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Abstract
DNA models hold significant potential for link-
ing genetic variation to transcriptional regulation,
which is crucial for understanding disease mech-
anisms at the genetic and molecular level and
developing targeted therapies. Supervised ap-
proaches, such as Enformer and Basenji, have
shown promising results in predicting causal vari-
ants. Recently, self-supervised models like Nu-
cleotide Transformer and HyenaDNA have made
remarkable advancements, with variant-centric
benchmarks suggesting competitive performance
on the variant effect prediction task. In this study,
we propose to evaluate models also on gene-
centric benchmarks, which often are of higher
relevance to the genetics community for mapping
causal variants to affected genes.

1. Introduction
The advent of high-throughput sequencing technologies
has granted us unprecedented access to the entire human
genome, revolutionizing our understanding of genetics and
molecular biology. Biobanks, such as the UK Biobank
(UKBB), offer vast repositories of individual genomes (Hall-
dorsson et al., 2022). These resources provide extensive
training data, but also play a crucial role in identifying ge-
netic variations associated with traits and diseases. Most
genetic variations linked to diseases occur outside of genes,
in the non-coding genome (Uffelmann et al., 2021). The
challenge lies in linking non-coding variations to down-
stream effects on specific genes, which leads to a better
understanding of diseases, and in turn to drug targets. No-
tably, drugs developed for targets with genetic links have
been shown to have more than twice the success rate in
clinical trials (Minikel et al., 2024).

Traditionally, supervised models using convolutions and/or
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transformer layers have been the standard approach for mod-
eling DNA. These models were trained to predict epigenetic
and transcriptional profiles directly from DNA sequences.
Examples include ExPecto (Zhou et al., 2018), Enformer
(Kelley, 2020), and Basenji (Avsec et al., 2021). These
models have progressively improved the modeling of ge-
nomic data and the prediction of genetic variation effects
on gene expression by leveraging ever-increasing receptive
fields (Linder et al., 2023). Additionally, these models have
demonstrated the ability to predict causal variants (Avsec
et al., 2021).

Concurrently, the broader field of NLP research has focused
on developing approaches for training transformer archi-
tectures using masked and causal language models (Zhao
et al., 2023). In the past year, these techniques have also
been applied to model genetic data, ushering in a new era
of genomic language models (gLMs). Recent models, such
as the Nucleotide Transformer (Dalla-Torre et al., 2023),
HyenaDNA (Nguyen et al., 2024b), Mamba (Gu & Dao,
2023), and Evo (Nguyen et al., 2024a), are trained using
masked or causal language modeling with context lengths
ranging from 6,000 bp to 1 Mbp, utilizing up to 7 billion
parameters. This marks a distinctive and significant leap in
the scale of DNA models.

The benchmarks for causal variant effect prediction in these
models has predominantly emphasized variant classification
rather than the association of these variants with down-
stream affected genes. This methodology aligns with the
approaches used in Avsec et al. (2021) and Kelley (2020).
Establishing the link between variants and their respective
affected genes presents significant challenges. One major
complexity arises from Genome-Wide Association Studies
(GWAS), which often report numerous non-causal single
nucleotide polymorphisms (SNPs) due to linkage disequi-
librium, resulting in many false positives (Uffelmann et al.,
2021). Additionally, tissue expression data is often collected
separately from genetic data, necessitating the use of exter-
nal datasets, such as those from GTEx (Consortium, 2020),
for accurate association between a variant and its transcrip-
tional effect. Developing ab initio methods, or techniques
that function with minimal data, would be highly beneficial
in this context.
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Figure 1. a. The challenge with variant-centric evaluation is that using the entire sequence embedding does not provide the ability to
differentiate between specific genes. b. In contrast, gene-centric evaluation utilizes only the embedding of the TSS, enabling the prediction
of individual downstream genes affected by the variant.

Despite these challenges, advancements in genomic lan-
guage models hold considerable promise for enhancing our
ability to link genetic variations to their functional conse-
quences. The integration of these models with biobank data
could lead to significant breakthroughs in understanding
the genetic basis of disease and the development of more
effective therapies.

2. Gene-centric causal variant prediction
Kao et al. (2024) released a benchmark study of current
state-of-the-art models using an established ground-truth
dataset (see Section 4.1). Their findings suggest that gLMs
exhibit similar performance on causal variant prediction
as supervised models, with a 192kbp receptive field Nu-
cleotide Transformer (Dalla-Torre et al., 2023) achieving
performance comparable to Enformer (Table 1). The evalu-
ation is performed by training on variant-centered embed-
dings (see Figure 1a). This approach is analogous to pre-
dicting whether a variant can alter expression for any gene,
without linking it to the actual gene which is often of biolog-
ical interest. Many variants with downstream transcriptional
effects are located in promoter and enhancer regions. They
exert their effect by modulating the binding of transcription
factors (Uffelmann et al., 2021), which is a local effect de-
pendant on a short sequence. Notably, many known causal
variants from GTEx and the UK Biobank remain significant
even when used with contexts of 230bp in MPRA assays

(Siraj et al., 2024). We hypothesize that the causality of a
variant, from a variant-centric perspective, can be predicted
to a certain extent from the local sequence alone, without
the need for a wide receptive field.

We quantified this by using a method similar to that of
Tang & Koo (2024), who established naive baselines on
top of one-hot encoded DNA sequences. Using the dataset
from Section 4.1, we trained a convolutional neural network
(CNN) from one-hot encoded sequences with a short local
receptive field of just 1500 base pairs (see Section 4.2). The
results in Table 1 suggest that the baseline for this task is
quite close to the current state-of-the-art achieved by self-
supervised models with much larger receptive fields.

Huang et al. (2023) recently evaluated DNA models for their
zero-shot capability in predicting gene expression across
individuals. However, instead of evaluating at the variant
level, they chose to evaluate using a 10-bin window cen-
tred at the gene transcription start site (TSS). In a recent
pre-print, Linder et al. (2023) created an additional task
for evaluating the model’s ability to identify the affected
gene by the variant from the set of local genes surrounding
that variant. Inspired by these studies, we trained an MLP
on gene-centered embeddings, using the same ground-truth
causal variant dataset (see Section 4.1). We did not neces-
sarily expect a priori that gLMs would perform well on this
task, as they are not originally trained on expresion data.
Supervised models like Enformer (Avsec et al., 2021), are
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Table 1. Results for causal variant prediction using the variant-centric view. *The results for HyenaDNA, Nucleotide Transformer, and
Enformer are taken from Kao et al. (2024) and are not recomputed. They are only provided to assist comparison.

MODEL BASIC *HYENADNA *NUCLEOTIDE *NUCLEOTIDE *ENFORMER
CNN TRANSFORMER TRANSFORMER NTK

TRAINED RECEPTIVE FIELD 1.5KBP 160KBP 12KBP 192KBP 196KBP

AUC 0.695 0.706 0.722 0.749 0.755

Table 2. Gene-centric results for causal variant prediction across different self-supervised and supervised models on the ground-truth
dataset (section 4.1)

MODEL HYENADNA CADUCEUS ENFORMER

TRAINING RECEPTIVE FIELD 160KBP 131KBP 196KBP

INFERENCE RECEPTIVE FIELD 131KBP 131KBP 131KBP

GENE EMBEDDING SPAN 384BP 384BP 384BP

AUC 0.670 0.703 0.764

trained to predict gene expression at the TSS.

The results from this approach reveal a performance gap
between the current state-of-the-art self-supervised mod-
els and supervised models (Table 2), but also indicate a
previously unseen, and unexpected, potential capability of
self-supervised models. To the best of our knowledge, this
analysis, and this gap has not been previously articulated
for DNA models.

Due to scaling laws of traditional transformers and compu-
tational limitations we were not able to run the Nucleotide
Transformer. To provide a second benchmark we used a new
recent model called Caduceus (Schiff et al., 2024) which is
a bi-directional equivariant version of Mamba (Gu & Dao,
2023).

3. Results
3.1. Variant-centered evaluation

Utilizing the dataset described in 4.1, we generated 1500
bp DNA windows centered on the variant’s location. The
DNA sequences for both the reference and alternate alleles
were one-hot encoded and input into a CNN architecture as
detailed in 4.2. Subsequently, the encoded DNA sequences
were concatenated and processed through an MLP. The
results of this analysis are presented in Table 1, along with
the results from HyenaDNA, Nucleotide Transformer and
Enformer from the (Kao et al., 2024).

3.2. Gene-centered evaluation

To assess the model’s performance in a gene-centric context,
the evaluation was focused on a window centred on the
gene’s TSS. While maintaining a large receptive field at

inference, an embedding narrowly focused around the TSS
region was extracted. This embedding was then utilized to
train a binary classifier model to predict whether the input
variant is causal to the gene. The outcomes of this evaluation
are summarized in Table 2.

4. Materials and Methods
4.1. Ground truth dataset

For this work we used the ground truth dataset from Avsec
et al. (2021), which was also used by Kao et al. (2024).
Briefly, this dataset contains causal variants from GTEx that
have been fine-mapped using the statistical fine-mapping
method SuSiE (Wang et al., 2020). Variants with PIP score
> 0.9 are labelled as positives. In the download made
available by Kao et al. (2024), the affected gene has been
removed. We re-added it using the original data from (Avsec
et al., 2021). Sometimes this results in multiple gene asso-
ciations, as a variant-tissue pair can be causal for multiple
genes. The Gencode (Frankish et al., 2021) v44 annotation
was used to define the genomic location of the TSS for each
gene.

4.2. CNN for variant-centred evaluation

The encoder for the variant-centred prediction was com-
posed from a series of convolutional blocks. Each convo-
lutional block was set up like in (Avsec et al., 2021), con-
taining a spatial convolution and a pointwise convolution.
We used 4 convolutions blocks with the spatial convolutions
having kernel sizes 7, 3, 3 and and 5 respectively. The
number of filters in each block were 192, 384, 576 and 768
respectively.

The representation for the reference sequence and for the
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alternate sequence were concatenated, along with a one-hot
encoded tissue vector. These were used as input for an MLP
with hidden dimensions 256 and 64.

We trained the model using a binary cross-entropy loss. For
training/test splits we adhered to the data splits from Kao
et al. (2024), with chromosomes 9 and 10 serving as the
held-out set and performed 5-fold cross validation.

4.3. Gene-centred evaluation

For this section inference was run on gene-centred windows
using 2 self-supervised models: HyenaDNA (Nguyen et al.,
2024b), Caduceus (Schiff et al., 2024), and a supervised
model Enformer (Avsec et al., 2021). In a similar way to
4.2, we generated embeddings for both the reference and
the alternative sequences. We used 131,072 bp window
centred on the gene’s TSS. As a result we did not consider
variants that are further than 65,536bp (131,072/2) away
from the TSS. The embedding for the TSS was extracted
for a 384bp area around the TSS, which translates to 3 bins
for Enformer and 384 bins for HyenaDNA and Caduceus as
these generate nucleotide level embeddings.

The logged absolute difference of the reference and alternate
embeddings was used as input for an MLP. The MLP had
2 hidden layers of sizes 256 and 64, and was trained with
a binary cross entropy loss. As in 4.2 we used 5-fold cross
validation using chromosome 9 and 10 as held out sets.

For this task we did not benchmark the Nucleotide Trans-
former models as these used a traditional transformer archi-
tectures and for large receptive fields the model does not
scale within A100 GPUs.

5. Discussion
The variant-centric approach has traditionally been the stan-
dard for evaluating DNA models on causal variant predic-
tion. In this study, we demonstrated that results close to the
state-of-the-art can be achieved using basic convolutional
neural networks. We proposed a novel gene-centric evalua-
tion method, which revealed previously unknown strengths
of genomic language models (gLMs), while also highlight-
ing a performance gap compared to current state-of-the-art
supervised models.

Our evaluations have certain limitations. Using only the em-
beddings for these models might not fully capture the power
of gLMs, as they were not specifically trained to predict
gene expression. Future research should explore fine-tuning
these foundational models specifically for gene expression
prediction tasks. Additionally, our analysis focused on a
narrow window around the TSS. Supervised models are
likely better predictors at the TSS because of the datasets
they were originally trained on. For gLMs, there may be

better regions to test or more effective ways to prompt these
models to reveal long-range downstream effects. Integrating
both supervised and self-supervised methods in end-to-end
training could further enhance model performance.

The benchmark itself may have limitations. We found that
the tissue dimension can predict whether genes are causal
or non-causal to a small extent, which can influence results
on benchmarks. Ensuring that the negative examples are
sufficiently challenging, focusing on those within the same
credible set and at similar distances from the TSS, is crucial
for accurate evaluation.

Our findings outline the need for further research to assess
model performance and develop robust benchmarks. This
will ultimately enhance our ability to link genetic variation
to functional outcomes. We anticipate that the proposed
gene-centric benchmark will assist the machine learning
community in achieving this objective and advancing the
field of genomic research.
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Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-

Barwinska, A., Taylor, K. R., Assael, Y., Jumper, J., Kohli,
P., and Kelley, D. R. Effective gene expression predic-
tion from sequence by integrating long-range interactions.
Nature methods, 18(10):1196–1203, 2021.

Consortium, G. The gtex consortium atlas of genetic regu-
latory effects across human tissues. Science, 369(6509):
1318–1330, 2020.

Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J., Car-
ranza, N. L., Grzywaczewski, A. H., Oteri, F., Dallago,
C., Trop, E., de Almeida, B. P., Sirelkhatim, H., et al. The
nucleotide transformer: Building and evaluating robust
foundation models for human genomics. bioRxiv, pp.
2023–01, 2023.

Frankish, A., Diekhans, M., Jungreis, I., Lagarde, J., Love-
land, J. E., Mudge, J. M., Sisu, C., Wright, J. C., Arm-
strong, J., Barnes, I., et al. Gencode 2021. Nucleic acids
research, 49(D1):D916–D923, 2021.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Halldorsson, B. V., Eggertsson, H. P., Moore, K. H.,
Hauswedell, H., Eiriksson, O., Ulfarsson, M. O., Palsson,
G., Hardarson, M. T., Oddsson, A., Jensson, B. O., et al.
The sequences of 150,119 genomes in the uk biobank.
Nature, 607(7920):732–740, 2022.

Huang, C., Shuai, R. W., Baokar, P., Chung, R., Rastogi, R.,
Kathail, P., and Ioannidis, N. M. Personal transcriptome



Gene-centric evaluation of causal variant prediction for DNA models

variation is poorly explained by current genomic deep
learning models. Nature Genetics, 55(12):2056–2059,
2023.

Kao, C. H., Trop, E., Polen, M., Schiff, Y., de Almeida, B. P.,
Gokaslan, A., Pierrot, T., and Kuleshov, V. Advancing
dna language models: The genomics long-range bench-
mark. In ICLR 2024 Workshop on Machine Learning for
Genomics Explorations, 2024.

Kelley, D. R. Cross-species regulatory sequence activity
prediction. PLoS computational biology, 16(7):e1008050,
2020.

Linder, J., Srivastava, D., Yuan, H., Agarwal, V., and Kelley,
D. R. Predicting rna-seq coverage from dna sequence as a
unifying model of gene regulation. bioRxiv, pp. 2023–08,
2023.

Minikel, E. V., Painter, J. L., Dong, C. C., and Nelson,
M. R. Refining the impact of genetic evidence on clinical
success. Nature, pp. 1–6, 2024.

Nguyen, E., Poli, M., Durrant, M. G., Thomas, A. W., Kang,
B., Sullivan, J., Ng, M. Y., Lewis, A., Patel, A., Lou, A.,
et al. Sequence modeling and design from molecular to
genome scale with evo. bioRxiv, pp. 2024–02, 2024a.

Nguyen, E., Poli, M., Faizi, M., Thomas, A., Wornow, M.,
Birch-Sykes, C., Massaroli, S., Patel, A., Rabideau, C.,
Bengio, Y., et al. Hyenadna: Long-range genomic se-
quence modeling at single nucleotide resolution. Ad-
vances in neural information processing systems, 36,
2024b.

Schiff, Y., Kao, C.-H., Gokaslan, A., Dao, T., Gu, A.,
and Kuleshov, V. Caduceus: Bi-directional equivari-
ant long-range dna sequence modeling. arXiv preprint
arXiv:2403.03234, 2024.

Siraj, L., Castro, R. I., Dewey, H., Kales, S., Nguyen, T.
T. L., Kanai, M., Berenzy, D., Mouri, K., Wang, Q.,
McCaw, Z. R., et al. Functional dissection of complex
and molecular trait variants at single nucleotide resolution.
bioRxiv, pp. 2024–05, 2024.

Tang, Z. and Koo, P. K. Evaluating the representational
power of pre-trained dna language models for regulatory
genomics. bioRxiv, pp. 2024–02, 2024.

Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries,
J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen,
T., and Posthuma, D. Genome-wide association studies.
Nature Reviews Methods Primers, 1(1):59, 2021.

Wang, G., Sarkar, A., Carbonetto, P., and Stephens, M. A
simple new approach to variable selection in regression,
with application to genetic fine mapping. Journal of the

Royal Statistical Society Series B: Statistical Methodol-
ogy, 82(5):1273–1300, 2020.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

Zhou, J., Theesfeld, C. L., Yao, K., Chen, K. M., Wong,
A. K., and Troyanskaya, O. G. Deep learning sequence-
based ab initio prediction of variant effects on expres-
sion and disease risk. Nature genetics, 50(8):1171–1179,
2018.


