previous095

approaches, we view entities as indivisible wholes.096

To the best of our knowledge, we are the first to097

introduce the idea of copying into ASR. We design098

a systematic and effective mechanism to copy enti-099

ties from a dictionary. Specifically, CopyNE uses100

a copy loss that guides the model to copy the cor-101

rect entity from the dictionary. During inference,102

our CopyNE has the flexibility to either predict a103

token from the token vocabulary or copy an entity104

from the NE dictionary at each decoding step. By105

copying multiple tokens simultaneously, we can106

alleviate errors within the entity, thus ensuring the107

token span as a complete entity.108

Experiments on Chinese Aishell (Bu et al.,109

2017), ST-cmds1, and English Eng (Yadav et al.,110

2020) datasets show that our CopyNE achieves sig-111

nificant improvements across all scenarios, partic-112

ularly in the contextual ASR scenario. Compared113

to previous methods using dictionary, CopyNE114

achieves relative reductions in CER of 13.5% and115

20.8% on Aishell and ST-cmds in the contextual116

scenario. Notably, CopyNE shows more remark-117

1https://www.openslr.org/38/

able improvements when it comes to transcrib- 118

ing entities, with relative reductions of 55.4% and 119

53.9% in the NE-CER metric on Aishell and ST- 120

cmds. Moreover, when based on Whisper (Radford 121

et al., 2022) and evaluated in its domain of exper- 122

tise, Eng dataset, CopyNE still achieves an impres- 123

sive 6.4% and 16.8% relative reductions in WER 124

and NE-WER. We will release our codes, configu- 125

rations, and models at https://github.com/. 126

2 The CTC-Transformer Model 127

In this work, we build our proposed approach on 128

the end-to-end CTC-Transformer model, since it 129

is the most widely used and achieves competitive 130

performance in the ASR field (Hori et al., 2017; 131

Kim et al., 2017; Miao et al., 2020; Omachi et al., 132

2021; Gong et al., 2022). However, it is worth 133

noting that our idea can be applied to other ASR 134

approaches as well. 135

The CTC-Transformer is built upon the seq-to- 136

seq Transformer (Vaswani et al., 2017), with a 137

connectionist temporal classification (CTC) layer 138

added after the audio encoder. As shown in Fig- 139

ure 2, it takes a sequence of acoustic frames 140

X = (x1, ...,xT ) as input and generates the cor- 141

responding transcription text y = (y1, ..., yU ) as 142

output. The model consists of two main compo- 143

nents: an encoder and a decoder. First, the en- 144

coder encodes the acoustic frames X into hidden 145

states H = (h1, ...,hT ). Then, the decoder pre- 146

dicts the target sequence y in an auto-regressive 147

manner. At each decoding step u, the decoder 148

predicts the next target token yu+1 based on the en- 149

coder’s output H and the previously predicted to- 150

kens y≤u = (y1, ..., yu). This process is expressed 151

as follows: 152

H = AudioEncoder(X) (1) 153
154

du = Decoder(y≤u,H) (2) 155
156

P (yu+1|y≤u) = softmax(Wdu + b) (3) 157

Here, du ∈ Rd denotes the hidden state at step 158

u, and P (yu+1|y≤u) is the posterior distribution 159

of predicting token yu+1. W ∈ R|V|×d and b ∈ 160

R|V| are learned parameters, where V is the token 161

vocabulary, and |V| is the size of the vocabulary. 162

The loss of Transformer, Ltrans(y), comes from 163

minimizing the negative log probability of y. 164

Ltrans(y) = −
U−1∑
u=0

logP (yu+1|y≤u) (4) 165
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Figure 2: The CTC-Transformer model.

X

Audio
Encoder

H

Decoder

du

H

CTC Layer

Lctc

<s>0decoder
input:

安1
ān

徽2

huı̄
铜3
tóng

陵4
líng

. . .

Dot-product Attention NE
EncoderZ

e0 = ∅

e1 =铜陵

e2 =安徽

NE dictionary

安1 徽2 铜3 陵4
. . .y: Ltrans

e2 e0 e1 e0 . . .σ: Lcopy

Figure 3: Our CopyNE model.

As commonly used in previous works, the CTC166

loss is also applied here. CTC aligns each acous-167

tic frame with a token from left to right. For a168

given target sequence y, there may be multiple169

valid alignments. The CTC loss is derived from170

maximizing the sum of these valid alignments, and171

has been proved to be able to enhance the represen-172

tational capacity of the audio encoder (Kim et al.,173

2017). Finally, the overall loss is the a weighted174

sum of the Ltrans(y) and Lctc(y), as follows:175

L(y) = λLtrans(y) + (1− λ)Lctc(y) (5)176

where λ is a hyper-parameter that determines the177

relative weight of each loss term.178

In inference, the model selects the most probable179

transcription using beam search as follows:180

ŷ = argmax
y

(
∑
u

logP (yu+1|y≤u)) (6)181

Here, there are many ways to use scores in de-182

coding, such as combining CTC scores and Trans-183

former scores as in training, or using CTC-prefix184

beam search followed by re-scoring with Trans-185

former to select the optimal result. To compare186

with most previous works, we use the simplest de-187

coding strategy, as shown in Equation 6.188

3 Our CopyNE Model189

This section describes our proposed CopyNE190

model. The basic idea is that the model incorpo-191

rates a contextual NE dictionary as external knowl-192

edge and can choose to directly copy NEs from193

the dictionary. We design a systematic framework194

to implement the idea. During training, a copy195

loss is designed to encourage the model to copy196

a corresponding entity from the dictionary when197

the following tokens appears as entity in the dictio-198

nary. During inference, at each generation step, the199

model can either predict a single token from token200

vocabulary or directly copy a entity from the given201

dictionary.202

3.1 The Model Framework 203

Figure 3 illustrates the framework of our CopyNE 204

model, which shares the same encoder as the CTC- 205

Transformer model, but with a distinct decoder. In 206

the decoder, we introduce an extra NE encoder that 207

takes the NE dictionary as input and encodes it into 208

NE representations. Then, we use a dot-product at- 209

tention module to compute copy probabilities based 210

on the obtained NE representations, which are then 211

aggregated to form the overall dictionary (Dict) rep- 212

resentation. The decoder can not only utilize copy 213

probabilities to select entities for copying but also 214

leverage the Dict representation to aid in predicting 215

the next token. 216

NE Representation. We denote an NE dictionary 217

as E = (e0, e1, ..., eN ). We use e0 = ∅ as a 218

pseudo entity to handle the case where the text to 219

be transcribed has no relation to any entity and the 220

model should not copy any entity at current step. 221

For each entity ei, we apply a multi-layer LSTM 222

as the NE encoder to encode the token sequence 223

and use the last hidden state of the NE encoder as 224

the entity representation. It is a popular practice in 225

previous contextual ASR works. 226

zi = LSTM(ei) (7) 227

After that, we get entity representations Z = 228

(z0, z1, ...,zN ), where Z ∈ RN×d. 229

Copy Probability. Once the NE representations 230

are obtained, the copy probability is computed by 231

a dot-product attention mechanism. It is used to 232

determine which entity to copy. First, we compute 233

the attention score aeiu for entity ei at step u as 234

follows: 235

aeiu =
(Wqdu)

⊤(Wkzi)√
d

(8) 236

where Wq,Wk ∈ Rda×d are two learned pa- 237

rameters. da denotes the dimension of the atten- 238
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tion. After that we obtain the attention probability239

Pc(ei|y≤u) for entity ei by softmax.240

Pc(ei|y≤u) =
exp(aeiu )∑

ej∈E exp(a
ej
u )

(9)241

Here, Pc(ei|y≤u) not only represents the attention242

probability of ei but also naturally serves as the243

copy probability for the entity. During inference,244

we use the copy probabilities to select the entities245

for copying.246

Dict Representation. With copy (attention) prob-247

abilities, we can obtain the Dict representation ru248

at decoding step u. It is used to help the predic-249

tion of subsequent tokens. Specifically, ru ∈ Rd is250

computed by weighted summing the entity repre-251

sentations with the copy (attention) probabilities.252

ru =
∑
ei∈E

Pc(ei|y≤u)zi (10)253

Dict-enhanced Prediction. Finally, we get the254

overall Dict representation and copy probabilities.255

Following Pundak et al. (2018), the Dict represen-256

tation is applied to help the generation of the next257

token. So Equation 3 is extended as follows:258

P (yu+1|y≤u, E) = softmax(W [du, ru] + b)
(11)259

3.2 Training260

During training, to guide the model in selecting261

correct entities from the NE dictionary for copying,262

we introduce an additional copy loss Lcopy. First,263

based on the ground truth transcription y and the264

NE dictionary, we construct a copy target σu+1 for265

each decoding step u, telling the model whether266

to copy an entity from the dictionary or not, and267

which one to copy. Then we compute the copy loss268

Lcopy according to the copy target σu+1 and the269

copy probability Pc(σu+1|y≤u).270

The Computation of Copy Loss. Provided that271

we have an NE dictionary Eb, we construct a copy272

target, denoted as σu+1, for decoding step u. In273

order to build the copy target, we perform maxi-274

mum matching on the transcription text y from left275

to right based on the dictionary Eb. If the token276

span yi,j = (yi, ..., yj) matches the k-th entity ek277

in Eb, then we set the copy target σi = ek, and278

σi+1∼j = ∅. This indicates that the model can279

copy the k-th entity from the dictionary at decod-280

ing step i − 1, but cannot copy any entity from281

decoding step i to j − 1. When it comes to a span 282

of length 1, i.e., i = j, during the left-to-right 283

maximum matching process, we also set σi to ∅2. 284

For example, in the instance shown in Figure 285

3, the span “安徽” (An hui) matches the second 286

entity in the dictionary, and the span “铜陵” (Tong 287

ling) matches the first entity in the dictionary. This 288

means that at steps 0 and 2, the model can choose 289

to copy the second and first entities from the dictio- 290

nary, respectively. Therefore, σ1 = e2 and σ3 = e1, 291

while σ2 = ∅ and σ4 = ∅. 292

After constructing all the copy targets σ = 293

(σ1, ..., σU ), we can compute the copy loss as fol- 294

lows: 295

Lcopy(σ) = −
U−1∑
u=0

logPc(σu+1|y≤u) (12) 296

where Pc(σu+1|y≤u) is the copy probability com- 297

puted in Equation 9, meaning the probability of 298

copying entity σu+1 at decoding step u. It is worth 299

noting that the copy loss and the bias loss in CBA 300

have fundamental differences. The bias loss in 301

CBA provides information to each token, including 302

tokens within entities, about which entity to attend 303

to. In contrast, our copy loss solely instructs the 304

model to copy the entity from the dictionary at the 305

first token of the entity. 306

Finally, the loss in our CopyNE model is formed 307

as follows: 308

L = λLtrans(y) + (1− λ)Lctc(y) + Lcopy(σ)
(13) 309

Dictionary Construction. To construct the copy 310

target and compute the copy loss, we should first 311

build a contextual NE dictionary for training. Pro- 312

vided that the entities have been labeled in the 313

dataset, we build a NE dictionary Eb for each data 314

batch following previous works. 315

Firstly, to construct Eb, we extract all entities 316

in the instances of this batch and add them to the 317

dictionary. For instances that do not contain any 318

entities, in order to ensure an adequate number of 319

positive examples, we randomly select one or two 320

substrings of length 2 or 3 from the transcription 321

and include them in the dictionary as pseudo en- 322

tities. In order to improve the ability of copying 323

the correct entity from a wide range of entities, we 324

also extract additional negative entities from the 325

2Please note that in this paper, we primarily focus on en-
tities with a length greater than 1, and therefore only retain
such entities in our dictionary.
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training set. We analyze the influence of the quan-326

tity of negative entities on the model. Due to page327

constraints, we have included this section in §C.328

3.3 Inference329

During inference, our CopyNE model generates the330

transcription in an auto-regressive manner. How-331

ever, unlike previous token-level approaches, our332

model has the flexibility to predict either a token333

from the vocabulary or an entity from the NE dic-334

tionary. In the latter case, the model can produce335

multiple tokens at one step. By copying the tokens336

of an entity at once, our CopyNE model can avoid337

errors that occur when predicting multiple tokens338

separately. As shown in Figure 3, our CopyNE339

model can directly copy the two entities “安徽”340

and “铜陵” from the dictionary.341

Specifically, at step u, our prediction is based342

on both the model’s probability for a token v, i.e.,343

P (v|ŷ≤ u,E), and the copy probability for an en-344

tity e, i.e., Pc(e|ŷ≤u). The former represents the345

probability of predicting a token v from the token346

vocabulary, while the latter is normalized on all347

entities, originally indicating the attention proba-348

bility over entity e, which can be naturally inter-349

preted as the probability of copying entity e from350

the dictionary. To consider both probabilities on351

the same scale, we devise an elegant decoding strat-352

egy by taking use of the copy probability of ∅, i.e.,353

Pc(∅|ŷ≤u), and re-normalize the probabilities to354

create an unified searching space Q.355

Q(i|ŷ≤u) =

{
Pc(∅|ŷ≤u)P (i|ŷ≤u, E), i ∈ V
Pc(i|ŷ≤u), i ∈ E, i ̸= ∅

(14)356

Here, to ensure the sum of the probabilities of all357

elements is 1, we use Pc(∅|ŷ≤u) as a prior proba-358

bility, representing the probability of the text to be359

transcribed has no relation with the entities in the360

dictionary and the text should be generated from361

the token vocabulary. If the element is from the362

token vocabulary V , we obtain the probability by363

multiplying the prior probability and the model’s364

probability for the token. Otherwise, we use the365

copy probability directly.366

However, in our experiments, we observe that367

the model occasionally selects irrelevant entities368

for copying. To enhance the quality of copying,369

we introduce a confidence threshold γ during de-370

coding to filter out low-confidence copies. Specif-371

ically, we set Pc(i|ŷ≤u) = 0, i ∈ E, i ̸= ∅, and372

Pc(∅|ŷ≤u) = 1 when max{Pc(i|ŷ≤u)|i ∈ E, i ̸=373

∅} < γ. This means that if the model’s maximum 374

copy probability over real entities is less than γ, it 375

is prevented from copying entities from the dictio- 376

nary and instead generates tokens from the token 377

vocabulary. In section 4.2, we discuss the influence 378

of the γ in detail. 379

Finally, we use beam search to select the best 380

element at each step to form the final prediction3. 381

ŷ = argmax
y

(
∑
u

logQ(i|y≤u)) (15) 382

4 Experiments 383

4.1 Experimental Setup 384

Datasets. Experiments on Chinese Mandarin are 385

conducted on two widely used datasets, Aishell 386

(Bu et al., 2017) and ST-cmds4. We use the Eng 387

dataset released by Yadav et al. (2020) to perform 388

experiments on English. Furthermore, to compare 389

the performance of different methods in contextual 390

ASR scenarios where speeches contain entities, we 391

extract instances containing entities from the dev 392

and test sets, forming the corresponding “∗-NE” 393

datasets. Detailed introduction about the datasets 394

can be found in §A. 395

NE Dictionary. Aishell and ST-cmds were ini- 396

tially released without entity annotations. In con- 397

trast, the Eng dataset was simultaneously released 398

with audio, transcribed text, and corresponding en- 399

tity annotations. Chen et al. (2022) further anno- 400

tated entities in each transcription for Aishell. So, 401

in our experiments with Aishell and Eng, we use 402

the releated entities to build the NE dictionary. For 403

ST-cmds, we use HanLP5 to get three types of 404

entities: person, location, and organization. The 405

dictionary is build with these predictions. 406

Evaluation Metrics. Character error rate (CER) 407

and word error rate (WER) are used to assess the 408

overall performance of models in Mandarin and 409

English ASR tasks. In this paper, to evaluate the 410

model’s entity transcription accuracy, we also em- 411

ploy NE-CER and NE-WER metrics (Han et al., 412

2021). We align the predicted hypothesis and ref- 413

erence using the minimum edit distance algorithm, 414

and subsequently calculate NE-C(W)ER by mea- 415

suring the C(W)ER between the entity text in the 416

reference and its counterpart in the hypothesis. 417

3It has to be noted that the partially predicted ŷ is still
encoded at token-level.

4https://www.openslr.org/38/
5https://github.com/hankcs/HanLP
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Model
Aishell Aishell-NE ST-cmds ST-cmds-NE

Dev Test Dev Test Dev Test Dev Test
Joint CTC-Transformer 06.12 06.70 07.36 09.00 10.63 10.56 13.67 13.63
CLAS (Pundak et al., 2018) 06.04 06.72 07.06 08.73 10.10 10.09 12.64 12.85
CBA (Zhang and Zhou, 2022) 06.11 06.56 06.73 08.00 10.73 10.72 12.69 12.43
Our CopyNE 05.59 06.35 05.36 06.92 09.76 09.89 09.90 09.84
Whisper 5.28 5.97 6.32 7.68 9.14 9.06 12.22 12.35
xxx+ CLAS 4.50 5.23 5.30 6.72 9.10 9.20 12.12 12.25
xxx+ CBA 5.41 6.06 6.13 7.60 7.96 7.87 10.03 9.96
xxx+ Our CopyNE 4.71 5.10 5.40 6.42 7.35 7.19 8.98 8.40

Table 1: CER (%) on the Chinese datasets in general scenarios (Aishell, ST-cmds) and contextual scenarios (Aishell-
NE, ST-cmds-NE).

Parameter Setting. The parameter setting in our418

work is the same as that in most previous works,419

and the detailed descriptions can be found in §B. To420

ensure a fair comparison with prior works, we care-421

fully reproduced the CLAS (Pundak et al., 2018)422

and CBA (Zhang and Zhou, 2022) using the same423

structure as our model, including the same audio424

encoder, decoder, and NE encoder, among others.425

Moreover, to verify the effectiveness of our ap-426

proach on pre-trained large models, we also con-427

ducted experiments on OpenAI Whisper (Radford428

et al., 2022). Specifically, we use the Whisper429

model as our transformer encoder and decoder. We430

choose seeds randomly to run models for 3 times431

and report the average results.432

4.2 Results433
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5
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Figure 4: Effect of the Confidence Threshold γ.

Analysis about γ. We first investigate the in-434

fluence of the copy threshold γ during inference.435

Figure 4 illustrates how the CER changed on the436

Aishell dev and Aishell-NE dev with different γ437

values. Our findings reveal that when the threshold438

is low, the CER is high, indicating that copying439

results in more errors when the model copies en-440

tities with low confidence. As we increase the γ,441

Model Aishell-NE ST-cmds-NE
Dev Test Dev Test

Joint CTC-Transformer 11.64 14.03 21.63 21.41
CLAS (Pundak et al., 2018) 11.24 13.12 19.70 20.10
CBA (Zhang and Zhou, 2022) 07.78 09.44 15.72 15.92
Our CopyNE 03.00 04.21 07.60 07.34
Whisper 10.31 12.24 21.30 21.83
xxx+ CLAS 08.97 11.64 20.82 21.07
xxx+ CBA 09.13 11.79 15.91 15.41
xxx+ Our CopyNE 06.74 08.79 11.93 11.29

Table 2: NE-CER (%) on the Chinese datasets.

the CER decreases, indicating improved reliability 442

of our CopyNE when the model had higher confi- 443

dence. However, when the threshold becomes too 444

high (above 0.9), the model has fewer opportuni- 445

ties to choose to copy entities, resulting in a higher 446

CER. This happens because it becomes more diffi- 447

cult for the model to trigger the copy mechanism. 448

So, we set γ to 0.9 for all experiments and discus- 449

sions to enhance the robustness of our model. 450

Results on Chinese. Table 1 and 2 show the CER 451

and NE-CER of different models on the Chinese 452

dataset. In Table 1, we note that while our primary 453

focus is on improving entity transcription accu- 454

racy, we also achieve significant improvements in 455

overall text transcription. Without Whisper, our 456

CopyNE model outperforms the previous CBA ap- 457

proach with a 3.2% relative CER reduction on the 458

Aishell Test and 7.7% on the ST-cmds Test. In 459

contextual ASR scenarios, the improvements are 460

even more pronounced, with a 13.5% relative CER 461

reduction on the Aishell-NE Test and 20.8% on the 462

ST-cmds-NE Test. Even with the powerful Whis- 463

per, our CopyNE consistently excels, especially on 464

the ST-cmds dataset, with relative reductions of 465

8.6% and 15.7% on the two test sets, respectively. 466

Additionally, we observed that CLAS performs 467
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Model Eng.W Eng-NE.W Eng-NE.NW

Dev Test Dev Test Dev Test
Whisper 8.54 8.73 8.53 8.71 28.16 26.61
xx+ CLAS 7.90 8.28 7.86 8.31 27.23 26.55
xx+ CBA 9.17 9.52 9.21 9.49 30.01 30.82
xx+ CopyNE 7.47 7.85 7.42 7.78 23.29 22.09

Table 3: Results on the English datasets. W and NW
denote WER and NE-WER respectively.

well on Aishell, closely matching CopyNE, but its468

performance on ST-cmds is comparatively weaker,469

sometimes even worse than the Whisper baseline,470

a reverse pattern also seen with CBA. In contrast,471

CopyNE consistently performs well across differ-472

ent datasets, demonstrating its better adaptability.473

In this paper, our main goal is to improve the474

accuracy of transcribing entities in contextual ASR475

scenarios. From the results presented in Table 2,476

it is evident that our approach exhibits significant477

improvements in entity transcription compared to478

previous methods. When not using Whisper, our479

CopyNE model achieves an impressive relative NE-480

CER reduction of 55.4% on the Aishell-NE Test481

and 53.9% on the ST-cmds-NE Test. Even based482

on the powerful Whisper model, our CopyNE con-483

tinues to achieve remarkable improvements, with a484

relative NE-CER reduction of 25.4% and 26.7% on485

the two test sets. This demonstrates that copying486

entities from the dictionary significantly improves487

the accuracy of transcribing entities.488

Results on English. Whisper (Radford et al.,489

2022) has already shown strong performance in490

English, so we directly use it as our baseline for ex-491

periments on English. As seen in Table 3, CopyNE492

still outperforms other methods, achieving a 5.2%493

relative WER reduction compared to CLAS in the494

general scenario on the Eng test dataset. In contex-495

tual scenarios, CopyNE demonstrates 6.4% relative496

WER reductions and 16.8% relative NE-WER re-497

ductions. Additionally, we observed that CBA lags498

behind the Whisper baseline. We suspect that this499

might be due to its approach of encouraging the500

model to generate entity tokens by modifying Whis-501

per’s output logits, which can disrupt the model’s502

overall probability distribution, especially given503

Whisper’s strong fit on English data. On the con-504

trary, our CopyNE is more stable.505

4.3 Impact of Noisy NEs506

In this paper, our primary focus lies on the contex-507

tual ASR scenario where the majority of NEs are508

already known. Following previous works (Pundak509

Noisy NEs Dev Test
CER NE-CER CER NE-CER

0 05.36 03.00 6.92 04.21
2k 05.61 03.50 7.12 04.82
4k 05.85 03.92 7.39 05.18
6k 06.02 04.09 7.66 05.56
8k 06.15 04.27 7.68 05.81

Table 4: The impact of noisy NEs on CopyNE.

Transcriptions Dictionary
English A company in Yangluo...

阳逻
(Yangluo)

杨丙卿
(Yang
Bingqing)

冈山
(Gangshan)

桃太郎体
育馆
(Taotailang
gym)

Gold 阳逻的一家公司...
CLAS 扬罗的一家公司...
CBA 阳罗的一家公司...
CopyNE [阳逻]的一家公司...
English Yang Bingqing served as manager...
Gold 杨丙卿担任经理...
CLAS 杨澄清担任经理...
CBA 杨炳卿担任经理...
CopyNE

[
杨丙卿

]
担任经理...

English The Taotailang gym in Gangshan.
Gold 冈山的桃太郎体育馆
CLAS 冈山的淘汰郎体育馆
CBA 刚山的淘汰狼体育馆
CopyNE [冈山]的

[
桃太郎体育馆

]
Table 5: Generations of different models. Red text
indicates errors, while text enclosed in square brackets
represents entities that were copied from the dictionary.

et al., 2018; Alon et al., 2019; Han et al., 2021), we 510

report the main results based on exact NE dictionar- 511

ies from the test sets. However, in some real-world 512

settings, the dictionary may contain NEs that are 513

not present in the test set. To analyze the perfor- 514

mance of CopyNE in this setting, we randomly 515

extract entities from the training set that are not in- 516

cluded in the test set as noisy NEs and add them to 517

the original dictionary. Table 4 displays the impact 518

of these noisy entities on the Aishell-NE dataset. 519

It can be observed that the introduction of noisy 520

NEs indeed leads to a reduction in the model’s 521

performance. However, even when expanding the 522

dictionary size to 10k (the original exact NE dictio- 523

nary was around 2k in size), the average error rate 524

increased by only about 1%. With 8k noisy NEs, 525

our CopyNE still outperforms CLAS and CBA, 526

even though they only use the exact dictionary. 527

4.4 Qualitative Analysis 528

CopyNE demonstrates significant improvements. 529

To gain further insight into CopyNE’s performance, 530

we conduct a qualitative analysis of its generations. 531

Table 5 shows examples of transcriptions from dif- 532

ferent ASR models. We can see that in the second 533

example, where CBA successfully identified the 534

correct person entity “杨丙卿” from the dictionary 535
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and produced a transcription that is close to gold,536

it still made a mistake by transcribing “炳” instead537

of “丙” due to the same pronunciation (bı̌ng). In538

contrast, CopyNE can copy all the tokens of the539

entity from the NE dictioanry. For example, in the540

third example “冈山的桃太郎体育馆” (The Tao-541

tailang gym in Gangshan), CopyNE directly copies542

the location entity “冈山” (Gangshan) and the orga-543

nization entity “桃太郎体育馆” (Taotailang gym),544

achieving a completely correct transcription.545

5 Related Works546

Contextual ASR. Researchers have explored var-547

ious approaches to help models in the contextual548

ASR scenario, with the primary approaches being549

the utilization of external dictionaries and language550

models (LMs). Among them, using an external dic-551

tionary is the most straightforward method. CLAS552

(Pundak et al., 2018) was the first to introduce the553

use of dictionary information to aid in prediction.554

Alon et al. (2019) extend CLAS by adding phoneti-555

cally similar alternative terms to the dictionary as556

challenging negative examples, aiming to improve557

the model’s ability to distinguish entities with sim-558

ilar pronunciations. Huber et al. (2021) propose559

to utilize the representation of a single entry in560

the dictionary that is most relevant to the current561

decoding status. Fu et al. (2023) propose to ap-562

ply the character-based NE encoder to better cap-563

ture generalizable acoustic features useful for tran-564

scribing rare entities. Different from our CopyNE,565

these methods all treat entities as individual tokens,566

which may result in incomplete NE transcriptions.567

LMs trained on large-scale text data can learn568

rich linguistic and contextual knowledge, and thus569

can be used to assist contextual ASR. There are typ-570

ically two approaches to leverage LMs for contex-571

tual ASR. The first approach involves using the LM572

to constrain the output of the decoder during ASR573

decoding, resulting in text that aligns better with574

the target language style (Chorowski and Jaitly,575

2016; Sriram et al., 2017; Zhao et al., 2019a). The576

second approach is multi-modal pre-training. Re-577

searchers have explored joint pre-training of speech578

and text models, aiming to leverage information579

from both modalities, and have achieved promis-580

ing results (Chung et al., 2021; Ao et al., 2022;581

Zhang et al., 2022). However, compared to using582

contextual dictionaries, models that rely on LMs583

tend to have much more parameters, which means584

that training and deploying require more time and585

computational resources. 586

The Copy Mechanism. The copy mechanism 587

can be traced back to the pointer network (Vinyals 588

et al., 2015), which can predict output sequences 589

from the input. The copy mechanism (Gu et al., 590

2016) extends the pointer network by enabling the 591

model to generate sequences that are not present in 592

the input. According to the source of copying, it 593

can be divided into copying from input text, from 594

document, and from external dictionary. 595

Copying from Input Text. The copy mechanism 596

is most commonly used to copy text from input 597

text. For instance, in text summarization tasks, 598

it is common to employ the copy mechanism to 599

copy keywords from the input text (Cheng and 600

Lapata, 2016; Xu et al., 2020). In grammatical 601

error correction tasks, where only a small portion 602

requires correction, the copy mechanism is used 603

to copy the correct text from the input text (Zhao 604

et al., 2019b). 605

Copying from Document. In addition to copy- 606

ing from input text, the copy mechanism can be 607

employed to copy text from other texts when the 608

input text is not available. Lan et al. (2023) intro- 609

duced the copy mechanism in decoder-only lan- 610

guage models, where text fragments are selected 611

from a vast amount of documents to generate the 612

target text. 613

Copying from External Dictionary. In this paper, 614

we introduce a systematic framework, encompass- 615

ing both training and decoding, which seamlessly 616

integrates the process of copying from an external 617

dictionary to aid in generation. We believe that our 618

framework can also be applied to other generation 619

tasks. 620

6 Conclusion 621

In this paper, we consider entities as indivisible 622

elements and introduce a copy mechanism into 623

ASR for the first time to assist in transcribing enti- 624

ties. We devise a systematic copy framework that 625

can copy all the tokens of an entity from the NE 626

dictionary at once, preserving the token span as a 627

complete entity. Our approach demonstrates sub- 628

stantial improvements on both English and Chinese 629

datasets. In summary, CopyNE represents a signifi- 630

cant advancement in contextual ASR, providing a 631

promising direction in this field. 632
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Limitations633

From our experiments, we have found that an ex-634

cessive number of noisy entities can impact the635

performance. As part of our future work, we intend636

to explore methods for dynamically filtering out637

interfering entities from the dictionary during the638

decoding process.639
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Appendices853

A Datasets854

Aishell (Bu et al., 2017) and ST-cmds6 are two855

widely used Chinese Mandarin datasets. Aishell856

contains about 150 hours of speech. ST-cmds was857

built based on commonly used online chatting and858

user command speeches, which contains about 110859

hours of speech. For the English dataset, we utilize860

the portion of data that has been manually anno-861

tated with entities by Yadav et al. (2020), which862

comprises approximately 150 hours. The Eng863

dataset is built by extracting content from well-864

known English datasets, including Librispeech865

(Panayotov et al., 2015), CommonVoice7, Tedlium866

(Rousseau et al., 2012), and Voxforge8.867

Table 6 shows the detailed statistics of the868

datasets used in our experiments. “Sent” means869

the number of instances. “NE” is the number of870

different named entities in the dataset and also the871

size of the contextual entity dictionary used during872

inference.

Dataset Train Dev Test
Sent NE Sent NE Sent NE

Aishell 119919 14241 14326 2194 7176 1186
Aishell-NE 119919 14241 4949 2194 2244 1186
ST-cmds 82080 17376 10260 3029 10260 3124
ST-cmds-NE 82080 17376 3285 3029 3241 3124
Eng 64570 11858 3100 2568 3100 2508
Eng-NE 64570 11858 2677 2568 2690 2508

Table 6: Statistics of the used datasets.

873

B Parameter Settings874

We use 80-dimensional log-mel acoustic features875

with 25ms frame window and 10ms frame shift.876

The log-mel features are first fed into a 2D convo-877

lutional layer for downsampling and mapped to 256878

dimensions before being inputted into the Audio879

Encoder. Both the audio encoder and decoder con-880

sist of 6 Transformer layers with 4 attention heads881

each. The NE Encoder is composed of three LSTM882

layers, with the input being a randomly initialized883

256-dimensional embedding vector and the hidden884

size being 512. The relative weight λ in Equation885

13 is set to 0.7. The experiments are conducted on886

two NVIDIA A100 GPUs.887

6https://www.openslr.org/38/
7https://en.wikipedia.org/wiki/Common_Voice
8https://en.wikipedia.org/wiki/VoxForge

In addition, for the experiments on Whisper, 888

we use Whisper-small model9, which includes 12 889

transformer layers in both its encoder and decoder, 890

and is pre-trained on a total of 680,000 hours of 891

multi-lingual and multi-task data. We replace our 892

audio encoder and decoder with the Whisper model 893

and fine-tune the parameters of the entire model 894

on our training set for a maximum of 20 epochs. 895

During fine-tuning, the initial learning rate for the 896

Whisper model’s parameters is set to 1e-5, while 897

the learning rate for other parameters is set to 1e-3 898

with 10,000 warm-up steps. During inference, we 899

used beam search with a beam size of 5 and 10 for 900

models with and without Whisper, respectively. 901

C Influence of Negative Entities in 902

Training 903

During training, we construct an NE dictionary 904

for each batch. To enhance the model’s ability 905

of copying correct entities, we sample additional 906

negative examples. 907

Suppose the dictionary already contains m enti- 908

ties, either real entities or pseudo sub-string entities. 909

We sample β ·m entities as negative examples from 910

the training set. We utilize the parameter β to con- 911

trol the number of negative examples. Thus, we get 912

the final dictionary for this batch which contains a 913

total of (β + 1) ·m entities. As shown in Figure 5, 914

adding 1 or 2 times the number of negative samples 915

can reduce transcription errors. Specifically, when 916

β = 2, the CER and NE-CER decreased by 0.42% 917

and 0.44% compared to β = 0. However, as β con- 918

tinues to increase, the error rate started to rise. We 919

think that this is due to the presence of excessive 920

noise. This causes the model to excessively focus 921

on the negative samples, thus affecting its ability 922

to accurately copy entities. Therefore, we set β to 923

2 during training.
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Figure 5: Effect of β.
924

9https://huggingface.co/openai/whisper-small
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