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ABSTRACT

Network pruning focuses on computational techniques that aim to reduce a given
model’s computational cost by removing a subset of its parameters while having
minimal impact on performance. Throughout the last decade, the most widely
used pruning paradigm has been pruning and re-training, which nowadays is in-
convenient due to the vast amount of pre-trained models, which are in any case
too expensive to re-train. In this paper, we exploit functional information from
dense pre-trained models, i.e., their activations, to obtain sparse models that max-
imize the activations’ alignment w.r.t. their corresponding dense models. Hence,
we propose NEURONAL, a top-up algorithm that can be used on top of any given
pruning algorithm for LLMs, which modifies the block-wise and row-wise spar-
sity exploiting information from both the dense model and its sparse version
to maximize the neuron alignment among activations. Differently from exist-
ing methods, our approach adaptively selects the best hyperparameters for the
block-wise and row-wise sparsity ratios w.r.t. the model and the desired spar-
sity, and requires no re-training. We test our method over four LLM families,
three sparsity ratios, and ten language tasks (three language modeling and seven
zero-shot datasets), showing how it consistently outperforms the latest state-of-
the-art methods in terms of performance-runtime trade-off. The code is available
at https://github.com/eliacunegatti/NeuroAL.

1 INTRODUCTION
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Figure 1: Perplexity vs. Runtime (sec-
onds) trade-off among different top-up
algorithms.

In recent times, Large Language Models (LLMs) have
shown incredible performance over several language
tasks Wei et al. (2022); Min et al. (2023); Chang et al.
(2024). However, their performance usually improves
with their sizes (i.e., the number of trainable parameters),
which in turn is proportional to the computational cost of
training and then using such models. One way to reduce
this cost is through network pruning, i.e., applying algo-
rithms that remove parameters while minimizing perfor-
mance degradation. This approach has been extensively
studied on Convolutional Neural Networks (CNNs) Fran-
kle & Carbin (2019); Lee et al. (2019); Wang et al. (2020);
Evci et al. (2020), but nowadays the focus has shifted to-
wards pre-trained models Touvron et al. (2023a;b); Jiang
et al. (2023).

This shift has required a change of paradigm in pruning techniques: in fact, while in CNNs the main
paradigm is iterative pruning (with re-training) Frankle & Carbin (2019), with pre-trained models
(such as LLMs) in most cases it is not possible to fully re-train such models, because (1) training
data are often not accessible, and (2) full re-training would be anyway too expensive. This calls
for “exploiting” as much as possible the information contained in a pre-trained model to obtain a
performant sparse version of it, using weight’s information Jaiswal et al. (2024), activations Sun et al.
(2023; 2024), or reconstruction error Frantar & Alistarh (2023), without the need for re-training.

1

https://github.com/eliacunegatti/NeuroAL


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

More recently, a new category of pruning algorithms, which we may call top-up algorithms (i.e.,
methods that can be applied on top of a given pruning algorithm for LLMs), has emerged, aiming
at further improving pruning performance. Such approaches can be divided into two categories:
those that minimize the reconstruction error Guo et al. (2024); Xu et al. (2024); Zhang et al. (2024),
and those that impose non-uniform sparsity distribution modifying the block-wise sparsity Yin et al.
(2024); Lu et al. (2024); Li et al. (2024).

Contributions In this paper, we first analyze the major limitation of current top-up algorithms.
To do so, we carefully analyze the state-of-the-art top-up methods highlighting their limitations in
terms of sensitivity to hyperparameters and large pruning runtime. Leveraging this knowledge, we
introduce a new top-up method, called NEURONAL. The algorithm consists of a two-step approach
that re-distributes the block-wise sparsity, i.e., the sparsity among Transformer blocks, and the row-
wise sparsity, i.e., the sparsity for each row of a given layer’s matrix, maximizing a metric which
exploits information from both the dense and sparse model, namely the neuron alignment between
dense and sparse activations. NEURONAL does not require the user to specify any hyperparameter-
tuning, as it automatically selects the most-performing values from a suitable set, hence adapting
to the underlying model and the target sparsity. Another advantage is that the neuron alignment
only requires the computation of the activations of the dense and sparse models, which reduces the
computation budget required, compared to other top-up approaches.

2 CURRENT LIMITATIONS OF TOP-UP ALGORITHMS
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Figure 2: Perplexity for various hyper-
parameter settings of OWL (M ,λ) and
AlphaPruning (ϵ).

We analyze the sensitivity of the hyperparameters used by
OWL, namely λ and M , and by AlphaPruning, namely
ϵ. Concerning OWL, the first hyperparameter is used to
set how much the sparsity can vary across blocks (i.e.,
[s − λ, s + λ]) while keeping the overall sparsity fixed
as s. The second hyperparameter, M , defines the out-
liers’ threshold: namely, for each block, the number of
outliers is computed as the number of activations that are
M times greater than the block’s activations’ mean. For
AlphaPruning, instead, a hyperparameter called ϵ is used
and manually tuned to set two tunable hyperparameters
(s1, s2) that control the sparsity across blocks. We test the
sensitivity of OWL and AlphaPruning to their hyperpa-
rameters, using three different sparsity ratios, two LLMs,
and Wanda as the underlying pruning algorithm. Fig. 2
displays the perplexity on WikiText2 of the different hy-
perparameter settings obtained with OWL (first two rows)
and AlphaPruning (last row); the gray square corresponds
to the best a-posteriori hyperparameter selection. It can
be seen that no single hyperparameter value achieves the
best performance in all settings, which entails that careful tuning is required for these approaches to
be effective.

Another main limitation of some of the current approaches for non-uniform distribution is their
computational runtime. This holds mainly BESA Xu et al. (2024) and DSA Li et al. (2024). On
LLama-7B, the first approach, which relies on gradient information, requires ∼5 hours to find the
best non-uniform distribution configuration. On the other hand, DSA requires ∼12 hours to find the
distribution configuration. 1

3 METHODOLOGY

Our proposed method is based on the idea of combining the concept of neuron alignment, which
requires no a priori definition of outliers (hence no M parameter, as in OWL), with that of adaptivity,
to remove the need for manually tuning λ and ϵ. The method takes as input both D and its sparse
version S generated by P with sparsity ratio s, and uses a small calibration data Cλ to make a

1BESA and DSA are not included in these experiments due to their large runtime. Testing them on all
combinations of sparsities and pruning algorithms is unfeasible with our GPU resources.
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forward pass on both models, to retrieve the dense and sparse activations, respectively AD and AS .
The main idea behind NEURONAL is to maximize the neuron alignment by firstly modifying the
vector of sparsity ratios for all blocks (sB) and then for all rows (sr), where each row corresponds to
the layer’s weight matrix W ℓji (for each layer ℓji in Bi), where W ℓji ∈ Rr×m. The main strength of
this approach is that it does not require any weight update nor gradient information, but just a block-
and row-wise sparsity reallocation and mask update, using the same scoring criteria of P .

However, as tested in the previous observational study, finding the best block/row-wise sparsity
requires defining a factor λ to control the block/row-wise sparsity difference between consecutive
blocks/rows while ensuring the desired global sparsity. While OWL requires λ to be set a priori,
NEURONAL automatically selects, from a suitable set of values, the best λ for each combination of
D, P and s, yielding an adaptive top-up method. The only constraint we set is that we use a linear
sparsity schedule over λ for the block-wise step, demonstrated to be effective in our empirical study
in Section 3.3.

3.1 BLOCK-WISE SPARSITY RATIO

The first step concerns the block-wise redistribution over the whole model. Our method takes as
input the dense and sparse models (D and S), the target sparsity (s), the calibration data Cλ, and
a set of λ parameters (λset). Then, it computes a set of |λset| vectors of block-wise sparsity values
sBset = {sBλ1

, sBλ2
, . . . , sBλ|λset|

}, where each element sBλk
indicates a vector of block-wise sparsity

values obtained with a linear schedule in [s − λk, s + λk]. For each sBλk
, we then forward the

calibration data Cλ through the model, and calculate the corresponding neuron alignment:

neural =
∑
Bi

∑
ℓji

∥∥∥Ãj
D − Ãj

S(
sB
λk

)
∥∥∥
2

|Ãj
D|

(1)

where Ã means that the activations are normalized to sum up to one. Then, we select
(
sBset

)∗
, i.e.,

the λ parameters per block that minimize Eq. (1). Finally, we update the block-wise sparsity with
the selected

(
sBset

)∗
, thus obtaining a sparsified model SB.

3.2 ROW-WISE SPARSITY RATIO

The second step is complementary to the previous one, but in this case, the sparsity is modified w.r.t.
the rows of each layer. In this case, for each layer ℓji (i.e., for each W ℓji ∈ Rr×m) we redistribute the
sparsity across the r rows. Also in this case the λ parameters are critical for deciding how to control
the sparsity difference between consecutive rows. We take our sparse model obtained with the
block-wise redistribution (SB) and, for each layer ℓji , we compute different row-wise sparsity values
obtaining ssset = {srλ1

, srλ2
, . . . , srλ|λset|

}, where each srλk
indicates a vector of row-wise sparsity in

[s−λk, s+λk], where each element is inversely proportional to the alignment of the corresponding
row. In this case, we select in ssset the row-wise vector (srset)

∗ that minimizes Eq. (1).

3.3 NON-UNIFORM BLOCK-WISE SPARSITY DISTRIBUTION

Table 1: Performance improvement
w.r.t. uniform distribution averaged
across three different datasets (Wiki-
Text2, C4, and PTB) using Wanda.

Sparsity Model
Schedule

OWL Exp Log Linear

60%
Phi-2.7B +3.4% +2.4% +7.8% +7.7%

LLama-1 7B +16.5% +3.4% +15.7% +18.1%

70%
Phi-2.7B +45.8% +47.7% +44.9% +52.5%

LLama-1 7B +66.8% +28.2% +53.9% +63.5%

80%
Phi-2.7B +87.8% +89.3% +55.7% +82.8%

LLama-1 7B +81.5% +63.6% -4.4% +68.1%

Mean +50.3% +39.1% +28.9% +48.8%

The sparsity values for each block in sBλk
have been

set such as given the sparsity window [s − λ, s + λ],
these schedules work by redistributing the sparsity across
blocks in a monotonically linear way (i.e., the sparsity
of block i is always larger than the sparsity of layer
i − 1,∀i > 1). We select this sparsity schedule for two
main reasons: (1) as shown below such a straightforward
sparsity schedule is already able to achieve similar re-
sults w.r.t. state-of-the art approaches, and (2) to align
with the latest discovering in the literature of structured
pruning where is consistently demonstrate how deeper blocks are redundant and can be removed
with marginal performance degradation Gromov et al. (2024); Men et al. (2024); Kim et al. (2024).
We motivated the choice of a linear schedule by testing three straightforward non-uniform sparsity
schedules (namely linear, exponential, and logarithmic), which do not require any block scoring for
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sparsity allocation. Table 1 highlights how non-uniform sparsity schedules, without any block-based
scoring, lead to a performance improvement close to OWL’s. Overall, the linear schedule turns out
to be the most reliable one since it does not show oscillations in performance across the different
sparsity ratios.

4 EXPERIMENTS
Table 2: Accuracy on the seven Zero-Shot Tasks
using Wanda as pruning algorithm.

Sparsity Top-Up
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

60%

Uniform 52.36 50.39 49.97 51.03 46.24
DSnoT 49.36 49.12 48.83 50.51 45.75
OWL 51.48 50.93 51.68 52.49 46.05
AlphaPruning 43.14 51.08 51.21 49.87 44.50
NEURONAL 52.04 51.41 51.99 52.09 46.10

70%

Uniform 39.89 36.90 34.37 36.85 36.31
DSnoT 38.76 36.26 34.09 36.53 36.35
OWL 41.20 43.31 40.57 38.77 38.77
AlphaPruning 35.02 44.08 42.03 39.05 39.53
NEURONAL 41.87 44.57 43.10 41.56 38.86

80%

Uniform 36.21 31.66 31.81 32.48 33.34
DSnoT 32.73 31.78 32.27 32.14 35.12
OWL 36.26 31.43 32.48 32.02 32.10
AlphaPruning 30.74 35.34 32.09 32.29 32.16
NEURONAL 37.36 36.31 32.74 33.08 33.05

Concerning the Language Modeling datasets,
the numerical results in terms of perplexity
computed over the three Language Modeling
datasets at 70% sparsity are shown in Table 3.
It can be seen how NEURONAL is able in al-
most all cases to outperform all the other base-
lines by a large margin. In no case NEURONAL
performs worse w.r.t. the uniform distribution.
The only model on which NEURONAL is not
the best top-up algorithm for all pruning algo-
rithms is OPT. In all other cases, NEURONAL
outperforms OWL and AlphaPruning for all models and pruning algorithms.

As for the Zero-Shot tasks, the numerical results are shown in Table 2. We display only the mean
across the seven Zero-Shot tasks. Again, NEURONAL turns out to outperform in the majority of
cases all the baselines. In 10 cases out of 15 (w.r.t. the mean accuracy across all tasks), NEURONAL
is the one that reaches the best performance and in 4 cases the second best.

Table 3: Perplexity on the three Language Modeling datasets computed over five different LLMs
for four different top-up algorithms (Uniform, DSnoT, OWL, and NEURONAL) on three pruning
algorithms (Magnitude, MULTIFLOW, and Wanda) at 70% sparsity.

Algorithm Top-Up
Phi-2.7B LLama-1 7B LLama-2 7B Mistral 7B OPT 6.7B

WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB

Magnitude

Uniform 764.6 384.4 983.9 2.53e4 2.25e4 3.26e4 1.42e5 1.02e4 2.02e6 221.9 232.9 748.7 1.00e4 5.39e3 6.54e3
DSnoT 539.0 258.0 656.2 1.02e7 2.77e6 4.99e7 1.31e8 2.90e7 2.25e8 192.7 189.9 566.2 6.16e3 3.93e3 4.36e3
OWL 419.6 242.7 358.5 1.20e4 6.58e3 5.39e4 3.39e5 1.24e4 3.28e6 111.7 124.2 545.5 1.57e4 8.48e3 9.67e3
AlphaPruning 2.52e4 1.60e4 2.34e4 424.9 391.5 5.08e4 3.37e3 3.60e3 1.73e5 91.3 106.5 717.1 1.22e4 7.22e3 7.51e3
NEURONAL 281.7 180.9 321.1 231.8 219.9 4.46e3 155.8 264.8 2.61e3 46.5 43.1 612.8 2.11e4 1.07e4 1.09e4

MULTIFLOW

Uniform 388.4 298.8 610.8 80.9 71.9 172.4 60.0 58.8 1.26e3 9.37e2 6.56e2 2.06e3 9.44e2 1.25e3 843.1
DSnoT 325.5 261.9 328.8 67.6 65.0 114.7 66.6 75.8 6.89e2 57.4 63.3 2.65e2 241.8 153.3 263.9
OWL 197.9 141.3 293.9 25.1 25.8 78.9 29.2 31.0 5.47e2 329.0 7.64e2 1.72e3 240.9 495.6 337.8
AlphaPruning 1.22e5 8.99e4 9.52e4 32.2 35.2 103.8 31.3 34.0 287.3 230.8 292.8 1.72e3 133.8 63.7 153.9
NEURONAL 105.4 87.1 179.5 20.7 21.2 46.2 22.1 23.9 265.5 202.5 334.7 1.41e3 209.7 83.7 202.1

Wanda

Uniform 227.6 182.7 346.2 85.1 86.2 157.0 78.0 81.0 599.3 60.7 73.6 298.3 157.5 260.1 209.2
DSnoT 221.9 172.6 257.6 72.9 76.0 121.0 76.1 85.7 491.8 81.3 79.9 304.8 191.4 173.3 182.6
OWL 132.7 116.2 183.7 24.6 27.3 61.2 30.5 36.6 333.7 41.0 51.8 253.5 54.4 69.7 100.7
AlphaPruning 4.22e4 3.05e4 2.23e4 26.9 31.1 77.4 32.0 37.7 273.8 39.4 49.8 286.8 93.8 53.7 120.9
NEURONAL 88.3 77.7 129.5 21.5 23.2 44.2 24.0 27.4 207.0 28.8 33.7 232.0 172.6 84.0 182.7

Table 4: Runtime (seconds) vs. perplexity trade-
off comparison among different top-up algorithms
over LLama-7B pruned at different sparsity ratios
using Wanda.

Metric
Top-up pruning algorithms

Uniform DsNoT OWL BESA DSA AlphaPruning NEURONAL

Runtime - 4.5s 73.3s ∼ 1.8 ×104 s ∼ 4.3 ×104 s 1479.4s 237.1s

Perplexity @ 65% 20.9 19.1 13.1 18.5 12.6 14.0 12.8

Perplexity @ 70% 85.1 72.9 24.6 42.6 22.6 26.9 20.7
Perplexity @ 75% 927.4 646.7 152.5 257.9 103.3 110.2 61.2
Perplexity @ 80% 5.22e3 3.71e3 986.5 2.21e3 736.81 768.4 302.8

Runtime vs. Perplexity NEURONAL provides
a good trade-off between performance and run-
time. In Table 4, we show for all baselines,
the runtime in seconds required to obtain the
non-uniform sparsity distribution for the given
model (in this case LLama-7B V1) as well as
the performance computed as the perplexity
over WikiText2. The results confirm how NEU-
RONAL can achieve, in 3 out of 4 cases, the best
results in terms of perplexity while maintaining
a low computational budget. In terms of runtime, the only comparable methods are DSnoT and
OWL, compared to which however NEURONAL achieves better performance. On the other hand,
DSA is the closest in terms of perplexity to NEURONAL, while requiring four orders of magnitude
more time to obtain the best sparsity distribution. Overall, the performance-runtime trade-off of
NEURONAL improves when increasing the sparsity ratio.

5 CONCLUSION

In this paper, we proposed NEURONAL, a new approach to prune LLMs based on the neuron align-
ment between sparse and dense activations. The main novelty of our approach is that it exploits
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information from both the dense and the sparse models while also being adaptive since it is de-
signed to automatically select the best hyperparameters for a given model, pruning algorithm, and
target sparsity. Throughout extensive experiments, we showed how our approach outperforms, in
most cases, the latest state-of-the-art methods both on Language Modeling datasets and Zero-Shot
tasks, with different LLM families and sparsity ratios.
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