

000 SYMMETRIC DUAL-PATH INTEGRATION FOR PROTEIN 001 INVERSE FOLDING 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Protein inverse folding aims to recover amino acid sequences for a given 3D pro-
007 tein structure, underpinning broad applications such as enzyme engineering and
008 drug discovery. Current methods often follow a serial pipeline, in which a struc-
009 ture encoder predicts a coarse sequence, which is then refined by protein language
010 models (PLMs). However, because PLMs only perform post-hoc sequence edits,
011 the refinement is bounded by the quality of upstream predictions. Thanks to recent
012 multimodal protein language models (MPLMs), we could directly encode struc-
013 ture to generate sequences with pretrained structural knowledge, but we observe
014 that they are not effective for inverse folding. Therefore, we introduce a harmonic
015 dual-path architecture that both leverages PLMs for pretrained sequence knowl-
016 edge and MPLMs for pretrained structural knowledge to iteratively guide protein
017 sequence generation. Through extensive experiments across standard protein in-
018 verse folding benchmarks, our method achieves state-of-the-art performance, sur-
019 passing prior approaches, and ablation studies validate the rationale of our sym-
020 metric design, revealing a promising direction for the community.

021 1 INTRODUCTION

022 Protein sequence and structure are two sides of the same coin. The protein sequence specifies the
023 order of amino acids (residues), and once known, the corresponding protein can be chemically syn-
024 thetized (Defresne et al., 2021; Khakzad et al., 2023; Huang et al., 2016). Conversely, protein
025 sequences naturally fold into higher-order three-dimensional (3D) structures, and distinct structures
026 typically confer distinct functions (Gao et al., 2020). Mapping between sequence and structure in
027 both directions is therefore a central theme in protein science (Kuhlman & Baker, 2000). The for-
028 ward direction is the well-known protein folding task, which predicts structure (and hence function)
029 from sequence (Jumper et al., 2021; Baek et al., 2021; Abramson et al., 2024). In this work, we fo-
030 cus on the opposite direction, *protein inverse folding*, which aims to design an amino acid sequence
031 that will stably fold into a specified 3D structure (Dauparas et al., 2022; Gao et al., 2022a; Yi et al.,
032 2023; Ren et al., 2024), enabling applications such as enzyme engineering and drug discovery. For
033 example, to add a new binding site on the surface of an existing enzyme, researchers first design
034 the local 3D structure required for binding, then use inverse folding methods to derive candidate
035 sequences for synthesis and experimental validation.

036 Traditional protein inverse folding methods directly encode the 3D structure and perform position-
037 wise amino acid (residue) classification (one-to-one mapping), as shown in Figure 1(a). Constrained
038 by dataset scale and model capacity, their performance is limited. Besides, since the structure en-
039 coder ignores sequence context, the resulting sequences are usually biologically unreasonable. With
040 the advent of large pretrained protein sequence models, i.e., protein language models (PLMs) (Rives
041 et al., 2021; Lin et al., 2023; Madani et al., 2023; Elnaggar et al., 2021; Brandes et al., 2022), re-
042 cent methods (Gao et al., 2023; Zhu et al., 2024) often append a post-hoc refinement stage that uses
043 PLMs to revise the output of the structure encoder. For example, as shown in Figure 1(b), if the en-
044 coder proposes “...LISE...” but assigns low confidence to “I”, the PLM could leverage pretrained
045 sequence knowledge to decide whether “I” should be replaced by another residue, conditioning on
046 the context of “I”, thereby improving sequence plausibility. However, such refinement is decou-
047 pled from the original structural evidence and is inherently upper-bounded by the first-stage output:
048 when the proposed sequence already violates structural constraints, PLM edits may further degrade
049 structural compatibility, compounding errors for inverse folding.

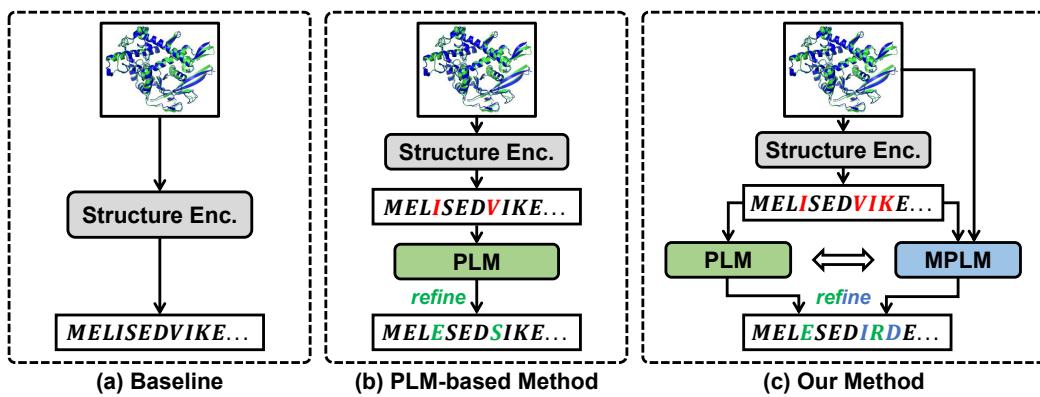


Figure 1: Comparison of various inverse folding frameworks: (a) The baseline model is trained from scratch without utilizing any pretrained knowledge to directly predict amino acid sequence from the protein structure. (b) PLM-based methods refine the output sequence of the structure encoder with pretrained sequence knowledge. (c) Our proposed DualFold symmetrically utilizes the pretrained knowledge of sequence and structure to refine the coarse sequence.

To bridge the gap between pretrained knowledge and given structures during refinement, we find that recent large pretrained multimodal protein models, i.e., multimodal protein language models (MPLMs) (Hayes et al., 2025; Wang et al., 2024; Hsieh et al., 2025), can directly map 3D structures to sequences and are naturally suited to the inverse folding task, even in a zero-shot manner. However, in practice, we find that MPLMs used in isolation are ineffective for this task, perhaps due to structural distribution shifts between pretraining and this task or their limited sequence modeling capacity. Therefore, we introduce **DualFold**, a harmonic dual-path framework that fuses PLMs and MPLMs in parallel to provide complementary pretrained knowledge for sequence generation. Specifically, as shown in Figure 1(c), our method first follows the traditional approach to derive a coarse sequence via a structure encoder, then we employ PLMs to provide pretrained sequence context knowledge, and meanwhile, leverage MPLMs to provide pretrained structural knowledge to refine the proposed sequence. Unlike the traditional uses of PLMs, our balanced dual-path refinement simultaneously accounts for contextual dependencies and the residue-specific positional information, thereby addressing the refinement gap.

Furthermore, because the dependence on structure and sequence context varies across residues, we design an adaptive per-residue fusion module that dynamically integrates structure cues, context dependencies, and structural priors so that the refinement can maintain compatibility with residue-specific biochemical characteristics. We also introduce a self-correction iterative training strategy to align training with the inference routine. A structure encoder first proposes a coarse sequence, PLMs and MPLMs perform an initial refinement, and then stochastically mix the outputs with the coarse sequence before the final refinement stage. This iterative procedure mirrors the test-time iterative prediction manner and reduces the mismatch between training and testing.

On standard inverse folding benchmarks, including the widely used CATH (Orengo et al., 1997), TS50, and TS500 (Li et al., 2014), our method sets new state-of-the-art performance. Extensive ablations corroborate our findings and validate the proposed design, revealing the limitations of stand-alone MPLMs, the benefit of our dual-path architecture, and the effectiveness of our adaptive integration and self-correction modules. Our main contributions are summarized as follows:

- We diagnose the shortcomings of post-hoc refinement in current methods and argue that effective refinement must incorporate raw 3D evidence.
- We introduce MPLMs into the inverse folding and empirically show that MPLMs alone are insufficient for this task.
- We propose DualFold, which combines pretrained sequence and structural knowledge via adaptive fusion and self-correction for sequence generation, achieving SOTA performance across multiple benchmarks and informing future directions.

108 **2 RELATED WORK**

110 **Protein Inverse Folding.** Early approaches in protein inverse folding primarily relied on physics-
 111 based methods such as Rosetta Design (Liu & Kuhlman, 2006), which searched for low-energy
 112 sequences compatible with target backbones via sampling strategies like Monte Carlo simulation
 113 (Kuhlman & Bradley, 2019). While foundational, these methods were limited by approximate
 114 energy functions and high computational costs. The advent of deep learning (Kingma & Welling,
 115 2013; Goodfellow et al., 2014; Vaswani et al., 2017; LeCun et al., 2002; Devlin et al., 2019; Sohl-
 116 Dickstein et al., 2015) enabled the use of geometric deep learning, where protein structures are mod-
 117 eled as graphs and processed with GNNs or equivariant networks to map structures to sequences.
 118 Representative works include GraphTrans (Ingraham et al., 2019), GVP (Jing et al., 2020), and Pro-
 119 teinMPNN (Dauparas et al., 2022), which achieved strong sequence recovery through optimized
 120 graph representations and message passing. PiFold (Gao et al., 2022a) further improved efficiency
 121 with non-autoregressive predictions. Despite these advances, purely geometric models rely on lim-
 122 ited structure-sequence pairs and struggle to capture evolutionary covariation present in massive
 123 sequence databases. To address this, recent methods couple protein language models (PLMs) such
 124 as the ESM series (Rives et al., 2021; Lin et al., 2023) with geometric models. Typically, a geometric
 125 model first generates sequences, followed by refinement with PLMs, as in LM-Design (Zheng et al.,
 126 2023), Knowledge-Design (Gao et al., 2023), and Bridge-IF (Zhu et al., 2024). While effective, this
 127 serial pipeline suffers from decoupled refinement where PLMs lack access to structural constraints.
 128 In contrast, our work introduces a parallel dual-path refinement, ensuring refined sequences remain
 129 faithful to both evolutionary patterns and target structures.

130 **Multimodal Protein Language Models (MPLMs).** Recent MPLMs aim to unify sequences and
 131 structures under a single framework. ESM-3 (Hayes et al., 2025) embodies this direction by jointly
 132 modeling sequences, atomic coordinates, and functional annotations with Transformers, though its
 133 discretization of continuous coordinates constrains its direct application to inverse folding. Other
 134 notable MPLMs include DPLM-2 (Wang et al., 2024), a diffusion-based framework capable of han-
 135 dling discrete and structural modalities, and Evola (Zhou et al., 2025), an 80B-parameter model that
 136 integrates protein-specific knowledge for design and functional tasks. These models highlight the
 137 promise of MPLMs for generative protein tasks, though challenges remain in fully exploiting them
 138 for inverse folding. In this study, we harness the structure-aware capabilities of MPLMs through our
 139 proposed framework, further unlocking their potential for such tasks.

140 **3 METHOD**

141 **3.1 PRELIMINARIES**

142 **Baseline.** Protein inverse folding seeks to recover an amino acid sequence $\mathbf{s} = (s_1, s_2, \dots, s_\ell)$ from
 143 a given protein structure $\mathbf{x} = (x_1, x_2, \dots, x_\ell)$, where $s_i \in \mathcal{S}$ denotes the residue identity at position i ,
 144 \mathcal{S} is the set of amino acids, and x_i denotes the atomic coordinates for residue i . The one-hot encoding
 145 of s_i is $\mathbf{y}_i \in \{0, 1\}^{|\mathcal{S}|}$ with components $(\mathbf{y}_i)_a = \mathbb{I}\{a = s_i\}$, $a \in \mathcal{S}$, where \mathbb{I} is the indicator function.
 146 Given training set $\mathcal{D} = \{(\mathbf{x}, \mathbf{y})\}$, the baseline methods learn a structure encoder f_e producing per-
 147 position prediction (with entire structure of the protein), and the per-sample training objective could
 148 be written as sequence-averaged cross-entropy loss:
 149

$$\mathcal{L}_{\text{base}} = -\frac{1}{\ell} \sum_{i=1}^{\ell} \mathbf{y}_i \cdot \log \frac{\exp(f_e(\mathbf{x})_i)}{\sum_k \exp(f_e(\mathbf{x})_{i,k})}, \quad (1)$$

150 where $\exp(\cdot)$ is the exponential, $f_e(\mathbf{x})_i \in \mathbb{R}^{|\mathcal{S}|}$ is the predicted logits for s_i , and k indexes classes of
 151 \mathcal{S} . In training, one minimizes the empirical mean of $\mathcal{L}_{\text{base}}$ over all samples in the dataset \mathcal{D} .
 152

153 **PLM-based Method.** To incorporate sequence evolutionary knowledge, recent methods use a pro-
 154 tein language model (PLM) f_s to refine the predictions of an optimized structure encoder f_e^* . Specif-
 155 ically, they first train a structure encoder f_e via Eq. (1), and then finetune f_s conditioning on the
 156 outputs of f_e^* , to conduct post hoc refinement. The sequence-level training objective is:
 157

$$\mathcal{L}_{\text{plm}} = -\frac{1}{\ell} \sum_{i=1}^{\ell} \mathbf{y}_i \cdot \log \frac{\exp(f_s(\hat{\mathbf{s}})_i)}{\sum_k \exp(f_s(\hat{\mathbf{s}})_{i,k})}, \quad \hat{\mathbf{s}}_j = \operatorname{argmax}_k f_e^*(\mathbf{x})_{j,k}, \quad (2)$$

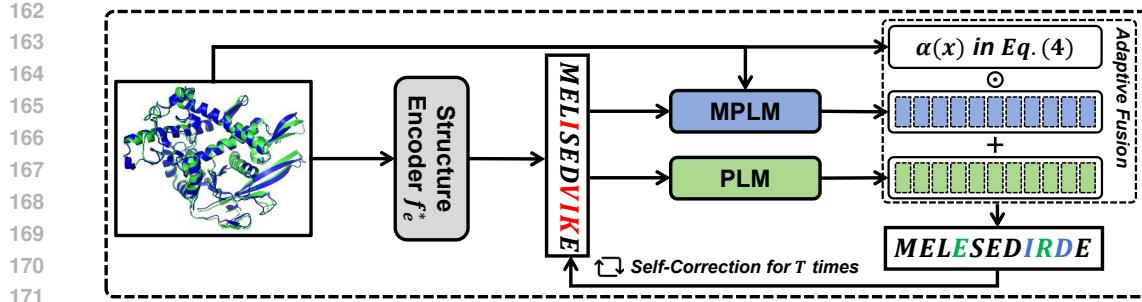


Figure 2: **Overview of DualFold.** DualFold employs a dual-path refinement framework integrating structural priors from MPLMs and evolutionary priors from PLMs. Starting with a pre-trained structure encoder f_e^* , initial predictions are refined through parallel structure and sequence branches. The adaptive fusion module combines these signals using structure-aware coefficients $\alpha(x)$ in Eq.(4), \odot denotes element-wise product, followed by iterative self-correction to align training with inference.

where \hat{s} is the output of the optimal (and frozen) structure encoder f_e^* , the argmax is taken over the class index k for each residue j , and f_s is trainable during finetuning. Note that, since no structure information x is available to f_s during refinement, the post-hoc editing is inherently limited by f_e^* .

3.2 OUR METHOD — DUALFOLD

Overview. To address the limitations of structure-ignorant refinement in PLM-based methods, we introduce DualFold, a symmetric dual-path architecture that couples structural priors from multimodal protein language models (MPLMs) with evolutionary priors from PLMs for stronger refinement. As shown in Figure 2, we first follow standard practice to train a structure encoder f_e by Eq. (1). We then encode structure knowledge via an MPLM and sequence knowledge via a PLM, and use them to adjust the sequence predictions through an *adaptive fusion* module. A *self-correction* scheme is further proposed to align training and inference to mitigate exposure bias and reduce error accumulation. Together, these components enable a more harmonious and effective use of pretrained knowledge for protein inverse folding.

Dual-Path Refinement. Following PLM-based practice, we first train a structure encoder via Eq. (1) to obtain f_e^* . We then incorporate *sequence* priors using a PLM f_s based on the predicted sequence $\hat{s} = \text{argmax } f_e^*(x)$ and incorporate *structure* priors using an MPLM f_m conditioned on x . These two signals are fused by a symmetric dual-path module f_{dual} , and the per-sample training objective of our dual-path refinement is:

$$\mathcal{L}_{\text{ours}} = -\frac{1}{\ell} \sum_{i=1}^{\ell} \mathbf{y}_i \cdot \log \frac{\exp(f_{\text{dual}}(f_s, \hat{s}, f_m, x)_i)}{\sum_k \exp(f_{\text{dual}}(f_s, \hat{s}, f_m, x)_{i,k})}, \quad (3)$$

where $\exp(\cdot)$ is the exponential function, \cdot is the dot product, k indexes classes of \mathcal{S} . To effectively fuse pretrained knowledge from both paths, we introduce an Adaptive Fusion Module that dynamically weights and blends their complementary cues. In addition, because inference aggregates more information sources, we propose a Self-Correction strategy that incrementally incorporates the dual paths step by step, thereby mitigating the train–test discrepancy.

Adaptive Fusion. Unlike PLM-based refinement, which derives priors solely from sequence context, our dual-path refinement jointly leverages sequence context and structure signals. Since some residues are tightly constrained by local geometry while others depend more on long-range sequence dependencies, we design a residue-wise Adaptive Fusion module that dynamically integrates these complementary cues:

$$f_{\text{dual}}(f_s, \hat{s}, f_m, x)_i = f_s(\hat{s})_i + \alpha(x)_i \cdot f_m(x, \hat{s})_i, \quad (4)$$

where \hat{s} denotes the sequence predicted by the frozen optimal structure encoder f_e^* , \cdot is the dot product, and f_s and f_m could be fine-tuned during training. The residue-wise structure-aware coefficient $\alpha(x)$ controls how strongly residue i is influenced by the corresponding structure and could be realized as $\alpha(x) = \mathbf{w}^\top f_e^*(x)$, where \mathbf{w} is a trainable projection vector.

216 **Self-Correction.** Current PLM-based methods typically perform iterative generation at inference,
 217 feeding the predicted sequence back into the PLM for several rounds, which induces a mismatch
 218 between one-step training and multi-step inference. Under our dual-path framework, this discrep-
 219 acy can be amplified since multiple knowledge sources are fused at each step. To address this, we
 220 introduce a Self-Correction strategy that unrolls the dual-path refinement during training to mirror
 221 the iterative inference procedure. The iterative process could be written as:

$$\hat{s}^{(0)} = \operatorname{argmax} f_e^*(\mathbf{x}) \quad (5)$$

$$\hat{s}_i^{(t)} = \operatorname{argmax}_k f_{\text{dual}}(f_s, \hat{s}^{(t-1)}, f_m, \mathbf{x})_{i,k}, \quad (6)$$

226 where $t = 1, \dots, T$ is iterative step and T is the total step. During training, we compute the loss
 227 using the refined prediction at T for the loss calculation.

229 4 EXPERIMENTS

231 4.1 EXPERIMENTAL PROTOCOL

233 **Datasets.** We train our model on CATH4.2 and CATH4.3. The CATH4.2 dataset consists of 18,024
 234 proteins for training, 608 proteins for validation, and 1,120 proteins for testing, following the same
 235 data splitting as GraphTrans (Ingraham et al., 2019). The CATH4.3 dataset includes 16,153 struc-
 236 tures for training, 1,457 for validation, and 1,797 for testing, following the same data splitting as
 237 ESMIF (Hsu et al., 2022).

238 For comprehensive evaluation, we assess our model on multiple protein structure datasets. We
 239 test on the CATH4.2 test set with 1,120 proteins and the CATH4.3 test set with 1,797 proteins
 240 to measure performance on protein folds similar to those seen during training. Additionally, we
 241 evaluate on the TS50 and TS500 datasets, comprising 50 and 500 proteins respectively as established
 242 by (Li et al., 2014). To examine our model’s generalization capabilities, we further test on the
 243 challenging CASP15 (Elofsson, 2023) and CASP16 (Yuan et al., 2025) monomeric tertiary structure
 244 targets, which include 45 and 50 proteins respectively and represent novel protein structures. The
 245 specific protein identifiers and their official release times for CASP15 and CASP16 are provided in
 246 Appendix A.3 to facilitate reproducibility and cross-study comparison.

247 **Baseline Models and Evaluation Metrics.** We compare DualFold with recent graph-based mod-
 248 els (StructGNN, GraphTrans (Ingraham et al., 2019), GCA (Tan et al., 2022), GVP (Jing et al.,
 249 2020), GVP-large (Hsu et al., 2022), AlphaDesign (Gao et al., 2022b), ESM-IF (Hsu et al., 2022),
 250 ProteinMPNN (Dauparas et al., 2022), PiFold (Gao et al., 2022a), GraDe-IF (Yi et al., 2023)), and
 251 PLM-based optimized models (LM-Design (Zheng et al., 2023), Knowledge-Design (Gao et al.,
 252 2023), Bridge-IF (Zhu et al., 2024)). We report perplexity and median recovery rate to assess per-
 253 formance (computation details in Appendix A.6), with evaluations on the CATH dataset divided
 254 into three protein types: Short proteins (length ≤ 100), Single-chain proteins (with only 1 chain in
 255 CATH), and All proteins.

256 **Implementation Details.** DualFold employs a frozen pre-trained PiFold encoder for fundamen-
 257 tal structural representation, while only the adaptive fusion MLP is fully fine-tuned. As language
 258 modeling backbones, we use the open-source ESM-3 (1.4B, MPLM) and its co-trained counterpart
 259 ESM-C (600M, PLM) (Hayes et al., 2025). LORA (Hu et al., 2022) is applied solely to MPLM and
 260 PLM with rank $r = 8$, scaling factor $\alpha = 32$, and dropout 0.1, leading to $\sim 0.1\%$ trainable parame-
 261 ters in total (further configuration details are provided in the Appendix A.5). Training is performed
 262 on a single NVIDIA A800 GPU with batch size 4, cosine learning rate scheduling, and typically
 263 converges within 5 epochs. For the self-correction training strategy, we set $T = 2$ (more details
 264 about the inference phase setting of T are in Appendix A.2). All results are reported based on this
 265 final configuration.

266 4.2 RESULTS AND ANALYSIS

268 Through the following Q&A, we provide in-depth discussions of the experimental results for pro-
 269 tein inverse folding, offering a comprehensive analysis of our DualFold model’s performance across
 various benchmarks. We address key questions regarding performance comparisons, architectural

270
 271 Table 1: Results comparison on the CATH4.2 and CATH4.3 datasets. Some benchmarked results
 272 are quoted from (Gao et al., 2023; Zhu et al., 2024). Perplexity (\downarrow) indicates sequence prediction un-
 273 certainty, where lower values are better; Recovery (% \uparrow) measures sequence accuracy, where higher
 274 is better. The best and suboptimal results are labeled with bold and underline.

275	276	Model	Perplexity \downarrow			Recovery % \uparrow		
			277	Short	Single-chain	All	278	Short
279	CATH4.2	StructGNN	8.29	8.74	6.40	29.44	28.26	35.91
		GraphTrans	8.39	8.83	6.63	28.14	28.46	35.82
		GCA	7.09	7.49	6.05	32.62	31.10	37.64
		GVP	7.23	7.84	5.36	30.60	28.95	39.47
		AlphaDesign	7.32	7.63	6.30	34.16	32.66	41.31
		ProteinMPNN	6.21	6.68	4.61	36.35	34.43	45.96
		PiFold	6.04	6.31	4.55	39.84	38.53	51.66
		GraDe-IF	5.49	6.21	4.35	45.27	42.77	52.21
		LM-Design	5.66	5.52	4.01	46.84	48.63	56.63
		Knowledge-Design	5.48	5.16	3.46	44.66	45.45	60.77
280	CATH4.3	Bridge-IF	5.68	5.06	3.83	43.86	48.96	58.59
		DualFold	4.69	4.01	3.23	50.00	55.45	63.11
		GVP-large	7.68	6.12	6.17	32.60	39.40	39.20
		ESM-IF	8.18	6.33	6.44	31.30	38.50	38.30
		+1.2M AF2 predicted data	6.05	4.00	4.01	38.10	51.50	51.60
		ProteinMPNN	6.35	6.25	4.89	40.73	41.18	47.69
		PiFold	5.50	5.76	4.44	43.84	44.32	50.62
		LM-Design	5.66	5.52	4.01	42.84	43.69	55.68
		Knowledge-Design	5.47	5.23	3.49	43.89	45.95	60.38
		Bridge-IF	5.17	4.63	3.68	50.00	53.49	58.93
281		DualFold	4.26	3.91	3.22	55.81	58.20	62.23

299
 300 innovations, generalization capabilities, ablation studies, and biological plausibility to systematically
 301 evaluate our approach’s contributions to the field.

303 Q1. How does DualFold perform on multiple benchmarks?

304 As shown in Table 1, DualFold achieves state-of-the-art performance across all evaluated bench-
 305 marks. On CATH4.2, it reaches a 63.11% overall sequence recovery rate, outperforming the best
 306 previous PLM-based method, Knowledge-Design, by 2.34% and exceeding structure-only methods
 307 such as PiFold by 11.45 percentage points. The gains are especially notable for diverse protein
 308 categories: recovery on short proteins (length ≤ 100) reaches 50.00%, an improvement of 5.34%
 309 over Knowledge-Design, while performance on single-chain proteins rises to 55.45%, 6.49% higher
 310 than Bridge-IF. These results highlight DualFold’s effectiveness in leveraging both sequence and
 311 structural information, particularly for structurally constrained proteins. On CATH4.3, the model
 312 maintains its advantage with a recovery rate of 62.23%, showing consistent improvements across
 313 datasets. Furthermore, DualFold achieves the lowest perplexity across all protein categories, indi-
 314 cating more confident and accurate sequence predictions.

315 As shown in Table 2, DualFold establishes new state-of-the-art results on both TS50 and TS500,
 316 which are more diverse than CATH. On TS50, it achieves a perplexity of 2.84 and recovery of
 317 66.02%, surpassing Knowledge-Design by 3.23 percentage points in recovery and reducing per-
 318 perplexity by 0.26. On the larger TS500, DualFold reaches 70.48% recovery with the lowest perplex-
 319 ity of 2.74. These consistent improvements, with perplexity reductions of 8.4% (TS50) and 4.2%
 320 (TS500), demonstrate both scalability and robustness of the dual-stream architecture in capturing
 321 sequence-structure relationships.

322 To further validate the generalization and generative capabilities of our model, we evaluated Du-
 323 alFold on the CASP15 and CASP16 datasets, which are drawn from the Critical Assessment of
 324 protein Structure Prediction (CASP) (Yuan et al., 2025) competitions and provide a standardized,

324
 325 Table 2: Results comparison on the TS50&TS500 dataset. Some benchmarked results are quoted
 326 from (Gao et al., 2023). The best and suboptimal results are labeled with bold and underline.

327 328 329 330 331 332 333 334 335 336 337 338 339	Model	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361		340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361	
		Perplexity ↓	Recovery% ↑	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361	Recovery% ↑
StructGNN	5.40	43.89	4.98	45.69	
GraphTrans	5.60	42.20	5.16	44.66	
GVP	4.71	44.14	4.20	49.14	
GCA	5.09	47.02	4.72	47.74	
AlphaDesign	5.25	48.36	4.93	49.23	
ProteinMPNN	3.93	54.43	3.53	58.08	
PiFold	3.86	58.72	3.44	60.42	
LM-Design	3.50	57.89	3.19	63.65	
Knowledge-Design	<u>3.10</u>	<u>62.79</u>	<u>2.86</u>	<u>69.19</u>	
DualFold	2.84	66.02	2.74	70.48	

340
 341 Table 3: Comparison of results on CASP15 and CASP16 datasets. The best and suboptimal results
 342 are labeled with bold and underline.

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361	Model	343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361		343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361	
		Perplexity ↓	Recovery% ↑	343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361	Recovery% ↑
ProteinMPNN	5.69	43.06	7.19	39.32	
PiFold	<u>4.87</u>	48.45	<u>5.66</u>	47.10	
LM-Design	5.12	<u>50.28</u>	5.79	<u>48.64</u>	
DualFold	3.90	56.57	4.50	52.18	

353 highly challenging benchmark for protein structure modeling, with CASP16 representing the latest
 354 experimentally determined protein structures. As shown in Table 3, DualFold demonstrates consist-
 355 ent and substantial improvements over previous state-of-the-art methods across both benchmarks.
 356 On CASP15, our model achieves 56.57% recovery rate, while on CASP16, it reaches 52.18%, repre-
 357 senting improvements on both datasets. These results demonstrate DualFold’s exceptional predictive
 358 accuracy and robust generalization capabilities when handling the most challenging novel protein
 359 structures.

360 Q2. Are the various module designs in DualFold reasonable and valuable?

361 **Ablations for our dual-path design.** We conduct ablation studies to validate our dual-stream de-
 362 sign by evaluating four configurations: (1) the complete DualFold with both streams, (2) DualFold
 363 without the PLM branch (w/o PLM), and (3) DualFold without the MPLM branch (w/o MPLM).

364 The results in Table 4 demonstrate the synergistic benefits of our dual-stream architecture. The
 365 full DualFold model achieves the best performance across all metrics, with perplexity of 3.23 and
 366 recovery rate of 63.11% on the full test set. When we ablate the PLM branch (w/o PLM), keeping
 367 only the MPLM stream, performance drops significantly. Similarly, ablating the MPLM branch (w/o
 368 MPLM) while keeping only the PLM stream also degrades performance. These results confirm that
 369 both structural and sequence information are essential and complementary.

370 Notably, when we directly evaluate a pretrained MPLM in a zero-shot setting on CATH4.2—with
 371 any task-specific adaptation—it only achieves a perplexity of 6.50 and a recovery rate of 42.03% on
 372 the full test set. This raw performance is substantially worse than both single-stream ablations, em-
 373 phasizing that although MPLMs encode rich structural priors, they cannot be directly applied to in-
 374 verse folding. Effective adaptation is essential to unlock their potential. By contrast, our dual-stream
 375 design with joint training leverages the complementary strengths of PLMs and MPLMs, yielding
 376 significantly stronger results. For completeness, Table 7 in the Appendix A.1 reports additional
 377 comparisons with integrating MPLM under another mainstream architecture.

378
 379 Table 4: Ablation results for the dual-stream architecture. The full DualFold outperforms both
 380 single-stream variants, confirming the complementary roles of PLM and MPLM.

Model Variant	Perplexity ↓			Recovery % ↑		
	Short	Single-chain	All	Short	Single-chain	All
DualFold	4.69	4.01	3.23	50.00	55.45	63.11
w/o PLM	6.11	5.66	4.05	42.55	45.21	56.62
w/o MPLM	5.51	4.73	3.61	44.02	50.89	59.56

387
 388
 389 Table 5: Ablation study of the three proposed components in DualFold: Prior (frozen pre-trained
 390 structure encoder), AF (Adaptive Fusion of expert predictions), and SC (Self-Correction via iterative
 391 refinement). ✓ indicates the component is enabled, and × indicates it is disabled.

Prior	AF	SC	Perplexity ↓			Recovery % ↑		
			Short	Single-chain	All	Short	Single-chain	All
✗	✗	✗	4.98	4.40	3.46	49.52	53.00	61.26
✗	✓	✓	4.92	4.32	3.40	48.56	53.26	61.85
✓	✗	✓	4.83	4.20	3.35	49.75	54.52	62.31
✓	✓	✗	4.80	4.18	3.32	49.81	54.60	62.43
✓	✓	✓	4.69	4.01	3.23	50.00	55.45	63.11

401
 402 **Ablations for our proposed modules.** Table 5 presents an ablation study of the three key
 403 components in DualFold: the Prior training strategy, Adaptive Fusion (AF), and Self-Correction (SC).
 404 The Prior strategy employs a frozen pre-trained structure encoder to ensure stable and informative
 405 feature extraction. Adaptive Fusion dynamically integrates predictions from multiple expert
 406 modules during sequence decoding, optimizing the generation process by selectively enhancing the most
 407 reliable signals. Self-Correction utilizes an iterative refinement mechanism to progressively cor-
 408 rect errors in intermediate predictions, thereby mitigating error propagation and improving the final
 409 output quality.

410 The results clearly demonstrate the contribution of each component. Introducing the Prior strategy
 411 consistently lowers perplexity and enhances recovery by providing stable structural representations.
 412 Adaptive Fusion further refines predictions by leveraging complementary signals from different ex-
 413 pert modules, while Self-Correction progressively mitigates error propagation through iterative re-
 414 finement. When combined, these components work in concert to deliver the lowest perplexity and
 415 highest recovery across all categories, underscoring their complementary roles in strengthening both
 416 the accuracy and robustness of protein sequence generation.

417 Q3. Is DualFold model-agnostic?

418 We evaluated the DualFold framework’s compatibility with different foundation models by integrat-
 419 ing two distinct structure encoders: ProteinMPNN and PiFold. These experiments were conducted
 420 under controlled conditions, utilizing the same MPLM and PLM components while maintaining
 421 consistent training strategies. As shown in Table 6, our framework consistently enhances the per-
 422 formance of both encoders across all evaluated categories. DualFold achieves substantial improvements
 423 in sequence recovery for both ProteinMPNN (from 49.87% to 61.45%) and PiFold (from 51.66%
 424 to 63.11%), with corresponding perplexity reductions. Notably, when equipped with the more ad-
 425 vanced PiFold encoder, DualFold achieves superior performance across all metrics, indicating that
 426 better structure encoders provide more precise prior conditions for the synergistic generation pro-
 427 cess. These results confirm that the DualFold architecture is fundamentally model-agnostic while
 428 scaling its performance with the quality of underlying components.

429 Q4. Are the generated sequences biologically plausible?

430 To evaluate the biological plausibility of sequences generated by DualFold, we conducted a vali-
 431 dation experiment using AlphaFold3 (Abramson et al., 2024) for structure prediction. We selected
 two proteins from CASP16 with varying lengths: T1234 (377 residues) and T1266 (295 residues).

Table 6: Performance comparison of DualFold when using ProteinMPNN versus PiFold as the structure encoder on CATH4.2.

Structure Encoder	Perplexity ↓			Recovery % ↑		
	Short	Single-chain	All	Short	Single-chain	All
ProteinMPNN with DualFold	6.21	6.68	4.57	36.35	34.43	49.87
	5.02	4.56	3.34	48.96	52.28	61.45
PiFold with DualFold	6.04	6.31	4.18	39.84	38.53	51.66
	4.69	4.01	3.23	50.00	55.45	63.11

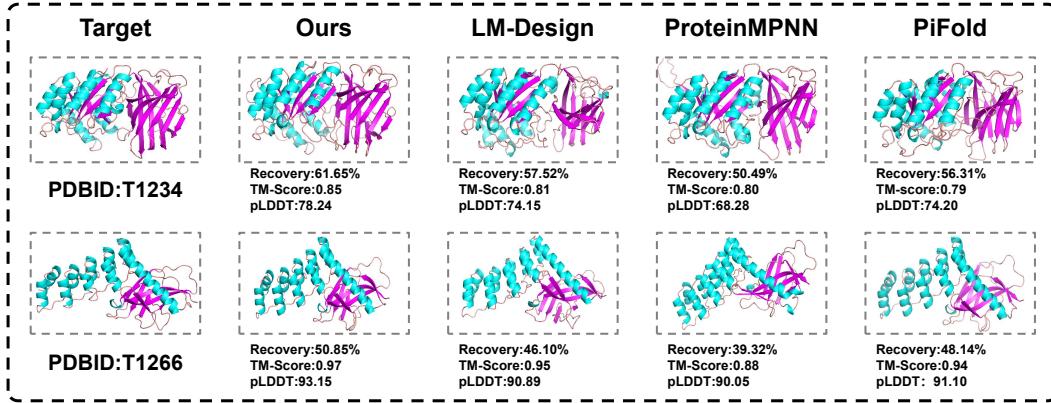


Figure 3: We compare sequence recovery, structure prediction confidence (pLDDT), and structural similarity (TM-score) (Zhang & Skolnick, 2005) for sequences generated by DualFold, LM-Design, ProteinMPNN and PiFold. Note that TM-score ranges from 0 to 1 (higher is better), and pLDDT ranges from 0 to 100 (higher is better).

For each target structure, we generated sequences using DualFold, LM-Design, PiFold, and Protein-MPNN, then used AlphaFold3 to predict structures from these designed sequences.

As shown in Figure 3, DualFold-generated sequences exhibit stronger consistency with the intended target structures across recovery, pLDDT, and TM-score. For T1234, our method achieves a sequence recovery of 61.65%, higher than LM-Design (57.52%), ProteinMPNN (50.49%), and PiFold (56.31%). For T1266, DualFold attains 50.85% compared to 46.10%, 39.32%, and 48.14% for the respective baselines. AlphaFold3 predictions suggest that sequences designed by DualFold yield more confident folding models (pLDDT: 78.24 for T1234, 93.15 for T1266) with better structural alignment to the native backbone (TM-scores of 0.85 and 0.97, respectively).

Additional visual comparisons on four more CASP16 targets (T1214, T1235, T1299, T1259) are provided in Appendix A.4. These results provide preliminary *in silico* evidence that our dual-stream architecture can improve not only recovery metrics but also the predicted structural plausibility of designed sequences. While AlphaFold-derived scores cannot substitute for experimental verification, they offer encouraging indications that DualFold-generated sequences are more compatible with the desired folds.

5 CONCLUSION & LIMITATION

We introduce DualFold, a novel symmetric dual-stream framework for protein inverse folding that addresses the limitations of serial architectures by fostering continuous interaction between structural and evolutionary knowledge. Our adaptive fusion and self-correction mechanisms enhance sequence design, achieving state-of-the-art performance across benchmarks. Despite these advances, challenges remain. Our evaluations primarily rely on *in silico* metrics, and the limited extent of wet-lab validation leaves the functional viability of the generated sequences unverified. Future work will explore stronger foundation models to push the boundaries of computational protein design.

486 6 STATEMENT
487488 **Ethics Statement.** This research presents a symmetric dual-path integration framework for protein
489 inverse folding using pretrained protein language models. The work is entirely computational, in-
490 volving no human subjects, animal testing, or sensitive data. While the method may support future
491 advances in biotechnology and medicine, we identify no foreseeable risks of misuse, bias, or security
492 concerns, as it is limited to generating amino acid sequences consistent with given structures. The
493 study received no external sponsorship or conflicts of interest, and all authors followed the ICLR
494 Code of Ethics.495 **Reproducibility Statement.** Our implementation of the proposed DualFold architecture is fully
496 reproducible. All required modules and models are publicly available, and all evaluation metrics
497 (perplexity and recovery rate) are computed following standard protocols. The datasets used are
498 publicly accessible, with details of specific dataset splits provided in the experimental section and
499 appendix. The complete code will be released on GitHub upon acceptance of the paper.500
501 REFERENCES
502503 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
504 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
505 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.
506
507 Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
508 Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of
509 protein structures and interactions using a three-track neural network. *Science*, 373(6557):871–
510 876, 2021.
511 Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. Proteinbert: a universal
512 deep-learning model of protein sequence and function. *Bioinformatics*, 38(8):2102–2110, 2022.
513
514 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
515 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-
516 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.
517
518 Marianne Defresne, Sophie Barbe, and Thomas Schiex. Protein design with deep learning. *International
519 Journal of Molecular Sciences*, 22(21):11741, 2021.
520
521 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
522 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
523 the North American chapter of the association for computational linguistics: human language
524 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
525
526 Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones,
527 Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Prottrans: Toward un-
528 derstanding the language of life through self-supervised learning. *IEEE transactions on pattern
529 analysis and machine intelligence*, 44(10):7112–7127, 2021.
530
531 Arne Elofsson. Progress at protein structure prediction, as seen in casp15. *Current opinion in
532 structural biology*, 80:102594, 2023.
533
534 Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J Gray. Deep learning in protein
535 structural modeling and design. *Patterns*, 1(9), 2020.
536
537 Zhangyang Gao, Cheng Tan, Pablo Chacón, and Stan Z Li. Pifold: Toward effective and efficient
538 protein inverse folding. *arXiv preprint arXiv:2209.12643*, 2022a.
539
540 Zhangyang Gao, Cheng Tan, and Stan Z Li. Alphadesign: A graph protein design method and
541 benchmark on alphafolddb. *arXiv preprint arXiv:2202.01079*, 2022b.
542
543 Zhangyang Gao, Cheng Tan, and Stan Z Li. Knowledge-design: Pushing the limit of protein design
544 via knowledge refinement. *arXiv preprint arXiv:2305.15151*, 2023.

540 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 541 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
 542 *processing systems*, 27, 2014.

543

544 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
 545 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
 546 of evolution with a language model. *Science*, 387(6736):850–858, 2025.

547 Chun-Yin Hsieh et al. Elucidating the design space of multimodal protein language models. *arXiv*
 548 *preprint arXiv:2504.11454*, 2025. doi: 10.48550/arXiv.2504.11454.

549

550 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexan-
 551 der Rives. Learning inverse folding from millions of predicted structures. In *International con-
 552 ference on machine learning*, pp. 8946–8970. PMLR, 2022.

553 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 554 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

555

556 Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
 557 *Nature*, 537(7620):320–327, 2016. doi: 10.1038/nature19946.

558

559 John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
 560 based protein design. *Advances in neural information processing systems*, 32, 2019.

561

562 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
 563 from protein structure with geometric vector perceptrons. *arXiv preprint arXiv:2009.01411*, 2020.

564

565 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 566 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 567 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

568

569 Hamed Khakzad, Ilia Igashov, Arne Schneuing, Casper Goverde, Michael Bronstein, and Bruno
 570 Correia. A new age in protein design empowered by deep learning. *Cell Systems*, 14(11):925–
 571 939, 2023.

572

573 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 574 *arXiv:1312.6114*, 2013.

575

576 Brian Kuhlman and David Baker. Native protein sequences are close to optimal for their structures.
 577 *Proceedings of the National Academy of Sciences*, 97(19):10383–10388, 2000.

578

579 Brian Kuhlman and Philip Bradley. Advances in protein structure prediction and design. *Nature*
 580 *reviews molecular cell biology*, 20(11):681–697, 2019.

581

582 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 583 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.

584

585 Zhixiu Li, Yuedong Yang, Eshel Faraggi, Jian Zhan, and Yaoqi Zhou. Direct prediction of profiles
 586 of sequences compatible with a protein structure by neural networks with fragment-based local
 587 and energy-based nonlocal profiles. *Proteins: Structure, Function, and Bioinformatics*, 82(10):
 588 2565–2573, 2014.

589

590 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 591 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 592 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.

593

594 Yi Liu and Brian Kuhlman. Rosettadesign server for protein design. *Nucleic acids research*, 34
 595 (suppl_2):W235–W238, 2006.

596

597 Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
 598 Jose Luis Olmos Jr, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large language
 599 models generate functional protein sequences across diverse families. *Nature biotechnology*, 41
 600 (8):1099–1106, 2023.

594 Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and Janet M
 595 Thornton. Cath—a hierarchic classification of protein domain structures. *Structure*, 5(8):1093–
 596 1109, 1997.

597 Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Accurate and robust protein sequence
 598 design with carbondesign. *Nature Machine Intelligence*, 6(5):536–547, 2024.

600 Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
 601 Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
 602 scaling unsupervised learning to 250 million protein sequences. *Proceedings of the National
 603 Academy of Sciences*, 118(15):e2016239118, 2021.

604 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 605 learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pp.
 606 2256–2265. pmlr, 2015.

607 Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, and Stan Z Li. Generative de novo protein design
 608 with global context. *arXiv preprint arXiv:2204.10673*, 2022.

609 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 610 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information
 611 processing systems*, 30, 2017.

612 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Dplm-2:
 613 A multimodal diffusion protein language model. *arXiv preprint arXiv:2410.13782*, 2024.

614 Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising diffusion for
 615 inverse protein folding. *Advances in Neural Information Processing Systems*, 36:10238–10257,
 616 2023.

617 Rongqing Yuan, Jing Zhang, Andriy Kryshtafovych, R Dustin Schaeffer, Jian Zhou, Qian Cong, and
 618 Nick V Grishin. Casp16 protein monomer structure prediction assessment. *Proteins: Structure,
 619 Function, and Bioinformatics*, 2025.

620 Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
 621 tm-score. *Nucleic acids research*, 33(7):2302–2309, 2005.

622 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
 623 language models are protein designers. In *International conference on machine learning*, pp.
 624 42317–42338. PMLR, 2023.

625 Xibin Zhou, Chenchen Han, Yingqi Zhang, Jin Su, Kai Zhuang, Shiyu Jiang, Zichen Yuan, Wei
 626 Zheng, Fengyuan Dai, Yuyang Zhou, et al. Decoding the molecular language of proteins with
 627 evolla. *bioRxiv*, pp. 2025–01, 2025.

628 Yiheng Zhu, Jialu Wu, Qiuyi Li, Jiahuan Yan, Mingze Yin, Wei Wu, Mingyang Li, Jieping Ye,
 629 Zheng Wang, and Jian Wu. Bridge-if: Learning inverse protein folding with markov bridges.
 630 *Advances in Neural Information Processing Systems*, 37:39901–39922, 2024.

631

632

633

634

635

636

637 **A APPENDIX**

638

639 **A.1 COMPARATIVE ARCHITECTURE DESIGNS WITH MPLM**

640

641 To further investigate the role of cross-modal integration of MPLMs in protein inverse folding, we re-
 642 placed the original protein language model (PLM) in the LM-Design framework with an MPLM. By
 643 systematically evaluating two representative adapter schemes within this framework, this study thor-
 644oughly examines how different connection strategies between multimodal protein language models
 645 and structure encoders affect downstream recovery performance, thereby providing clearer insights
 646 into the mechanisms of synergy across modalities. We evaluated two representat:
 647

(1) Structure-Aware Adapter (original LM-Design implementation): This variant integrates high-
 648 dimensional embeddings from a protein structure encoder through lightweight adapter modules.

648 Cross-modal interaction is realized via multi-head attention, explicitly mixing coordinate-based in-
 649 formation with sequence embeddings.
 650

651 (2) Parameter-Tuning Adapter (modified version): Here, the attention-based fusion is removed. The
 652 adapter reduces to simple trainable MLP layers, leaving structural sensitivity to be modeled implic-
 653 itly by the MPLM itself without direct feature injection.
 654

655 Both architectures were trained under identical setups (datasets, losses, optimizers, and hyperparam-
 656 eters). We further controlled two experimental factors: (i) *Training Strategy* – training the structure
 657 encoder from scratch versus freezing pretrained encoder parameters; (ii) *Input Modality* – full mul-
 658 timodal input (amino-acid sequence + 3D coordinates) versus sequence-only input.
 659

660 Table 7: Recovery performance comparison of adapter architectures with MPLM backbone under
 661 different training strategies and input modalities.

662 Training Strategy	663 Architecture	664 Full Input	665 Sequence Only
666 From Scratch	Struct-Aware Adapter	52.46	53.68
	Param-Tuning Adapter	53.60	53.12
667 Pretrained + Frozen	Struct-Aware Adapter	53.95	54.56
	Param-Tuning Adapter	55.33	54.01

668
 669 The results reveal a non-trivial pattern. Despite its richer multimodal design, the Structure-Aware
 670 Adapter does not consistently outperform the simpler Parameter-Tuning variant. In fact, under full-
 671 input conditions (sequence + coordinates), the more “sophisticated” attention fusion can underper-
 672 form, while the streamlined variant often achieves stronger recovery rates. This counterintuitive out-
 673 come illustrates a phenomenon we term the *modality paradox*: providing richer multimodal inputs
 674 does not automatically translate into better performance, and may even degrade results due to fea-
 675 ture redundancy, optimization conflicts, or discrepancies in how modalities are aligned. In contrast,
 676 the Parameter-Tuning Adapter leverages MPLM’s structurally sensitive embeddings more stably,
 677 demonstrating that effective adaptation requires *carefully crafted integration mechanisms*. Overall,
 678 these findings underscore an important insight for the field: when fusing pretrained MPLMs for
 679 inverse folding, more information is not always better—thoughtful architecture design is essential.
 680

681 A.2 ITERATIVE INFERENCE ANALYSIS

682 We analyzed the impact of iterative refinement steps (T) on DualFold’s performance with and with-
 683 out Self-Correction. Table 8 shows the results on CATH4.2.
 684

685 Table 8: Impact of iterative refinement steps (T) on sequence recovery rate (%).
 686

687 T	688 Recovery(%) \uparrow	
	689 With Self-Correction	690 Without Self-Correction
691 1	62.25	60.57
692 2	63.11	61.19
693 3	62.96	62.23
694 4	62.96	62.43
695 5	63.10	62.42

696
 697 The results clearly demonstrate the effectiveness of the Self-Correction mechanism. With Self-
 698 Correction, the model achieves superior performance across all iteration counts, with the most
 699 significant improvements at lower iterations. Notably, Self-Correction enables the model to reach
 700 peak performance (63.11%) early in the refinement process. In contrast, without Self-Correction,
 701 the model shows slower convergence and lower overall performance, never reaching the accuracy
 achieved by Self-Correction even with more iterations.
 702

702 A.3 CASP15 AND CASP16 PROTEIN DETAILS
703704 For the purpose of ensuring reproducibility, this appendix summarizes the specific protein targets
705 used in our experiments from the CASP15 and CASP16 datasets. Tables 9 and 10 provide the official
706 release names and dates of each protein. This collection allows future studies to easily identify and
707 cross-reference proteins with their corresponding release times.
708
709710 Table 9: CASP15 protein names and release times.
711

Protein Name	Release Time	Protein Name	Release Time	Protein Name	Release Time
T1104-D1	2022-07-11	T1106s1-D1	2022-06-06	T1106s2-D1	2022-06-06
T1109-D1	2022-05-31	T1119-D1	2022-06-08	T1120-D1	2022-07-14
T1120-D2	2022-07-14	T1121-D1	2022-06-08	T1121-D2	2022-06-08
T1123-D1	2022-05-19	T1124-D1	2022-07-16	T1129s2-D1	2022-07-05
T1133-D1	2022-07-18	T1137s1-D1	2022-06-22	T1137s1-D2	2022-06-22
T1137s2-D1	2022-05-30	T1137s2-D2	2022-05-30	T1137s3-D1	2022-05-31
T1137s3-D2	2022-06-22	T1137s4-D1	2022-06-22	T1137s4-D2	2022-06-22
T1137s4-D3	2022-06-22	T1137s5-D1	2022-06-22	T1137s5-D2	2022-06-22
T1137s6-D1	2022-06-22	T1137s6-D2	2022-06-22	T1137s7-D1	2022-06-01
T1137s8-D1	2022-06-01	T1137s9-D1	2022-06-01	T1139-D1	2022-06-01
T1145-D1	2022-08-18	T1145-D2	2022-08-18	T1150-D1	2022-06-11
T1157s1-D1	2022-09-01	T1157s1-D2	2022-09-01	T1157s1-D3	2022-09-01
T1157s2-D1	2022-09-01	T1157s2-D2	2022-09-01	T1157s2-D3	2022-09-01
T1170-D1	2022-07-28	T1170-D2	2022-07-28	T1180-D1	2022-08-24
T1187-D1	2022-08-05	T1188-D1	2022-08-05	T1194-D1	2022-08-05

727
728
729 Table 10: CASP16 protein names and release times.
730

Protein Name	Release Time	Protein Name	Release Time	Protein Name	Release Time
T1237	2024-07-20	T1206	2024-07-17	T1234-D1	2024-09-09
T1276	2024-08-19	T1276-D1	2024-08-19	T1272s3	2024-07-29
T1279-D1	2024-07-25	T1214v1	2024-08-12	T1272s9	2024-11-14
T1212	2024-07-04	T1272s1	2024-07-29	T1259	2024-07-25
T1235	2024-07-04	T1279	2024-07-20	T1298-D1	2024-08-16
T1274-D1	2024-09-03	T1201-D1	2024-09-24	T1298-D2	2024-08-16
T1272s6-D1	2024-11-14	T1240-D1	2024-08-02	T1201	2024-05-19
T1212-D1	2024-07-04	T1237-D1	2024-07-20	T1266-D1	2024-07-02
T1235-D1	2024-09-09	T1234	2024-07-04	T1299-D1	2024-09-11
T1266	2024-07-02	T1272s7	2024-07-29	T1272s8-D1	2024-11-14
T1214v2	2024-08-12	T1272s2-D1	2024-08-03	T1299	2024-09-11
T1272s8	2024-11-14	T1274	2024-08-14	T1298	2024-08-16
T1272s6	2024-11-14	T1240	2024-08-01	T1210	2024-07-15
T1272s2	2024-11-14	T1214-D1	2024-09-12	T1272s4	2024-07-29
T1206-D1	2024-07-17	T1259-D1	2024-07-25	T1210-D1	2024-09-24
T1272s9-D1	2024-11-14	T1240-D2	2024-08-02	T1279-D2	2024-07-25
T1272s5	2024-07-29	T1214	2024-07-10		

748
749 A.4 ADDITIONAL FOLDING RESULTS WITH ALPHAFOLD3
750751 To further validate the biological plausibility of DualFold-generated sequences, we extended our Al-
752 phaFold3 (Abramson et al., 2024) analysis to four additional CASP16 targets: T1214(length=652),
753 T1235(length=114), T1299(length=68), and T1259(length=204). For each case, we compared the
754 AlphaFold3-predicted structure of the sequence produced by DualFold against the native target back-
755 bone.

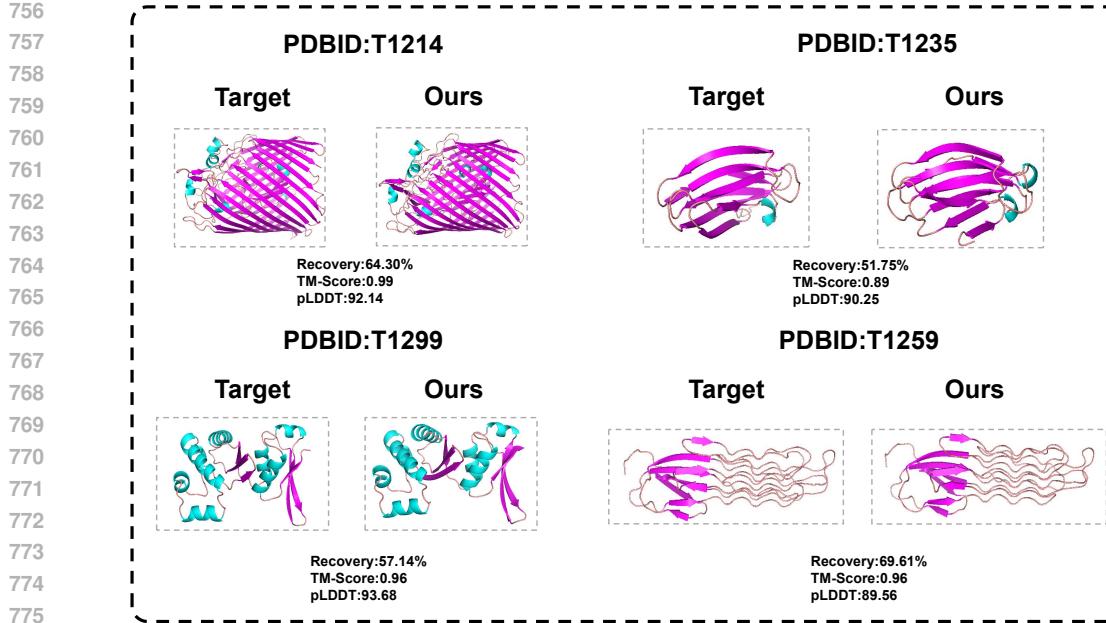


Figure 4: AlphaFold3-predicted structures for sequences designed by DualFold on additional CASP16 targets (T1214, T1235, T1299, and T1259). Each row shows an overlay of the target structure and the predicted structure from the DualFold-designed sequence. Across all cases, the strong alignment provides further support for the biological plausibility of DualFold outputs.

As illustrated in Figure 4, the predicted structures of all four designed sequences align closely with their respective native folds. Visually, the confidence levels (pLDDT) remain consistently high, and the structural overlays show strong backbone agreement. These results further reinforce that DualFold is capable of generating sequences with not only improved design metrics but also high in silico structural plausibility across targets of different lengths and topologies.

A.5 LoRA CONFIGURATION FOR MPLM AND PLM FINE-TUNING

Both models employ identical LoRA hyperparameters to ensure balanced adaptation. We use a rank of 8, which provides a good balance between parameter efficiency and model expressivity. The scaling factor is set to 32, offering sufficient learning capacity for the inverse folding task while maintaining stability. A dropout rate of 0.1 is applied to the LoRA layers for regularization, and we disable bias adaptation to further reduce the parameter count.

This configuration results in approximately 0.1% trainable parameters relative to the full model size, significantly reducing computational overhead while maintaining the models’ ability to adapt to the inverse folding task. The low rank ensures efficient adaptation, while the relatively high scaling factor compensates for the reduced parameter space, allowing the models to learn task-specific patterns effectively.

The LoRA adaptation is implemented using the Parameter Efficient Fine-Tuning (PEFT) framework. During initialization, we load the pretrained ESM-3 and ESM-C models, configure the LoRA adapters with the specified hyperparameters, and freeze all base model parameters. Only the LoRA weights are updated during training, which prevents catastrophic forgetting of the pretrained knowledge while allowing task-specific adaptation.

The symmetric configuration across both models ensures balanced adaptation of sequence and structural knowledge during training. By targeting both attention and feed-forward components, we enable the models to adapt their representation learning capabilities while preserving the fundamental understanding encoded in the pretrained weights.

810 A.6 MATHEMATICAL FORMULATIONS FOR EVALUATION METRICS
811812 **Perplexity**

813 Perplexity is a fundamental metric for evaluating the quality of language model predictions, defined
814 as the exponential of cross-entropy loss. In protein sequence design tasks, we utilize perplexity to
815 assess the model's accuracy in predicting authentic amino acid sequences.

816 Given a protein sequence $\mathbf{s} = \{s_1, s_2, \dots, s_\ell\}$, where s_i represents the amino acid at position i and
817 ℓ is the sequence length. The model outputs logits denoted as $\mathbf{z} = \{z_1, z_2, \dots, z_\ell\}$, where $z_i \in \mathbb{R}^{|\mathcal{V}|}$
818 and $|\mathcal{V}|$ is the vocabulary size (20 standard amino acids).

819 First, we compute the log probability distribution at each position:

$$820 \quad 821 \quad 822 \quad 823 \quad p_i(k) = \frac{\exp(z_{i,k})}{\sum_{j=1}^{|\mathcal{V}|} \exp(z_{i,j})} \quad (7)$$

824 where $z_{i,k}$ represents the logit value for predicting amino acid k at position i .

825 The log-likelihood for the target amino acid is:

$$826 \quad 827 \quad 828 \quad \log p_i(s_i) = \log \left(\frac{\exp(z_{i,s_i})}{\sum_{j=1}^{|\mathcal{V}|} \exp(z_{i,j})} \right) = z_{i,s_i} - \log \sum_{j=1}^{|\mathcal{V}|} \exp(z_{i,j}) \quad (8)$$

831 **Global Perplexity Calculation**

832 Considering the presence of special tokens such as padding, class (cls), and end-of-sequence (eos)
833 tokens in protein sequences, we define a valid position mask:

$$834 \quad 835 \quad \mathcal{M}_i = \mathbb{1}[s_i \neq \text{pad}] \cdot \mathbb{1}[s_i \neq \text{cls}] \cdot \mathbb{1}[s_i \neq \text{eos}] \cdot c_i \quad (9)$$

836 where c_i is the coordinate mask used to identify structurally valid positions, and $\mathbb{1}[\cdot]$ is the indicator
837 function.

838 The global average negative log-likelihood is:

$$839 \quad 840 \quad 841 \quad \text{NLL}_{\text{global}} = -\frac{\sum_{i=1}^{\ell} \mathcal{M}_i \cdot \log p_i(s_i)}{\sum_{i=1}^{\ell} \mathcal{M}_i} \quad (10)$$

842 The final global perplexity is defined as:

$$843 \quad 844 \quad \text{PPL}_{\text{global}} = \exp(\text{NLL}_{\text{global}}) \quad (11)$$

845 **Sequence Recovery Rate**

846 The sequence recovery rate measures the degree of matching between generated sequences and
847 target sequences at the amino acid level, serving as a direct indicator for evaluating the accuracy of
848 protein sequence design.

849 Given a predicted sequence $\hat{\mathbf{s}} = \{\hat{s}_1, \hat{s}_2, \dots, \hat{s}_\ell\}$ and a target sequence $\mathbf{s} = \{s_1, s_2, \dots, s_\ell\}$, the
850 sequence recovery rate is defined as the proportion of correct predictions at valid positions.

851 The correctness indicator function for individual positions:

$$852 \quad 853 \quad \delta_i = \mathbb{1}[\hat{s}_i = s_i] \cdot \mathcal{M}_i \quad (12)$$

854 where \mathcal{M}_i is the valid position mask defined previously.

855 **Sequence-level Recovery Rate**

856 For a single sequence, the recovery rate is calculated as:

$$857 \quad 858 \quad \text{Recovery}_{\text{seq}} = \frac{\sum_{i=1}^{\ell} \delta_i}{\sum_{i=1}^{\ell} \mathcal{M}_i} \quad (13)$$

864

Dataset-level Statistics

865

866 For a test set containing N sequences, we compute the recovery rate for each sequence and then
 867 calculate the median as the final evaluation metric:

868

$$\text{Recovery}_{\text{median}} = \text{median}\{\text{Recovery}_{\text{seq}}^{(1)}, \text{Recovery}_{\text{seq}}^{(2)}, \dots, \text{Recovery}_{\text{seq}}^{(N)}\} \quad (14)$$

869

870 The use of median instead of mean reduces the impact of outliers and better reflects the model's
 871 overall performance.

872

873

A.7 THE USE OF LLMs

874

875 This work employed large language models (LLMs) as a general-purpose assistance tool, primarily
 876 for polishing initial drafts of non-core sections of the manuscript. LLMs were not involved in re-
 877 search conception, methodological development, experimental design, or data analysis. The authors
 878 take full responsibility for all content, including any LLM-generated material, and confirm that no
 879 plagiarism or scientific misconduct is present.

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917