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Abstract
We compared six methods for classification-001
based scoring of an assessment center (AC) ex-002
ercise that tests managerial coaching skills. The003
accurate scoring of these skills is crucial for se-004
lecting the most capable job candidates. Four of005
the methods we employed were based on fine-006
tuning — with Gemma-7b, Llama3-8b, Phi-3,007
and RoBERTa-base, respectively. The other008
two methods were zero-shot prompting and009
few-shot prompting with GPT-4o. Phi-3 and010
Gemma-7b performed the best across the fine-011
tuned LLMs, and Llama3-8b followed them012
closely. RoBERTa performed robustly, it had013
the best performance for one of the coaching014
skills, but in general performed slightly lower015
than the fine-tuned LLMs. Zero-shot and few-016
shot prompting with GPT-4o performed the017
worst, but zero-shot performed better than few-018
shot. The pattern of results indicates that the019
complexity and psychological nature of each020
skill might be interacting with model perfor-021
mance.022

1 Introduction023

The Assessment Center (AC; plural ACs) is a pro-024

cess consisting of multiple written, group, and role-025

play exercises that simulate real-work situations.026

These exercises engage managerial job candidates027

and incumbents (henceforth participants) to display028

the essential knowledge, skills, abilities, and other029

attributes necessary for successful performance on030

the job (Brannick et al., 2012). Thus, participants’031

performance on the AC can be seen as a proxy032

of their actual performance on the job. ACs are033

still one of the most robust and valid assessment034

methods for selecting job candidates (Sackett and035

Dreher, 1982), and they also provide incumbents036

with feedback around their leadership development037

(Krause and Thornton III, 2009).038

Despite their strong job relatedness and face va-039

lidity in the eyes of hiring managers, the AC is still040

expensive to implement. First, there are logistical041

challenges. ACs require several psychologically- 042

trained professionals (henceforth called assessors). 043

Assessors observe, record, and score skills dis- 044

played by the participants across many exercises. 045

In-person ACs and subsequent scoring can take 2- 046

3 days and cost thousands of dollars (e.g., travel 047

expenses for the participants and wages for the 048

assessors). Second, there are scoring challenges. 049

Several assessors have to read dozens of text re- 050

sponses and rate whether multiple skills are dis- 051

played. This is cognitively challenging for the 052

assessors and can negatively affect the quality of 053

their ratings (Gaugler and Thornton, 1989). Rat- 054

ings from two or more assessors can be averaged 055

and cutoff-banded, which can produce more reli- 056

able final scores. However, these transformations 057

might also mask implicit biases and unreliability 058

(i.e., lack of calibration with the rating rubric) com- 059

ing from each assessor. 060

LLM-based scoring can make AC exercises a 061

more efficient and easily scaled method for testing 062

participants. Instead of multiple assessors read- 063

ing and scoring texts, LLMs can handle the labor- 064

intensive text analysis and evaluation process. In an 065

ideal world, to produce reliable final scores and pre- 066

vent LLMs from fabricating unreliable language, 067

LLMs can act as the primary scorer, while a hu- 068

man assessor can then adjudicate the edge cases 069

in which LLMs may have produced a false posi- 070

tive or false negative. Additionally, LLMs have 071

been pretrained on vast amounts of text data and 072

consist of billions of parameters. Therefore, they 073

do not require as much fine-tuning data as earlier 074

Transformer-encoder models (e.g., RoBERTa (Liu 075

et al., 2019)). In other words, LLMs have "seen" 076

so much natural language during their training that 077

they do not require that much fine-tuning data. 078

In this research, we test, for the first time, using 079

fine-tuned LLMs to score AC exercises. Our results 080

show LLMs to be equal and, in general, surpass the 081

performance of a base Transformer encoder model 082
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(i.e., RoBERTa). Our main contribution is introduc-083

ing and testing innovative NLP modeling methods084

to the assessment design and administration field.085

The latter predominantly lies within the sub-fields086

of industrial-organizational and educational psy-087

chology. By applying LLM-based scoring to ACs,088

testing companies can build assessments faster and089

sell them for cheaper prices and at a greater volume.090

This might eventually allow more job candidates091

to showcase their true skills (instead of taking a092

personality test for example) during the application093

process as well and help them develop their skills094

once they are hired.095

2 ML Algorithms for Scoring AC096

Exercises097

Participants in ACs provide open-ended, loosely098

structured, and somewhat long relative responses099

(i.e., average length of 100 to 200 words) to situ-100

ations posing a task or challenge (e.g., “How will101

you get X’s commitment to change their behav-102

ior?”, “How will you maintain Y’s confidence in103

project Z.”). Thus, participants’ answers are es-104

sentially short essays. In the past, recurrent neu-105

ral networks (RNNs) and long short-term memory106

(LSTM) neural networks have performed well for107

short essays scored with an objective answer rubric108

(Taghipour and Ng, 2016). Also, some studies used109

a combination of these networks to hierarchically110

pool embeddings of words, sentences, and whole111

essays (Dong et al., 2017; Riordan et al., 2017).112

Many times, the participant’s texts contain113

metaphorical language, context clues, and single114

words that assessors must reflect on as a whole115

to decide if the desired skill was shown. Because116

of their properties of sequential processing and re-117

taining past information through past hidden states118

(Khan and Huang, 2020), RNN, LSTM, and even119

bi-directional LSTM architectures may lose their120

attention over longer texts (Liu et al., 2015).121

The Transformer, a parallalizable architecture122

(Vaswani et al., 2017), is capable of handling se-123

quential text inputs via contextualized embeddings124

and self-attention mechanisms that simultaneously125

focus on important parts of text while retaining the126

entire text as context. Transformer-encoder mod-127

els are built using deep neural networks to capture128

the meaning of text (i.e., masked language mod-129

els)(Devlin et al., 2018). Since late 2022, the field130

has witnessed a significant shift with the explosion131

of Large Language Models (LLMs), with billions132

of parameters, built upon the Transformer archi- 133

tecture. These LLMs have the ability to generate 134

human-quality responses to a given prompt or text 135

input. Scoring AC texts can thus be treated as an 136

LLM auto-completion task in which the input is 137

a participant’s text with a final question of “Did 138

the author do behavior A in the preceding text – 139

yes or no?” Behind the “yes” or “no,” the LLM 140

will produce token probability values, which can 141

be used to establish confidence in the generated 142

answer. Instead of prompting the LLM to look for 143

the correct answers to the exercise, we can also 144

continue training the LLM using transfer learning 145

(Howard and Ruder, 2018), and more specifically, 146

fine-tuning. Fine-tuning augments the power of the 147

LLM’s comprehensive language vocabulary with 148

the vocabulary of the additional, highly domain- 149

specific data. In this way, the LLM learns the id- 150

iosyncrasies of the downstream task. 151

3 Methodolody 152

3.1 Data 153

We used archival data from a US leadership de- 154

velopment company of 6,910 (train set N = 6,111; 155

test set N = 799) managers from various compa- 156

nies assessed in English. Only ∼30% managers 157

shared their demographic data. It appeared that par- 158

ticipants were more male (22% vs. female 17%), 159

white (23% vs. non-white 12%), and below 40 160

years old (22% vs. 16% above 40). 161

Participants wrote a coaching email (character 162

length M = 1,181; SD = 462) to an irritable and 163

often late-to-work employee. Trained assessors 164

independently scored responses on seven coach- 165

ing skills: gathers information about the problem 166

(S1), empathizes with the employee (S2), main- 167

tains self-esteem of the employee (S3), describes 168

the problem’s impact on the employee’s career (S4), 169

empowers the employee to maintain accountability 170

(S5), offers support and resources (S6), and checks 171

for understanding of the problem (S7). Skills S1, 172

S4, S6, and S7 are more procedural because they 173

are action-oriented and straightforward (e.g., there 174

are limited ways in which one can ask if some- 175

one understands). Skills S2, S3, and S5 are more 176

psychological because they require expressions of 177

feelings, appreciation, and trust. 178

Assessors scored the texts on whether partici- 179

pants demonstrated each skill (score = 1) or did 180

not demonstrate it (score = 0). Assessors regularly 181

undergo calibration trainings, and their inter-rater 182
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Model Metric S1 S2 S3 S4 S5 S6 S7

Gemma-7b
Precision 0.884 0.544 0.899 0.775 0.622 0.718 0.763
Recall 0.875 0.725 0.916 0.763 1.00 0.909 0.785
F1 0.879 0.621 0.907 0.769 0.767 0.802 0.774

Llama3-8b
Precision 0.888 0.542 0.835 0.76 0.653 0.746 0.657
Recall 0.881 0.762 0.943 0.733 0.780 0.830 0.727
F1 0.884 0.633 0.886 0.746 0.711 0.786 0.690

Phi-3
Precision 0.893 0.627 0.864 0.783 0.632 0.752 0.766
Recall 0.868 0.737 0.951 0.727 0.973 0.868 0.779
F1 0.880 0.678 0.905 0.754 0.767 0.806 0.772

GPT-4o Zero-Shot
Precision 0.795 0.747 0.756 0.758 0.668 0.759 0.612
Recall 0.790 0.691 0.657 0.760 0.608 0.728 0.616
F1 0.791 0.712 0.624 0.757 0.611 0.716 0.587

GPT-4o Few Shot
Precision 0.754 0.745 0.733 0.717 0.720 0.720 0.606
Recall 0.741 0.660 0.579 0.651 0.417 0.716 0.584
F1 0.743 0.689 0.504 0.582 0.292 0.716 0.478

RoBERTa-base
Precision 0.819 0.590 0.834 0.451 0.997 0.711 0.620
Recall 0.868 0.756 0.944 0.626 0.793 0.893 0.641
F1 0.843 0.663 0.885 0.524 0.883 0.792 0.631

Table 1: Table showcasing metrics for scoring seven skills S1 to S7 on candidate responses using fine-tuned LLMs
and zero/few-shot GPT-4o and RoBERTa-base. The support (0/1) for the test set for skills S1 to S7 in order are
328/471, 639/160, 390/409, 465/334, 302/497, 380/419, and 454/345, respectively.

reliability is high. External company studies shared183

with us indicate that the average inter-rater agree-184

ment for the skills’ scores ranges from 75% to 85%.185

3.2 LLM Modeling186

Gemma-7b (Team et al., 2024), Llama3-8b and187

Phi-3 (Abdin et al., 2024) were fine-tuned to score188

each of the seven coaching skills on independent189

subsets of the train data set, each containing ran-190

domly sampled 1000 0s and 1000 1s. Therefore,191

each LLM was fine-tuned on the same balanced192

dataset within each of the skills, but the sampled193

datasets were different between the skills. Notably,194

we fine-tuned RoBERTa on two, 3x larger subsets195

of 0s and 1s from the training data (average N(1’s)196

= 2460, average N(0’s) = 2847).197

3.2.1 Training Details198

Due to resource constraints, we used Q-LoRA199

(r=1024, α=64) (Dettmers et al., 2024) to train the200

LLMs. We utilized a single A100-80GB vRAM201

and V100-16GB-vRAM GPU on Databricks to202

train the LLMs and RoBERTa-base models respec-203

tively for 2000 steps with a batch size of 8. We ac-204

cessed the models from HuggingFace Transformers205

(Wolf et al., 2019) where we performed 4-bit quan-206

tization of the LLMs using BitsAndBytes package.207

We fine-tuned using a custom prompt based on208

the widely-used Alpaca instruction-tuning prompt 209

format, where the LLM responds with "Yes" or 210

"No" sentences, later parsed into binary labels. For 211

each model, we inference multiple checkpoints and 212

report the test scores of the best checkpoint. 213

3.3 Prompts Development 214

Zero- and few-shot prompting was performed with 215

GPT-4o 2024-05-13. More sophisticated prompt 216

techniques were tried (e.g., chain-of-thought) but 217

did not show better performance. For the sake of 218

parsimony, we only report the simpler prompt tech- 219

niques. Using a subset of 100 cases from the test 220

set, prompt engineering was performed to develop 221

a prompt template. These templates were then 222

adapted for each coaching skill. For the zero-shot 223

prompt, the first section provided a short descrip- 224

tion of the exercise, an explanation of the scoring 225

task, and a description of the coaching skill. The 226

next section provided the response to be scored. 227

The last section instructed the model on how to 228

score the response for the coaching skill and the 229

output format. The few-shot prompt followed the 230

same structure except for an additional section that 231

provided six example responses labeled 0 or 1 for 232

the coaching skill. These examples were selected 233

from the training set to demonstrate diverse man- 234

ifestations of each coaching skill. The set of six 235
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examples differed for each coaching skill.236

4 Results237

Table 1 shows the results of our experiments. Fine-238

tuned LLMs (Gemma-7b, Llama3-8b, and Phi-3)239

demonstrably surpassed zero-shot and few-shot240

prompts of GPT-4o on various metrics (precision,241

recall, F1 score) across all skills except for S2.242

Phi-3, the LLM with the most parameters (14B),243

achieved the highest performance across most244

skills. We also observed that there is no substantial245

difference between the scores of RoBERTa-base246

and the fine-tuned LLMs on behaviors S2, S3, and247

S6. Notably, RoBERTa-base was the top performer248

for S5, with a difference of more than .11 over249

Gemma-7b and Phi-3. More often than not, the250

fine-tuned RoBERTa-base models’ F1 scores ex-251

ceed the F1 scores achieved by GPT-4o prompting.252

All models except for zero-shot prompting strug-253

gled to perform well on S2, where the observed254

F1 scores are less than 0.70. However, the per-255

formance of the zero-shot prompting substantially256

exceeded that of GPT-4o few-shot prompting ex-257

cept for S6.258

Two U.S. federal laws — the Civil Rights Act259

(1964) and the Age Discrimination in Employment260

Act (1967) — mandate that pre-employment as-261

sessment tools must not discriminate based on gen-262

der, race, and age. The protected groups in these263

categories are females, non-Whites (i.e., Blacks,264

Asians, and Hispanics), and people at least 40 years265

old. We performed independent samples t-tests on266

the Phi3 predicted test set scores to investigate if267

there are any group differences that could suggest268

the presence of bias against protected groups. All269

35 group mean comparisons were non-significant.270

5 Discussion271

Overall, our findings highlight the superior perfor-272

mance of fine-tuned LLMs compared to GPT-4o273

prompting and fine-tuned RoBERTa-base. This274

suggests that tasks requiring a nuanced understand-275

ing of language might benefit from altering the276

weights of LLMs through fine-tuning. However,277

there are important caveats. First, RoBERTa per-278

formed the best for the empowering employees279

skill (S5), and had strong performance against280

the LLMs for empathizing (S2), maintaining self-281

esteem (S3), and offering support (S6). These282

skills, especially S2, S3, and S5, are more psy-283

chological and involve idiosyncratic language.284

RoBERTa may perform well because it was fine- 285

tuned on more exercise data which allowed the 286

model to learn more of the language expression of 287

these skills. Thus, for psychological skills, fine- 288

tuning with LLMs should be performed with as 289

much training data as possible. Second, the perfor- 290

mance decline for few-shot compared to zero-shot 291

prompting shows that for text classification tasks 292

with high linguistic variability and complexity (like 293

maintaining self-esteem and empowering), provid- 294

ing a small set of examples can be detrimental. For 295

such tasks, the examples are unlikely to sufficiently 296

represent the relevant language. Further study of 297

whether a sufficient number of examples can be 298

used in few-shot prompting to match the perfor- 299

mance of fine-tuned models is warranted. Third, all 300

fine-tuned models failed to surpass an F1 of .80 for 301

empathizing — the most complex and emotionally- 302

laden coaching skill. Fine-tuning might not be 303

the best method for modelling such skills because 304

the custom data for fine-tuning might always miss 305

some of the language. Thus, the best performance 306

of zero-shot prompting for empathizing might not 307

be the result of GPT-4o having seen vast amounts of 308

psychological data during training. Rather, it might 309

be the result of the three LLMs and RoBERTa be- 310

ing fine-tuned on data that lacks enough variability 311

in the expression of empathy, causing many false 312

positives (as evidenced by their low precision). 313

6 Limitations 314

In our paper we could not show results for different 315

sample sizes of the fine-tuning custom data. Per- 316

haps LLMs performance would have improved for 317

the psychological skills. Furthermore, due to label 318

distribution misalignment across the skills (i.e. par- 319

ticipants have different proficiency in each skill), 320

we did not have the same fine-tuning training data 321

set for the seven skills. Finally, we were limited by 322

our A100 GPU resources and could not fine-tune 323

LLMs of more than 14B parameters. This could 324

have changed the results as bigger models might 325

have evolved a better understanding of the token 326

relationships in the complex coaching language. 327

7 Conclusion 328

Small-sized, fine-tuned LLMs are a valid method 329

to score psychological language written in ACs. 330

They perform better than base Transformers but 331

for classifying more complex language they might 332

require more fine-tuning high-quality custom data. 333
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