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Abstract

Determining whether a molecule can be synthesized is crucial for many aspects
of chemistry and drug discovery, allowing prioritization of experimental work
and ranking molecules in de novo design tasks. Existing scoring approaches to
assess synthetic feasibility struggle to extrapolate to out-of-distribution chemical
spaces or fail to discriminate based on minor differences such as chirality that
might be obvious to trained chemists. This work aims to address these limitations
by introducing the Focused Synthesizability score (FSscore), which learns to rank
structures based on binary preferences using a graph attention network. First, a
baseline trained on an extensive set of reactant-product pairs is established that
subsequently is fine-tuned with expert human feedback on a chemical space of
interest. Fine-tuning on focused datasets improves performance on these chemical
scopes over the pre-trained model exhibiting moderate performance and generaliz-
ability. This enables distinguishing hard- from easy-to-synthesize molecules and
improving the synthetic accessibility of generative model outputs. On very complex
scopes with limited labels achieving satisfactory gains remains challenging. The
FSscore showcases how human expert feedback can be utilized to optimize the
assessment of synthetic feasibility for a variety of applications.

1 Introduction

The ability to assess the synthetic feasibility of a small molecule is of great importance in many
different areas of chemistry, notably in early drug discovery stages. Trained chemists tradition-
ally perform this task through intuition or retrosynthetic analysis, allowing them to decide, which
molecules are likely possible to synthesize and prioritize based on synthetic complexity. However, the
chemical space that might be accessible is massive, and only a small fraction has been explored. [1, 2]
Furthermore, computational approaches such as virtual screening (VS) [3] in drug discovery or the
recent surge of generative methods for de novo molecular design [4–14] emphasize the requirement
for suitable tools to score synthetic feasibility quickly in an automated fashion. [15, 16].

Currently, available scores work well at discriminating feasible from unfeasible molecules in the
data distribution that they were designed for but often fail to generalize. This is especially true
for machine learning (ML) based scores that are unable to capture such an abstract concept as
synthesizability and fail to perform well on out-of-distribution data, especially when applied in the
context of generative models. [15, 17–19] However, exploring new chemical space is of great interest
specifically in the context of de novo design or new drug modalities such as synthetic macrocycles or
proteolysis targeting chimeras (PROTACs). On the other hand, synthetic feasibility cannot be merely
captured by the structure as it also depends on a chemist’s available resources and expertise. [20]
Thus, incorporating human preference would greatly improve the practical utility of such a score. [21]
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This work presents a novel approach to assess synthetic feasibility and investigates the incorporation
of expert knowledge to tune the model towards a desired chemical space. We build on ideas first
put forth by Coley et al. [22] when introducing the SCScore. As such, we use reaction data to
pre-train our model, which implicitly informs on the difficulty of synthesizing a molecule through the
relational nature of the data, while containing more information than just the number of reaction steps.
Furthermore, by framing this task as a ranking problem based on pairwise preferences, we avoid the
need for a ground truth score, but base the model on reported chemical reactions. [22, 21] To ultimately
tune to a specific chemical space with as little data as possible we fine-tune the unbiased baseline
model with expert chemist-labeled data in an active-learning type framework as inspired by MolSkill
[21]. Besides the various applications as an offline scoring tool, this fully differentiable approach
could also be directly used as guidance in generative models or as reward function in reinforcement
learning (RL) frameworks. Compared to previous work [22–24], our representations consider
stereochemistry and repeated substructures, which are crucial for determining the synthesizability of
molecules. To summarize, the FSscore is trained in two stages:

1. Pre-trained on a large dataset of reactions to establish an unbiased baseline using an expres-
sive graph neural network (GNN).

2. Fine-tuning using human feedback to focus the model towards a chemical space of interest.

Our main contributions are:

• We propose a novel approach for assessing synthetic feasibility that uses pairwise preferences
and fine-tuning with human feedback to focus the model on a desired chemical space. This
allows for incorporating expert knowledge and intuition.

• The method is fully differentiable, allowing it to be easily incorporated into generative
models.

• Our experiments show the model can be effectively fine-tuned with relatively small amounts
of human-labeled data, as little as 20-50 pairs, which is important for practicality.

• Fine-tuning improved performance on several chemical scopes, including natural products
and PROTACs, demonstrating the approach’s ability to adapt to new domains.

2 Related Work

Various methods to capture synthetic accessibility or complexity exist and can be structure-based (SA
score [25], SYBA [23], GASA [26]) or reaction-based (SCScore [22], RAscore [24], CMPNN [27],
RetroGNN [28], DFRscore [29]). The commonly used Synthetic Accessibility score (SA score) is rule-
based and penalizes the occurrence of fragments rarely found in a reference dataset and the presence
of specific structural features. [25] Thus, it captures more synthetic complexity than accessibility
and fails to identify big complex molecules with mostly reasonable fragments. [15, 20] The SYBA
score was trained to distinguish existing synthesizable molecules from artificial complex ones but
the performance was found to be sub-optimal. [17, 23] Many of these structure-/fragment-based
approaches suffer from the inability to capture small structural differences due to lacking sensitivity.
Yu et al. [26] attempt to address this by using a graph representation to classify molecules into
hard (HS) and easy (ES) to synthesize similarly to SYBA. The Synthetic Complexity score (SCScore)
predicts complexity in terms of required reaction steps and is based on 1024-bit Morgan fingerprints.
The SCScore was trained on the assumption that reactants are easier to make than products. [22]
This score performs well on benchmarks approximating the length of the predicted reaction path but
poorly when predicting feasibility in benchmarks using synthesis predictors. [15] The Retrosynthetic
Accessibility score (RAscore) predicts synthetic feasibility with respect to a synthesis prediction tool
and thus is directly dependent on the performance of the upstream model. [24] Similarly, RetroGNN
classifies molecules based on retrosynthetic accessibility with the specific aim of being applied in
VS. [28] Li and Chen [27] suggested a score based on a Communicative Message Passing Neural
Network (CMPNN), which aims at discriminating ES from HS based on number of reaction steps
using a reaction knowledge graph. Recently, the Drug-Focused Retrosynthetic score (DFRscore) was
introduced by Kim et al. [29] predicting the number of reaction steps required based on a limited set
of reaction templates relevant to drug discovery.

The incorporation of human feedback in ML has gained increasing attention since the introduction
of RL with Human Feedback (RLHF) [30] by OpenAI, which lead to the development of popular
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tools such as InstructGPT [31] and ChatGPT [32]. Learning with human feedback has also found its
way into applications in chemistry: Sheridan et al. [33] trained a random forest model to predict the
complexity based on human rankings. Ranking individual molecules instead of preference labeling is
likely to suffer from more bias, which might be reflected in the moderate correlations of the labels to
the predicted score. [34] This is avoided in the design of MolSkill, where the model learns to rank
based on binary preferences made by medicinal chemists. [21] However, the scored objective, general
preference, is loosely defined, and substantial pre-filtering of the training data makes the model not
applicable to synthesizability and likely fails to generalize well.

3 Methods

3.1 Focused Synthesizability score

The following sections outline the method behind the novel Focused Synthesizability score (FSscore).
We first train a baseline score assessing synthesizability using a graph representation and suitable
message passing scheme improving expressivity over similar frameworks such as the SCScore.
Secondly, we introduce our fine-tuning approach using human expert knowledge, allowing us to focus
the score towards a specific chemical space of interest.

3.1.1 Ranking molecules using graph embeddings

Our approach to learning a continuous score to assess the synthesizability is inspired by Choung
et al. [21], who frame a similar task as a ranking problem using binary preferences. Specifically,
every data point consists of two molecules for which we each predict a scalar in separate forward
passes. The minimization of the binary cross entropy between the true preference and the learned
score difference δij := f̂(mi) − f̂(mj) (scaled using a sigmoid function) constitutes our training
objective.

The function f : M → R learns to parametrize molecules as an expressive latent representation
given a set of molecules m1, ...,mn ∈ M. We represent molecules as graphs G = (V, E) with atoms
as nodes x1, ..., xn ∈ V and bonds as edges e1, ..., em ∈ E from which we can compute the line
graph L(G) offline iteratively to the desired depth. The transformation process to the line graph
is defined such that the edges {e1, ..., em} of graph G are the nodes of the line graph and these
nodes are connected if the corresponding edges of G share a node. The graph neural network (GNN)
embedding the molecular graph consists of the graph attention network (GATv2) [35] operating
on the graph G and the Line Evolution (LineEvo) [36] layer operating on the line graph L(G) as
message passing schemes. Both GATv2 and LineEvo use an attention mechanism to update the node
representations {h1, ..., hn} as followed:

e(hi, hj) = aTσ(Wihi||Wjhj) (1)

where a ∈ R2d′
and W ∈ Rd′×d are learned, σ denotes an activation function (LeakyReLU for

GATv2 and ELU for LineEvo) and || denotes concatenation. In GATv2, these local attention scores eij
are then averaged across all neighbors N (see Eq. 2 to obtain a normalized attention coefficient αij

to compute the updated node representation h′
i as a weighted average (see Eq. 3):

αij = softmaxj(e(hi, hj)) =
exp(e(hi, hj))∑

j∈Ni
exp(e(hi, hj))

(2)

h′
i = σ(

∑
j∈Ni

αijWhj) (3)

with PReLU [37] as nonlinearity σ. In LineEvo layers, e(hi, hj) is simply transformed using ELU to
obtain the new node representation h′

i.

These transformation layers are stacked so that two GATv2 (G) layers are followed by one LineEvo (L)
layer (GGLGGL). Each of these layers is followed by a readout function to obtain a molecular
representation, which consists of a global max pooling layer and global weighted-add pooling as
suggested by Ren et al. [36]. The intermediate molecular representations of all layers are summed
and the final score si = f̂(mi) is inferred with a multilayer perceptron (MLP). The model described
above was compared to five other implementations: GATv2 layers only (GGG) and four fingerprint
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implementations, namely Morgan (boolean), Morgan counts, Morgan chiral (boolean), Morgan chiral
counts all with radius 4 and 2048 bits. [38] The fingerprints are embedded by one linear layer with
ReLU as activation function followed by the aforementioned MLP. More detailed information can be
found in Appendix S1.2.

3.1.2 Fine-tuning on human feedback

To focus our scoring model on a desired chemical space using human feedback, we apply a fine-tuning
approach inspired by Choung et al. [21]. This approach was optimized to require as little data as
possible in order to limit the time required from expert chemists labeling the training examples.
Datasets to be used for fine-tuning can be of various origins such as a chemical scope suggested by
experimentalists or specific chemical spaces encompassing e.g. natural products (see. Section 3.3.
Data points from this set of molecules are determined using k-means clustering and subsequent
pairing of molecules from different clusters. If labels are already available (no human feedback
needed) they are used to inform the pairing such that pairs get opposite labels. Subsequently, the
uncertainty of the prediction of the pre-trained model on those pairs is determined based on the
variance of δij obtained using the Monte Carlo dropout method [39] with a dropout rate of 0.2 on
100 predictions. The top n pairs (n depends on the dataset size) based on the uncertainty are submitted
to be evaluated by our expert chemist based on their preference with regard to synthesizability.

These pairs of molecules capturing the desired human intuition or some predefined label (e.g. HS
vs. ES) are subsequently used for fine-tuning the FSscore model. The fine-tuning process can be
achieved with as little as up to 20 epochs. Furthermore, an early stopping approach was designed that
incorporates both the improvement on the fine-tuning data while ensuring that the model does not
experience degradation of the previously learned. Details can be found in Appendix S1.3.

3.2 Data

To pre-train our model on a large collection of reactions we combine the USPTO_full [40] patent
dataset with the complementary CJHIF [41]. Reaction data implicitly contains information on the
synthetic feasibility through the relation of reactant to product, with the product being synthetically
more difficult. The USPTO_full [40] contains reactions extracted from the US patents grants and
applications while CJHIF was mined from chemical journals with high impact factor [41]. One data
point consists of one reactant and its corresponding product. Reactions with multiple reactants per
product were split into separate data points accordingly. The cleaned and filtered dataset was split
into training (3,349,455 pairs) and hold-out test set (711,550 pairs) and a random validation set of 1%
of the training data was sampled (33,495 pairs). We detail data processing in Appendix S2.1.

3.3 Case studies and evaluation

We compare our approach with established scores, namely SA score, SCScore, SYBA and RAscore
and report numerous metrics as described in Appendix S3. We investigate the qualitative performance
of the pre-trained model on the MOSES [42] and COCONUT [43] datasets. MOSES contains
commercially available drug-like molecules and is often used to benchmark generative models for drug
discovery and COCONUT is a collection of natural products extracted from various sources. [42, 43]

We showcase the model’s ability to efficiently focus our score by fine-tuning on several datasets:

• A subset from the pre-training set with chiral tetrahedral centers. The molecule with
assigned chirality is labeled as more complex as opposed to the same molecule stripped of
the respective assignment.

• The MC (manually curated) and CP (computationally picked) test sets published with the
SYBA score. [23] Labels are provided and correspond to ES and HS.

• The meanComplexity dataset containing averaged complexity scores from chemists. [33]
Binary labels are extracted from the continuous score [1,5] based on a set-off of at least two.

• The PROTAC-DB [44], which is an open-source collection of PROTACs. Labels were
obtained from human experts.

Additionally, the applicability to a generative modeling task is assessed. REINVENT [7] is used as
a molecular generator due to its well-established RL framework and good performance on several
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benchmarks. [45] We further make use of the recently proposed augmented memory algorithm for
sample efficiency. [46] First, an agent is optimized for docking to the D2 dopamine receptor (DRD2,
PDB ID: 6CM4), which is a target for antipsychotic drugs. The collected SMILES are subsequently
used to fine-tune the FSscore, which in turn serves as reward for a second round of RL. For comparison,
another agent is optimized for the SA score for the same amount of oracle calls. The results are
compared by number of reaction steps predicted by AiZynthFinder. [47] All case studies are further
detailed in Appendix S2.2.

4 Results and discussion

4.1 Pre-trained model

The pre-trained model with varying algorithmic and representation implementations was evaluated on
the hold-out test set (see Tab. 1). The graph versions outperform fingerprint representations by a small
difference and the best-performing model each is used for further investigations. These correspond to
the GNN with GATv2 and LineEvo layers (GGLGGL) and the Morgan counts fingerprint. Further-
more, preliminary investigations with models trained on a random subset of 100k data points showed
weaknesses of the boolean Morgan fingerprint, resulting in an unfair comparison. Not including the
counts of fragments in the fingerprint leads to the inability to capture complexity based on recurrence
even if the single fragment is common in the training set. The original publication of the SCScore
briefly touches on the impact of varying the Morgan fingerprint, but contrary to us, they found this
aspect to not influence the performance, leading them to choose the boolean 1024-bit vector. [22]

Table 1: Performance on the hold-out test set of graph-based models compared to various fingerprint
implementations. Accuracy (Acc) and AUC based on the score differences are reported. The best
performing model is highlighted in bold. G = GATv2 layer; L = LineEvo layer

Model Representation Acc ↑ AUC ↑
GNN (GGLGGL) graph 0.905 0.971
GNN (GGG) graph 0.903 0.970
MLP Morgan 0.87 0.954
MLP Morgan counts 0.880 0.959
MLP Morgan chiral 0.867 0.952
MLP Morgan chiral counts 0.875 0.957

The analysis of the pre-trained model’s predictions on MOSES (known drugs) [42] and COCONUT
(natural products) [43] shows that the pre-trained FSscore is unable to distinguish these molecule
classes assuming that COCONUT [43] contains more complex structures (see Fig. 1). While both the
fingerprint- and graph-based FSscore outperform the SCScore in the area under the receiver operating
characteristic curve (AUC), the SA score, SYBA and RAscore yield better results. The structures
found in COCONUT [43] are likely out-of-distribution for the FSscore highlighting the opportunity
for fine-tuning but it also emphasizes the power of rule-based methods such as the SA score.

4.2 Fine-tuning

Figure 2 showcases the inability of all baseline scores, including our pre-trained models, to differ-
entiate structures with assigned chirality from those without assignment. Synthesizing a predefined
stereoisomer is a much more challenging task than being able to choose or even leave it up to chance.
Figure 2 shows that fine-tuning on the chirality test set allows the differentiation of molecules in
terms of their chirality assignment resulting in predicting molecules with a given isomer as more
difficult to synthesize. The performance could likely be improved by increasing the dataset size as
opposed to the 50 pairs used here. While the fingerprint-based models (Morgan chiral counts) clearly
are able to predict different scores, the meaning of the different representations are not captured by
either the pre-trained or fine-tuned model.

Both SYBA test sets show clear room for improvement from the pre-trained baseline, especially on
the MC set (see Fig. S4.4). The RAscore, SA score and SYBA clearly outperform the other scores.
The RAscore, being an actual classifier, has a structural advantage on this task. The same is true for
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(a) Score distributions. (b) ROC curves.

Figure 1: Results showcasing the ability to differentiate molecules originating from MOSES [42]
from those in COCONUT [43]. The latter are expected to be more complex being natural products.
The ROC curves in Figure 1b detail the power to discriminate MOSES [42] from COCONUT [43].
The arrows in the distribution plot (Fig. 1a) indicate the direction of higher synthetic feasibility.

(a) Score distribution. (b) Score difference distribution.

Figure 2: Distributions showcasing the ability to differentiate molecules with assigned tetrahedral chi-
rality from their unassigned counterpart. The desired prediction would score the assigned molecules
as more complex resulting in negative delta values (assigned - unassigned) in Figure 2b.

SYBA, which was purposely trained to perform well on such datasets. The high AUC with the SA
score is to be expected on the CP set, where all HS molecules contain a ring-bridging atom. The good
performance on the MC set is more surprising and showcases how well-formulated rules are valuable
on in-distribution datasets. Fine-tuning on molecules from CP resulted in substantial increase in
performance yielding an AUC of 0.992 when fine-tuning on only 50 pairs. Good performance gain
was even achieved with fewer data points as seen in Table S4.2. The MC test set is more challenging
and the limited dataset size (40 pairs) makes evaluation challenging. However, Table S4.2 clearly
shows that the FSscore can also improve such a heterogeneous dataset. When using overlapping pairs
(molecules can appear in multiple pairs) the performance is improved substantially improved over the
unique setting, however with the trade-off of reduced generalizability measured as performance on
the pre-training test set (see Table S4.3). Furthermore, our goal is to keep the fine-tuning size to a
minimum in order to facilitate human labeling.

The ability to score molecules, whose complexity was assigned by chemists was assessed on the
meanComplexity dataset by Sheridan et al. [33]. The correlations between all scores and the
meanComplexity are shown in Figure S4.6. The correlation to meanComplexity was improved
through fine-tuning (see Table S4.4) but still lacks behind scores such as SA score or RAscore. This
could likely be rescued by increasing the fine-tuning dataset size from 50 pairs, which we aimed at
keeping small. Only by using 500 overlapping pairs (molecules can appear in multiple pairs) can the
fine-tuned FSscore outperform the SA score in terms of PCC (0.84 vs. 0.8 – see Figure S4.7).
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Figure 3: ROC curves showcasing the classifica-
tion power of the various models to separate HS
from ES in the CP test set.

Figure 4: Score difference between full PROTAC
and most complex respective fragment (either of
the two ligands or linker).

PROTACs are large molecules (700-1100 Da) compared to traditional drugs but their fragmented
composition allows synthesis of each ligand and the linker separately before connecting the three parts.
Thus, their size often "fools" known scores, which rank them as synthetically hard making their
relative scores unreliable. We obtain feedback from a chemist with expertise on PROTACs, who also
remarked that most molecules they were prompted with are relatively easy to make. Figure 5 shows a
distinct shift towards higher predicted synthetic feasibility after fine-tuning the FSscore and Figure 4
highlights the narrowing gap between each PROTAC and the respective most complex fragment
(ligands or linker) after fine-tuning. The latter observation is desirable under the assumption that,
given that connecting the three fragments is not challenging, the complexity of the full PROTAC is
not much higher than its most complex components. However, the increase in performance is small
(50 pairs: Acc increases from 0.53 to 0.57 and AUC from 0.43 to 0.52) on all tested fine-tuning dataset
sizes and evaluation is challenging with only 100 labels (see Tab. S4.2). The performance gain on all
PROTACs and the learning curves (see Fig. S6.29) clearly show the ability to learn relevant features
emphasizing the need for more labeled data.

Figure 5: Score distributions obtained for the PROTAC-DB sample. The first plot shows the scores
before (grey) and after (purple) fine-tuning on 80 pairs of human-labeled PROTACs. The arrows each
indicate direction of higher synthetic feasibility and the dashed line marks the mean.

Our last case study couples human feedback to a generative model attempting targeted improvement
of synthetic feasibility of the generated molecules. The optimization of the first agent for docking to
DRD2 leads to the generation of lipophilic structures and polyaromatic ring systems. To improve
the synthesizability a second agent is optimized for the fine-tuned FSscore. Figure 6 shows the
superiority of the FSscore over the SA score in capturing the synthetic feasibility and generating
molecules that are predicted to require less reaction steps. However, this comes at the expense in
terms of docking score compared to the SA-optimized agent, which in turn generated many outliers
with high docking scores. Figure S5.21 shows examples of generated structures of all three agents.

5 Limitations and future work

The pre-trained model often achieves worse results than the SA score indicating that the incorporation
of carefully selected rules could be beneficial for a baseline. While focusing the score towards the
chemical space of interest is attractive for many applications, it also poses its challenges to keep
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Figure 6: Left: Fraction of reaction steps predicted by AiZynthFinder for each generated molecule.
Zero reaction steps indicate that the structure was found in the buyable stocks. Right: Box plots
displaying the distribution of docking scores for the three trained agents. The dashed line indicates
the docking score of the Risperidone that is the true ligand present in the used crystal structure.

baseline generalizability. Furthermore, the necessity for individual fine-tuning comes at the expense
of convenience as the FSscore is not meant to be used out of the box. The dataset size required for fine-
tuning seems to be related to the complexity and homogeneity of the data. However, recruiting human
labelers with sufficient expertise can be a challenge on its own and limited labels makes evaluation
challenging. Further investigations should aim at performing a more extensive hyperparameter search
as well as optimizing the architecture itself. Furthermore, a study of larger scale with more expert
chemists would be of benefit to showcase generalizability and robustness. Lastly, extending the use
for generative models in a variety of downstream tasks would be beneficial. Such experiments should
include different architectures, a variety of specific objectives as well as ways of incorporating the
score potentially through iterative fine-tuning in a active learning framework. It can be argued that
directly incorporating synthesizability by design leads to more robust results in terms of synthetic
feasibility but it also restricts the accessible chemical space more. [20]

6 Conclusion

This work introduces the novel FSscore, for evaluating synthetic feasibility, leveraging pairwise
preferences and fine-tuning with human feedback to focus on specific chemical spaces. The score
could be applied as filter in VS studies or as reward in RL frameworks and being fully differentiable
allows the seamless integration into generative models. The use of pre-training on an extensive
reaction dataset establishes a robust baseline, implicitly capturing synthetic complexity. Importantly,
our experiments demonstrate the practicality of FSscore, showcasing its efficacy even with very small
amounts of labeled data in certain cases. Fine-tuning improved performance on several chemical
scopes over the pre-trained baseline, demonstrating the approach’s ability to adapt to new domains.

7 Code availability and app

All code used for training, fine-tuning and scoring the FSscore is available at https://github.com/
schwallergroup/fsscore. This repository also included an application that can be run locally and
allows a more intuitive and accessible way to label data, fine-tune and deploy a model.
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Supplementary Information

S1 Training details

S1.1 Initial featurization of graphs

Table S1.1: Features for initializing the nodes and edges of the graph. One-hot encoding includes one
additional bit for types not found in the choices (incl. in size). These properties were determined
using RDKit. rdk [48]

Localization Feature Description Size

atom

atom type one-hot encoded atom type 1 14
charge one-hot encoded formal charge [-4,4] 10
implicit hydrogens one-hot encoded number of hydrogens [0,4] 6
degree one-hote encoded degree [0,4] 6
ring information 1 if in ring else 0 1
aromaticity 1 if aromatic else 0 1
hybridization one-hot encoded hybridization state 2 9
chiral tag one-hot encoded chiral tag [S, R, unassigned] 4

bond type one-hot encoded bond type 3 5
bond conjugated 1 if conjugated else 0 1

ring information 1 if in ring else 0 1

S1.2 Pre-training

The GNN operates on a hidden size of 128 and the input dimensions depend on the initial featurization
of the edges and nodes (see Tab. S1.1. GATv2 layers use 8 heads and LeakyReLU as activation
function after updating the hidden feature vector while LineEvo layers use ELU. The updated averaged
node representation is transformed using PReLU in GATv2 layers and with ELU in LineEvo layers.
After concatenating the global max pooled and global weight-add pooled node representations to a
molecular representation for every layer (G or L) this new representation is passed through an MLP
with 3 hidden layers of size 256 and ReLU as activation function. The fingerprint-based models have
an encoder of an MLP of one hidden layer of size 256 (input dimension 2048) followed by the same
MLP of 3 layers as above.

The pre-trained model was trained with the Adam optimizer [49] and an initial learning rate of 3e-4.
To center the obtained score around zero a regularization factor of 1e-4 was applied to the predicted
score like to obtain the regularization loss Lreg(f̂ ;λ) := λ||f̂ ||2 as suggested by Choung et al.
[21]. Lreg is added to the cross-entropy loss term as described in Section 3.1.1 to obtain the final
loss L = LCE + Lreg. The training set was randomly split in 25 equally sized subsets and the
model was trained with each subset for 10 epochs totalling 250 epochs with a batch size of 128. This
sequential learning approach was found to work well to increase speed of training.

S1.3 Fine-tuning

Training our model requires pairs of molecules with a binary preference as label. In order to do so,
we first cluster a dataset using the k-means algorithm based on the Tanimoto distances of Morgan
counts fingerprint. The number of clusters k was determined for every dataset individually where the
mean Silhouette coefficient over a range of k was the smallest. [50]. The range queried was set from
5 to 29 for datasets larger than 500 pairs and to 3 to 9 for smaller datasets. Secondly, molecules are
paired in such a way that they come from different clusters, appear only once in the paired dataset
and have opposite labels if available. We also investigated the influence of having overlapping pairs

1Considered atom types: [H, B, C, N, O, F, Si, P, S, Cl, Br, I, Se]
2Considered hybridization states: [UNSPECIFIED, s, sp, sp2, sp3, sp3d, sp3d2, other]
3Considered bond types:[single, double, triple, aromatic]
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(molecules can appear multiple times) for the SYBA (CP and MC) and the meanComplexity datasets.
This approach results in more fine-tuning data but does not satisfy our desire to keep the dataset size
small since human labeling could not make use of this advantage. Subsequently, the uncertainty of
the prediction of the pre-trained model on those pairs is determined based on the variance of δij
obtained using the Monte Carlo dropout method [39] with a dropout rate of 0.2 on 100 predictions.
The dataset is sorted with descending variance so that the pairs with high uncertainty are labeled first
or used first for fine-tuning when selecting a subset. If no label is available the pairs get subsequently
labeled by a chemist.

We chose a transfer learning type of fine-tuning where all the weights of the pre-trained model can
get adapted. All the hyperparameter except learning rate and batch size are kept the same. In order to
avoid the forgetting the previously learned we track the performance metrics on a random subset of
5,000 pairs from the hold-out test set of the pre-training data. Of the four tested initial learning rates
(1e-5, 1e-4, 3e-4, 1e-3) we chose 1e-4 for the graph-based version and 3e-4 for the fingerprint-based
models. These learning rates are a good trade-off between degradation of the previously learned and
learning on the new dataset as can be seen in the learning curves in Appendix S4.1. We observed
quick conversion with fewer than 20 epochs and in order to balance the aforementioned trade-off a
custom early stopping method was applied. Training is stopped once either the validation loss (or
training loss if the full dataset is used for production) has increased for 3 epochs (patience of 3) or
the accuracy on the 5k subset of the hold-out test set decreased for 3 epochs with a delta threshold of
0.02. We trained for a maximum of 20 epochs. For evaluating the efficiency, we further varied the
number of data points used for training of which we took 5 random pairs for validation. The results in
Table S4.2 show improvement in performance the bigger the dataset size. The batch size was set to 4.

S2 Data

S2.1 Pre-training data

The USPTO_full dataset was downloaded according to https://github.com/coleygroup/
Graph2SMILES/blob/main/scripts/download_raw_data.py [51] using all USPTO_full sub-
sets and "src" as product and "tgt" as reactants. The dataset was split so that every data point is a pair
of one reactant and its respective product and the SMILES strings were canonicalized. The datasets
do not contain reactions with multiple products. Data points with empty strings, identical reactants
and products (isomeric SMILES), either reactant or product containing less than four heavy atoms or
containing element types not in {H, B, C, N, O, F, Si, P, S, Cl, Se, Br, I} were removed. The datasets
were further deduplicated retaining one instance of replicates. Furthermore, data points were removed
ensuring that there are no cycles in the reaction network. This was achieved by removing back edges
with the Depth-First Search (DFS) algorithm as implemented by Sun et al. [52]. The filtered dataset
consisted of 5,340,704 data points. The train test split was performed so that no molecules (note not
just reactant:product pairs) are overlapping resulting in a significant data loss to prevent data leakage.
The training set consists of 3,349,455 pairs and the hold out test set of 711,550 pairs (17.5%).

To qualitatively evaluate the pre-trained model the performance on the MOSES [42] and CO-
CONUT [43] dataset were assessed. We downloaded the MOSES test set from Polykovskiy
et al. [42] as is totalling 176,074 SMILES. COCONUT was extracted from Sorokina et al. [43], all
SMILES returning None with RDKit [48] were removed and a random subset of 176,000 molecules
was selected to match the MOSES fraction.

S2.2 Fine-tuning data

The data for the fine-tuning case studies come from various sources. The specific processing steps for
every dataset is outlined below.

The obtain a test set for the chirality case study we filtered the deduplicated molecules from the
pre-training training set keeping only those with @ or @@ tokens in the SMILES string, which define
the chirality of a tetrahedral stereocenter. Of those we sample 1,000 SMILES randomly and obtain
their partner by getting the non-isomeric SMILES using RDKit rdk [48].

The CP and MC test sets were extracted from Voršilák et al. [23]. No further processing was required.
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The meanComplexity dataset was downloaded from Sheridan et al. [33] and cleaned by removing
SMILES whose conversion to an RDKit molecule object failed. This processing step removed
44 SMILES yielding a fine-tuning test set of 1,731 molecules.

For the PROTAC case study we extracted all PROTAC SMILES from the PROTAC-DB Weng et al.
[44] and deduplicated the dataset keeping the first instance resulting in 3,270 SMILES. After pairing
and ranking by confidence as described in Appendix S1.3, 100 pairs were labeled by a medicinal
chemist with expertise on PROTACs. In order to compare the scores of the individual components to
the full PROTAC as done in Figure 4 the individual fragments (the two ligands and the linker) has to
be extracted. For this, we extracted the collections containing information on anchor and warhead
(the two ligands) from PROTAC-DB and tried to match an anchor and warhead to every PROTAC
by matching protein target ID and find the biggest substructure match. The linker was obtained
by removing the ligands’ atoms. For the 3270 PROTACs in the database we could find matching
ligands for 1920 of them. This approach of extraction is necessary because PROTAC-DB does not
cross-reference the PROTACs to the fragments and our extraction cannot guarantee concordance with
the reported warhead and anchor in the respective publications but still is a good approximation.

To assess the applicability of the FSscore to a generative task we took advantage of the RL-framework
of REINVENT [7] and used the recently proposed augmented memory [46] optimization protocol.
First, an agent was trained with the composite (equal weights) of the docking score to the D2
Dopamine receptor (DRD2, PDB ID: 6CM4) and the molecular weight (MW) as reward. The docking
score was determined using AutoDock Vina [53] on one conformer each. Conformer generation is
performed with RDKit [48] and the Universal force field (UFF) [54] for energy minimisation for
a maximum of 600 iterations. The score x was scaled to obtain reward x′ in a range of [0,1] by
applying a sigmoid transformation as followed:

x′ =
1

1 + 1010k·
x− a+b

2
a−b

(S2.1)

with a corresponding to a docking score x of -1, b -13 and the steepness k was set to 0.25 resulting in
a reverse sigmoid (a small docking score results in a reward x′ towards 1 while a high score returns
a reward x′ close to 0). The score for MW was formulated so that a high reward is returned when
having a MW between 0 and 500 Da using a double sigmoid like so:

(S2.2)

A = 10
cSE

x
cdiv (S2.3)

B = 10
cSE

x
cdiv + 10

cSE
b

cdiv (S2.4)

C =
10

cSI
x

cdiv

10cSI
x cdiv + 10

cSI
a

cdiv

(S2.5)

x′ =
A

B
− C (S2.6)

with coefficients cSE = cSI = 500 and cdiv = 250, the lower bound a = 0 and upper bound b = 500.
RL was carried out for 150 epochs, a batch size of 64, learning rate of 1e-4, a σ of 128 and augmented
memory as optimization algorithm with 2 augmentation rounds and selective memory purge with a
minimum similarity of 0.4 and a bin size of 10 based on the identical Murcko scaffold. For details
on augmented memory in REINVENT we refer to Guo and Schwaller [46]. All valid SMILES
(9,246) generated during this optimization process were subsequently used to fine-tune the FSscore
as described above. The agent already optimized for docking was next used to optimize for synthetic
feasibility either with the fine-tuned FSscore or the SA score as comparison. Both approaches were
trained in identical fashion with the following parameters: 50 epochs, batch size of 128, σ of 128,
a learning rate of 1e-4 and using the augmented memory algorithm with 2 rounds of augmentation.
The diversity filter (incl. selective memory purge) was based on identical Murcko scaffolds based
on a minimal similarity of 0.4, a minimal score of 0.4 and a bucket size of 25. The FSscore was
transformed to range from 0 to 1 with a sigmoid according to Equation S2.1 with a = −13.08,
b = 10.07 and a steepness k = 0.25. The agent optimized for the SA score was transformed similarly
reverting the sigmoid by setting a = 10, b = 1 and k = 0.25. Thus, a high FSscore result in a
high reward, while a low SA score results in high reward and vice versa. As mentioned above, only
molecules with a minimal score of 0.4 were collected and subsequently used for evaluation. This
yielded 4,779 SMILES from the FSscore-trained agent and 4,915 SMILES from the SA score-trained
agent.
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S3 Metrics

The Pearson correlation coefficient (PCC) between x and y is computed using the function
scipy.stats.pearsonr [55] and is calculated as followed:

PCC =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2
(S3.7)

with mx the mean of vector x and my the mean of vector y.

The following metrics for datasets with binary labels (e.g. HS vs. ES) are computed using the
sklearn.metrics package [56]. Accuracy (Acc), sensitivity (SN) and specificity are calculated
based on the relative sizes of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN):

Acc =
TP + TN

TP + TN + FP + FN
(S3.8)

SN =
TP

TP + FN
(S3.9)

SP =
TN

TN + FP
(S3.10)

The area under the receiver operating characteristic (ROC) curve (AUC) describes the ability to
discriminate data points based on binary labels at various thresholds. It is computed by plotting SN
against 1− SP at various cut-off values defining the two classes. A random classifier has an AUC
of 0.5.

S4 Additional results

(a) MOSES (b) COCONUT

Figure S4.1: Heat maps displaying the correlations (PCC) between all scores obtained on molecules
from MOSES and COCONUT.
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S4.1 Fine-tuning results

Table S4.2: Performance metrics showcasing the improvement on specific datasets after fine-tuning
at different fine-tuning dataset sizes (pft pairs). No FT refers to the performance of the pre-trained
model on those datasets. Accpt and AUCpt are determined on the pre-training test set and are based
on the score difference (as during training) not the score itself. The values for the fine-tuned versions
always show metrics on the dataset excluding the training molecules and the full dataset in brackets.

set mode pft Acc AUC Accpt AUCpt

chiral

graph

no FT 0.5435 0.5391 0.905 0.971

20 0.5762 (0.575) 0.5972 (0.5947) 0.9044 0.9706
30 0.5918 (0.592) 0.6185 (0.6173) 0.9035 0.97
40 0.6156 (0.6145) 0.6539 (0.6521) 0.9022 0.9692
50 0.6268 (0.6235) 0.6749 (0.6728) 0.8983 0.9671

fp

no FT 0.509 0.4989 0.875 0.957

20 0.5163 (0.5165) 0.5082 (0.5102) 0.879 0.959
30 0.5180 (0.5195) 0.5122 (0.5153) 0.8786 0.9583
40 0.5255 (0.5255) 0.5180 (0.5212) 0.8738 0.9544
50 0.5237 (0.5235) 0.5147 (0.5174) 0.8783 0.9582

CP [23]

graph

no FT 0.6319 0.6446 0.905 0.971

20 0.9275 (0.9273) 0.9804 (0.9802) 0.903 0.9700
30 0.943 (0.9429) 0.9868 (0.9865) 0.9021 0.9695
40 0.9592 (0.9587) 0.9933 (0.9930) 0.9012 0.9689
50 0.9567 (0.9560) 0.9921 (0.9918) 0.9008 0.9687

fp

no FT 0.7008 0.7566 0.880 0.959

20 0.8683 (0.8685) 0.9396 (0.9397) 0.8771 0.9568
30 0.8833 (0.8838) 0.9517 (0.9521) 0.8741 0.9543
40 0.9043 (0.9045) 0.9645 (0.9649) 0.8732 0.9536
50 0.9167 (0.9178) 0.9725 (0.9731) 0.8708 0.952

MC [23]

graph

no FT 0.5375 0.4894 0.905 0.971

20 0.65 (0.7875) 0.645 (0.7744) 0.9034 0.9695
30 0.6 (0.7625) 0.55 (0.8150) 0.9034 0.9696
40 (0.85) (0.906) 0.8998 0.9679

fp

no FT 0.5875 0.515 0.880 0.959

20 0.6 (0.7125) 0.5425 (0.7832) 0.8820 0.9596
30 0.7 (0.8875) 0.61 (0.8994) 0.8734 0.9529
40 (0.825) (0.8513) 0.8786 0.9579

PROTAC-DB [44] graph

no FT 0.53 0.4341 0.905 0.971

20 0.5063 (0.515) 0.4341 (0.4602) 0.905 0.9715
30 0.5214 (0.555) 0.4587 (0.5474) 0.9023 0.9697
40 0.5083 (0.51) 0.4583 (0.4781) 0.9048 0.9712
50 0.57 (0.6) 0.522 (0.6142) 0.8993 0.968
60 0.55 (0.615) 0.5097 (0.6389) 0.8984 0.9672
70 0.5167 (0.675) 0.4433 (0.6857) 0.8954 0.9659
80 0.55 (0.685) 0.4725 (0.7281) 0.8975 0.9672

generated graph

no FT 0.5594 0.5255 0.905 0.971

20 0.5741 (0.5842) 0.5437 (0.5629) 0.8971 0.9675
30 0.5775 (0.6139) 0.5444 (0.6117) 0.8969 0.9673
40 0.5656 (0.6535) 0.5612 (0.6686) 0.8942 0.9659
50 0.5882 (0.604) 0.5692 (0.589) 0.9012 0.9694
60 0.5823 (0.6485) 0.5756 (0.6566) 0.8887 0.9632
70 0.6034 (0.6287) 0.6177 (0.6527) 0.8907 0.9643
80 0.6316 (0.7376) 0.6357 (0.7752) 0.8847 0.9616



Table S4.3: Performance metrics showcasing the improvement on specific datasets after fine-tuning
at different fine-tuning dataset sizes with overlapping pairs (molecules can appear in multiple pairs).
No FT refers to the performance of the pre-trained model on those datasets. Accpt and AUCpt are
determined on the pre-training test set and are based on the score difference (as during training) not
the score itself. The values for the fine-tuned versions always show metrics on the dataset excluding
the training molecules (with evaluation size neval) and the full dataset in brackets.

set mode pft neval Acc AUC Accpt AUCpt

CP [23]

graph

no FT 7162 0.6319 0.6446 0.905 0.971

20 7122 0.8869 (0.8869) 0.9543 (0.9544) 0.9037 0.9639
50 7062 0.9598 (0.9598) 0.9933 (0.9933) 0.9008 0.9622
100 6962 0.9779 (0.9779) 0.9978 (0.9978) 0.8984 0.9609
500 6162 0.9982 (0.9982) 1.0 (1.0) 0.8773 0.9469
1000 5163 0.9983 (0.9983) 1.0 (1.0) 0.8662 0.941
2000 3371 0.9990 (0.9990) 1.0 (1.0) 0.8497 0.9318

fp

no FT 7162 0.7008 0.7566 0.880 0.959

20 7122 0.8489 (0.8489) 0.9201 (0.9207) 0.8761 0.9471
50 7062 0.8833 (0.8830) 0.9517 (0.9487) 0.8721 0.944
100 6962 0.9102 (0.9102) 0.9679 (0.9689) 0.8688 0.9403
500 6162 0.9789 (0.9789) 0.9970 (0.9974) 0.8564 0.9285
1000 5164 0.9901 (0.9901) 0.9989 (0.9993) 0.8415 0.9168
2000 3372 0.9965 (0.9965) 0.9997 (0.9999) 0.8179 0.8981

MC [23]

graph

no FT 80 0.5375 0.4894 0.905 0.971

20 59 0.6625 (0.6625) 0.5829 (0.6656) 0.8985 0.9607
50 41 0.775 (0.775) 0.7273 (0.8175) 0.8971 0.9593
100 32 0.8125 (0.8125) 0.8155 (0.8244) 0.8995 0.9609
500 20 0.9 (0.9) 0.6813 (0.9375) 0.8698 0.9414

fp

no FT 80 0.5875 0.515 0.880 0.959

20 60 0.6375 (0.6375) 0.4733 (0.6313) 0.8797 0.9502
50 44 0.85 (0.85) 0.7789 (0.9106) 0.8669 0.9415
100 29 0.925 (0.9250) 0.8389 (0.9484) 0.8545 0.9312
500 20 0.95 (0.95) 0.8542 (0.9612) 0.8324 0.9118

18



S4.1.1 CP test set

(a) Graph (GGLGGL) (b) Morgan counts

Figure S4.2: ROC curves showcasing the ability to distinguish HS from ES in the CP test set using
the graph-based FSscore or the fp-based FSscore. The fine-tuning was done with 50 pairs and these
100 molecules were excluded from the plots.

(a) Graph (GGLGGL) (b) Morgan counts

Figure S4.3: Summary of Acc, SN and SP for classifying the molecules from the CP test set as either
HS or ES. The fine-tuning was done with 50 pairs and these 100 molecules were excluded from the
plots.
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S4.1.2 MC test set

(a) Graph (GGLGGL) (b) Morgan counts

Figure S4.4: ROC curves showcasing the ability to distinguish HS from ES in the MC test set using
the graph-based FSscore or the fp-based FSscore. The fine-tuning was done with 20 pairs and these
40 molecules were excluded from the plots.

(a) Graph (GGLGGL) (b) Morgan counts

Figure S4.5: Summary of Acc, SN and SP for classifying the molecules from the MC test set as either
HS or ES. The fine-tuning was done with 20 pairs and these 40 molecules were excluded from the
plots.
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S4.2 meanComplexity dataset

Table S4.4: Performance metrics showcasing the improvement on the meanComplexity dataset
(Sheridan et al. [33]) after fine-tuning at different fine-tuning dataset sizes with (unique = yes) or
without overlapping pairs (molecules can appear in multiple pairs). No FT refers to the performance
of the pre-trained model on those datasets. Accpt and AUCpt are determined on the pre-training
test set and are based on the score difference (as during training) not the score itself. The values for
the fine-tuned versions always show metrics on the dataset excluding the training molecules (with
evaluation size neval) and the full dataset in brackets.

dataset unique mode pft neval PCC Accpt AUCpt

meanComplexity [33]

yes

graph

no FT 1681 0.51 0.905 0.971

20 1641 0.61 0.9034 0.9701
30 1621 0.63 0.9035 0.9697
40 1601 0.66 0.9033 0.9697
50 1581 0.66 0.9028 0.9689

fp

no FT 1681 0.49 0.880 0.959

20 1641 0.58 0.8768 0.9569
30 1621 0.68 0.8668 0.9492
40 1601 0.68 0.8483 0.9353
50 1581 0.67 0.8674 0.9502

no

graph

no FT 1681 0.51 0.905 0.971

20 1649 0.55 0.8995 0.9615
50 1582 0.51 0.9017 0.963
100 1552 0.73 0.8921 0.9564
500 1291 0.84 0.8765 0.9447

fp

no FT 1681 0.49 0.880 0.959

20 1648 0.51 0.8809 0.9513
50 1584 0.59 0.8763 0.9475
100 1538 0.7 0.8632 0.9377
500 1292 0.8 0.8412 0.9212

(a) Pre-trained model (b) Fine-tuned graph-based model (c) Fine-tuned fp-based model

Figure S4.6: Heat maps displaying the correlations (PCC) between all scores including the meanCom-
plexity (mC) obtained on molecules from the meanComplexity dataset. The plots based on fine-tuned
models excluded the fine-tuning data (50 pairs).
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Figure S4.7: Correlations (PCC) between the meanComplexity and the FSscore fine-tuned with
different dataset sizes and with unique (left) or overlapping (right) pairs for both graph and fingerprint
(FP) representations. The dashed line indicates the PCC of the SA score to the meanCompelxity
being the best performing score we have tested.

S5 Example structures

S5.1 Hold-out test set

Figure S5.8: Structures from the hold-out test set scored by the pre-trained graph (GGLGGL) model.
Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high synthetic
feasibility).
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Figure S5.9: Structures from the hold-out test set scored by the pre-trained fingerprint (Morgan
counts) model. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high
synthetic feasibility).

Figure S5.10: Structures from the hold-out test set scored by the pre-trained fingerprint (Morgan
boolean) model. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore
(high synthetic feasibility).

S5.2 CP and MC test sets

Figure S5.11: Structures from the CP test set scored by the pre-trained graph (GGLGGL) model.
Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high synthetic
feasibility). The labels below indicate the ground truth.
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Figure S5.12: Structures from the CP test set scored by the pre-trained fingerprint (Morgan counts)
model. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high
synthetic feasibility). The labels below indicate the ground truth.

Figure S5.13: Structures from the CP test set scored by the fine-tuned graph (GGLGGL) model
using 50 pairs. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high
synthetic feasibility). The labels below indicate the ground truth.

Figure S5.14: Structures from the CP test set scored by the fine-tuned fingerprint (Morgan counts)
model using 50 pairs. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore
(high synthetic feasibility). The labels below indicate the ground truth.

24



Figure S5.15: Structures from the MC test set scored by the pre-trained graph (GGLGGL) model.
Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high synthetic
feasibility). The labels below indicate the ground truth.

Figure S5.16: Structures from the MC test set scored by the pre-trained fingerprint (Morgan counts)
model. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high
synthetic feasibility). The labels below indicate the ground truth.

Figure S5.17: Structures from the MC test set scored by the fine-tuned graph (GGLGGL) model
using 30 pairs. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high
synthetic feasibility). The labels below indicate the ground truth.
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Figure S5.18: Structures from the MC test set scored by the fine-tuned fingerprint (Morgan counts)
model using 30 pairs. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore
(high synthetic feasibility). The labels below indicate the ground truth.

S5.3 PROTAC-DB

Figure S5.19: Structures from PROTAC-DB scored by the pre-trained graph (GGLGGL) model.
Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high synthetic
feasibility).
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Figure S5.20: Structures from PROTAC-DB scored by the fine-tuned graph (GGLGGL) model
using 50 pairs. Upper row: Low FSscore (low synthetic feasibility). Lower row: High FSscore (high
synthetic feasibility).
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S5.4 REINVENT case study

Figure S5.21: Structures from the three agents trained in the REINVENT case study. Upper row:
Samples from the first agent optimized for docking to DRD2. Middle row: Samples from agent
optimized to the FSscore.Lower row: Samples from agent optimized for SA score.
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S6 Learning curves

Figure S6.22: Learning curves of the training and validation set for all model variations during
pre-training for 250 epochs. The training set was split into 25 subsets and the model was trained on
each of them for 10 epochs explaining the oscillating nature of the curves.
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Figure S6.23: Learning curves of fine-tuning the graph-based (GGLGGL) model with varying
learning rate and number of pairs used from the chirality test set. Upper row: Training metrics.
Middle row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training test set.
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Figure S6.24: Learning curves of fine-tuning the fp-based (Morgan chiral count) model with varying
learning rate and number of pairs used from the chirality test set. Upper row: Training metrics.
Middle row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training test set.
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Figure S6.25: Learning curves of fine-tuning the graph-based (GGLGGL) model with varying
learning rate and number of pairs used from the CP test set. Upper row: Training metrics. Middle
row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training test set.
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Figure S6.26: Learning curves of fine-tuning the fp-based (Morgan count) model with varying
learning rate and number of pairs used from the CP test set. Upper row: Training metrics. Middle
row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training test set.
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Figure S6.27: Learning curves of fine-tuning the graph-based (GGLGGL) model with varying
learning rate and number of pairs used from the MC test set. Upper row: Training metrics. Middle
row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training test set.
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Figure S6.28: Learning curves of fine-tuning the fp-based (Morgan count) model with varying
learning rate and number of pairs used from the MC test set. Upper row: Training metrics. Middle
row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training test set.
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Figure S6.29: Learning curves of fine-tuning the graph-based (GGLGGL) model with varying
learning rate and number of pairs used from the PROTAC-DB sample. Upper row: Training metrics.
Middle row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training test set.
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Figure S6.30: Learning curves of fine-tuning the graph-based (GGLGGL) model with varying
learning rate and number of pairs used from the REINVENT case study. Upper row: Training
metrics. Middle row: Validation metrics. Lower row: Metrics on 5,000 samples from the pre-training
test set.
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