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Abstract

The open-domain text-to-SQL task aims to re-001
trieve question-relevant tables from massive002
databases and then generate SQL. However,003
the performance of current methods is limited004
by single-hop retrieval, and existing multi-hop005
retrieval of other tasks cannot be directly ap-006
plied due to two primary challenges: error cas-007
cades and the tendency to retrieve tables sim-008
ilar to the retrieved ones but irrelevant to the009
question. Therefore, we propose the multi-hop010
table retrieval with rewrite and beam search011
(MURRE). To reduce error cascades, MURRE012
employs beam search to select multiple tables013
at each hop. To avoid retrieving similar but014
irrelevant tables, we remove the retrieved infor-015
mation from the question, guiding the retriever016
to focus on unretrieved tables. We conduct017
experiments on two open-domain text-to-SQL018
datasets, achieving an average improvement of019
5.7% over the previous state-of-the-art results.1020

1 Introduction021

Text-to-SQL, a significant task of natural language022

processing, reduces the difficulty of accessing023

databases and aids in efficient data querying, which024

has broad applications across many fields (Qin025

et al., 2022). Unlike the previous text-to-SQL026

task that provides the question-relevant database027

tables2, a more realistic scenario is open-domain028

text-to-SQL, which should handle vast amounts029

of databases to convert user questions into SQL.030

Specifically, the open-domain text-to-SQL task in-031

volves two main steps: retrieving relevant tables032

and generating SQL based on the retrieved tables033

and the user question (Kothyari et al., 2023).034

Considering the extensive knowledge embedded035

in LLM parameters, CRUSH (Kothyari et al., 2023)036

bridges the semantic gap between natural language037

1Our code and data are publicly available upon acceptance.
2For brevity, we refer to database tables relevant to the

question as relevant tables in this paper.
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Figure 1: The two challenges of existing methods. The
same shapes denote similar tables. The green represents
the relevant tables, and the red represents the irrelevant.
Multi-hop retrieval (a) gets irrelevant tables in the first
hop, resulting in error cascades. Multi-hop retrieval
employing the beam search paradigm (b) retrieves tables
in the second hop similar to the retrieved tables in the
first hop but irrelevant to the question.

user questions and structured database tables by 038

rewriting user questions into potentially relevant ta- 039

bles. However, CRUSH performs table retrieval in 040

a single hop, limiting its performance because the 041

retrieval of certain tables could depend on others, 042

similar to multi-hop retrieval in the open-domain 043

question answering (QA) task (Feldman and El- 044

Yaniv, 2019; Xiong et al., 2021). Nevertheless, 045

adapting previous multi-hop retrieval methods to 046

the open-domain text-to-SQL task presents two sig- 047

nificant challenges, as illustrated in Figure 1. 048

First, the retriever could retrieve irrelevant tables, 049

leading to error cascades in subsequent retrievals, 050

as shown in Figure 1(a). Second, the retriever could 051

easily retrieve tables that are similar to those re- 052

trieved in previous hops but irrelevant to the ques- 053

tion, as illustrated in the right part of Figure 1(b). 054

This occurs because most multi-hop methods add 055

the retrieved documents into the user question as 056

the supplementary (Lee et al., 2022; Shao et al., 057

2023). Conversely, in open-domain text-to-SQL, 058

the user question typically contains all necessary 059
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information for retrieval with no need for the sup-060

plementary. Consequently, adding retrieved tables061

to the question can cause retrieved tables similar to062

those already retrieved but irrelevant to the ques-063

tion, resulting in limited retrieval performance. For064

instance, in the right part of Figure 1(b), the irrele-065

vant table "staff " is retrieved because it is similar066

to the table "employee" retrieved in the first hop.067

To solve the above challenges, we propose a068

method called MUlti-hop table Retrieval with069

Rewrite and bEam search (MURRE) to enhance the070

retrieval performance for the open-domain text-to-071

SQL. As illustrated in Figure 1(c), our method re-072

trieves tables through the multi-hop retrieval, adopt-073

ing the beam search paradigm to maintain multiple074

retrievals per hop, inspired by Zhang et al. (2024).075

To address the error cascades challenge, we employ076

the beam search paradigm to consider multiple pos-077

sible tables at each hop, mitigating the impact of078

retrieving irrelevant tables in previous hops. For the079

second challenge, we prompt LLMs to remove the080

retrieved table information from the user question,081

forming a new question for the next hop, which082

reduces the retrieval of tables similar to the previ-083

ously retrieved ones but irrelevant.084

To validate the effectiveness of MURRE, we con-085

duct experiments on two datasets, SpiderUnion and086

BirdUnion, which are open-domain versions of087

text-to-SQL datasets Spider (Yu et al., 2018) and088

Bird (Li et al., 2023b). MURRE achieves an aver-089

age improvement of 5.7% compared to the previous090

state-of-the-art (SOTA) results, demonstrating its091

effectiveness. Additionally, our case studies indi-092

cate that MURRE enhances the performance of the093

open-domain text-to-SQL by mitigating the two094

challenges mentioned above.095

Our contributions are as follows:096

• To mitigate the impact of error cascades in multi-097

hop retrieval, we propose utilizing the beam098

search paradigm, which reduces the impact of099

retrieving question-irrelevant tables.100

• To address the challenge of retrieving tables that101

are similar to previously retrieved ones but are102

irrelevant to the question, we propose removing103

the retrieved information from the user question,104

guiding the retriever to find new relevant tables.105

• To demonstrate the effectiveness of MURRE, we106

conduct experiments on the SpiderUnion and Bir-107

dUnion datasets, achieving an average improve-108

ment of 5.7% compared with the previous SOTA109

results, proving its effectiveness.110

2 Methodology 111

2.1 Task Definition 112

Our work mainly focuses on the open-domain text- 113

to-SQL task, which can be formally defined as: 114

Given a user question q, database tables T = {ti} 115

and a number of retrieved tables N , suppose the 116

tables relevant to q are T q = {tqi }, MURRE aims 117

to retrieve N tables T q
N , where T q ⊆ T q

N . 118

2.2 Overview 119

The overview of MURRE is illustrated in Fig- 120

ure 2. MURRE comprises multiple hops, with each 121

hop consisting of several beams. Each hop can 122

be divided into two phases: Retrieve (§2.3) and 123

Rewrite (§2.4). In each hop, we first retrieve the 124

relevant tables by calculating their probability that 125

is relevant to the question. Next, using the origi- 126

nal user question and the retrieved tables in each 127

beam, we rewrite the user question to exclude the 128

information of the retrieved tables, generating the 129

user question used for the subsequent hop. MURRE 130

repeats the Retrieve and Rewrite phases until reach- 131

ing the maximum hop limit H or meeting the early 132

stop condition (see §2.4). After the multi-hop re- 133

trieval, we score (§2.5) each table based on its 134

probability that is relevant to the user question and 135

select the top-N tables as the input for generating 136

the SQL. In Appendix A, we explore how to han- 137

dle the situation when no table in the database is 138

relevant to the user question. 139

2.3 Retrieve 140

The Retrieve phase aims to identify B tables cor- 141

responding to the user question qh,b, where B is 142

the beam size and qh,b denotes the user question 143

at hop h and beam b. We embed the user ques- 144

tion and each table into vectors and then compute 145

their relevance probability to the user question. Let 146

Emb(x) represent the embedding vector of x, the 147

probability is expressed as Equation 2.1. 148

P̂ (ti|qh,b) = Norm(
Emb(ti) · Emb(qh,b)
|Emb(ti)||Emb(qh,b)|

) (2.1) 149

We use the cosine similarity between the question 150

and table vectors to calculate the probability, adopt- 151

ing Norm to ensure the conditional probabilities 152

sum to one. Detailed representations of the table 153

and the normalization method are provided in Ap- 154

pendix B and Appendix C, respectively. We select 155

the B tables with the highest probabilities as the 156

retrieval results for the current hop question qh,b. 157
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Figure 2: An overview of MURRE. Each hop consists of: (i) Retrieve tables similar to the question; (ii) Rewrite
the question by removing the retrieved table information from the user question and representing the unretrieved
information in the form of a table with LLM. We employ the beam search paradigm maintaining multiple retrievals
at each hop. The color depth represents the probability that the table is relevant to the question of the hop, and ✓
represents the relevant table. We demonstrate an example which early stops at hop 2 for brevity.

In the previous hop of retrieval, there are B158

beams and each beam corresponds to B retrieved159

tables obtained at the current hop, resulting in a to-160

tal of B ×B retrieval results. Following the beam161

search paradigm, we then choose B results from162

these for the subsequent rewriting phase, with the163

selection method detailed in §2.5.164

2.4 Rewrite165

The Rewrite phase is designed to mitigate the re-166

trieval of tables that are similar to previously re-167

trieved ones yet irrelevant to the user question. To168

achieve the above goal, this phase employs LLMs169

to rewrite the user question, by removing the in-170

formation of retrieved tables in Pathh,b (which in-171

cludes all retrieved tables from hop 1 to hop h on172

the path of beam b) from the user question q, and173

express the unretrieved information in the form of174

a table following the previous work (Kothyari et al.,175

2023), where the rewritten question is used to guide176

the retriever for the next hop.177

Considering that different user questions require178

varying numbers of tables, to prevent additional179

hops from introducing errors, we instruct LLMs to180

assess whether the retrieved tables in Pathh,b are181

sufficient to answer q, i.e., early stop. In detail, we182

prompt the LLM to generate a special mark (e.g.,183

"None" in Figure 2) during rewriting to indicate184

that the retrieved tables are sufficient to answer the185

user question q, ceasing further retrieval as soon as186

this early stop mark is produced. The prompts used187

for rewriting are detailed in Appendix B.188

2.5 Score 189

The aforementioned multi-hop retrieval process 190

maintains B paths at each hop, containing tables 191

that could exceed or fall short of the required num- 192

ber of tables N . Therefore, this phase aims to 193

score all the tables based on their probabilities to 194

retain the most relevant tables used for generating 195

SQL, which consists of two parts: (i) scoring the re- 196

trieval path Score_Path(Pathh,b); (ii) scoring the 197

retrieved table Score_Table(ti). 198

Retrieval Path Score First, we address the calcu- 199

lation of the retrieval path score, where each node 200

on the path corresponds to the retrieved table on a 201

beam of one hop. As discussed in §2.3, the score 202

of each retrieval path represents the probability that 203

the last table in the path is retrieved, given its cor- 204

responding question at the last hop. Following the 205

derivation in Appendix D, the score of a retrieval 206

path is computed as the product of all the probabil- 207

ities P̂ in the path. 208

Table Score Building on the retrieval path score, 209

we describe the calculation to score a retrieved ta- 210

ble ti. Since each table has multiple scores across 211

various hops and beam retrievals, we propose a ta- 212

ble scoring algorithm to effectively integrate these 213

scores. Detailed information is provided in Ap- 214

pendix E. Considering the potential interrelation of 215

question-relevant tables, we aim to ensure that all 216

retrieved tables collectively are the most relevant 217

to the question. Thus, the higher the retrieval path 218

score, the higher the score of the tables in the path. 219
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Dataset #table
1 2 3 4 All

SpiderUnion 395 214 43 6 658
BirdUnion 364 943 207 20 1534

Table 1: Statistics on the number of the relevant table
for each question in the SpiderUnion and BirdUnion.
#table denotes the number of the relevant table. All
refers to the total number of questions in the dataset.

Specifically, let Pathti denote all retrieval paths220

containing table ti, we calculate the table score as:221

Score_Table(ti) = maxt∈Pathti
Score_Path(t).222

Finally, we select TQ
N = {t1, ..., tN} with the high-223

est Score_Table(ti) as our retrieval results. Ap-224

pendix F elaborates on enhancing the table scoring225

algorithm to address ambiguous entities or syn-226

onyms in user questions or tables.227

3 Experiments228

3.1 Experiment Setup229

Dataset To evaluate the effectiveness of MURRE,230

we validate it on two open-domain text-to-SQL231

datasets: SpiderUnion (Kothyari et al., 2023) and232

BirdUnion, which mix all tables of Spider (Yu et al.,233

2018) and Bird (Li et al., 2023b). Table 1 shows the234

number of questions requiring different numbers235

of tables. Detailed descriptions of Spider and Bird236

are provided in Appendix G.237

Metric We employ recall and complete recall238

as evaluation metrics for retrieval, and Execution239

Accuracy (EX) (Yu et al., 2018) for text-to-SQL.240

Recall (r@) measures the proportion of relevant241

tables retrieved from all relevant tables, following242

previous work (Kothyari et al., 2023). Unlike other243

open-domain tasks (e.g., open-domain QA), it is244

crucial to retrieve all relevant tables to generate cor-245

rect SQL for the open-domain text-to-SQL. Hence,246

we introduce complete recall (k =), which is the247

proportion of examples retrieving all relevant ta-248

bles. For text-to-SQL, we use execution match249

(EX), following previous work (Gao et al., 2023a),250

to evaluate the correctness of the execution results251

of predicted SQL compared to gold SQL.252

Model We utilize SGPT (Muennighoff, 2022) to253

embed tables and user questions without additional254

fine-tuning, following the previous work (Kothyari255

et al., 2023). For the Rewrite phase and SQL gen-256

eration, we use gpt-3.5-turbo3 to predict. The257

3Document for gpt-3.5-turbo

detailed descriptions of SGPT and gpt-3.5-turbo 258

are provided in Appendix H. 259

Comparing System In our experiments, we com- 260

pare MURRE with the following methods: (i) 261

Single-hop, which retrieves with the user question 262

in a single hop; (ii) CRUSH (Kothyari et al., 2023), 263

which retrieves in a single hop with hallucinating 264

the user question into the table format. 265

Implement Details We set the beam size to 5, 266

as it provides the best performance with the small- 267

est size (see §3.4.1). The maximum hop (abbre- 268

viated as max hop) is set to 3 because over 98% 269

of questions in the SpiderUnion and BirdUnion 270

datasets require ≤ 3 tables (see Table 1). We 271

rewrite user questions using the 9-shot prompt and 272

8-shot prompt on the SpiderUnion and BirdUnion 273

respectively, since the table scales of BirdUnion 274

are larger than that of SpiderUnion. 275

3.2 Main Result 276

The main results of our experiments are presented 277

in Table 2. Compared to CRUSH, MURRE demon- 278

strates significant improvements across various 279

datasets and models of different scales, with an 280

average enhancement of 5.7% in recall and com- 281

plete recall compared to the previous SOTA, which 282

validates the effectiveness of our method. From the 283

table, we can also see that: 284

The improvement of MURRE on BirdUnion is 285

more significant than on SpiderUnion. Since 286

the questions in BirdUnion typically require more 287

tables (see Table 1), requiring multi-hop retrieval 288

of MURRE more to obtain multiple relevant tables, 289

thereby enhancing retrieval performance. 290

As the number of top-ranked tables grows, the 291

retrieval performance of MURRE slows down. 292

Improving metrics with a high number of top- 293

ranked tables necessitates retrieving relevant ta- 294

bles that are highly dissimilar to the user question, 295

making the metrics challenging to enhance. Espe- 296

cially, for some metrics (e.g., k = 20, r@20), the 297

performance of MURRE declines slightly because 298

removing retrieved table information at each hop 299

leads to a greater focus on retrieving tables that are 300

highly dissimilar to the user question. 301

Text-to-SQL Experiments We conduct text-to- 302

SQL experiments on the SpiderUnion and Bir- 303

dUnion datasets using the user question and re- 304

trieved tables as the input, as shown in Table 3. 305
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Dataset Model Method k = 3 k = 5 k = 10 k = 20 r@3 r@5 r@10 r@20

SpiderUnion

SGPT-125M
Single-hop 54.3 66.0 75.4 82.2 63.0 73.1 80.7 86.3
CRUSH† 60.2 71.3 80.7 86.8 68.9 76.3 83.4 88.9
MURRE 65.0 74.2 81.0 85.3 70.2 77.5 82.3 86.9

SGPT-5.8B
Single-hop 76.3 86.8 94.1 97.6 84.0 91.5 96.2 98.7
CRUSH† 68.2 80.1 88.4 92.2 75.5 85.1 91.2 94.5
MURRE 86.0 93.5 96.7 97.3 89.3 94.3 96.8 97.5

BirdUnion

SGPT-125M
Single-hop 39.0 50.3 62.1 70.9 54.0 63.2 73.3 80.9
CRUSH† 42.1 56.1 70.2 77.7 60.2 70.0 79.5 86.1
MURRE 51.4 62.7 72.9 78.3 64.8 72.7 79.6 84.2

SGPT-5.8B
Single-hop 55.3 67.3 79.4 86.4 72.9 80.8 88.6 92.8
CRUSH† 52.2 63.5 78.4 88.1 70.0 77.9 87.5 93.0
MURRE 69.1 80.1 88.7 92.7 81.0 87.6 92.6 95.4

Table 2: The main results on complete recall and recall of MURRE, compared with Single-hop and CRUSH on
SpiderUnion and BirdUnion, using SGPT-125M and SGPT-5.8B as the embedding models. k refers to the complete
recall, and r refers to the recall. † denotes our run since the performance difference led by the API change. The best
results of different datasets and models are annotated in bold.

SpiderUnion BirdUnion
Model Method r@3 r@5 r@10 r@20 r@3 r@5 r@10 r@20

SGPT-125M
Single-hop 43.9 50.0 53.2 54.1 11.2 13.4 17.1 18.5
CRUSH 47.3 50.9 55.9 59.6 14.5 17.1 19.0 20.5
MURRE 50.3 54.1 54.7 57.4 16.0 16.8 19.4 20.0

SGPT-5.8B
Single-hop 54.9 60.6 61.6 63.7 16.9 17.3 18.3 20.4
CRUSH 49.8 56.4 60.3 60.8 16.8 18.0 19.7 21.1
MURRE 62.5 64.4 64.4 66.7 20.9 21.8 22.0 22.4

Table 3: EX for predicted SQL based on the input, including the user question and varying numbers of retrieved
tables on SpiderUnion and BirdUnion using SGPT-125M and SGPT-5.8B embeddings, compared with Sigle-hop
and CRUSH. The best results with different models are annotated in bold.

The performance of MURRE in text-to-SQL sur-306

passes both Single-hop and CRUSH, exhibiting a307

trend similar to the retrieval performance, thereby308

further validating the effectiveness of our retrieval309

method. As the number of input tables increases,310

the EX improvement decelerates beyond the top311

10 tables due to the presence of too many irrele-312

vant tables, which hinders the model from focusing313

on the relevant ones. This also underscores the314

necessity of MURRE in enhancing retrieval perfor-315

mance on a small number of top-ranked tables in316

the open-domain text-to-SQL task.317

3.3 Ablation Studies318

To demonstrate the effectiveness of our method, we319

conduct ablation experiments on SpiderUnion, with320

results presented in Table 4. We select SpiderUnion321

corresponding to Spider to perform subsequent ex-322

periments because Spider is the mainstream dataset323

for the text-to-SQL task. Since SGPT-125M and324

SGPT-5.8B exhibit similar trends across different325

datasets and methods (as shown in Tables 2 and326

3), we select SGPT-125M as the embedding model 327

employed in the subsequent experiments to bal- 328

ance the embedding speed and the retrieval recall 329

(Muennighoff et al., 2023). 330

The Effectiveness of Rewrite To demonstrate 331

the effectiveness of Rewrite which removes the re- 332

trieved table information from the user question, we 333

compare its performance against the standard multi- 334

hop retrieval method in open-domain QA, which 335

is directly splicing the user question with retrieved 336

tables at each hop without rewriting. Compared 337

with MURRE, the performance of splicing methods 338

drops significantly and consistently, underscoring 339

the effectiveness of Rewrite which alleviates re- 340

trieved tables similar to previously retrieved tables 341

but irrelevant to the user question. 342

The Effectiveness of Tabulation To prove the ef- 343

fectiveness of transforming questions into a tabular 344

format (abbreviated as tabulation), we rewrite the 345

questions at each hop into natural language ques- 346

tions targeting to query unretrieved information. 347
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Method k = 3 k = 5 k = 10 r@3 r@5 r@10

MURRE 65.0 74.2 81.0 70.2 77.5 82.3
w/o rewrite 46.2 (−18.8) 56.7 (−17.5) 67.2 (−13.8) 50.6 (−19.6) 60.7 (−16.8) 70.0 (−11.6)
w/o tabulation 54.6 (−10.4) 64.9 (−9.3) 75.5 (−5.5) 63.4 (−6.8) 72.5 (−5.0) 80.9 (−1.4)
w/o early stop 52.6 (−12.4) 64.9 (−9.3) 71.0 (−10.0) 57.1 (−13.1) 67.0 (−10.5) 72.2 (−10.1)

Table 4: The ablation results on evaluating MURRE, compared with splicing the question and previously retrieved
tables (denoted as w/o rewrite), rewriting to natural language question (denoted as w/o tabulation), and without
employing the mechanism of early stop (denoted as w/o early stop) on SpiderUnion with SGPT-125M. k refers to
the complete recall, and r refers to the recall. The best results are annotated in bold.
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Figure 3: The complete recall with different beam sizes
on SpiderUnion with SGPT-125M.

The results indicate that, compared to rewriting to348

natural language, rewriting to tabulated questions349

significantly enhances performance, validating the350

effectiveness of tabulation in MURRE.351

The Effectiveness of Early Stop To verify the352

effectiveness of early stop in MURRE, we compare353

the results without using this mechanism, where the354

model does not generate the special early stop mark.355

The performance without the early stop is signifi-356

cantly degraded, which proves that incorporating357

the early stop mechanism in MURRE effectively358

guarantees the performance.359

3.4 Analysis360

In the analysis experiments, we study how differ-361

ent parameters affect the MURRE performance. We362

use k = 5 as the evaluation metric, with detailed363

explanations provided in Appendix I. Additionally,364

we discuss the the efficiency of MURRE in Ap-365

pendix J and the impact of SQL hardness on the366

performance in Appendix K.367

3.4.1 How Does Beam Size Affect the368

Performance?369

To observe the impact of different beam sizes on370

the retrieval performance, we compare the perfor-371

Max Hop #table
1 2 3 ≥ 4 All

1 73.7 59.8 25.6 50.0 66.0
2 73.2 77.6 58.1 50.0 73.4
3 74.2 78.0 58.1 50.0 74.2
4 74.2 78.0 58.1 50.0 74.2

Table 5: Complete recall k = 5 of MURRE with vary-
ing maximum hops. We categorize the SpiderUnion
dataset based on the number of relevant tables (denoted
as #table) per question. All represents the undivided
SpiderUnion dataset. The best results with different
tables are annotated in bold.

mance of our method using SGPT-125M as the 372

embedding on the SpiderUnion dataset under the 373

setting of different beam sizes, as shown in Fig- 374

ure 3. When our method does not employ beam 375

search, i.e., with a beam size of 1, performance 376

degrades rapidly, indicating that beam search mit- 377

igates the effects of error cascade. As the beam 378

size increases, the complete recall shows a sig- 379

nificant upward trend until reaching a beam size 380

of 5, beyond which performance either improves 381

slightly or declines. This indicates that while em- 382

ploying beam search enhances the performance of 383

our method, a beam size greater than 5 introduces 384

too many irrelevant tables, resulting in higher com- 385

putational costs without further performance gains. 386

3.4.2 How Does the Number of Hops Affect 387

the Performance? 388

To verify the effectiveness of multi-hop in our 389

method, we conduct experiments on the Spi- 390

derUnion dataset, divided based on the number 391

of relevant tables, using SGPT-125M as the embed- 392

ding. We compare the complete recall k = 5 with 393

varying numbers of maximum hops, as shown in 394

Table 5. The results indicate the following: (i) The 395

overall trend indicates that MURRE achieves the 396

best performance when the number of maximum 397

hops is greater than or equal to the required number 398

of tables. (ii) For questions requiring 1 or 2 tables, 399
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Figure 4: The left part is the average rank of relevant
tables with different numbers of max hops on the Spi-
derUnion with MURRE. The right part is the proportion
of questions that are not early stopped with different
hops on the SpiderUnion with MURRE.

the best performance is achieved at a maximum hop400

of 3. Since MURRE can improve the performance401

of the questions that retrieve irrelevant tables in pre-402

vious hops by removing the retrieved information,403

guiding the model to obtain unretrieved relevant404

tables in subsequent hops. (iii) The performance405

for questions requiring a 1 table slightly decreases406

with 2 hops because removing retrieved informa-407

tion from such questions could easily introduce408

errors. However, this error is mitigated and elimi-409

nated at a maximum hop of 3. (iv) The performance410

of requiring ≥ 4 tables remains unchanged across411

multiple hops because improving complete recall412

k = 5 necessitates that the top 5 retrieved tables413

include all relevant tables, which is challenging.414

3.4.3 Can MURRE Reduce the Average Rank415

of Relevant Tables?416

To verify the effectiveness of MURRE in improving417

the average rank of relevant tables, we calculate the418

average rank at different maximum hops, as shown419

on the left part of Figure 4. From the figure, we can420

see that MURRE significantly enhances the average421

rank of relevant tables, with the most notable im-422

provement occurring at a maximum hop of 2. This423

is because most questions in SpiderUnion require424

1 or 2 tables (see Table 1), requiring two hops to425

obtain unretrieved relevant tables. Conversely, the426

improvement at a maximum hop of 3 is weak, not427

only because of the limited number of questions428

requiring ≥ 3 tables but also due to the early stop429

mechanism, which causes most questions to cease430

retrieval before the third hop.431

As illustrated in the right part of Figure 4, the432

proportion of different hops performed by our433

method is almost the same as the proportion of434

the table corresponding to the different table num-435

bers in Table 1. Besides, most user questions have436

stopped retrieving in the third hop, so it is reason-437

able to set the maximum hop steps to 3.438

hop 1 hop 2 hop 3
0

20

40

60

80

100

0.0
10.4 11.1

53.3

79.2 78.2

100.0 97.1 98.0

r@
5

r@5 = 0 0 < r@5 < 1 r@5 = 1

Figure 5: The r@5 during multiple hops, categorizing
according to the r@5 in the first hop which falls into dif-
ferent intervals, demonstrates that the cascading effect
of our method is not significant.

3.4.4 How Does the Previous Errors Affect 439

Subsequent Performance? 440

To examine the error cascades in MURRE, we ana- 441

lyze the number of errors with different recalls that 442

occurred in different hops. We compare the perfor- 443

mance of r@5 during multiple hops, categorizing 444

the questions into r@5 = 0, 0 < r@5 < 1, and 445

r@5 = 1 based on the results in the first hop, as 446

illustrated in Figure 5. We use SGPT-125M as the 447

embedding model and conduct experiments on the 448

SpiderUnion dataset, with a beam size of 5 and a 449

maximum hop of 3. 450

The error cascades in MURRE is minimal and 451

is significantly compensated by the performance 452

improvements brought about by multi-hop retrieval. 453

We analyze these three categories of questions sep- 454

arately. (i) For questions whose r@5 = 0 in hop 1, 455

the top 5 tables retrieved are all irrelevant. MURRE 456

improves performance because removing the re- 457

trieved information from the user question can 458

eliminate the interference of irrelevant tables re- 459

trieved in the previous hops. (ii) For questions with 460

0 < r@5 < 1 in hop 1, there are irrelevant tables 461

among the 5 retained tables. Our method signifi- 462

cantly enhances performance in hop 2 by extract- 463

ing the retrieved table information from the user 464

question and focusing on retrieving unretrieved 465

relevant tables. Performance in hop 3 is slightly 466

reduced, mainly because most questions in Spi- 467

derUnion have ≤ 2 relevant tables (see Table 1), 468

and additional hops may introduce errors. (iii) For 469

questions whose r@5 = 1 in hop 1, performance 470

in hops 2 and 3 is slightly reduced as all relevant 471

tables are retrieved, causing subsequent hops to 472

introduce a small amount of error. 473
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Question
What is the most populace city that speaks English?

Tables
city_record.city(city id, city, hanyu pinyin, regional population, …)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, …)
…

Retrieved Tables (top 3)
CRUSH: (r@3 = 50.0)
farm.city(city id, official name, status, area km 2, population, …)
world_1.city(id, name, country code, district, population)
geo.city(city name, population, country name, state name)

MURRE: (r@3 = 100.0)
world_1.city(id, name, country code, district, population)
world_1.countrylanguage(countrycode, language, is official, …)
city_record.city(city id, city, hanyu pinyin, regional population, …)

Figure 6: A case study comparing MURRE with CRUSH.
Green indicates relevant tables, while red indicates ir-
relevant ones. Each table is represented as “database
name.table name(column names)”. r denotes recall.

3.5 Case Study474

We demonstrate a case study with MURRE com-475

pared with CRUSH, as shown in Figure 6. We476

can see that CRUSH fails to retrieve the table477

"world_1.countrylanguage" within the top 3 results478

due to its single-hop retrieval limitation, as the re-479

trieval of table "world_1.countrylanguage" relies480

on the table "world_1.city". In contrast, MURRE481

employs multi-hop retrieval with a beam size of482

3, increasing the probability of selecting relevant483

tables at each hop. Additionally, we eliminate484

the retrieved information in "world_1.city" from485

the question, which aids the model in retrieving486

"world_1.countrylanguage" that was previously487

missed. A detailed comparison with additional488

methods is provided in Appendix L.489

4 Related Work490

4.1 Text-to-SQL491

The text-to-SQL task aims to convert user questions492

into SQL queries, facilitating efficient database493

access (Qin et al., 2022). LLM-based methods494

have become mainstream in text-to-SQL due to495

their superior performance with minimal annotated496

data (Li et al., 2023a; Gao et al., 2023a). For ex-497

ample, Li and Xie (2024) propose creating test498

cases and using LLMs to predict execution results,499

determining the correctness of SQL from candi-500

dates. However, these methods do not focus on501

open-domain text-to-SQL and exist a gap with real-502

world applications. Therefore, CRUSH (Kothyari503

et al., 2023) proposes to guess potentially relevant504

tables for retrieval. DBCopilot (Wang et al., 2024) 505

trains a schema router to identify relevant tables. 506

Chen et al. (2024b) propose a re-ranking relevance 507

method by fine-tuning DTR models. 508

However, existing methods are constrained by: 509

(i) only designing to retrieve with the single 510

hop; (ii) requiring fine-tuning, which is resource- 511

intensive and domain-specific. To solve these 512

problems, we propose a multi-hop table retrieval 513

method for open-domain text-to-SQL. 514

4.2 Retrieval for Open-Domain QA 515

Existing retrieval methods for open-domain QA 516

leverage in-context learning and the knowledge 517

embedded in LLM parameters, demonstrating ef- 518

fectiveness across many benchmarks (Gao et al., 519

2023b; Chen et al., 2024a). Some studies empha- 520

size iterative retrieval and generation, enhancing 521

the performance by using multi-hop retrieval. For 522

example, ITER-RETGEN (Shao et al., 2023) pro- 523

poses to splice the question and LLM generation 524

to retrieve for the next iteration. To reduce the 525

calculation cost of multi-hop retrieval, Adaptive- 526

RAG (Jeong et al., 2024) proposes to adopt multi- 527

hop retrieval by splicing the question, retrieved 528

documents, and generated answers in each hop for 529

complex questions that are predicted first. 530

However, these methods are unsuitable for open- 531

domain text-to-SQL due to error cascades intro- 532

duced by multi-hop retrieval. Also, unlike the user 533

questions in open-domain QA that require supple- 534

mentary documents, adding retrieved tables to our 535

questions tends to retrieve similar tables among 536

hops. To solve these challenges, we select multiple 537

tables at each hop and exclude the retrieved infor- 538

mation from the question for next-hop retrieval. 539

5 Conclusion 540

In the paper, we propose MURRE to address 541

the challenge that multi-hop retrieval in other 542

open-domain tasks cannot be directly applied to 543

open-domain text-to-SQL. Compared with previ- 544

ous methods, MURRE employs the beam search 545

paradigm to reduce the impact of error cascades in 546

multi-hop retrieval and removes the retrieved infor- 547

mation from the question at each hop to obtain un- 548

retrieved tables. Experimental results demonstrate 549

the effectiveness of MURRE on two open-domain 550

text-to-SQL datasets. Our method achieves new 551

SOTA results compared with the previous methods, 552

with an average of 5.7% improvement. 553
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Limitations554

We discuss the limitations of our work from the555

following two aspects. (i) Considering the applica-556

bility, the multi-turn text-to-SQL task is common557

in real scenarios (Yu et al., 2019a,b), while we do558

not discuss the solutions of open-domain multi-turn559

text-to-SQL. We leave improving our method to560

apply to multi-turn text-to-SQL for future work.561

(ii) From the performance perspective, our method562

does not consider the performance improvement563

brought by the text-to-SQL feedback (Trivedi et al.,564

2023; Yu et al., 2023). We leave the retrieval recall565

improvement leveraging the results of text-to-SQL566

for future work. handles ambiguous entities or syn-567

onyms within the natural language questions or568

database schemas. Although our method achieves569

significant improvements, future work can improve570

our method from the aspects of applicability and571

recall further.572

Ethics Statement573

Every dataset and model used in the paper is ac-574

cessible to the public, and our application of them575

adheres to their respective licenses and conditions.576
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A How to Adress the Scenarios Where No750

Relevant Tables Exist751

In this section, we discuss how our method can752

be improved to solve the situation that there are753

no tables that are relevant to the user question in754

the given databases (Yu et al., 2019a). According755

to the existing open-domain database tables, we756

can manually annotate or synthesize relevant and757

irrelevant questions to train a discriminator. For758

each user question, before retrieving the relevant759

tables, we can use the discriminator to determine760

whether the question is irrelevant to the existing761

tables. And if the question is irrelevant, we can762

directly output the feedback, and no longer retrieve763

tables and generate SQL (Jeong et al., 2024).764

B Prompts for Rewrite765

In the section, we show the prompts we use766

to rewrite the question on SpiderUnion (see Ta-767

ble 6) and BirdUnion (see Table 7). Each table is768

represented in the form of “database name.tabel769

name(column name, column name, ...)” following770

Kothyari et al. (2023). We only show the first two771

examples here limited by pages. The code and the772

whole prompt will be public in the future.773

C Normalization Method774

In this section, we show how to normalize the775

cosine similarity into a probability distributed be-776

tween 0 and 1 present in Equation 2.1. We define777

the cosine similarity between the question q vector778

and the table ti vector as s, which is distributed779

between −1 and 1. And we use Equation C.1 to780

normalize the cosine similarity s.781

Norm(s) =
s+ 1

2
(C.1)782

Moreover, Norm(s) is proportional to s, that is,783

the greater the cosine similarity s, the greater784

P̂ (ti|q), that is, the greater the probability that the785

table ti is retrieved by q.786

D Score of the Retrieval Path787

In this section, we prove the calculation process788

of the retrieval path probability present in §2.5.789

First of all, we define the retrieval path Pathh,b790

as Equation D.1, where qh,b represents the user791

question of hop h and beam b, and tq
h,b

ph represents792

the table retrieved by qh,b ranked at ph.793

Pathh,b = ((q1,b, tq
1,b

p1 ), ..., (qh,b, tq
h,b

ph
)) (D.1)794

According to the discussion in §2.3, the score of 795

each retrieval path Pathh,b can be regarded as the 796

probability that the last table in the path tq
h,b

ph is 797

retrieved in the case of the user question at last hop 798

qh,b. Formally, it can be summarized as: 799

Score_Path((q1,b, tq
1,b

p1 ), ..., (qh,b, tq
h,b

ph
))

=P̂ ((q1,b, tq
1,b

p1 ), ..., (qh,b, tq
h,b

ph
))

=P̂ (tq
h,b

ph
|qh,b) · P̂ ((q1,b, tq

1,b

p1 ), ..., (qh−1,b, tq
h−1,b

ph−1
))

=...

=
h∏

j=1

P̂ (tq
j,b

pj |q
j,b)

(D.2) 800

Therefore, we multiply all P̂ on the retrieval path 801

as the score of the path. 802

E Table Scoring Algorithm in MURRE 803

In this section, we detail the table scoring algorithm 804

(Algorithm 1), which is discussed in §2.5. 805

F How to Handle Ambiguous Entities or 806

Synonyms 807

In this section, we present how our method can 808

be improved to handle ambiguous entities or syn- 809

onyms within user questions or database tables. 810

When scoring the retrieved tables, in the face of 811

multiple similar tables retrieved due to ambiguous 812

entities or synonyms, we can additionally consider 813

the correlation between tables and select tables 814

with higher relevance scores of other retrieved ta- 815

bles (Chen et al., 2024b). 816

G Dataset Details 817

In this section, we introduce in detail the source 818

dataset of SpiderUnion and BirdUnion datasets 819

which we use. Spider (Yu et al., 2018) is a multi- 820

domain mainstream text-to-SQL dataset that con- 821

tains 658 questions, with an average of 1.48 tables 822

per question in the dev-set. Bird (Li et al., 2023b), 823

as a text-to-SQL dataset, is closer to the actual sce- 824

nario featuring its larger scale and more difficult 825

questions. Bird contains 1534 questions, with an 826

average of 1.92 tables per question in the dev-set. 827

H Model Details 828

In the section, we introduce the models SGPT 829

and gpt-3.5-turbo used in our experiments. 830

SGPT (Muennighoff, 2022) is the popular retrieval 831
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Given the following SQL tables, your job is to complete the possible left SQL tables given a user’s request.
Return None if no left SQL tables according to the user’s request.

Question: Which models are lighter than 3500 but not built by the ’Ford Motor Company’?
Database: car_1.model list(model id, maker, model)
car_1.cars data(id, mpg, cylinders, edispl, horsepower, weight, accelerate, year)
car_1.car names(make id, model, make)
Completing Tables: car_1.car makers(id, maker, full name, country)

Question: Which employee received the biggest bonus? Give me the employee name.
Database: employee_hire_evaluation.evaluation(employee id, year awarded, bonus)
employee_hire_evaluation.employee(employee id, name, age, city)
Completing Tables: None
...

Table 6: The prompt we use for the SpiderUnion with gpt-3.5-turbo.

Given the following SQL tables, your job is to complete the possible left SQL tables given a user’s request.
Return None if no left SQL tables according to the user’s request.

Question: What was the growth rate of the total amount of loans across all accounts for a male client between 1996 and 1997?
Database: financial.client(client_id, gender, birth_date, location of branch)
financial.loan(loan_id, account_id, date, amount, duration, monthly payments, status)
Completing Tables: financial.account(account id, location of branch, frequency, date)
financial.disp(disposition id, client_id, account_id, type)

Question: How many members did attend the event ’Community Theater’ in 2019?
Database: student_club.Attendance(link to event, link to member)
Completing Tables: student_club.Event(event id, event name, event date, type, notes, location, status)
...

Table 7: The prompt we use for the BirdUnion with gpt-3.5-turbo.

Single-hop, employing a decoder-only architecture832

and showing excellent performance on tasks such833

as sentence matching. gpt-3.5-turbo (Zhao et al.,834

2023) has undergone instruction fine-tuning and hu-835

man alignment and has superior in-context learning836

and inference capability.837

I The Evaluation Metric in Analysis838

Experiments839

In this section, we explain the reasons for using840

complete recall k = 5 as the evaluation metric in841

the analysis experiments. The increasing trend of842

the performance in the text-to-SQL becomes slow843

or even drops when inputting retrieved tables more844

than 5 as shown in Table 3, and considering that845

SpiderUnion and BirdUnion require up to 4 tables846

for each question, so in the following analysis, we847

are mainly concerned with the performance of the848

top 5 retrieval results. Furthermore, complete recall849

k = 5 is a more strict indicator than recall@5, so850

we mainly utilize complete recall k = 5 as the851

evaluation metric in analysis experiments.852

J Discussion on Efficiency 853

In this section, we discuss the comparison of effi- 854

ciency between MURRE and CRUSH. Because of 855

each user question, CRUSH needs to use LLM to 856

predict the relevant tables once, and then retrieve all 857

the tables according to the LLM prediction once. 858

So the time complexity of CRUSH is shown in 859

Equation J.1, where n is the number of user ques- 860

tions. 861
T (CRUSH) = O(2 · n)

= O(n)
(J.1) 862

Suppose that the number of hop is H and the 863

beam size is B in MURRE. For each user ques- 864

tion, MURRE needs to retrieve all the tables first, 865

and input LLM for rewriting according to the re- 866

trieved top B tables. In the subsequent hops, each 867

hop needs to retrieve B times and rewrite B times 868

with LLM. Therefore, the time complexity of our 869

method is present in Equation J.2. 870

T (MURRE) = O((1 +B + (H − 1) ·B · 2) · n)
= O(B ·H · 2 · n)
= O((B ·H) · n)

(J.2) 871
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Algorithm 1 The table scoring algorithm in MURRE

Input: The similarity corresponding to each table t in each hop h: all_paths =
[[(table11, score11), . . . , (table1H , score1H)], . . . , [(tableP1, scoreP1), . . . , (tablePH ,scorePH)]],
the number of max hops H , the number of all paths P .
Output: The scores of each table t

1: Initialization : table_score← {}
2: for each_path in all_paths do
3: score← 1 ▷ Initialize the score
4: for example in each_path do
5: score = score× example [1] ▷ Calculate the score of the path
6: end for
7: for example in each_path do
8: table_score [example [0]]← max(score, table_score [example [0]])

▷ Update the table score with the max path score
9: end for

10: end for
11: return table_score

It can be found that although our method has872

significantly improved the performance compared873

with CRUSH, our method is less efficient. How-874

ever, existing work shows that using reasoning ef-875

ficiency for improving the reasoning performance876

has a wide range of practical application value (Yao877

et al., 2023; Xie et al., 2023; Press et al., 2023;878

Hashimoto et al., 2024). Therefore, in practical879

applications, how to choose B and H in MURRE880

to achieve a balance between retrieval efficiency881

and effect should be carefully considered.882

K Impact of SQL Hardness883

Method Easy Medium Hard Extra All

Single-hop 70.5 71.1 55.8 51.3 66.0
MURRE 71.8 76.0 73.3 73.1 74.2

Table 8: Complete recall k = 5 of MURRE compared
with the Single-hop in different SQL hardness levels on
SpiderUnion. Extra denotes extra hard. All refers to
the performance of the whole SpiderUnion dataset. The
best results of different hardness are annotated in bold.

In this section, we show the performance of884

MURRE on SQL of different hardness levels. We885

categorize the SQL and its corresponding ques-886

tion according to the SQL hardness criteria (Yu887

et al., 2018) and calculate the retrieval performance888

of different hardness levels, as shown in Table 8.889

MURRE improves performance more significantly890

for more difficult SQL questions. Because more891

difficult SQL often requires more tables to operate892

and query, the Single-hop is challenging to retrieve 893

all relevant tables merely in a single hop, while 894

our method can retrieve more relevant tables with 895

multi-hop retrieval by removing the retrieved infor- 896

mation from the question at each hop. 897

L Detailed Case Study 898

We present one example in detail with MURRE 899

compared with the Single-hop, MURRE without 900

beam search and MURRE without Rewrite re- 901

spectively in Table 9, Table 10, and Table 11. 902

We demonstrate the example, with setting the 903

beam_size to 3 and max hop to 3, while MURRE 904

stops early at the second hop. 905

As shown in Table 9, the Single- 906

hop retrieval fails to retrieve the table 907

"world_1.countrylanguage" at top 3 limited 908

by the single-hop retrieval since the retrieval 909

of table "world_1.countrylanguage" relies on 910

the table "world_1.city". As displayed in Ta- 911

ble 10, MURRE without beam search method 912

is affected by error cascades, because the table 913

city_record.city with the highest retrieval ranking 914

in hop 1 is irrelevant to the question. Rewriting 915

based on the irrelevant city_record.city table will 916

lead to retrieval errors in subsequent hops. As 917

present in Table 11, MURRE without Rewrite 918

adds the retrieved tables directly to the user 919

question, so that the subsequent retrieved tables 920

are similar to the currently retrieved tables. For 921

example, the irrelevant table "city_record.hosting 922

city" retrieved in hop 2 is similar to the table 923
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Question
What is the most populace city that speaks English?

Single-hop (r@3 = 50.0)
Retrieved Tables (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)

MURRE (r@3 = 100.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Rewritten Questions
city_record.language(city id, language, percentage)
world_1.countrylanguage(countrycode, language, is official, percentage)
e_government.languages(language id, language name, language code, population)
Retrieved Tables, hop = 2 (top 3)
world_1.city(id, name, country code, district, population))
world_1.countrylanguage(countrycode, language, is official, percentage)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
Rewritten Questions
None
None
None
(Early Stop)

Table 9: Detailed case study comparing MURRE with Single-hop. The green means the relevant table, while the red
means irrelevant. Each table is expressed in the form of “database name.tabel name(column names)”. r denotes
recall.

"city_record.city" retrieved in hop 2, which are924

both about "city" information, but ignore the925

information of "language". And our method926

focuses on retrieving tables about "language" by927

removing the information "world_1.city" in the928

retrieved tables, and successfully retrieves two929

relevant tables.930
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Question
What is the most populace city that speaks English?

MURRE without beam search (r@3 = 0.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Rewritten Question
city_record.language(city id, language, percentage)
Retrieved Tables, hop = 2 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
city_record.hosting city(year, match id, host city)
city_record.match(match id, date, venue, score, result, competition)
Rewritten Question
None
(Early Stop)

MURRE (r@3 = 100.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Rewritten Questions
city_record.language(city id, language, percentage)
world_1.countrylanguage(countrycode, language, is official, percentage)
e_government.languages(language id, language name, language code, population)
Retrieved Tables, hop = 2 (top 3)
world_1.city(id, name, country code, district, population))
world_1.countrylanguage(countrycode, language, is official, percentage)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
Rewritten Questions
None
None
None
(Early Stop)

Table 10: Detailed case study comparing MURRE with MURRE without beam search. The green means the relevant
table, while the red means irrelevant. Each table is expressed in the form of “database name.tabel name(column
names)”. r denotes recall.
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Question
What is the most populace city that speaks English?

MURRE without Rewrite (r@3 = 50.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Spliced Questions
What is the most populace city that speaks English?; city_record.city(city id, city, hanzi, hanyu pinyin,
regional population, gdp)
What is the most populace city that speaks English?; world_1.city(id, name, country code, district, population)
What is the most populace city that speaks English?; e_government.addresses(address id, line 1 number building,
town city, zip postcode, state province county, country)
Retrieved Tables, hop = 2 (top 3)
city_record.hosting city(year, match id, host city)
county_public_safety.city(city id, county id, name, white, black, amerindian, asian, multiracial, hispanic)
world_1.country(code, name, continent, region, surface area, indepdent year, population, life expectancy, gnp, gnp old,
local name, ...)
Spliced Questions
What is the most populace city that speaks English?; world_1.city(id, name, country code, district, population);
city_record.hosting city(year, match id, host city)
What is the most populace city that speaks English?; world_1.city(id, name, country code, district, population);
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
What is the most populace city that speaks English?; city_record.city(city id, city, hanzi, hanyu pinyin, regional population,
gdp);
city_record.hosting city(year, match id, host city)
Retrieved Tables, hop = 3 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
city_record.hosting city(year, match id, host city)
world_1.city(id, name, country code, district, population)

MURRE (r@3 = 100.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Rewritten Questions
city_record.language(city id, language, percentage)
world_1.countrylanguage(countrycode, language, is official, percentage)
e_government.languages(language id, language name, language code, population)
Retrieved Tables, hop = 2 (top 3)
world_1.city(id, name, country code, district, population))
world_1.countrylanguage(countrycode, language, is official, percentage)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
Rewritten Questions
None
None
None
(Early Stop)

Table 11: Detailed case study comparing MURRE with MURRE without Rewrite. The green means the relevant
table, while the red means irrelevant. Each table is expressed in the form of “database name.tabel name(column
names)”. r denotes recall.
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