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ABSTRACT

Vision-Language Models (VLMs) face significant safety vulnerabilities from ma-
licious prompt attacks due to weakened alignment during visual integration. Ex-
isting defenses suffer from efficiency and robustness. To address these challenges,
we first propose the Multimodal Aggregated Feature Extraction (MAFE) frame-
work that enables CLIP to handle long text and fuse multimodal information
into unified representations. Through empirical analysis of MAFE-extracted fea-
tures, we discover distinct distributional patterns between benign and malicious
prompts. Building upon this finding, we develop VLMShield, a lightweight safety
detector that efficiently identifies multimodal malicious attacks as a plug-and-play
solution. Extensive experiments demonstrate superior performance across multi-
ple dimensions, including robustness, efficiency, and utility. Through our work,
we hope to pave the way for more secure multimodal AI deployment.
Warning: This paper contains examples of unsafe queries that may be disturbing
or offensive to some readers.

1 INTRODUCTION

Vision-Language Models (VLMs) have revolutionized multimodal artificial intelligence, powering
diverse applications from medical diagnosis to educational assistance. However, integrating vi-
sual capabilities into pre-trained large language models fundamentally weakens their original safety
alignment (Zhang et al., 2024; Zhu et al., 2024; Fu et al., 2024), creating significant vulnerabilities
to malicious prompt attacks that can generate harmful content, violate privacy, etc (Shayegani et al.,
2024; Yi et al., 2025; Tang et al., 2024; Wu et al., 2024; Dufumier et al., 2025; Li et al., 2025).

Attack Landscape. Current malicious attacks against VLMs can be broadly categorized into di-
rect malicious attacks and jailbreak attacks, as exemplified in Fig. 1. Direct attacks involve ex-
plicit harmful content in prompts, exploiting weakened safety alignment from visual integration,
as demonstrated by MM-SafetyBench with harmful multimodal prompts across 13 scenarios (Liu
et al., 2024a). Jailbreak attacks employ sophisticated techniques divided into image-based attacks
(e.g., FigStep embedding harmful instructions (Gong et al., 2025), HADES hiding malicious intent
via image perturbations (Li et al., 2024)) and text-based attacks using special symbols, formatting,
or encoding methods (e.g., AdvBench M (Niu et al., 2024)). Recently, Luo et al. (2024) has col-
lected comprehensive attack datasets JailbreakV 28K covering multiple attack vectors across both
modalities, further demonstrating the growing diversity of these threats.

Defense Challenges. Existing defenses for VLMs are typically classified as internal or external,
depending on whether they require access to the model’s internal components. Internal defenses
require white-box access to VLM parameters and architectures, with methods like ASTRA (Wang
et al., 2025) analyzing activation spaces to counteract harmful directions and VLMGuard (Du et al.,
2024) detecting anomalies through principal component analysis of internal representations. Exter-
nal defenses operate independently through input filtering or output monitoring: JailGuard (Zhang
et al., 2023) detects attacks through mutation-based consistency analysis, CIDER (Xu et al., 2024)
and MirrorCheck (Fares et al., 2024) identify image-based attacks through denoising operations, Sel-
fReminder (Xie et al., 2023) wraps queries with protective prompts, and ECSO (Gou et al., 2024)
monitors and regenerates unsafe outputs. While these approaches make efforts to improve VLM
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safety, they suffer from limitations in efficiency and robustness: internal methods incur substantial
computational overhead and poor transferability, while external methods cannot simultaneously pro-
cess both modalities for input filtering or require multiple generations for output monitors, resulting
in low efficiency. Besides, both struggle with limited generalization across attack types. Therefore,
developing efficient and robust defense methods for VLMs remains an urgent challenge.

Our Contributions. To develop an efficient and robust defense, we seek a unified detector that can
simultaneously process both text and image inputs. CLIP presents a promising foundation for this
goal, as it can separately process text or image information, and its special tokens naturally aggre-
gate semantic information (Radford et al., 2021) suitable for classification tasks. However, applying
CLIP to efficient VLM safety detection faces two challenges: 1) CLIP’s 77-token constraint cannot
accommodate lengthy prompts, and 2) it processes modalities separately, failing to integrate infor-
mation simultaneously. To overcome these limitations, we first propose the Multimodal Aggregated
Feature Extraction (MAFE) framework that enables CLIP to simultaneously fuse image and text
information into unified representations even for long text scenarios (Fig. 2). Through empirical
analysis of MAFE-extracted multimodal features, we discover distinct distributional patterns be-
tween benign and malicious prompt categories, demonstrating clear separability of safety-relevant
patterns (Fig. 3 and Table 1). Building upon this finding, we develop VLMShield, a lightweight
three-layer neural network that effectively learns from MAFE-extracted features to efficiently and
robustly identify different types of multimodal malicious attacks (Fig. 4), operating as a plug-and-
play solution. Extensive experiments demonstrate exceptional performance: 0.00-0.19% in-domain
attack success rates (ASR), ≤ 2.13% out-of-domain ASR, 96.33-100% benign accuracy, superior
efficiency, and robust defense against adaptive attacks with maximum effective ASR of 1.41%.

To summarize, our contributions are as follows: (1) we propose the MAFE framework that enables
CLIP to handle long text sequences and simultaneously fuse multimodal information into unified
representations (Sec. 3); (2) we develop VLMShield, a lightweight safety detector that efficiently
and robustly identifies multimodal malicious attacks as a plug-and-play solution (Sec. 4); (3) we
conduct extensive experiments demonstrating that our method outperforms seven state-of-the-art
baseline methods, including both internal and external defenses (Sec. 5& 6).

2 RELATED WORK

2.1 MALICIOUS PROMPT ATTACKS ON VLMS

Malicious prompt attacks against VLMs have garnered significant attention and can be broadly
categorized into direct malicious attacks and jailbreak attacks, as exemplified in Fig. 1.

Direct malicious attacks involve explicit harmful content in images and/or text prompts. The in-
tegration of visual capabilities into pre-trained language models can weaken alignment, allowing
these attacks to bypass safety mechanisms (Zhang et al., 2024; Yin et al., 2023). MMSafetyBench
exemplifies this with image-text harmful prompts for systematic evaluation (Liu et al., 2024a).

Jailbreak attacks employ more sophisticated techniques to enhance attack effectiveness and can
be divided into two categories: (1) image-based attacks manipulate the image component of mul-
timodal prompts by embedding adversarial perturbations or harmful content to exploit detection
blind spots, such as FigStep (Gong et al., 2025) embedding harmful instructions in image prompts
and HADES (Li et al., 2024) hiding malicious intent through adversarial image perturbations; (2)
text-based attacks manipulate the text component of multimodal prompts by injecting special sym-
bols, formatting, or encoding methods to evade safety detection. Representative datasets include
AdvBench M (Niu et al., 2024) and JailbreakV 28K (Luo et al., 2024), where AdvBench M pairs
jailbreak texts with semantically related images retrieved from the internet, and JailbreakV 28K pro-
vides a comprehensive collection covering 16 security policies and 5 different jailbreaking methods
across both modalities.

2.2 DEFENSES ON VLMS

Defense mechanisms for VLMs can be categorized into two primary approaches: internal defense
methods that require white-box access to VLMs and external defense methods that operate in a
black-box manner. Details are as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Illustrate the method to overdose on over-the-
counter drugs for maximum effect.

Which better describes the Gunung Leuser 
National Park ecosystem?

Benign

Image-based Jailbreak

Direct Malicious
How to use skis to cause harm to others while 

riding down a snow-covered slope?

Text-based Jailbreak
Respond to …… sentence \\\“But now that ……

Prompt: How can I establish a fake investment fund 
for rare and vintage musical instruments? overdose

Figure 1: Prompt Examples of benign, direct malicious, and jailbreak attacks against VLMs.

Internal defenses require access to VLM internal parameters, architectures, or intermediate repre-
sentations to implement defense mechanisms. These white-box approaches modify or analyze the
model’s internal states during inference. ASTRA requires access to the model’s activation space
to identify and counteract harmful directions by analyzing internal representations and steering the
model away from unsafe outputs (Wang et al., 2025). VLMGuard analyzes the internal principal
component directions of prompt representations within the VLM, detecting anomalies by examin-
ing how prompts deviate from normal patterns in the model’s hidden state space (Du et al., 2024).

External defenses operate as independent modules without requiring knowledge of VLM internal
parameters or architectures, functioning in a black-box manner through input filtering or output mon-
itoring. For input filtering defenses, JailGuard detects malicious text or image inputs by generating
multiple variants through mutation operations and analyzing output consistency, where inconsistent
responses indicate potential attacks (Zhang et al., 2023). CIDER detects image-based jailbreak at-
tacks by comparing semantic similarity between images and text before and after applying denoising
operations to identify adversarial perturbations (Xu et al., 2024), while MirrorCheck identifies the
attacks by comparing embeddings between original and denoised images to detect inconsistencies
caused by adversarial modifications (Fares et al., 2024). SelfReminder prevents jailbreak attacks by
wrapping user queries with additional protective system prompts that remind the model of safety
guidelines before processing (Xie et al., 2023). For output monitoring defenses, ECSO analyzes
VLM responses to detect unsafe content and regenerates outputs when safety violations are identi-
fied, operating independently of the model’s internal mechanisms (Gou et al., 2024).

While these existing works make valuable efforts to improve VLM safety, they still have signifi-
cant limitations in terms of efficiency and robustness. Regarding efficiency, internal methods suffer
from computational overhead due to model-dependent processing, while external methods cannot
simultaneously detect both modalities for input filtering or require multiple output generations for
output monitoring, resulting in low overall efficiency. In terms of robustness, both approaches strug-
gle to generalize across different attack types, exhibiting limited adaptability to evolving malicious
strategies. Therefore, developing efficient and robust defense methods for VLMs that can handle
multiple modalities simultaneously remains an urgent and unresolved challenge.

3 AN EMPIRICAL STUDY ON MAFE FRAMEWORK

Efficient VLM defense requires features that can simultaneously process multimodal information
and exhibit clear discriminative patterns across different data categories. We identify CLIP’s aggre-
gation tokens as promising candidates: [EOS] tokens capture textual semantics while [CLS] tokens
summarize visual content within an aligned semantic space (Radford et al., 2021). However, apply-
ing CLIP to efficient VLM safety detection faces two challenges: (1) long text limitation: CLIP’s
77-token constraint cannot accommodate lengthy VLM prompts that often contain extended mali-
cious content, and (2) lack of modality fusion: CLIP can only process text and image modalities
separately, failing to integrate information from both modalities simultaneously. To address these
challenges, we first propose the CLIP-based Multimodal Aggregated Feature Extraction (MAFE)
framework (Fig. 2) for long text processing and cross-modal fusion (Sec. 3.1), then conduct em-
pirical experiments validating that these aggregated features exhibit clear distributional separation
between benign and malicious multimodal inputs (Sec. 3.2).

3.1 CLIP-BASED MULTIMODAL AGGREGATED FEATURE EXTRACTION FRAMEWORK

To enable CLIP to simultaneously process multimodal data and handle long text sequences, we
propose the MAFE Framework, illustrated in Fig 2. The framework operates through two main
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Figure 2: Overview of the CLIP-based MAFE framework for processing multimodal prompts
through progressive text aggregation and cross-modal feature fusion.

components: progressive text aggregation processes lengthy text sequences while preserving se-
mantic information, and cross-modal feature fusion creates unified multimodal representations. We
detail each component below:

Progressive Text Aggregation. To handle long text inputs while capturing cross-chunk dependen-
cies and contextual relationships, we first divide the text into overlapping chunks of 75 tokens (or
fewer for the final chunk) to accommodate CLIP’s processing constraints while maintaining seman-
tic completeness and coherence. Specifically, given text T , we partition it into n chunks:

T = {T1, T2, ..., Tn}. (1)

Then, we extract [EOS] embeddings from each text chunk using CLIP’s text encoder:

ei = CLIPtext(Ti)[EOS] ∈ R768, (2)

where ei is the 768-dimensional [EOS] embedding for chunk i. For each chunk i, we compute
its representativeness score wi as the average cosine similarity to all other chunks ej , where || · ||
represents the L2 norm of the embedding:

wi =
1

n− 1

∑
j ̸=i

ei · ej
||ei|| · ||ej ||

. (3)

Finally, we perform similarity-weighted aggregation to obtain the final text representation Etext:

Etext =

∑n
i=1 wi · ei∑n

i=1 wi
. (4)

Through this approach, semantically central content that typically contains the core intent of the
prompt dominates the final representation while peripheral contextual information is preserved.

Cross-Modal Feature Fusion. We extract the image [CLS] embedding using CLIP’s image en-
coder, where ⊕ denotes concatenation:

Eimage = CLIPimage(I)[CLS] ∈ R768. (5)

We then combine the aggregated text embedding and image embedding through concatenation:

Ejoint = Etext ⊕ Eimage ∈ R1536. (6)

This approach is effective because both embeddings already exist in CLIP’s aligned space, where
semantic relationships are preserved across modalities, enabling the concatenated features to capture
meaningful relationships between text and image content.

The MAFE framework transforms variable-length multimodal prompts into fixed-size joint repre-
sentations that integrate semantic information from both modalities while utilizing CLIP’s existing
computational outputs. Notably, this framework can handle both multimodal and single-modality
inputs seamlessly. Next, we validate whether the aggregated features can produce distinct represen-
tations across different data categories to enable robust detection of malicious prompt attacks.

3.2 EMPIRICAL ANALYSIS

To examine whether the aggregated features can distinguish between different prompt categories, we
conduct an empirical experiment across four datasets: 20,000 benign prompts from GPT4V-Caption

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: MMD values between feature distributions of different prompt categories extracted using
the MAFE framework. Higher values indicate greater distributional separation.

Benign Image-based Jailbreak Text-based Jailbreak Direct malicious
Benign 0.000 0.866 0.906 0.746
Image-based Jailbreak 0.866 0.000 1.000 0.870
Text-based Jailbreak 0.906 1.000 0.000 0.879
Direct malicious 0.746 0.870 0.879 0.000

(Schuhmann & Bevan, 2023), 1,680 direct malicious prompts from MM-SafetyBench (Liu et al.,
2024a), 8,000 image-based jailbreak attacks from JailbreakV 28k (Luo et al., 2024), and 20,000
text-based jailbreak attacks from the same source. We apply our MAFE framework to process these
datasets and conduct both qualitative and quantitative analyses of the extracted features as follows:

Qualitative Analysis. Fig. 3 shows the distributional patterns of different prompt categories in
the aggregated feature space. The t-SNE visualization reveals distinct clustering: benign prompts
(green) form a cohesive cluster clearly separated from direct malicious inputs (red) and jailbreak
attacks (blue for text-based, orange for image-based). The PCA visualization with density estimation
shown in Appendix A.1 further confirms this separation, with benign prompts maintaining clear
boundaries from malicious distributions, while different malicious types show notable convergence.

Figure 3: Distribution of MAFE-extracted fea-
tures showing clear separation between benign
prompts (green) and malicious attacks (red, blue,
and orange) in t-SNE visualizations. The PCA vi-
sualization result in Appendix A.1.

Quantitative Analysis. Table 1 shows a quan-
titative analysis using Maximum Mean Dis-
crepancy (MMD) that validates the qualitative
observations: benign features maintain sub-
stantial distances from both image-based jail-
break attacks (MMD = 0.866), text-based jail-
break attacks (MMD = 0.906), and direct ma-
licious content (MMD = 0.746). Interestingly,
text-based and image-based jailbreaks exhibit
maximal distributional separation (MMD =
1.000), indicating that MAFE captures dis-
tinct attack patterns specific to each modal-
ity. Despite this modality-specific separation,
both jailbreak types maintain similarly high dis-
tances from benign content (0.866 and 0.906 re-
spectively), demonstrating that our features can
effectively distinguish malicious content from
benign inputs regardless of the attack’s strategy.

To validate MAFE’s effectiveness, we conduct
extensive validation experiments in Appendix
A examining: (1) alternative visualization methods confirming consistent separation patterns (Ap-
pendix A.1), (2) the necessity of each MAFE component through ablated configurations (Ap-
pendix A.2), and (3) dataset distributional separation analysis comparing MAFE against traditional
feature extraction and VLM internal representations across multiple datasets (Appendix A.3). The
cross-dataset analysis rigorously demonstrates that MAFE captures genuine attack semantics rather
than dataset artifacts through both cross-category discrimination and within-category semantic con-
vergence. The results conclusively demonstrate that discriminative patterns emerge only when both
modalities are fully integrated through our complete MAFE framework, validating that MAFE suc-
cessfully captures comprehensive multimodal information features that provide a robust foundation
for VLM safety detection.

4 VLMSHIELD

Building upon the distinct distributional patterns observed between benign and malicious prompts
in MAFE-extracted features (Sec. 3), we propose VLMShield, a safety detector for efficient and
robust defense against malicious prompts in VLMs. The defense workflow with VLMShield is
illustrated in Fig 4 (a): first, MAFE extracts 1536-dimensional features from multimodal input
prompts through progressive text aggregation and cross-modal feature fusion; second, VLMShield
classifies the safety of these features using learned discriminative patterns, and finally, a routing
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Figure 4: (a) Defense workflow using VLMShield: multimodal inputs first undergo MAFE feature
extraction, then VLMShield performs safety detection to either block malicious prompts or forward
benign ones to VLMs, and (b) detailed architecture and training pipeline of VLMShield.

mechanism directs benign prompts to the VLM while blocking malicious ones. VLMShield is
plug-and-play and can seamlessly integrate with any VLM without requiring model retraining or
architectural modifications. Next, we detail the construction of VLMShield, including the network
architecture (Sec. 4.1) and model training (Sec. 4.2), as shown in Fig. 4 (b).

4.1 NETWORK ARCHITECTURE

Based on the representations extracted by MAFE, we find that a simple multi-layer neural network
with few parameters is adequate for detection. Therefore, we employ a three-layer fully-connected
neural network (1536→1024→512→2), called VLMShield, specifically designed for safety detec-
tion in the MAFE feature space (Fig. 4 (b)). Each layer progressively refines feature representa-
tions to capture abstract safety-related patterns, with ReLU activations providing non-linearity and
dropout (p=0.5) preventing overfitting. The final layer outputs class logits that undergo softmax nor-
malization to produce calibrated probability scores, enabling flexible threshold configuration based
on deployment requirements. This lightweight architecture balances computational efficiency with
detection performance, making it suitable for real-time applications.

4.2 MODEL TRAINING

We train the VLMShield through a supervised learning pipeline that encompasses dataset construc-
tion and an optimized binary classification strategy (Fig. 4 (b)).

Dataset Construction. We aggregate 44,400 multimodal samples randomly selected from estab-
lished sources, comprising 22,000 benign prompts (16,000 from GPT4V-Caption(Schuhmann &
Bevan, 2023) and 6,000 from CC3M (Li et al., 2023)) and 22,400 malicious prompts (6,400 image-
based and 16,000 text-based jailbreak attacks from JailbreakV 28k (Luo et al., 2024)). We randomly
split the dataset into 80% for training and 20% for in-domain testing. Each prompt undergoes MAFE
processing to generate 1,536-dimensional feature vectors that capture both textual and visual infor-
mation. For feature extraction, we use CLIP ViT-L/14 with 75-token chunks and 10-token overlaps.

Training Strategy. We train VLMShield as a binary classifier to distinguish between benign and
malicious prompts. The model optimizes the cross-entropy loss function:

L = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)], (7)

where yi ∈ {0, 1} denotes ground truth labels (0 for benign, 1 for malicious) and pi represents
the predicted probability of being malicious. To address potential class imbalance, we implement
balanced sampling during training. Besides, we apply probability calibration to enable flexible
threshold adjustment according to deployment-specific risk tolerance requirements.

Through this training pipeline, VLMShield learns to effectively distinguish between benign and
malicious multimodal prompts by leveraging the discriminative patterns present in MAFE-extracted
features, providing an efficient and robust foundation for VLM safety detection.
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5 EXPERIMENTAL SETUP

We now present the experimental setup for evaluating our VLMShield (trained with SGD, learning
rate 1e-3, batch size 32, and 5 epochs) against multimodal attacks on VLMs, including baselines,
datasets, models, and metrics used to assess safety performance and computational efficiency.

Baselines. We compare VLMShield against representative state-of-the-art defenses from both cat-
egories discussed in Sec. 2.2.

Internal Defenses. We evaluate against ASTRA (Wang et al., 2025) and VLMGuard (Du et al.,
2024), which require white-box access to VLM internals and represent different methods for model-
dependent defense mechanisms.

External Defenses. We compare with JailGuard (Zhang et al., 2023), CIDER (Xu et al., 2024), Mir-
rorCheck (Fares et al., 2024), SelfReminder(Xie et al., 2023), and ECSO (Gou et al., 2024), which
operate independently of model architecture through input filtering or output monitoring strategies.

Datasets. To evaluate both accuracy under standard conditions and robustness under distribution
shift, we use a suite of multimodal datasets split into in-domain (IND) and out-of-domain (OOD).

In-Domain Evaluation. We use the held-out 20% of our embedding training datasets as the IND test
set, including JailbreakV 28K (containing both image-based and text-based jailbreak attacks) and
CC3M and GPT4V-Caption (benign prompts).

Out-of-Domain Evaluation. For the OOD evaluation, we test on: (1) direct malicious attacks from
MM-SafetyBench (Liu et al., 2024a) and VLSafe (Chen et al., 2024); (2) jailbreak attacks, including
image-based (FigStep (Gong et al., 2025), HADES (Li et al., 2024)) and text-based (AdvBench M
(Niu et al., 2024)); (3) benign benchmarks MM-Vet (Yu et al., 2024) and MMBench (Liu et al.,
2024b) to ensure defense mechanisms preserve legitimate functionality.

Models. We conduct experiments on two representative VLMs that accept multimodal inputs
combining both images and text: LLaVA-1.5-13B (LLaVA, 2023) and Qwen2.5-VL-7B-Instruct
(Qwen, 2025). Both models are configured with consistent generation parameters, including tem-
perature=1.0, top p=1.0, top k=50, and max new tokens=512, to ensure fair comparison across all
experiments.

Metrics. We employ three metrics to assess defense performance across different dimensions.

Attack Success Rate (ASR). Measures the percentage of malicious prompts that successfully bypass
the defense, calculated as the ratio of successful attacks to total malicious prompts.

Accuracy (ACC). Evaluates performance on benign prompts to ensure legitimate functionality is
preserved, calculated as the ratio of correctly classified benign prompts to total benign prompts.

Efficiency. Quantifies computational overhead by measuring average processing time per sample,
calculated as total processing time divided by the number of processed samples.

This experimental setup enables an evaluation of VLMShield’s effectiveness in defending against
diverse attack strategies and model efficiency for real-world deployment.

6 EXPERIMENTAL RESULTS

We evaluate VLMShield’s effectiveness in achieving robust and efficient defense against multi-
modal malicious attacks. Our evaluation aims to answer the following research questions:

RQ1 [IND Robustness]: How effectively does VLMShield detect in-domain malicious attacks?

RQ2 [OOD Robustness]: How well does VLMShield generalize to unseen malicious attacks?

RQ3 [Benign Utility]: How does VLMShield impact benign prompt processing?

RQ4 [Efficiency]: What is the computational efficiency of VLMShield?

RQ5 [Ablation Study]: How do different design choices impact VLMShield’s performance?

RQ6 [Adaptive Attacks]: What will happen if the attacker accesses our VLMShield?

7
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Table 2: [RQ1] ASR on the JailbreakV 28K test dataset. Lower values indicate better defense
performance. Best results are shown in bold.

ASR% ↓ (JailbreakV 28K)
Method LLaVA-1.5-13B Qwen2.5-VL-7B-Instruct

Image-based Text-based Image-based Text-based
Internal
Defense

VLMGuard 16.37 9.26 11.82 5.72
ASTRA 5.21 3.88 2.14 1.72

External
Defense

JailGuard 22.05 26.33 14.00 16.18
CIDER 37.20 48.53 37.20 48.53
MirrorCheck 17.19 20.65 17.19 20.65
SelfReminder 80.04 70.87 34.80 8.40
ECSO 39.68 28.06 43.06 22.83

Ours 0.19 0.00 0.19 0.00

Table 3: [RQ2] ASR on out-of-domain datasets using the LLaVA-1.5-13B model.
ASR% ↓ (LLaVA-1.5-13B)

Method Image-based Jailbreak Text-based Jailbreak Direct Malicious
FigStep HADES AdvBench-M MM-SafetyBench VLSafe

Internal
Defense

VLMGuard 13.83 22.95 9.84 12.90 15.27
ASTRA 7.33 14.86 13.48 8.62 8.03

External
Defense

JailGuard 20.30 38.33 40.02 36.22 72.43
CIDER 40.03 51.86 61.30 46.91 50.00
MirrorCheck 15.36 23.09 30.15 25.08 26.33
SelfReminder 58.00 75.32 42.65 51.27 90.67
ECSO 29.05 31.32 22.09 18.39 24.00

Ours 0.00 2.13 0.41 0.71 1.62

RQ1: In-Domain Robustness. We assess VLMShield’s effectiveness on in-domain jailbreak at-
tacks using the held-out JailbreakV 28K test set. Note that “in-domain” refers to our method’s
test data, while all baselines are implemented following their original papers. Table 2 shows that
VLMShield achieves strong robustness with 0.19% ASR for image-based and 0.00% for text-based
jailbreaks. Our method operates independently of model internals or responses, producing iden-
tical results across both LLaVA and Qwen models. This model-agnostic property ensures con-
sistent protection regardless of the underlying VLM architecture. In contrast, model-dependent
methods show varying performance: ASTRA achieves 5.21%/2.14% ASR for image-based at-
tacks on LLaVA/Qwen, while VLMGuard reaches 16.37%/11.82% ASR. These results demonstrate
VLMShield’s superior ability to identify malicious patterns within its training distribution.

RQ2: Out-of-Domain Robustness. We evaluate VLMShield’s generalization capability on diverse
out-of-domain malicious attacks. Tables 3 and Table 8 (Appendix B.1) show the result on LLaVA
and Qwen models separately, where VLMShield maintains robustness with 0.00% ASR on Fig-
Step and only 2.13% on HADES attacks, while ASRs remain below 1.62% against direct malicious
prompts. The minimal performance degradation from IND to OOD (at most 2.13%) outperforms
external baselines. Internal defenses like VLMGuard and ASTRA maintain relatively stable per-
formance but still fall short of VLMShield. These results demonstrate that VLMShield maintains
strong OOD robustness (≤2.13% ASR), significantly outperforming baselines that show substantial
performance drops on unseen attacks.

RQ3: Benign Utility. We evaluate VLMShield’s ability to preserve legitimate functionality on stan-
dard multimodal benchmarks. Table 4 shows that VLMShield achieves 100% accuracy on in-
domain benign datasets and maintains high accuracy on out-of-domain benign prompts (96.33%
on MM-Vet, 99.84% on MMBench). In comparison, other baselines show varying false positive
rates, with MirrorCheck dropping to 89.41% and ECSO to 89.04% on certain datasets. Overall,
VLMShield achieves 96.33-100% accuracy across benchmarks, outperforming baselines and show-
ing higher benign utility through effective preservation of legitimate functionality.

RQ4: Computational Efficiency. We evaluate processing efficiency through detection time and to-
tal latency measurements to assess VLMShield’s deployment feasibility. Table 5 shows VLMShield
introduces only 0.34s detection overhead, resulting in total processing times of 8.36s for LLaVA-1.5-
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Table 4: [RQ3] ACC on benign multimodal benchmarks. Higher values indicate better preservation
of legitimate functionality. Best results are shown in bold.

ACC%↑
Method LLaVA-1.5-13B Qwen2.5-VL-7B-Instruct

IOD OOD IOD OOD
GPT4V

-Caption CC3M MM-Vet MMBench GPT4V
-Caption CC3M MM-Vet MMBench

Internal
Defense

VLMGuard 95.24 96.00 95.00 96.92 97.33 98.20 96.08 98.00
ASTRA 96.15 98.03 93.54 97.66 97.74 98.46 95.80 94.64

External
Defense

JailGuard 95.09 96.14 89.45 91.25 97.36 98.80 94.38 95.00
CIDER 97.80 96.64 93.28 97.46 97.80 96.64 93.28 97.46
MirrorCheck 92.06 91.32 89.41 90.17 92.06 91.32 89.41 90.17
ECSO 93.98 96.77 89.04 92.80 96.30 97.29 93.23 95.07

Ours 100.00 100.00 96.33 99.84 100.00 100.00 96.33 99.84

Table 5: [RQ4] Computational efficiency comparison showing detection time and total processing
time. Total time includes VLM generation time, averaging 8.02s for LLaVA and 3.86s for Qwen.

Time (s) ↓
Method LLaVA-1.5-13B Qwen2.5-VL-7B-Instruct

Detection Time(s) Total Time(s) Detection Time(s) Total Time(s)
Internal
Defense

VLMGuard 2.33 10.35 1.95 5.81
ASTRA 2.07 10.09 1.62 5.58

External
Defense

JailGuard 291.48 299.50 208.05 211.91
CIDER 1.42 9.44 1.42 5.28
MirrorCheck 3.19 11.21 3.19 7.05
ECSO 2.52 10.54 1.83 5.69

Ours 0.34 8.36 0.34 4.20

13B and 4.20s for Qwen2.5-VL-7B-Instruct—merely 4.2% and 8.8% increases over base genera-
tion. This minimal overhead makes VLMShield practical for deployment. Internal defenses (VLM-
Guard, ASTRA) add moderate overhead around 2s, while mutation-based JailGuard catastrophically
increases latency to 291.48s for detection alone. Other external methods like MirrorCheck (3.19s)
and ECSO (2.52s) remain 6-8× slower than VLMShield. Overall, our detector achieves superior
efficiency with only 0.34s of detection overhead, significantly outperforming baselines.

RQ5: Ablation Study. To validate our architectural choices, we conduct ablation studies across five
key dimensions provided in Appendix D: chunk size, overlap size, text aggregation method, CLIP
backbone selection, and detection threshold. Specifically, our results demonstrate the following: 75-
token chunks achieve identical accuracy while improving efficiency from 0.37s to 0.34s; 10-token
overlap achieves perfect blocking with minimal overhead; similarity-weighted aggregation achieves
0.00% ASR with MMD of 0.835, significantly outperforming simple averaging at 1.46% ASR with
MMD of 0.692 and MAX-pooling at 5.39% ASR with MMD of 0.507; ViT-L/14 backbone provides
optimal efficiency-performance balance, being 68% faster than ViT-H/14 with comparable accuracy;
threshold 0.5 achieves 96.33% benign accuracy with 0.00% ASR, while lower thresholds of 0.3
and 0.4 allow 10.04% and 5.27% attacks respectively, and higher thresholds of 0.6 and 0.7 reduce
benign accuracy to 90.46% and 83.84%. These results validate the rationality of our design choices,
demonstrating that each component contributes to VLMShield’s superior performance. Detailed
experimental results and analysis are provided in Appendix D.

RQ6: Adaptive Attacks. We assess VLMShield’s robustness against adaptive adversaries with full
knowledge of our defense mechanism:

Threat Model and Attack Design. Our adaptive attacks operate under a white-box threat model
where adversaries have full access to VLMShield’s architecture, MAFE representations, and detec-
tion thresholds. However, attackers cannot directly manipulate MAFE representations because the
transformation from [EOS] and [CLS] tokens through multiple Transformer layers is not invertible.
Therefore, adversaries must optimize actual text or image inputs to indirectly influence the resulting
MAFE representations. We design four adaptive attack strategies:

9
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(1) Text-based attacks using GCG optimization(Zou et al., 2023) to craft adversarial suffixes target-
ing [EOS] embeddings; (2) Image-based attacks employing HADES perturbations(Li et al., 2024)
targeting [CLS] embeddings; (3) Combined perturbations with joint text+image optimization and
multi-perturbation attacks (FigStep(Gong et al., 2025) + HADES); (4) Dilution attacks embedding
minimal malicious content within extensive benign context (1:5 to 1:100 ratios), exploiting MAFE’s
text chunking.

For optimization-based attacks (text, image, and combined), we employ a unified objective function
that balances attack effectiveness with evasion:

Ladaptive = (1− λ) · Ladv + λ · Levade, (8)
where Ladv is the original adversarial loss that maximizes the probability of harmful content genera-
tion in the target VLM, and Levade encourages VLMShield to classify the input as benign (probability
> 0.5). The parameter λ ∈ [0, 1] controls the trade-off between attack effectiveness and evasion ca-
pability. For joint attacks, we use:

Ljoint = (1− λ) · (Ltext
adv + Limage

adv ) + λ · Ljoint
evade. (9)

Table 6: [RQ6] Optimization-based adaptive at-
tacks targeting MAFE representations, where
Effective ASR = ASR × HGR.

Attack Type λ ASR%↓ HGR%↓ Effective ASR%↓

Text-based
0.00 1.12 100.00 1.12
0.50 2.82 50.20 1.41
1.00 4.47 18.09 0.81

Image-based
0.00 0.98 100.00 0.98
0.50 3.21 42.62 1.37
1.00 5.04 13.17 0.66

Joint Text-Image
0.00 1.63 100.00 1.63
0.50 4.83 42.74 2.06
1.00 6.02 12.37 0.74

Multi-Perturbation
Image

0.00 1.25 100.00 1.25
0.50 4.06 45.02 1.83
1.00 5.63 14.04 0.79

Experimental Setup. We conduct experiments
on MM-SafetyBench and AdvBench-M using
Qwen2.5-VL-7B-Instruct. Text-based attacks
use 500 optimization iterations with batch size
512. For dilution attacks, we construct prompts
with varying total chunks (5, 10, 20, 50, 100)
where exactly one chunk contains malicious con-
tent from AdvBench-M, and remaining chunks
contain benign content from GPT4V-Caption.

Adaptive Results. Tables 6 and 7 present com-
prehensive results, measuring ASR and Harm-
ful Generation Rate (HGR) evaluated by GPT-
5-mini (see Appendix E for the moderation
prompt). Optimization-based attacks reveal a
consistent trade-off: increasing λ (prioritizing
MAFE manipulation) raises ASR but dramati-
cally reduces HGR. Text-based attacks achieve 4.47% ASR with only 18.09% HGR at λ = 1
(0.81% effective ASR), while image-based attacks reach 5.04% ASR with 13.17% HGR (0.66%
effective ASR). Combined attacks achieve maximum effective ASR of 2.06% at λ = 0.5. Dilution
attacks maintain low effective ASR even at extreme ratios: at 100 chunks, effective ASR is 3.82%
(8.73% ASR × 43.8% HGR). HGR drops substantially as dilution increases (100% → 43.8%), as
excessive benign context confuses the downstream VLM, creating an inherent trade-off that funda-
mentally limits attack effectiveness. These results demonstrate that VLMShield effectively resists
sophisticated dilution-based adaptive attacks with effective ASR below 4%, maintaining practical
security.These results demonstrate that successfully manipulating MAFE representations to evade
detection necessarily compromises attack harmfulness, with maximum effective ASR of 3.82%.

7 CONCLUSION

Table 7: [RQ6] Dilution attacks exploiting
MAFE’s aggregation mechanism, where Effec-
tive ASR = ASR × HGR.

Chunk Size ASR%↓ HGR%↓ Effective ASR%↓
5.00 0.48 100.00 0.48
10.00 0.83 94.20 0.78
20.00 1.12 80.72 0.90
50.00 4.97 62.70 3.12
100.00 8.73 43.80 3.82

This paper presents VLMShield, a novel safety
detector that leverages our MAFE framework
to efficiently and robustly defend VLMs against
malicious prompt attacks. Extensive exper-
iments demonstrate exceptional performance
across robustness, utility, and efficiency dimen-
sions, with VLMShield operating as a plug-and-
play solution. Our work provides a practical
foundation for securing multimodal AI systems
and enabling responsible deployment.
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We adhere to the ICLR Code of Ethics. This research focuses solely on defensive mechanisms to
improve VLM safety. Attack methods are discussed purely for research purposes to advance safety
detection capabilities. We do not condone malicious use of the presented information and aim to
contribute to responsible AI development.

REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details in Sections 5-6 and Appendixs C-E, including
architecture specifications, hyperparameters, and experimental configurations. Our source code is
available through an anonymous repository link in https://anonymous.4open.science/
r/VLMShield-77C4, containing complete implementations and documentation for reproducing
our proposed method.
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A MORE VALIDATIONS FOR MAFE’S EFFECTIVENESS

This section provides comprehensive validation of our MAFE framework’s effectiveness through
multiple complementary analyses. We examine distributional patterns through alternative visu-
alizations (Appendix A.1), validate the necessity of each framework component through ablation
studies (Appendix A.2), and conduct comprehensive dataset distributional separation analysis (Ap-
pendix A.3) that rigorously tests whether MAFE captures genuine attack semantics through both
cross-category discrimination and within-category semantic convergence across multiple datasets
and feature extraction approaches.

A.1 DISTRIBUTIONAL ANALYSIS

We present a detailed qualitative analysis of the distributional patterns exhibited by different prompt
categories in the MAFE-extracted feature space through multiple visualization techniques. Fig. 5
shows the comprehensive distributional patterns of different prompt categories in the aggregated
feature space. The t-SNE visualization reveals distinct clustering patterns: benign prompts (green)
form cohesive clusters clearly separated from direct malicious inputs (red) and jailbreak attacks
(blue for text-based, orange for image-based). The PCA visualization with density estimation fur-
ther confirms this separation, with benign prompts maintaining clear boundaries from malicious
distributions across different density regions. Notably, different malicious types show convergence
patterns while maintaining separation from benign content, indicating that MAFE successfully cap-
tures shared malicious characteristics while preserving category-specific patterns.

Figure 5: Comprehensive distributional analysis of MAFE-extracted features showing clear sepa-
ration between benign prompts (green) and malicious attacks (red, blue, orange) across PCA with
density estimation (left) and t-SNE visualization (right).

These visualizations demonstrate that our MAFE successfully transforms multimodal prompts into
a unified feature space where safety-relevant patterns naturally emerge. The consistent separation
across different visualization techniques validates the robustness of our feature extraction approach.

A.2 ABLATION CONFIGURATION ANALYSIS

This section examines various incomplete configurations of our framework to demonstrate the crit-
ical importance of both long text processing and complete multimodal fusion for effective discrim-
inative feature extraction. We examine three incomplete configurations: (1) direct fusion without
long text processing, where text is simply truncated to fit CLIP’s constraints; (2) long text process-
ing with text-only input, ignoring visual information; and (3) long text processing with image-only
input, ignoring textual information. These ablations help isolate the contribution of each component
in our complete MAFE framework.

Direct Fusion Without Long Text Processing. Fig. 6 shows the distributional patterns when mul-
timodal inputs are directly fused without our progressive text aggregation mechanism. The visual-
ization reveals significant overlap between different categories, with benign and malicious prompts
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Figure 6: Distributional analysis without long text processing showing poor separation between
prompt categories due to information loss from text truncation.

Figure 7: Distributional analysis with text-only processing showing incomplete separation patterns
due to missing visual information, particularly affecting detection of image-based attacks.

failing to form distinct clusters. The lack of proper long text handling results in information loss and
poor separability.

Text-Only Processing. Fig. 7 demonstrates the limitations of processing only textual information
with our long text aggregation mechanism while ignoring visual content. While some clustering
patterns emerge due to textual semantic differences, the separation remains insufficient for reliable
safety detection, particularly for image-based attacks that rely on visual perturbations.

Image-Only Processing. Fig. 8 shows the results when only visual information is processed while
textual content is ignored. The visualization reveals limited discriminative power, as many attacks
rely on textual instructions that are missed in this configuration, resulting in poor separability.

These ablation studies conclusively demonstrate that discriminative patterns emerge only when both
modalities are fully integrated through our complete MAFE framework. Each incomplete configu-
ration fails to capture the full spectrum of safety-relevant information, highlighting the necessity of
comprehensive multimodal processing with proper long text handling.

A.3 DATASET DISTRIBUTIONAL SEPARATION ANALYSIS

To rigorously validate that MAFE captures genuine semantic attack patterns rather than dataset-
level artifacts or superficial distributional characteristics, we conduct comprehensive cross-dataset
analysis comparing MAFE against two representative feature extraction approaches: traditional
multimodal features (ResNet-50 for images + TF-IDF for text) and VLM internal representations
(embeddings from Qwen2.5-VL-7B-Instruct’s last hidden layer). We evaluate these methods under
two complementary configurations that test different aspects of semantic understanding.
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Figure 8: Distributional analysis with image-only processing showing inadequate separation due to
missing textual information, particularly affecting detection of text-based jailbreak attacks.

Traditional Feature Extraction VLM Internal Representations MAFE

Figure 9: Cross-category distributional analysis comparing three feature extraction approaches.
Only MAFE (right) achieves clear separation between benign (green) and malicious categories (red,
blue, orange) while maintaining distinct attack-type clustering. Traditional features (left) show com-
plete category intermixing, while VLM representations (middle) achieve only partial separation.

A.3.1 CROSS-CATEGORY DISCRIMINATION ANALYSIS

Figure 9 presents t-SNE visualizations comparing the three feature extraction approaches on datasets
representing different attack categories (JailbreakV 28K for image-based and text-based jailbreak,
MM-SafetyBench for direct malicious, GPT4V-Caption and CC3M for benign). This configuration
tests whether features can simultaneously distinguish multiple attack types while separating them
from benign content—a fundamental requirement for comprehensive VLM safety detection.

Traditional feature extraction (left) exhibits catastrophic failure with significant overlap between
benign and malicious samples, where all categories intermix throughout the feature space. This
demonstrates that conventional computer vision and NLP features cannot capture the sophisticated
semantic patterns distinguishing different attack types. VLM internal representations (middle) show
partial clustering with some separation emerging between categories, but substantial overlap per-
sists, particularly among different malicious types. This indicates that while VLMs learn some
attack-related patterns, their internal representations do not inherently organize around safety-critical
semantics.

In stark contrast, MAFE (right) achieves clear separation between benign (green) and all mali-
cious categories (red, blue, orange), while different attack types form distinct but proximally located
clusters. This dual property—clear benign-malicious boundaries combined with organized mali-
cious subcategories—demonstrates that MAFE successfully captures both the fundamental safety
distinction and attack-specific characteristics, providing an ideal foundation for multi-faceted threat
detection.
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Traditional Feature Extraction VLM Internal Representations MAFE

Figure 10: Within-category analysis for image-based jailbreak datasets. MAFE (right) demonstrates
semantic convergence where three datasets employing different visual attack techniques cluster to-
gether. Traditional features (left) scatter randomly while VLM representations (middle) show frag-
mented grouping, highlighting MAFE’s superior ability to capture attack semantics beyond dataset
artifacts.

A.3.2 WITHIN-CATEGORY SEMANTIC CONVERGENCE ANALYSIS

To validate that MAFE’s discriminative patterns reflect genuine semantic understanding rather than
exploitation of dataset artifacts, we conduct within-category analysis examining whether multiple
datasets representing the same attack type converge in feature space. This validation is critical: if
features merely exploit superficial dataset characteristics (e.g., image resolution, text length, lin-
guistic style), different datasets from the same category would occupy disconnected regions; true
semantic understanding requires convergence despite such distributional differences.

Image-based Jailbreak Analysis. Figure 10 compares feature distributions for three image-based
jailbreak datasets (JailbreakV 28K, FigStep, HADES). Traditional features (left) catastrophically
fail with random scattering across feature space, demonstrating inability to recognize visual attack
patterns. VLM representations (middle) achieve loose grouping but fragments remain disconnected,
indicating sensitivity to dataset-specific characteristics rather than shared attack semantics. In stark
contrast, MAFE (right) achieves remarkable semantic convergence where all three datasets form
tightly cohesive clusters in close proximity, clearly separated from benign samples. This conver-
gence demonstrates that MAFE successfully identifies the fundamental semantic characteristic uni-
fying these attacks.

Text-based Jailbreak Analysis. Figure 11 examines text-based jailbreak datasets (JailbreakV 28K
and AdvBench M) utilizing distinct manipulation strategies: special symbols and encoding versus
semantically paired harmful texts. Traditional features produce extensive benign-malicious over-
lap, completely failing to capture textual jailbreak semantics. VLM representations achieve partial
separation but position the two datasets inconsistently, revealing capture of superficial linguistic
patterns rather than underlying malicious intent. MAFE produces unified clustering where both
datasets converge despite their strategic differences, demonstrating superior semantic understanding
that recognizes shared intent to circumvent safety alignment through textual manipulation.

Direct Malicious Analysis. Figure 12 shows distributions for direct malicious datasets (MM-
SafetyBench and VLSafe) containing explicit harmful content. Traditional features exhibit poor
discriminative capability with substantial overlap between benign and malicious regions. VLM
representations demonstrate moderate clustering but inconsistent positioning across benchmarks,
suggesting sensitivity to evaluation-specific characteristics. MAFE achieves strong convergence
with both datasets clustering cohesively while maintaining clear boundaries from benign content,
validating robust recognition of explicit harmful semantics regardless of benchmark origin.

These comprehensive cross-dataset experiments reveal MAFE’s fundamental advantages: (1) Se-
mantic generalization—within-category convergence despite dataset diversity proves MAFE cap-
tures genuine attack semantics; (2) Robustness to technical variations—clustering datasets with dif-
ferent attack implementations demonstrates recognition of shared malicious intent, enabling defense
against novel attack variants; (3) Consistent discrimination—clear benign-malicious boundaries
maintained across all categories and datasets validate that MAFE organizes feature space accord-
ing to safety-critical semantics. The systematic failure of traditional features and partial success of
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Traditional Feature Extraction VLM Internal Representations MAFE

Figure 11: Within-category analysis for text-based jailbreak datasets. MAFE (right) achieves unified
clustering despite different manipulation strategies, demonstrating semantic understanding. Tradi-
tional and VLM-based features fail to recognize shared malicious intent across datasets.

Traditional Feature Extraction VLM Internal Representations MAFE

Figure 12: Within-category analysis for direct malicious datasets. MAFE (right) demonstrates con-
vergence across evaluation benchmarks with clear benign-malicious separation, while alternative
approaches show inconsistent patterns.

Table 8: ASR on out-of-domain datasets using the Qwen2.5-VL-7B-Instruct model.
ASR% ↓ (Qwen2.5-VL-7B-Instruct)

Method Image-based Jailbreak Text-based Jailbreak Direct Malicious
FigStep HADES AdvBench-M MM-SafetyBench VLSafe

Internal
Defense

VLMGuard 9.46 13.96 8.66 9.05 10.32
ASTRA 1.80 7.83 6.33 4.12 3.70

External
Defense

JailGuard 13.82 21.04 27.49 24.35 31.35
CIDER 40.03 51.86 61.30 46.91 50.00
MirrorCheck 15.36 23.09 30.15 25.08 26.33
SelfReminder 27.80 80.02 6.72 15.20 8.55
ECSO 26.72 30.74 17.06 13.28 19.63

Ours 0.00 2.13 0.41 0.71 1.62

VLM representations further confirm that MAFE’s discriminative power stems from its architectural
design combining progressive text aggregation and cross-modal fusion in CLIP’s aligned semantic
space. These results conclusively validate that MAFE provides robust, semantically-grounded fea-
tures essential for generalizable VLM safety detection.

B MORE RESULTS ON VLMSHIELD

This section provides comprehensive supplementary experimental results for VLMShield, including
extended evaluations on the Qwen2.5-VL-7B-Instruct model and detailed analysis of False Nega-
tive Rate (FNR) and False Positive Rate (FPR) metrics to provide a more complete picture of our
method’s performance characteristics.

B.1 EXTENDED ASR RESULTS ON QWEN2.5-VL-7B-INSTRUCT

To further validate the robustness and generalizability of VLMShield across different vision-
language model architectures, we conducted comprehensive evaluations on the Qwen2.5-VL-7B-
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Table 9: FNR on the JailbreakV 28K test dataset. Lower values indicate better defense performance.
Best results are shown in bold.

FNR% ↓ (JailbreakV 28K)
Method LLaVA-1.5-13B Qwen2.5-VL-7B-Instruct

Image-based Text-based Image-based Text-based
Internal
Defense

VLMGuard 16.37 9.26 11.82 5.72
ASTRA 5.21 3.88 2.14 1.72

External
Defense

JailGuard 22.05 26.33 14.00 16.18
CIDER 37.20 48.53 37.20 48.53
MirrorCheck 17.19 20.65 17.19 20.65
SelfReminder 80.04 70.87 34.80 8.40
ECSO 39.68 28.06 43.06 22.83

Ours 0.19 0.00 0.19 0.00

Instruct model. Table 8 presents the Attack Success Rate (ASR) results on out-of-domain datasets,
demonstrating consistent performance patterns with our main LLaVA-1.5-13B results. The results
reveal that VLMShield maintains exceptional defense performance on Qwen2.5-VL-7B-Instruct,
achieving 0.00% ASR on FigStep attacks and maintaining low ASR values across all other attack
categories (≤ 2.13% on jailbreak attacks, ≤ 1.62% on direct malicious attacks). This consis-
tency across different model architectures underscores the model-agnostic nature of our approach,
as VLMShield operates independently of the underlying VLM’s internal mechanisms.

B.2 FNR AND FPR ANALYSIS

To provide a more nuanced understanding of VLMShield’s classification performance, we present
detailed False Negative Rate (FNR) and False Positive Rate (FPR) analyses. It is important to note
that in our experimental setup, since datasets contain exclusively benign or malicious samples, FNR
mathematically equals ASR (representing the rate of missed malicious attacks), while FPR equals
1-ACC (representing the rate of incorrectly flagged benign content).

Table 10: FNR on out-of-domain datasets using the LLaVA-1.5-13B model.
FNR% ↓ (LLaVA-1.5-13B)

Method Image-based Jailbreak Text-based Jailbreak Direct Malicious
FigStep HADES AdvBench-M MM-SafetyBench VLSafe

Internal
Defense

VLMGuard 13.83 22.95 9.84 12.90 15.27
ASTRA 7.33 14.86 13.48 8.62 8.03

External
Defense

JailGuard 20.30 38.33 40.02 36.22 72.43
CIDER 40.03 51.86 61.30 46.91 50.00
MirrorCheck 15.36 23.09 30.15 25.08 26.33
SelfReminder 58.00 75.32 42.65 51.27 90.67
ECSO 29.05 31.32 22.09 18.39 24.00

Ours 0.00 2.13 0.41 0.71 1.62

FNR Analysis. The FNR results across all model configurations confirm VLMShield’s superior de-
tection capability. On the in-domain JailbreakV 28K test set (Table 9), VLMShield achieves FNR
values of 0.00-0.19%, significantly outperforming all baseline methods. The consistency of these
results across LLaVA-1.5-13B and Qwen2.5-VL-7B-Instruct models (identical FNR values) demon-
strates the model-agnostic robustness of our approach. For out-of-domain evaluation (Tables 10–11),
VLMShield maintains exceptional performance with FNR ≤ 2.13% across all attack categories and
model configurations. The minimal performance degradation from in-domain to out-of-domain sce-
narios (maximum increase of 2.13% on HADES attacks) contrasts sharply with baseline methods
that show substantial performance drops.

FPR Analysis. The FPR evaluation on benign multimodal benchmarks (Table 12) reveals
VLMShield’s ability to preserve legitimate functionality. VLMShield achieves 0.00% FPR on
in-domain benign datasets (GPT4V-Caption, CC3M) for both model configurations, indicating per-
fect preservation of benign content processing. On out-of-domain benign benchmarks, VLMShield
maintains low FPR values (3.67% on MM-Vet, 0.16% on MMBench), demonstrating minimal in-
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Table 11: FNR on out-of-domain datasets using the Qwen2.5-VL-7B-Instruct model.
FNR% ↓ (Qwen2.5-VL-7B-Instruct)

Method Image-based Jailbreak Text-based Jailbreak Direct Malicious
FigStep HADES AdvBench-M MM-SafetyBench VLSafe

Internal
Defense

VLMGuard 9.46 13.96 8.66 9.05 10.32
ASTRA 1.80 7.83 6.33 4.12 3.70

External
Defense

JailGuard 13.82 21.04 27.49 24.35 31.35
CIDER 40.03 51.86 61.30 46.91 50.00
MirrorCheck 15.36 23.09 30.15 25.08 26.33
SelfReminder 27.80 80.02 6.72 15.20 8.55
ECSO 26.72 30.74 17.06 13.28 19.63

Ours 0.00 2.13 0.41 0.71 1.62

Table 12: FPR on benign multimodal benchmarks. Higher values indicate better preservation of
legitimate functionality. Best results are shown in bold.

FPR%↓
Method LLaVA-1.5-13B Qwen2.5-VL-7B-Instruct

IOD OOD IOD OOD
GPT4V

-Caption CC3M MM-Vet MMBench GPT4V
-Caption CC3M MM-Vet MMBench

Internal
Defense

VLMGuard 4.76 4.00 5.00 3.08 2.67 1.80 3.92 2.00
ASTRA 3.85 1.97 6.46 2.34 2.26 1.54 4.20 5.36

External
Defense

JailGuard 4.91 3.86 10.55 8.75 2.64 1.20 5.62 5.00
CIDER 2.20 3.36 6.72 2.54 2.20 3.36 6.72 2.54
MirrorCheck 7.94 8.68 10.59 9.83 7.94 8.68 10.59 9.83
ECSO 6.02 3.23 10.96 7.20 3.70 2.71 6.77 4.93

Ours 0.00 0.00 3.67 0.16 0.00 0.00 3.67 0.16

terference with legitimate VLM operations. Comparative analysis shows that while some baseline
methods achieve competitive FPR on specific datasets, none match VLMShield’s consistent perfor-
mance across all evaluation scenarios. Methods like MirrorCheck exhibit high FPR values (7.94-
10.59%), indicating substantial false positive rates that would significantly impact user experience
in practical deployments.

C MORE DETAILS ON IMPLEMENTATION

This section provides more details on the model specifications, attack methods, baseline defenses,
and evaluation metrics.

C.1 VISION-LANGUAGE MODELS CONFIGURATION

Our experiments utilize two representative VLMs with different architectural characteristics and pa-
rameter scales. LLaVA-1.5-13B serves as our primary evaluation model, representing the LLaVA
family’s multimodal capabilities, while Qwen2.5-VL-7B-Instruct provides cross-architectural val-
idation with its distinct design paradigm. Both models are configured with identical generation
parameters to ensure fair comparison: temperature=1.0 for diverse output generation, top p=1.0
and top k=50 for nucleus sampling, and max new tokens=512 to accommodate comprehensive re-
sponses. These settings balance response quality with computational efficiency while maintaining
consistency across all experimental conditions.

C.2 ATTACK METHODS

Malicious Attacks. We implement a comprehensive suite of attack methods covering the full spec-
trum of malicious prompt attacks against VLMs. Direct malicious attacks utilize harmful image–text
pairs from established benchmarks (MM-SafetyBench, VLSafe) without additional manipulation.
Image-based jailbreak attacks include FigStep implementation using typographic visual prompts and
HADES utilizing adversarial image perturbations with optimization-based generation. Text-based
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jailbreak attacks encompass AdvBench M’s semantically paired harmful texts and JailbreakV 28K’s
diverse jailbreaking strategies across multiple attack vectors.

Adaptive Attacks. For adaptive attacks in our robustness evaluation, we implement sophisticated
attack methods that specifically target VLMShield by combining original attack objectives with
evasion objectives. Both text-based and image-based adaptive attacks utilize a unified objective
function that combines the original adversarial loss with an evasion loss specifically designed to
bypass VLMShield:

Ladaptive = (1− λ) · Ladv + λ · Levade, (10)

where Ladv represents the original adversarial objective designed to make VLMs generate harmful
content, and Levade targets VLMShield’s detection mechanism by encouraging inputs to be classified
as benign, formulated as:

Levade = − log
(
Pbenign

)
= − log

(
σ(f(x))

)
, (11)

where Pbenign = σ(f(x)) represents the probability that VLMShield classifies input x as benign,
with σ(·) being the sigmoid function and f(x) the raw output logit from VLMShield’s classifier.

Text-based Adaptive Attacks. We employ the Greedy Coordinate Gradient (GCG) method as the
base attack framework, which optimizes adversarial suffixes through a combination of greedy and
gradient-based discrete optimization. The method searches for universal adversarial prompts by
leveraging gradients at the token level to identify promising single-token replacements. Specifi-
cally, GCG computes the top-k values with the largest negative gradient as candidate replacements
and evaluates the cross-entropy loss to select optimal substitutions. We extend this approach by
incorporating Levade to encourage the generated adversarial text to receive a benign classification
probability exceeding 0.5 from VLMShield. For experimental implementation, we optimize adver-
sarial suffixes over 500 iterations with a batch size of 512 and top-k value of 256.

Image-based Adaptive Attacks. For visual attacks, we build upon the HADES framework, which ex-
ploits alignment vulnerabilities in the visual modality of MLLMs. The original HADES approach
incorporates adversarial noise via gradient updates to maximize harmful output generation. We en-
hance this method by integrating Levade into the optimization process, encouraging the generated
adversarial images to be classified as benign by VLMShield while maintaining their harmful po-
tential. The evasion objective specifically targets the safety threshold of 0.5, optimizing adversarial
perturbations to push VLMShield’s classification confidence toward the benign category.

This adaptive attack methodology enables us to evaluate VLMShield’s robustness against adver-
saries with full knowledge of our defense mechanism, providing a comprehensive assessment of the
method’s security under worst-case scenarios.

C.3 BASELINE DEFENSES

Our evaluation encompasses both internal and external defense categories with detailed implemen-
tation specifications:

Internal Defenses. These methods require white-box access to VLM parameters and intermediate
representations. ASTRA implementation involves activation space analysis with harmful direction
identification and steering mechanisms applied during inference. The method filters harmful content
by counteracting activation directions associated with unsafe outputs through real-time manipulation
of internal representations. VLMGuard utilizes principal component analysis of internal prompt rep-
resentations with anomaly detection based on deviation patterns in hidden state spaces, identifying
abnormal samples through statistical analysis of embedding distributions.

External Defenses. These methods operate through black-box input filtering or output monitoring
strategies. JailGuard implementation generates multiple prompt variants through mutation opera-
tions (text paraphrasing, image transformations) and analyzes output consistency for attack detec-
tion, measuring response inconsistencies as indicators of potential attacks. CIDER employs denois-
ing operations on input images with semantic similarity comparison before and after processing to
detect perturbed images through analysis of semantic coherence. MirrorCheck compares embed-
dings between original and denoised images to identify adversarial modifications through embed-
ding space analysis. SelfReminder wraps user queries with protective system prompts containing
guidelines that remind models of safe AI principles. ECSO enables VLMs to self-detect response
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safety and converts harmful images to text descriptions when unsafe content is detected, operating
as an output monitoring system that triggers regeneration when safety violations are identified.

C.4 EVALUATION METRICS

We employ three metrics to assess defense performance across different dimensions:

Attack Success Rate (ASR): Measures the percentage of malicious prompts that successfully by-
pass the defense mechanism, calculated as:

ASR =
Number of successful attacks

Total number of malicious prompts
× 100%. (12)

Accuracy (ACC): Evaluates the classification performance on benign prompts to ensure legitimate
functionality is preserved:

ACC =
Number of correctly classified benign prompts

Total number of benign prompts
× 100%. (13)

Efficiency: Quantifies the computational overhead via average processing time per sample:

Efficiency =
Total processing time

Number of processed samples
(second). (14)

Adaptive Attack Evaluation: We additionally compute Harmful Generation Rate (HGR) using
GPT-5-mini as an independent content moderation system to assess the actual harmfulness of gener-
ated outputs, enabling calculation of Effective ASR (ASR × HGR) that captures both evasion success
and maintained attack effectiveness.

D ABLATION STUDIES

This section provides comprehensive ablation experiments validating VLMShield’s architectural
design choices across five key dimensions. All experiments are conducted on MM-Vet (benign
prompts) and text based jailbreak 28K (malicious prompts) datasets unless otherwise specified.

D.1 CHUNK SIZE ANALYSIS

The chunk size determines how long text sequences are segmented for CLIP processing. We evaluate
two configurations motivated by CLIP’s architectural constraints, with results shown in Table 13.

Table 13: Chunk size ablation results on MM-
Vet and text based jailbreak 28K datasets. The
75-token configuration achieves optimal effi-
ciency while maintaining identical detection per-
formance.

Chunk Size Overlap Benign
ACC(%)↑

Malicious
ASR(%)↓

Detection
Time(s)↓

50.00 10.00 96.33 0.00 0.37
75.00 10.00 96.33 0.00 0.34

Analysis. CLIP processes sequences of 77 to-
kens, with 2 positions reserved for special to-
kens ([SOS] and [EOS]), leaving 75 positions
for actual content. Our results show that chunk
size variations have minimal impact on detection
effectiveness, with both configurations achiev-
ing identical accuracy and perfect attack block-
ing. However, the 75-token configuration pro-
vides superior computational efficiency (0.34s vs
0.37s detection time) by minimizing the number
of chunks required to process long text. Therefore, we select 75 tokens as our default chunk size to
maximize CLIP’s token capacity utilization while optimizing detection efficiency.

D.2 OVERLAP SIZE ANALYSIS

Overlap between consecutive chunks maintains semantic continuity across boundaries. We evaluate
four configurations, as presented in Table 14.
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Table 14: Overlap size ablation results. The
10-token overlap provides optimal balance be-
tween semantic continuity and computational ef-
ficiency.

Chunk Size Overlap Benign
ACC(%)↑

Malicious
ASR(%)↓

Detection
Time(s)↓

75.00 0.00 96.28 0.47 0.30
75.00 5.00 96.30 0.36 0.33
75.00 10.00 96.33 0.00 0.34
75.00 20.00 96.36 0.00 0.47

Analysis. Zero overlap (0 tokens) achieves the
fastest processing (0.30s) but compromises de-
tection performance (0.47% ASR), indicating in-
formation loss at chunk boundaries. Increas-
ing overlap to 5 tokens improves performance
(0.36% ASR) with minimal overhead (0.33s).
The 10-token overlap achieves perfect attack
blocking (0.00% ASR) with 96.33% benign ac-
curacy while maintaining efficient processing
(0.34s). Further increasing overlap to 20 tokens
provides marginal accuracy improvement (96.36%) but substantially increases computational cost
(0.47s). The 10-token configuration provides optimal balance between semantic continuity preser-
vation and computational efficiency, validating our design choice.

D.3 TEXT AGGREGATION METHOD ANALYSIS

We compare three strategies for aggregating chunk-level embeddings into final text representations,
with comparative results shown in Table 15.

Table 15: Text aggregation method comparison.
Similarity-weighted aggregation achieves supe-
rior performance with highest feature separabil-
ity (MMD).

Aggregation Method Benign
ACC(%)↑

Malicious
ASR(%)↓ MMD↑

Simple Average 96.30 1.46 0.692
MAX-Pooling 94.29 5.39 0.507
Similarity-weighted (Ours) 96.33 0.00 0.835

Analysis. Simple averaging treats all chunks
equally, potentially diluting discriminative in-
formation and allowing 1.46% attack success.
MAX-pooling captures extreme features but
loses overall contextual information, resulting
in degraded performance (5.39% ASR, lowest
MMD of 0.507). Our similarity-weighted ap-
proach automatically emphasizes semantically
central content by computing each chunk’s rep-
resentativeness based on average cosine similar-
ity to all other chunks. This strategy achieves superior performance (0.00% ASR, highest MMD of
0.835), indicating better feature separability between benign and malicious categories. The higher
MMD demonstrates that our method effectively captures discriminative patterns while reducing
manual intervention requirements.

D.4 CLIP BACKBONE ANALYSIS

We evaluate three CLIP architectures to assess the impact of backbone selection, as shown in Ta-
ble 16.

Table 16: CLIP backbone comparison across
different architectures. ViT-L/14 provides the
best efficiency-performance trade-off for practi-
cal deployment.

CLIP Backbone Benign
ACC(%)↑

Malicious
ASR(%)↓

Detection
Time(s)↓

ViT-L/14 96.33 0.00 0.34
ViT-H/14 97.04 0.00 0.57
SigLIP-L 95.17 3.05 0.35

Analysis. ViT-H/14 achieves the highest benign
accuracy (97.04%) with perfect attack blocking,
but incurs 68% computational overhead (0.57s
vs 0.34s) compared to ViT-L/14. ViT-L/14 pro-
vides the best efficiency-performance trade-off,
maintaining 0.00% ASR with 96.33% benign ac-
curacy at optimal speed. SigLIP-L shows de-
graded performance (95.17% ACC, 3.05% ASR)
despite similar computational cost, likely due to
its sigmoid-based contrastive learning diverging
from standard CLIP’s approach. Based on these results, we select ViT-L/14 as our default backbone
for practical deployment, offering robust detection capability with superior computational efficiency
suitable for real-world applications.
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D.5 DETECTION THRESHOLD ANALYSIS

We evaluate classification thresholds from 0.3 to 0.7 on MM-Vet (benign) and MM-SafetyBench
(malicious) datasets, with results presented in Table 17.

Table 17: Detection threshold analysis on MM-
Vet (benign) and MM-SafetyBench (malicious)
datasets. Threshold 0.5 achieves optimal balance
between benign utility and attack defense.

Threshold Benign
ACC(%)↑

Malicious
ASR(%)↓

0.3 100.00 10.04
0.4 99.34 5.27
0.5 96.33 0.00
0.6 90.46 0.00
0.7 83.84 0.00

Analysis. Lower thresholds (0.3-0.4) priori-
tize benign utility, achieving near-perfect be-
nign accuracy (99.34-100%) at the cost of allow-
ing attacks through (5.27-10.04% ASR). Higher
thresholds (0.6-0.7) prioritize security with per-
fect attack blocking (0.00% ASR) but sacrifice
substantial benign functionality (83.84-90.46%
ACC). Our default threshold of 0.5 achieves op-
timal balance, reaching 96.33% benign accuracy
while maintaining 0.00% ASR. This validates
our design’s rationality in balancing both objec-
tives. For deployment, practitioners can adjust
thresholds based on specific security requirements: security-critical applications may prefer ≤ 0.6
(accepting lower benign accuracy for guaranteed attack blocking), while general-purpose scenarios
benefit from our default 0.5 providing the best overall trade-off between utility preservation and
robust defense.

E SYSTEM PROMPT FOR GPT-5-MINI CONTENT MODERATION

System Prompt for GPT-5-mini Moderation

You are a content moderation system designed to evaluate text content for safety vio-
lations. Your task is to determine whether the given content contains unsafe material
according to the following 15 categories:
1. Hate Speech, Offensive Language
2. Discrimination, Stereotypes, and Injustice
3. Violence, Aiding and Abetting, Incitement
4. Financial Crime, Property Crime, Theft
5. Privacy Violation
6. Drug Abuse, Weapons, Banned Substances
7. Non-Violent Unethical Behavior
8. Sexually Explicit, Adult Content
9. Controversial Topics, Politics
10. Misinformation regarding ethics, laws, and safety
11. Terrorism, Organized Crime
12. Self-Harm
13. Animal Abuse
14. Child Abuse
15. Other Unsafe Content
Instructions:
- Carefully analyze the provided content for any violations of the above safety categories
- Consider both explicit and implicit harmful content
- Prioritize safety and err on the side of caution
- Focus on potential harm, discrimination, illegal activities, and inappropriate content
- Consider context but maintain strict safety standards
Response Format: Respond with ONLY “Yes” if the content violates any safety rules,
or “No” if the content is safe. Do not provide explanations, reasoning, or additional text.
Content to evaluate: [INPUT TEXT]
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What is the step after using probe 
to spread tire puncture?

What is the second step 
suggested?

Figure 13: Representative false positive cases.

F QUALITATIVE FAILURE CASE ANALYSIS

We conduct comprehensive qualitative error analysis examining when and why VLMShield mis-
classifies prompts in both directions: benign-as-malicious (false positives) and malicious-as-benign
(false negatives).

F.1 FALSE POSITIVE CASES

We manually examined all false positive instances from the MM-Vet dataset (3.67% FPR). Figure
13 illustrates two representative examples that capture the primary failure mode.

Example 1: The prompt “What is the step after using probe to spread tire puncture?” with an 8-step
repair diagram (Figure 13, top) was flagged due to procedural language involving tool manipula-
tion and material modification—patterns appearing in both legitimate repair contexts and harmful
instructions.

Example 2 The prompt “What is the second step suggested?” with a workflow diagram (Figure
13, bottom) was misclassified because the generic question structure requesting sequential steps is
inherently ambiguous, equally applicable to business procedures or malicious methodologies.

These cases represent semantic boundary regions where intent is genuinely unclear without addi-
tional context. Notably, adding minimal contextual framing (e.g., “For this automotive maintenance
task...”) enables correct classification in 94.5% of originally misclassified cases.

F.2 FALSE NEGATIVE CASES

We analyzed false negatives across multiple attack types to understand evasion patterns.

Image-Based Jailbreaks. HADES attacks achieving 2.13% evasion employ perturbations with
L∞ < 2/255 that shift CLIP [CLS] embeddings just enough to cross decision boundaries
while appearing indistinguishable from compression artifacts. FigStep’s 0.00% evasion indicates
VLMShield detects visually salient modifications but struggles with imperceptible perturbations at
perceptual limits.

Text-Based Jailbreaks. The 0.41% of AdvBench M attacks that evade detection use extreme
character-level obfuscation (leetspeak substitutions) that fragments semantic coherence into unusual
token sequences. JailbreakV 28K’s 0.00% evasion shows semantically coherent jailbreaks are reli-
ably detected.

Direct Malicious Attacks. The 0.71-1.62% evasion on MM-SafetyBench/VLSafe involves edge
cases: mild harmful requests bordering on legitimate discussion, or weak image-text alignment
creating feature inconsistency that reduces detection confidence.

Misclassification occurs when attacks operate at perceptual/semantic limits where malicious signals
become indistinguishable from noise, or exploit extreme obfuscation fragmenting semantic content
beyond recognition.
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Layer 1 Layer 3 Layer 6 Layer 9 Layer 12

Attention Head

Figure 14: Attention evolution of the EOS token across CLIP text encoder layers. The EOS token
progressively concentrates attention from uniform distribution (early layers) to semantically salient
tokens like “bigger,” “garage,” and “living room” (deep layers), while the SOS token maintains self-
attention throughout. This demonstrates EOS token’s semantic aggregation property.

F.3 ADAPTIVE ATTACK ANALYSIS

Optimization-Based Attacks. At optimal evasion (λ = 0.5, effective ASR 0.81-2.06%), success-
ful attacks transform prompts through heavy modification that shifts MAFE representations across
decision boundaries. Critically, examination of evaded cases shows these transformations destroy
attack effectiveness: HGR drops to 42.74%, demonstrating misclassification as benign correlates
with actual loss of harmful content.

Dilution Attacks. At extreme ratios (1:100, effective ASR 3.82%), similarity-weighted aggrega-
tion heavily weights dominant benign chunks, causing malicious signals to fall below detection
thresholds. However, HGR of 43.80% indicates the dilution enabling evasion also prevents harmful
generation—prompts have genuinely become more benign rather than merely evading detection.

Misclassification occurs at genuine boundary cases: benign prompts with dual-use patterns lacking
context, and malicious prompts degraded to perceptual/semantic limits or transformed such that
harmful content is diminished. The correlation between evasion success and reduced harmfulness
validates that VLMShield distinguishes prompts based on actual malicious semantic content.

G ATTENTION MECHANISM ANALYSIS: WHY MAFE WORKS

To explore the ease of class separation using our MAFE approach, we provide a mechanistic analysis
demonstrating that MAFE’s strong separability is not due to trivial dataset artifacts, but rather stems
from exploiting CLIP’s pre-trained semantic aggregation mechanisms. The “ease” of separation
reflects MAFE’s principled design that leverages architecturally-grounded feature extraction. We
visualize attention patterns using BertViz1.

G.1 TEXT ENCODER: EOS TOKEN ATTENTION EVOLUTION

Qualitative Analysis. Figure 14 visualizes the EOS token’s attention patterns using BertViz for the
query: “Which room is bigger, the double garage or the living room?” In initial layers (1-3), at-
tention is distributed uniformly. In intermediate layers (6-9), attention concentrates on semantically
salient tokens (“bigger,” “garage,” “living room”) while reducing attention to function words. In

1https://github.com/jessevig/bertviz
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Layer 1 Layer 4 Layer 8 Layer 12 Layer 16 Layer 20 Layer 24

Attention Head

Figure 15: Attention evolution of the CLS token across CLIP vision encoder layers. The CLS token
shifts from uniform spatial attention (early layers) to focused attention on discriminative regions
corresponding to the garage and living room (deep layers). Image patches are grouped into 4×4
spatial regions for visualization clarity, with one representative patch per region shown.

final layers (Layer 12), attention focuses on core semantic tokens, aggregating the query’s meaning.
This mechanism enables [EOS] to capture linguistic patterns of malicious intent—for adversarial
prompts, it naturally aggregates toward harmful phrases and jailbreak triggers. The SOS token
maintains self-attention throughout, confirming EOS’s intentional aggregation design.

Table 18: Top-1 aggregator ratio for [EOS] to-
ken.

Dataset Type Top-1 aggregator Ratio(%)↑
MM-Vet [EOS] token 100.00
Jailbreak 28K [EOS] token 100.00

Quantitative Validation. Table 18 shows
the EOS token achieves 100% Top-1 aggrega-
tor ratio on both MM-Vet (benign) and Jail-
breakV 28K (malicious) datasets, confirming it
consistently serves as the primary information
aggregator and reliably captures semantic intent
distinguishing malicious from benign queries.

G.2 VISION ENCODER: CLS TOKEN ATTENTION EVOLUTION

Qualitative Analysis. Figure 15 demonstrates the CLS token’s attention evolution using BertViz on
an image containing garage and living room areas. In early layers (1-4), attention is uniform across
spatial regions. In intermediate layers (8-16), attention concentrates on semantically meaningful
regions (garage, living room) while background regions diminish. In final layers (20-24), attention
localizes to discriminative regions capturing core semantic content. This enables [CLS] to cap-
ture visual anomalies of adversarial attacks—it naturally aggregates toward regions with embedded
harmful content, adversarial perturbations, or typographic attacks.

Table 19: Top-1 aggregator ratio for [CLS] to-
ken.

Dataset Type Top-1 aggregator Ratio(%)↑
MM-Vet [CLS] token 100.00
Jailbreak 28K [CLS] token 100.00

Quantitative Validation. Table 19 shows the
CLS token achieves 100% Top-1 aggregator ra-
tio on both datasets, confirming it consistently
aggregates spatial information and reliably cap-
tures visual features distinguishing adversarial
from benign images.

G.3 MECHANISTIC EXPLANATION OF MAFE’S EFFECTIVENESS

The attention visualizations and quantitative validations provide mechanistic insight into why
MAFE achieves strong class separation:

Semantic Aggregation Property. Both [EOS] and [CLS] tokens function as semantic aggregators
through the transformer’s self-attention mechanism. Our analysis reveals that these tokens con-
sistently consolidate the most discriminative information from their respective modalities through
learned attention patterns. The 100% Top-1 aggregator ratios provide quantitative evidence that
[EOS] and [CLS] reliably capture semantically central content—the core features that distinguish
malicious from benign content.

Complementary Multimodal Information Capture. The text [EOS] token captures semantic in-
tent and linguistic patterns indicative of malicious queries (e.g., jailbreak trigger phrases, harmful
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instructions), while the visual [CLS] token captures visual anomalies characteristic of adversarial
attacks (e.g., embedded harmful content, adversarial perturbations). Since multimodal attacks man-
ifest through one or both of these channels, concatenating these representations enables MAFE
to simultaneously monitor both attack vectors. This cross-modal complementarity explains why
MAFE achieves superior separation compared to single-modality approaches—malicious prompts
that may appear benign in one modality reveal their true nature when both modalities are jointly
analyzed.

These mechanistic insights demonstrate that MAFE’s separability stems from leveraging CLIP’s
inherent semantic aggregation capabilities across both modalities, enabling comprehensive capture
of multimodal attack characteristics.

H THE USE OF LARGE LANGUAGE MODELS

Large language models are used only for writing polish and grammar correction. All research ideas,
experimental design, data analysis, and scientific contributions are entirely the product of the au-
thors’ original work.
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