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ABSTRACT

We present a family of novel block-sample MAC-Bayes bounds (mean approxi-
mately correct). While PAC-Bayes bounds (probably approximately correct) typ-
ically give bounds for the generalization error that hold with high probability,
MAC-Bayes bounds have a similar form but bound the expected generalization
error instead. The family of bounds we propose can be understood as a unification
of an expectation version of known PAC-Bayes bounds and the individual-sample
information-theoretic bounds. Compared to standard PAC-Bayes bounds, the new
bounds contain divergence terms that only depend on subsets (or blocks) of the
training data. We also explore the question whether high-probability versions of
our MAC-Bayes bounds (i.e., PAC-Bayes bounds of a similar form) are possible.
We answer this question in the negative with an example that shows that in gen-
eral, it is not possible to establish a PAC-Bayes bound which (a) vanishes with a
rate faster than O(1/ log n) whenever the proposed MAC-Bayes bound vanishes
with rate O(n−1/2) and (b) exhibits a logarithmic dependence on the permitted
error probability.

1 INTRODUCTION

One fundamental question in statistical learning theory is to understand how the generalization error,
defined as the discrepancy between the empirical loss L̂ (or training loss) and the population loss
L (or testing loss), can be controlled using the knowledge available at the training stage, e.g., the
number of samples, the structure of the hypothesis space, and properties of the learning algorithm.
PAC-Bayes bounds, initiated by McAllester (1999) and Shawe-Taylor & Williamson (1997), are a
class of bounds that usually take the form

P

(
d(L̂, L) ≥

D
(
PW |S ||QW

)
+ I(n, d) + log 1

δ

n

)
≤ δ (1)

where S denotes the training data consisting of n samples Z1, Z2, . . . , Zn, and the conditional
distribution PW |S characterizes our learning algorithm which generates a hypothesis W (possibly
stochastically) from training data S. Here d is a comparator function we can choose to define the
discrepancy, and I(n, d) is a quantity that usually depends on the sample size n and the function d.
One interesting aspect of the PAC-Bayes bound is that the full information about the learning algo-
rithm PW |S is explicitly used in the bound through the divergence term D

(
PW |S ||QW

)
, leading to

a tight generalization error bound even for practical learning algorithms with large models such as
deep neural networks, as illustrated in, e.g., Dziugaite & Roy (2017) and Pérez-Ortiz et al. (2021).

A variation of PAC-Bayes bounds that are not necessarily valid with high probability but bound the
expected generalization error Ed(L̂, L) have been called MAC-Bayes bounds (mean approximately
correct) by Grunwald et al. (2021). Such bounds can be derived from PAC-Bayes bounds as varia-
tions, but sometimes it is possible to give a MAC-Bayes bound that is tighter than the corresponding
expectation version of the PAC-Bayes bound.

In this work, we study a MAC-Bayes generalization of the PAC-Bayes bound (1), which we call
block-sample MAC-Bayes bound, taking the form

Ed(L̂, L) ≤
∑J

j=1 ED
(
PW |Sj

||QW

)
+ I ′(n, d, J)

n

1
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where Sj ⊆ S, j = 1, . . . , J denotes J disjoint subsets (or blocks, justifying the name of the bound)
of the entire data S. Compared to the original PAC-Bayes bound, the effect of multiple blocks enters
the new bound both through the divergence D

(
PW |Sj

||QW

)
and the quantity I ′. The focus of this

paper is to investigate the properties of this new type of bounds, the optimal choice of block size,
and what possibilities there exist to derive high-probability bounds of this type. Our finding shows
that the obtained MAC-Bayes bounds can have right side terms that vanish at faster rates than that of
the original PAC-Bayes bound or even vanish in some cases in which the original PAC-Bayes bound
would be vacuous. We now briefly summarize the contribution of this paper.

• We prove a block-sample MAC-Bayes bound (Theorem 1) which generalizes both the
MAC-Bayes version of original PAC-Bayes bounds and the individual-sample bound. In
Corollary 1 we show how this general result can be used to obtain a bound on the general-
ization error by substituting a specific choice of distance function. We also illustrate what
happens if binary KL divergence or difference function are substituted instead. While these
bounds are suboptimal compared to Corollary 1, it is worth mentioning that substituting the
difference function (Corollary 2) yields a bound with slightly wider applicability.

• The usefulness of the block-sample bounds is illustrated via an example in Section 4 where
we show that the new bounds are in general tighter than the original PAC-Bayes bounds.
The bound is also validated numerically. In Section 5, we generalize the scenario and illus-
trate how the growth behavior of the divergence term that appears in the bound influences
the choice of m that optimizes the bound order-wise.

• We explore the question of whether block-sample PAC-Bayes bounds are possible (i.e., a
high probability version of the proposed block-sample MAC-Bayes bound). In Section 6,
we answer this question in the negative, proving that in general, reasonably fast decaying
bounds with a logarithmic dependence on the permissible error probability are not possible.

Like many other information-theoretic bounds (e. g. Bu et al. (2020) and Negrea et al. (2019)), the
bounds we propose in this work depend on the distribution of the training data. This means that our
bound can potentially be tighter than distribution-independent bounds in cases where at least partial
statistical knowledge about the training data is available, but it comes with the drawback that the
bound may not be computable in cases in which such knowledge is not available. In Section 7 we
discuss the limitations that arise from this in more detail.

1.1 RELATED WORKS

Numerous PAC-Bayes bounds have been developed since its conception. For i.i.d. data, a frame-
work was developed by Germain et al. (2009) and Bégin et al. (2016), where one class of PAC-Bayes
bounds can be obtained systematically by choosing different comparator functions d. This frame-
work allows us to recover well-known PAC-Bayes bounds from McAllester (1999) (improved by
Maurer (2004)), Seeger (2002) and Catoni (2007), etc. More recent work on PAC-Bayes bounds
also deals with non-i.i.d. data. For example, Alquier & Guedj (2018) established bounds for de-
pendent, heavy-tailed observations, and Haddouche & Guedj (2022) considered a sequential model.
PAC-Bayes bounds have recently received renewed interest partly due to their ability to provide tight
generalization bounds for practical algorithms with large models. The idea of applying PAC-Bayes
bounds to neural networks goes back to Langford & Caruana (2001). More recently, it has been
shown by Dziugaite & Roy (2017) and Pérez-Ortiz et al. (2021) that when combined with suitable
optimization techniques, PAC-Bayes bounds can generate very tight bounds. The recent survey by
Alquier (2024) provides a comprehensive review of this topic.

MAC-Bayes bounds have appeared in the literature under various names, such as integrated PAC-
Bayes bounds, PAC-Bayes bounds in expectation, or simply as PAC-Bayes bounds. Early appear-
ances can, e.g., be found in Alquier (2006) and Catoni (2007), but they have also been of interest
more recently in Grunwald et al. (2021). MAC-Bayes bounds have been studied in cases in which
nontrivial PAC-Bayes bounds are not possible. A brief overview of MAC-Bayes bounds is included
in the recent survey by Alquier (2024).

A related line of works appeared later in the information theory literature, starting with the works
Russo & Zou (2016); Xu & Raginsky (2017). Results similar in spirit to PAC-Bayes bounds are
presented under the name information-theoretic bounds on the generalization error. Works on
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information-theoretic bounds often focus on bounds in expectation, with many also proposing high-
probability bounds. Examples of works that focus mostly on high-probability bounds are Esposito
et al. (2021); Hellström & Durisi (2020). Further variations and refinements of information-theoretic
bounds on generalization error include Asadi et al. (2018); Steinke & Zakynthinou (2020); Bu et al.
(2020); Zhou et al. (2022); Wu et al. (2022; 2025). A recent survey by Hellström et al. (2025)
provides an overview.

Our block-sample bound is inspired by the individual-sample information-theoretic bound due to
Bu et al. (2020), where each block Sj contains just one sample Zj . The individual-sample bound
is tighter than the original information-theoretic bound and has been applied to various learning
scenarios, e.g., by Rodrı́guez-Gálvez et al. (2021); Harutyunyan et al. (2021). The work Harutyun-
yan et al. (2021) also considers bounds based on the mutual information of the hypothesis with m
training samples drawn uniformly at random. In the present work, in contrast, the training set is
divided into blocks of size m and the conditional distribution of the hypothesis given each of them
shows up in the information quantities in our bounds. In the follow-up work Harutyunyan et al.
(2022), the authors also give an impossibility result for high-probability statements which resembles
Theorem 2 of the present paper, but is for the different system setup also used in Harutyunyan et al.
(2021), is based on a fundamentally different idea, and intersects with our result only in the special
case where the block size is m = 1. For m > 1, the impossibility result in Harutyunyan et al.
(2022) is not applicable. PAC-Bayes bounds involving individual samples have been considered
in some recent work including Zhou et al. (2023); Hellström & Durisi (2022). The recent works
Foong et al. (2021); Hellström & Guedj (2024) studied the tightness of original PAC-Bayes bounds
with different choices of the comparator function d, which are relevant to our current study. To the
best knowledge of the authors, this paper is the first work that presents block-based MAC-Bayes
bounds under a general framework, considers the optimization of the bound, and explores possible
PAC-Bayes versions of the bound.

2 DEFINITIONS AND NOTATIONS

Let Z1, . . . Zn ∈ Z denote i.i.d. samples drawn from a fixed but unknown distribution PZ . The
samples are collectively denoted by S. We use PS to denote the distribution of the set and in
particular in this case, PS(z1, . . . , zn) =

∏n
i=1 PZ(zi). Let ℓ : W × Z → [0,∞) denote a loss

function taking the form ℓ(w, z) where w ∈ W denotes a hypothesis. The empirical loss (or training
loss) L̂(w, s) given a training set S = (Z1, . . . , Zn) ∈ Zn and population loss (or testing loss)
L(W ) are defined as L̂(w, s) := 1

n

∑n
i=1 ℓ(w, zi) and L(w) := EPZ

ℓ(w,Z), respectively. A
learning algorithm is characterized by a conditional distribution PW |S which generates a hypothesis
(possibly stochastically) given training data S. PAC-Bayes bounds are concerned with comparing
the two random quantities EPW |S L̂(W,Z) and EPW |SL(W ) where a comparator function d : R ×
R → R is used to measure the discrepancy between EPW |S L̂(W,Z) and EPW |SL(W ). We assume
d(r, s) is convex in the pair (r, s). Some commonly used d are d(r, s) := s− r, d(r, s) := (r − s)2

for r, s ∈ R and d(r, s) := kl (r∥s) := s log s
r + (1 − s) log 1−s

1−r for r, s ∈ [0, 1] where we
define 0 log 0 := 0 by convention. Another choice proposed in Catoni (2007) is given by d(r, s) :=

Cβ(r, s) := − log
(
1−
(
1−exp(−β)

)
s
)
−βr for r, s ∈ [0, 1] and a parameter β ∈ (0,∞). The main

quantity of interest studied in this paper is the expected generalization gap gen := EPS,W

(
L(W )−

L̂(W,Z)
)
.

The main novelty we introduce in this work is that we partition the training set S into blocks S1 =
(Z1, . . . , Zm), . . . , SJ = (Z(J−1)m+1, . . . , Zn) where m is the block size, J is the number of
blocks, and n = mJ . The algorithm PW |S then induces conditional distributions

PW |Sj
:= EPS1,...,Sj−1,Sj+1,...,SJ

PW |S , (2)

i.e., the conditional distribution of the hypothesis given only one block of training data if the algo-
rithm PW |S is used.

Asymptotic notations such as O(·), o(·), and Θ(·) are used according to the standard definition. We
denote initial segments of the natural numbers as [k] := {1, . . . , k} and sometimes use abbrevi-
ated notations like zi1:i2 := (zi1 , . . . , zi2) to denote sub-tuples of a tuple (z1, . . . , zn). Indicator
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functions are denoted 1φ. 1φ takes the value 1 when the condition φ is satisfied and the value 0
otherwise.

3 BLOCK-SAMPLE MAC-BAYES BOUNDS

In this section, we propose the general version of the block-sample MAC-Bayes bound along with
specializations to some commonly used comparator functions d.
Theorem 1 (Block-sample MAC-Bayes bounds). Let m ∈ [n], assume that n is an integer multiple
of m, and let S′ = (Z ′

1, . . . , Z
′
m) where Z ′

1 . . . , Z
′
m are i.i.d. drawn from PZ . Assume that for

λ′ ∈ (0, b) and some distribution QW over W , it holds that

EPS′QW
exp

(
λ′d

(
1

m

m∑
i=1

ℓ(W,Z ′
i), L(W )

))
≤ Φm(λ′) (3)

for some function Φm : (0, b) → (0,∞). Then for any λ ∈ (0, bn/m), it holds that

ESd
(
EPW |S L̂(W,S),EPW |SL(W )

)
≤

n
m log Φm

(
λm
n

)
+
∑J

j=1 EPSj
D
(
PW |Sj

||QW

)
λ

, (4)

where J := n/m is the number of blocks and Sj := Z(j−1)m+1:jm denotes the blocks into which
the training set S is divided.

Proof. We argue

EPS
d
(
EPW |S L̂(W,S),EPW |SL(W )

)
(a)

≤ EPS
EPW |Sd

(
L̂(W,S), L(W )

)
= EPS

EPW |Sd

 1

J

J∑
j=1

1

m

jm∑
i=(j−1)m+1

ℓ(W,Zi), L(W )


(a)

≤ EPS
EPW |S

 1

J

J∑
j=1

d

 1

m

jm∑
i=(j−1)m+1

ℓ(W,Zi), L(W )


(b)
=

J∑
j=1

EPSj

EPS1,...,Sj−1,Sj+1,...,SJ
EPW |S

 1

J
d

 1

m

jm∑
i=(j−1)m+1

ℓ(W,Zi), L(W )


(2)
=

J∑
j=1

EPSj

EPW |Sj

 1

J
d

 1

m

jm∑
i=(j−1)m+1

ℓ(W,Zi), L(W )


=

J∑
j=1

EPSj

 1

λ
EPW |Sj

λ

J
d

 1

m

jm∑
i=(j−1)m+1

ℓ(W,Zi), L(W )


(c)

≤
J∑

j=1

EPSj

 1

λ

 logEQW
exp

λ

J
d

 1

m

jm∑
i=(j−1)m+1

ℓ(W,Zi), L(W )



+D
(
PW |Sj

||QW

)


(d)

≤
J∑

j=1

logEPSj
EQW

exp
(

λ
J d
(

1
m

∑jm
i=(j−1)m+1 ℓ(W,Zi), L(W )

))
+ EPSj

D
(
PW |Sj

||QW

)
λ

4
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(3)
≤

J∑
j=1

log Φm

(
λ
J

)
+ EPSj

D
(
PW |Sj

||QW

)
λ

=
J log Φm

(
λ
J

)
+
∑J

j=1 EPSj
D
(
PW |Sj

||QW

)
λ

,

where both steps labeled (a) are applications of Jensen’s inequality which make use of the convex-
ity of d, (b) is due to the Fubini-Tonelli theorem, (c) is an application of the Donsker-Varadhan
inequality

EPW |Sj
g(W ) ≤ logEQW

exp(g(W )) +D
(
PW |Sj

||QW

)
with

g(W ) :=
λ

J
d

 1

m

jm∑
i=(j−1)m+1

ℓ(W,Zi), L(W )

 ,

and (d) uses Jensen’s inequality with the concavity of the logarithm.

Remark 1 (Data dependent priors). It can be verified in the proof of Theorem 1 that the result also
holds if QW is replaced in (3) with a data dependent prior QW |S′ . The prior will then appear in
(4) as QW |Sj

. In the remainder of this paper, we will focus on the case that QW does not have any
dependence on data.

The following corollary shows how Theorem 1 can be used to upper bound the generalization error
of a learning algorithm in the case of bounded loss. It follows from Theorem 1 by substituting
d(r, s) := Cβ(r, s). Full details of the proof can be found in Appendix A.

Corollary 1. Let ℓ(w, z) ∈ [0, 1] for all w ∈ W, z ∈ Z . Then for any β > 0, we have

EPS
Cβ

(
EPW |S L̂(W,S),EPW |SL(W )

)
≤ 1

n

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
. (5)

Furthermore,

kl
(
EPS,W

L̂(W,S)∥EPS,W
L(W )

)
≤ 1

n

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
(6)

gen ≤

√√√√ 1

4n

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
. (7)

Remark 2. Under the assumption ℓ(w, z) ∈ [0, 1] for all w ∈ W, z ∈ Z , we can of course also
directly substitute d(r, s) = kl (r∥s)) in Theorem 1 in an attempt to obtain a bound akin to (6). This
would give us (for full details see Appendix A)

EPS
kl
(
EPW |S L̂(W,S)∥EPW |SL(W )

)
≤ log(2

√
m)

m
+

1

n

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
. (8)

However, it is easy to see that after an application of Jensen’s inequality this yields a bound that
is less tight than (6) due to the presence of the additional summand log(2

√
m)/m. In terms of

generalization error, this would yield the suboptimal bound

gen ≤ 1

2

√√√√ log(2
√
m)

m
+

1

n

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
. (9)

We conclude this section with a corollary that shows how Theorem 1 can be applied in case the loss
is not necessarily bounded. For this, we replace the boundedness assumption with the less general
assumption that the loss is subgaussian and substitute d(r, s) = s − r in Theorem 1 to obtain the
following result. The further details of the proof can be found in Appendix A.
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Figure 1: Comparison of true generalization error and theoretical bounds for the example in Sec-
tion 4 with µ = 1/2. The solid blue curve shows the optimal bound (12) with optimal choice for m.

Corollary 2. Assume that the loss function ℓ(w,Z) is σ2-subgaussian for any w under the distribu-
tion PZ , namely,

EPZ
exp(λ′(ℓ(w,Z)− L(w))) ≤ exp(σ2λ′2/2)

for all λ′ ∈ R. Then for any λ > 0 and a prior distribution QW over W , it holds that

gen ≤

√√√√2σ2

n

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
. (10)

The same result holds if we assume the (weaker) condition EPZQW
exp (λ′(ℓ(W,Z))) ≤

exp(σ2λ′2/2), namely that ℓ(W,Z) − L(W ) is σ2-subgaussian under the product distribution
PZQW .

4 EXAMPLE: GAUSSIAN MEAN ESTIMATION WITH TRUNCATED LOSS
FUNCTION

In this section, we explore a toy example for a learning scenario. The example shows that the
proposed block-sample MAC-Bayes bounds can yield meaningful convergence guarantees in cases
in which the original PAC-Bayes bound would be vacuous.

Assume Zi ∼ N (µ, 1) for some (unknown) µ ∈ (0, 1). We let W := 1
n

∑n
i=1 Zi and choose the

loss function to be

ℓ(w, z) := K
(
(w − z)2

)
, K(x) :=

{
x, x ∈ [0, 1)

1, x ∈ [1,∞).

To understand the choice of m for the KL-divergence term, we choose the set Sj to be the j-th batch
with m samples, namely Sj = Z(j−1)m+1:jm and define S̄j to be the sum of these elements S̄j :=∑jm

i=(j−1)m+1 Zi. It can be seen that we have PW |Sj
= N

(
µ(n−m)/n+ S̄j/n, (n−m)/n2

)
.

Choosing the prior QW := N
(
µ, (n−m)/n2

)
gives us

ESD
(
PW |Sj

||QW

) (a)
= ES

(
n2

2(n−m)

(
S̄j

n
− µm

n

)2
)

=
ES

((
S̄j − µm

)2)
2(n−m)

(b)
=

m

2(n−m)
,

(11)

6
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EPS
L̂(W,S) gen with m = Θ(nα) α∗ gen with m = Θ

(
nα∗)

any O
(
n

α(γ−1)−1
2

)
1γ<1 O

(
n

min(γ−1,0)−1
2

)
O (n−ε) O

(
nα(γ−1)−1

)
+O (n−ε log n) 1γ<1 O

(
nmin(γ−1,0)−1

)
+O (n−ε log n)

Table 1: Convergence rate of gen depending on the growth behavior of m under assumption (13).

where in (a) we have used the KL divergence formula from (Gil, 2011, Table 2.3) and (b) follows
because S̄j follows the distribution N (µm,m). Substituting (11) in (7), we obtain

gen ≤

√
1

4n
· n

m
· m

2(n−m)
=

1

2

√
1

2(n−m)
. (12)

The original PAC-Bayes bound, which would correspond to the choice m = n, can clearly be
seen to be vacuous in this case. However, any other choice of block size yields a bound which
decays as O(n− 1

2 ), with m = 1 being the optimal choice. We show the bound (12) in Figure 1 for
various choices of block size m and plot for illustration also the suboptimal bounds for gen that can
be derived from (9) and (10) in a similar way. It can be seen in the plots that the bound (12) is not
overly sensitive to suboptimal choices of m (as long as m ̸= n) and that if adjusting m appropriately,
the suboptimal bounds derived from (9) and (10) will also decay reasonably as n grows.

5 OPTIMIZING BLOCK-SAMPLE MAC-BAYES BOUNDS

The example from the previous section illustrates that the right choice of m depends on the behavior
of the divergence term EPS

∑J
j=1 D

(
PW |Sj

||QW

)
, which needs to be evaluated on a case-by-case

basis. In this section, we illustrate this finding order-wise in more generality under the assumption
that the summands of the divergence term satisfy

ESD
(
PW |Sj

||QW

)
≤ O(mγ)

Θ(n)
(13)

for some γ ≥ 0 and all Sj . Of course, the assumption in (13) needs to be verified for the problem at
hand. For instance it can be seen in (11) that for the example in Section 4, (13) holds with γ = 1 as
long as m ̸= n.

In Table 1, we show bounds for the generalization gap gen = EPS,W
(L(W ) − L̂(W,Z) that can

be obtained from Corollary 1 under assumption (13). If nothing is known about the behavior of the
empirical loss EPS

L̂(W,S), only the bound given in the first row applies. If, on the other hand,
it is known that the empirical loss vanishes as EPS

L̂(W,S) = O (n−ε) where ε > 0, there is an
additional trick which enables us to use the bound in the second row. This bound can, depending on
the value of ε, be significantly tighter than the bound that does not use this assumption. For details
on how these bounds are calculated, we refer the reader to Appendix B.

The bounds are given for choices of block size assumed to behave as m = Θ(nα), where α ∈ [0, 1]
is a parameter that can be optimized. Correspondingly, we indicate the optimal value α∗ of α along
with the resulting order-wise behavior of the generalization bound. It can be seen in the table that the
example from Section 4 sits exactly at the transition point of a dichotomy: For γ < 1, any constant
choice for m is optimal while for γ > 1, the block size m should grow linearly with n. This would
include the choice m = n as well as choices such as m = n/2. It is worth noting here that as can
be seen in the example of Section 4, (13) is in some cases only satisfied if m ̸= n. In these cases,
the original PAC-Bayes bound (m = n) is not applicable (for instance, in our example it would be
vacuous) but the block-sample approach still allows us to achieve the order-wise optimal tradeoff
point with a choice such as m = n/2.
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6 ON THE (IM)POSSIBILITY OF BLOCK-SAMPLE PAC-BAYES BOUNDS

In this section, we explore the possibility of transforming the block-sample MAC-Bayes bound into
a version that holds with high probability, and thus obtaining a PAC-Bayes bound. Specifically,
we are interested in the following question: Is it possible to find a meaningful PAC-Bayes bound
for every learning scenario for which Theorem 1 yields a MAC-Bayes bound that converges to 0
(reasonably fast)? For the interpretation of meaningful PAC-Bayes bound, we will focus on the
question whether bounds of the following form exist:

PS

(
EPW |Sd

(
L̂(W,S), L(W )

)
≤ An +Bn · f

(
1

δ

))
≥ 1− δ, (14)

where An converges to 0 as n → ∞, f is a function that grows slowly, and Bn converges to 0
reasonably fast as n → ∞. Note that the right hand side of the original PAC-Bayes bound (1) is
of the same form as the right hand side in (14) with f = log and Bn = 1/n. We show next that
there exists a learning scenario with the following properties: (a) Theorem 1 gives a MAC-Bayes
bound with a square root convergence, but (b) any PAC-Bayes bound of the form (14) which is valid
for this learning scenario needs to either have a fast growing f or a slowly converging Bn (see the
theorem statement for the technical meaning of fast growing and slowly converging). For this, we
focus on the comparator function d(r, s) = s− r in which case

EPS
d
(
EPW |S L̂(W,S),EPW |SL(W )

)
= gen = EPS,W

(
L(W )− L̂(W,S)

)
corresponds to the most commonly used definition of the generalization gap.
Theorem 2. Let m be chosen in dependence of n such that m/n → 0 as n → ∞. Then there exist
a loss function ℓ with values bounded in [0, 1], a sample distribution PZ , and a learning algorithm
PW |S with the following properties:

1. The assumptions of Theorem 1 are satisfied with the choice d(r, s) = s− r.

2. There exists QW such that the right hand side of (4) vanishes in order O(n−1/2) as n →
∞.

3. For every nondecreasing function f : [0,∞) → R, for every sequence An that vanishes
as n → ∞, for every sequence Bn in o(1/f(n log n)), and for every sufficiently large n,
there is δ ∈ [0, 1] such that

PS

(
EPW |S

(
L(W )− L̂(W,S)

)
> An +Bn · f

(
1

δ

))
> δ. (15)

The full proof of Theorem 2 is relegated to Appendix C. In it, we explicitly construct a learning
scenario with the following property: With a small probability over PS , the learning algorithm
dramatically overfits to the training sample. With the remaining (larger) probability, it outputs a
hypothesis that has zero loss (both empirical and in population). We then show that items 1, 2, and
3 hold for this learning scenario, giving an explicit choice of QW for item 2.

Items 1 and 2 in conjunction with Theorem 1 tell us that there exists a learning scenario in which the
bound (4) holds with a right hand side of the order O(n−1/2). Item 3 tells us that in the same learning
scenario, a bound of the form (14) cannot hold with a slowly growing f and a fast converging
Bn at the same time (observe that (15) is the logical opposite of (14) with the difference function
substituted for d).

We conclude this section with two remarks that approach the question of whether block-sample
PAC-Bayes bounds are possible from slightly different angles.
Remark 3. If d takes only nonnegative values1, then (4) and the Markov bound imply the following
high-probability bound: For every δ ∈ (0, 1), with probability at least 1− δ over PS ,

d
(
EPW |S L̂(W,S),EPW |SL(W )

)
<

n
m log Φm

(
λm
n

)
+
∑J

j=1 EPSj
D
(
PW |Sj

||QW

)
λδ

.

1Of the three comparator functions studied in this paper, this applies only to the KL divergence. However,
other comparator functions that satisfy this assumption are readily available, for instance the absolute difference
function d(r, s) = |r − s| or the square distance function d(r, s) = (r − s)2.
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This bound has the form (14) with An = 0 and, depending on the learning scenario at hand, quite
possibly with a term Bn that converges to 0 reasonably fast. However, f is the identity function here,
which is much worse than the original PAC-Bayes bound (1) where we have f = log.

Remark 4. While Theorem 2 conclusively shows that an exponential high-probability version of the
MAC-Bayes bound (4) is not possible in general, it strictly speaking leaves open the possibility that
a block-sample version of the original PAC-Bayes bound (1) of the following form might exist:

P

(
d(L̂, L) ≥

∑J
j=1 D

(
PW |Sj

||QW

)
+ I(n, d) + log 1

δ

n

)
≤ δ (16)

The main difference compared to (4) is that the expectation operator in front of the divergence terms
D
(
PW |Sj

||QW

)
is absent in (16). However, if one inspects the proof of Theorem 2, it is clear that

in the error event evaluated in (15) (for a detailed derivation see Appendix D), we have

∆inst :=

J∑
j=1

D
(
PW |Sj

||QW

)
= O(log n), (17)

so the term ∆inst/n that appears in (16) vanishes at rate O(n−1 log n). Therefore it is clear from
item 3 of Theorem 2 that no bound of the form (16) with I(n, d)/n → 0 as n → ∞ can hold.

7 CONCLUSIONS AND LIMITATIONS

We have presented a family of block-sample MAC-Bayes bounds which are generally tighter than
MAC-Bayes versions of classical PAC-Bayes bounds, and we have shown that they cannot in gen-
eral be established as PAC (i.e., high-probability) versions with logarithmic dependence on the error
probability. One important further limitation of these bounds is their dependence on the data distri-
bution PZ via the divergence term D

(
PW |Sj

||QW

)
. In this sense, they cannot be applied immedi-

ately if we do not have any information about the data distribution PZ . Two comments are in order
regarding this limitation: (a) Given certain basic information about the data distribution, block-
sample MAC-Bayes bounds can give useful results without requiring full knowledge of the data
distribution PZ . In fact, as we show in Section 5, as long as we have enough knowledge of the data
distribution to be able to establish an upper bound of the form (13), the block-sample MAC-Bayes
bound can be applied. (b) More broadly, almost all information-theoretic bounds on generalization
error depend on the data distribution as the mutual information term I(W ;S) (or variations thereof)
depends on the data distribution (see, e.g., Hellström et al. (2025) for a recent survey). In such cases,
to make the bounds useful, the mutual information term is further upper bounded by using knowl-
edge of the data and learning algorithm. This is done by, e.g., Bu et al. (2020) and Negrea et al.
(2019). A similar approach can be taken for the block-sample PAC-Bayes bounds by further bound-
ing the divergence term D

(
PW |Sj

||QW

)
with properties of the learning algorithm. We consider

this an interesting future research direction.
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A PROOF DETAILS FOR COROLLARIES AND REMARKS IN SECTION 3

A.1 PROOF OF COROLLARY 1

The proof uses similar techniques as in Foong et al. (2021) and Maurer (2004), and is given here for
completeness. We will make use of the following lemma.
Lemma 1 (Maurer (2004), Lemma 3). Let X1, . . . , Xk be i.i.d. random variables taking values in
[0, 1] and X ′

1, . . . , X
′
k i.i.d. Bernoulli random variables such that EX1 = EX ′

1. For any convex
function f : [0, 1]k → R, it holds that

Ef(X1, . . . , Xk) ≤ Ef(X ′
1, . . . , X

′
k).

For any fixed w, denote Xi := ℓ(w,Z ′
i) for all i = 1, . . . ,m and use X to denote the tuple

(X1, . . . , Xm). Define X ′ to be a tuple of m i.i.d. Bernoulli random variables such that EXi = EX ′
i

for all i. Let f : X 7→ exp(λ′Cβ(
∑m

i=1 Xi, L(w))). Thus, we obtain

EPS′ exp

(
λ′Cβ

(
1

m

m∑
i=1

ℓ(w,Z ′
i), L(w)

))
(a)

≤ EPX′ exp

(
λ′Cβ

(
1

m

m∑
i=1

X ′
i, L(w)

))

=
1(

1 + L(w)
(
exp(−β)− 1

))λ′ EPX′ exp

(
−βλ′

m

m∑
i=1

X ′
i

)

(b)
=

(
1 + L(w)

(
exp(−βλ′/m)− 1

))m
(
1 + L(w)

(
exp(−β)− 1

))λ′ ,

where (a) is by Lemma 1 and in (b) we have used the well-known expression for the moment gener-
ating function of the binomial distribution. This upper bound is clearly equal to 1 if λ′ = m, so (3)
is satisfied for λ′ = m with Φm(m) = 1. Consequently, an application of Theorem 1 with λ = n
yields (5).

To obtain (6) from (5), we observe that by (Foong et al., 2021, Lemma E.1),

kl
(
EPS,W

L̂(W,S)∥EPS,W
L(W )

)
= sup

β∈(0,∞)

Cβ

(
EPS,W

L̂(W,S),EPS,W
L(W )

)
.

Finally, we can obtain (7) from (6) using Pinsker’s inequality

gen ≤ 1

2

√
kl
(
EPS,W

L̂(W,S)∥EPS,W
L(W )

)
.

A.2 CALCULATION DETAILS FOR REMARK 2

We again fix w ∈ W and use Lemma 1 with Xi := ℓ(w,Z ′
i), corresponding Bernoulli variables X ′

i ,
and f : X 7→ exp

(
λ′kl (

∑
i Xi/m∥L(w))

)
. It can be checked easily that f is convex. For any w,

we have

EPS′

(
exp

(
λ′kl

(
1

m

m∑
i=1

ℓ(w,Z ′
i)∥L(w)

)))
(a)

≤ EPS′

(
exp

(
λ′kl

(
1

m

m∑
i=1

X ′
i∥L(w)

)))

=

m∑
k=0

PX′

(
m∑
i=1

X ′
i = k

)
exp

(
λ′kl

(
k

m
∥L(w)

))

≤ sup
r∈[0,1]

m∑
k=0

Bin(k;m, r) exp

(
λ′kl

(
k

m
∥r
))
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where (a) follows from Lemma 1 and Bin(k;m, r) denotes the pmf of a binomial random variable
with m trials and success probability r, evaluated at k. Using the result by (Maurer, 2004, Theorem
1), the last term is upper bounded by 2

√
m when choosing λ′ = m. (Maurer, 2004, Theorem 1)

states the assumption m ≥ 8, however, as noted at the end of the proof of (Germain et al., 2015,
Lemma 19), this assumption is not necessary as the remaining cases can be verified computationally.
This means that (3) holds with Φm(m) := 2

√
m. So an application of Theorem 1 with λ := n yields

EPS
kl
(
EPW |S L̂(W,S)∥EPW |SL(W )

)
≤

n
m log(2

√
m) +

∑J
j=1 EPSj

D
(
PW |Sj

||QW

)
n

from which (8) follows.

A.3 PROOF OF COROLLARY 2

The assumption on the moment-generating function in the corollary straightforwardly implies

EPS′ exp

(
λ′

(
1

m

m∑
i=1

ℓ(w,Z ′
i)− L(w)

))
≤ exp

(
σ2λ′2

2m

)
for all λ′ ∈ R and any w. Choosing d(s, r) := r − s, this then implies that for any λ > 0

EPZ′QW
exp

(
λd

(
1

m

m∑
i=1

ℓ(W,Z ′
i), L(W )

))

= EPZ′QW
exp

(
−λ

(
1

m

m∑
i=1

ℓ(W,Z ′
i)− L(W )

))

≤ exp

(
σ2λ2

2m

)
=: Φm(λ).

Furthermore, the above inequality also holds when the weaker condition in the corollary is assumed
by noticing that EPZ

(ℓ(w,Z)− L(w)) = 0 for every w so

EPZQW
(ℓ(W,Z)− L(W )) = EPZ

(ℓ(W,Z)− L(W )) = 0.

We invoke Theorem 1 and substitute our expression for Φm to get

gen = EPS,W

(
L(W )− L̂(W,S)

)
≤ σ2λ

2n
+

1

λ

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
.

The corollary then follows with the choice

λ :=

√
2n
∑J

j=1 EPSj
D
(
PW |Sj

||QW

)
σ2

.

B CALCULATIONS FOR TABLE 1 IN SECTION 5

In this appendix, we provide the full derivations for the rates shown in Table 1.

We substitute (13) into (7) to obtain

gen ≤
√
O(n−2Jmγ) = O(n− 1

2m
γ−1
2 ).

The entry in the second column of the first row then follows by substituting m = Θ(nα). For the
second row, we need the following lemma.

Lemma 2. If r, s ∈ [0, 1], kl (r∥s) ≤ x, and r = O(n−ε), then s− r ≤ 2x+O(n−ε log n).
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Proof. We recall that due to the definition of binary KL divergence

x ≥ kl (r∥s) = r log
r

s
+ (1− r) log

1− r

1− s

or, equivalently,

log(1− s) ≥ r

1− r
log r + log(1− r)− x

1− r
− r

1− r
log s.

Since s ≤ 1 and assuming that n is large enough so that r ≤ 1/2, we can further bound the right
hand side and get

log(1− s) ≥ r

1− r
log r + log(1− r)− 2x.

With equivalent term manipulations and using the facts that 1 − exp(−t) ≤ t for all t ∈ R and
log(1− r) ≥ −r − r2 for all r ∈ [0, 1/2], we obtain

s ≤ 1− exp

(
r

1− r
log r + log(1− r)− 2x

)
≤ 2x− r

1− r
log r − log(1− r)

≤ 2x− r

1− r
log r + r + r2

≤ 2x− r

2
log r + r + r2.

The lemma then follows by subtracting r on both sides and substituting the convergence behavior of
r on the right hand side.

We substitute (13) into (6) and get

kl
(
EPS,W

L̂(W,S)∥EPS,W
L(W )

)
≤ O(n−2Jmγ) = O(n−1mγ−1).

The entry in the second column of the second row now follows by substituting m = Θ(nα) and
applying Lemma 2.

For the optimizing choice of α (which is the same in both rows), we note that the exponent in the
second column is decreasing in α when γ < 1, so in this case the maximum choice α∗ = 1 is
optimal. Similarly, when γ ≥ 1, the exponent is nondecreasing, so the minimum choice α∗ = 0 is
optimal. Finally, the entry in the last column follows by substituting the optimal α∗ into the entry in
the second column.

C PROOF OF THEOREM 2

We prove the theorem by first explicitly constructing ℓ, PZ , and PW |S , and then proving that they
satisfy the properties 1, 2, and 3 claimed in the theorem statement.

Choice of ℓ, PZ , and PW |S . We let K ∈ N be a parameter to be specified later, Z := [K],
W := {0, 1}K (identified with the set of functions from [K] to {0, 1}), and

ℓ(w, z) := w(z).

This means in particular that ℓ can only take the values 0 and 1 and hence is bounded as claimed in
the theorem statement.

We define the sample distribution PZ as the uniform distribution over Z . In preparation for speci-
fying the learning algorithm PW |S , we define the hypothesis w0 via w0(k) = 0 for all k ∈ [K] and
for any z1, . . . , zℓ ∈ Z , we define a hypothesis

ŵz1,...,zℓ(k) :=

{
0, ∃j ∈ [ℓ] : k = zj
1, otherwise.
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Let ϕ ∈ [0, 1] be another parameter to be specified later, and let Ωϕ ⊆ Zm be such that Pm
Z (Ωϕ) =

ϕ. Choosing such a Ωϕ is clearly possible as long as ϕ is an integer multiple of K−m.

We can now define the randomized algorithm for our example as follows:

PW |S(w|z1, . . . , zn) :=

{
1w=w0

, (z1, . . . , zm) /∈ Ωϕ

1w=ŵzm+1,...,zn
, (z1, . . . , zm) ∈ Ωϕ.

We conclude this part with a brief discussion of our choices that is intended to provide some intuitive
understanding and a brief outline of the remainder of this proof. w0 is a hypothesis of low loss, or
more precisely, the empirical loss on any sample as well as the population loss will always have the
lowest possible value 0. On the other hand, ŵz1,...,zℓ is a heavily overfitted hypothesis in the sense
that it will have empirical loss 0 on any sample that is a subset of {z1, . . . , zℓ} but it has a population
loss of at least (K − ℓ)/K which is close to 1 as long as ℓ ≪ K. The learning algorithm is chosen
in such a way that most of the time it outputs w0, and hence the generalization gap in this case will
be 0. However, with a carefully calibrated probability ϕ, it will output the hypothesis ŵzm+1,...,zn
which is overfitted to most of our training set, and consequently will exhibit a large generalization
gap. The probability ϕ will be carefully chosen such that it is small enough to allow the divergence
terms in (4) to vanish and at the same time is large enough so that (15) holds.

Item 1: Assumptions of Theorem 1. What remains to be shown is that (3) is satisfied. This
is straightforward as we have already argued the loss function ℓ is bounded in [0, 1]. Hence, by
Hoeffding’s Lemma (see, e.g. (Boucheron et al., 2013, Lemma 2.2)), ℓ(w,Z) is 1/4-subgaussian
for all w ∈ W and therefore (3) is satisfied with

Φm(λ) := exp

(
λ2

8m

)
. (18)

Item 2: Choice of QW such that the right hand side of (4) vanishes. We define

QW (w) := α1w=w0 + (1− α)Km−n
∑

z1:n−m∈Zn−m

1w=ŵz1,...,zn−m
, (19)

where α ∈ [0, 1] is another parameter to be specified later.

Next, we show that the right rand side in (4) vanishes with appropriate choices for the parameters
of our construction. Recalling the definition S1 := Z1:m, . . . , SJ := Zn−m+1:n, this means that we
have

PW |S1
(w|z1:m) =

{
Km−n

∑
zm+1:n∈Zn−m 1w=ŵzm+1:n

, z1:m ∈ Ωϕ

1w=w0
, otherwise,

(20)

PW |Sj
(w|z1:m) = (1− ϕ)1w=w0 + ϕK2m−n

∑
zm+1:n−m∈Zn−2m

1w=ŵz1:n−m
(21)

for j ∈ {2, . . . , J}.

With this we are ready to calculate bounds for the divergence terms that appear on the right hand
side of (4). Conditioned on the event S = z1:n for some z1:n ∈ Zn with z1:m ∈ Ωϕ and denoting
Ŵ := {w ∈ W : PW |S1

(w|z1:m) > 0}, we have

D
(
PW |S1

||QW

)
=
∑
w∈Ŵ

PW |S1
(w|z1:m) log

PW |S1
(w|z1:m)

QW (w)

(a)
=
∑
w∈Ŵ

PW |S1
(w|z1:m) log

Km−n
∑

zm+1:n∈Zn−m 1w=ŵzm+1:n

(1− α)Km−n
∑

z1:n−m∈Zn−m 1w=ŵz1:n−m

(b)
= log

1

1− α
(22)

where step (a) follows by observing w0 /∈ Ŵ and substituting (20) and (19) and step (b) by observing
that the sums in the numerator and denominator are identical since they differ only in the names of
the summation variables.
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Next, we condition on the event S = z1:n for some z1:n ∈ Zn with z1:m /∈ Ωϕ. In this case, we
obtain

D
(
PW |S1

||QW

)
=
∑
w∈Ŵ

PW |S1
(w|z1:m) log

PW |S1
(w|z1:m)

QW (w)

(a)
= log

1

QW (w0)

(b)
= log

1

α
(23)

where step (a) follows because W = w0 almost surely under PW |S1
(·|z1:m) according to (20) and

step (b) follows by substituting (19).

For j ∈ {2, . . . , J}, we condition on the event S = z1:n for an arbitrary z1:n ∈ Zn and write
Ŵ := {w ∈ W : PW |Sj

(w|z(j−1)m+1:jm) > 0}. Thus, we get

D
(
PW |Sj

||QW

)
=
∑
w∈Ŵ

PW |Sj
(w|z(j−1)m+1:jm) log

PW |Sj
(w|z(j−1)m+1:jm)

QW (w)

= PW |Sj
(w0|z(j−1)m+1:jm) log

PW |Sj
(w0|z(j−1)m+1:jm)

QW (w0)

+
∑

w∈Ŵ\{w0}

PW |Sj
(w|z(j−1)m+1:jm) log

PW |Sj
(w|z(j−1)m+1:jm)

QW (w)

(a)
= (1− ϕ) log

1− ϕ

α
+

∑
w∈Ŵ\{w0}

PW |Sj
(w|z(j−1)m+1:jm)

· log
ϕK2m−n

∑
ẑm+1:(j−1)m∈Z(j−2)m,ẑjm+1:n∈Zn−jm 1w=ŵẑm+1,...,ẑ(j−1)m,z(j−1)m+1,...,zjm,ẑjm+1,...,ẑn

(1− α)Km−n
∑

ẑ1:n−m∈Zn−m 1w=ŵẑ1,...,ẑn−m

(b)

≤ (1− ϕ) log
1− ϕ

α
+

∑
w∈Ŵ\{w0}

PW |Sj
(w|z(j−1)m+1:jm) log

ϕK2m−n

(1− α)Km−n

(c)
= (1− ϕ) log(1− ϕ) + (1− ϕ) log

1

α
+ ϕ log ϕ+ ϕm logK + ϕ log

1

1− α

≤ log
1

α
+ ϕm logK + ϕ log

1

1− α
, (24)

where step (a) follows by substituting (21) and (19), step (b) follows because the sum in the denomi-
nator contains all the summands that the sum in the numerator contains (hence it cannot be smaller),
and in step (c) we use the fact that

PW |Sj
(Ŵ \ {w0}|z(j−1)m+1:jm) = 1− PW |Sj

(w0|z(j−1)m+1:jm) = ϕ.

We can now calculate a bound for the divergence terms in (4). Namely,

J∑
j=1

EPSj
D
(
PW |Sj

||QW

)
(a)
= PS1

(Ωϕ)EPS1

(
D
(
PW |S1

||QW

)
|S1 ∈ Ωϕ

)
+ (1− PS1

(Ωϕ))

· EPS1

(
D
(
PW |S1

||QW

)
|S1 /∈ Ωϕ

)
+

J∑
j=2

EPSj
D
(
PW |Sj

||QW

)
(b)

≤ ϕ log
1

1− α
+ (1− ϕ) log

1

α
+
( n

m
− 1
)(

log
1

α
+ ϕm logK + ϕ log

1

1− α

)
≤ ϕ log

1

1− α
+

n

m
log

1

α
+ nϕ logK +

n

m
ϕ log

1

1− α
, (25)

where (a) is due to the law of total expectation and (b) follows by substituting (22), (23), and (24).
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This allows us to bound the right hand side of (4) (from now on denoted as R). Substituting (18)
and (25), we obtain

R ≤ λ

8n
+

ϕ log 1
1−α + n

m log 1
α + nϕ logK + n

mϕ log 1
1−α

λ
. (26)

With the choices
K := 3n log n

α := exp
(
−m

n

)
(27)

ϕ :=
3

K
=

1

n log n

λ :=
√
n

and the observation
1− α = 1− 1

exp
(
m
n

) > 1− 1

1 + m
n

=
m

n+m
, (28)

we can further bound (26) and get

R ≤
√
n

8n
+

log n+m
m

n logn + 1 + log(3n logn)
logn +

log n+m
m

m logn√
n

(a)

≤ 1√
n

(
1

8
+

log(n+ 1)

n log n
+ 1 +

log(3n log n)

log n
+

log(n+ 1)

log n

)
=

1√
n

(
17

8
+

log(n+ 1)

n log n
+

log(n+ 1) + log 3

log n
+

log log n)

log n

)
,

where in (a) we use the fact that since m takes only values in [n], we have (n +m)/m ≤ n+ 1 as
well as m ≥ 1 for all valid choices of m. Since all terms in the bracket are nonincreasing, the bound
(4) vanishes with rate O(1/

√
n).

Item 3: The generalization error does not vanish reasonably fast with small error probability.
With probability ϕ = 1/n log n over PS , we have W = ŵZm+1:n

almost surely over PW |S and
therefore

EPW |SL(W )− EPW |S L̂(W,S) ≥ K − n+m

K
− m

n

=
3n log n− n+m

3n log n
− m

n

=
(
1− m

n

)(
1− 1

3 log n

)
.

Towards a contradiction, we assume that the logical opposite of (15) holds, i.e., that we have An

which vanishes as n → ∞ and Bn which vanishes with order o(1/f(n log n)) as n → ∞, and

PS

(
EPW |SL(W )− EPW |S L̂(W,S) < An +Bnf

(
1

δ

))
> δ

for a sufficiently large n and all δ ∈ [0, 1].

Setting δ := ϕ = 1/n log n, this implies that with probability at least δ

An +Bnf (n log n) = An +Bnf

(
1

δ

)
> EPW |SL(W )− EPW |S L̂(W,S)

≥
(
1− m

n

)(
1− 1

3 log n

)
.

We can observe that since the left and right hand side of this inequality chain are not random and the
entire chain holds with positive probability, the left hand side is a valid (deterministic) upper bound
for the right hand side. Since m/n vanishes, the right hand side converges to 1, so in particular
it is clearly bounded away from 0. This contradicts the assertion that An converges to 0 and Bn

converges to 0 with rate o(1/f(n log n)).
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D PROOF OF (17)

To see this, we can sum the instantaneous divergences conditioned on the overfitting event calculated
in (22) and (24):

∆inst ≤ log
1

1− α
+

n

m

(
log

1

α
+ ϕm logK + ϕ log

1

1− α

)
(a)
< log (n+m)− logm+ 1 +

log 3

log n
+ 1 +

log log n

log n
+

log n+m
m

n log n
,

where in step (a) we have substituted (27) and (28). Clearly the dominating term is log(n + m)
which can be bounded as

log(n+m) ≤ log(2n) = log 2 + log n.
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