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Abstract
Anomaly detection methods identify examples
that do not follow the expected behaviour, typ-
ically in an unsupervised fashion, by assigning
real-valued anomaly scores to the examples based
on various heuristics. These scores need to be
transformed into actual predictions by threshold-
ing so that the proportion of examples marked
as anomalies equals the expected proportion of
anomalies, called contamination factor. Unfortu-
nately, there are no good methods for estimating
the contamination factor itself. We address this
need from a Bayesian perspective, introducing a
method for estimating the posterior distribution
of the contamination factor for a given unlabeled
dataset. We leverage several anomaly detectors to
capture the basic notion of anomalousness and es-
timate the contamination using a specific mixture
formulation. Empirically on 22 datasets, we show
that the estimated distribution is well-calibrated
and that setting the threshold using the posterior
mean improves the detectors’ performance over
several alternative methods.

1. Introduction
Anomaly detection aims at automatically identifying sam-
ples that do not conform to the normal behaviour, accord-
ing to some notion of normality (see e.g., Chandola et al.
(2009)). Anomalies are often indicative of critical events
such as intrusions in web networks (Malaiya et al., 2018),
failures in petroleum extraction (Martı́ et al., 2015), or break-
downs in wind and gas turbines (Zaher et al., 2009; Yan &
Yu, 2019). Such events have an associated high cost and
detecting them avoids wasting time and resources.
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Typically, anomaly detection is tackled from an unsu-
pervised perspective (Maxion & Tan, 2000; Goldstein &
Uchida, 2016; Zong et al., 2018; Perini et al., 2020b; Han
et al., 2022) because labeled samples, especially anomalies,
may be expensive and difficult to acquire (e.g., you do not
want to voluntarily break the equipment simply to observe
anomalous behaviours), or simply rare (e.g., you may need
to inspect many samples before finding an anomalous one).
Unsupervised anomaly detectors exploit data-driven heuris-
tic assumptions (e.g., anomalies are far away from normals)
to assign a real-valued score to each sample denoting how
anomalous it is. Using such anomaly scores enables ranking
the samples from most to least anomalous.

Converting the anomaly scores into discrete predictions
would practically allow the user to flag the anomalies. Com-
monly, one sets a decision threshold and labels samples with
higher scores as anomalous and samples with lower scores
as normal. However, setting the threshold is a challenging
task as it cannot be tuned (e.g., by maximizing the model
performance) due to the absence of labels. One approach is
to set the threshold such that the proportion of scores above
it matches the dataset’s contamination factor γ, i.e. the
expected proportion of anomalies. If the ranking is correct
(that is, all anomalies are ranked before any normal instance)
then thresholding with exactly the correct γ correctly iden-
tifies all anomalies. However, in most of the real-world
scenarios the contamination factor is unknown.

Estimating the contamination factor γ is challenging. Exist-
ing works provide an estimate by using either some normal
labels (Perini et al., 2020a) or domain knowledge (Perini
et al., 2022). Alternatively, one can directly threshold the
scores through statistical threshold estimators, and derive γ
as the proportion of scores higher than the threshold. For in-
stance, the Modified Thompson Tau test thresholder (MTT)
finds the threshold through the modified Thompson Tau
test (Rengasamy et al., 2021), while the Inter-Quartile Re-
gion thresholder (IQR) uses the third quartile plus 1.5 times
the inter-quartile region (Bardet & Dimby, 2017). In Sec-
tion 4 we provide a comprehensive list of estimators.

Transforming the scores into predictions using an incor-
rect estimate of the contamination factor (or, equivalently,
an incorrect threshold) deteriorates the anomaly detector’s
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performance (Fourure et al., 2021; Emmott et al., 2015)
and reduces the trust in the detection system. If such an
estimate was coupled with a measure of uncertainty, one
could take into account this uncertainty to improve decisions.
Although existing methods propose Bayesian anomaly de-
tectors (Shen & Cooper, 2010; Roberts et al., 2019; Hou
et al., 2022; Heard et al., 2010), none of them study how to
transform scores into hard predictions.

Therefore, we are the first to study the estimation of the con-
tamination factor from a Bayesian perspective. We propose
γGMM, the first algorithm for estimating the contamination
factor’s (posterior) distribution in unlabeled anomaly detec-
tion setups. First, we use a set of unsupervised anomaly
detectors to assign anomaly scores for all samples and use
these scores as a new representation of the data. Second, we
fit a Bayesian Gaussian Mixture model with a Dirichlet Pro-
cess prior (DPGMM) (Ferguson, 1973; Rasmussen, 1999)
in this new space. If we knew which components contain
the anomalies, we could derive the contamination factor’s
posterior distribution as the distribution of the sum of such
components’ weights. Because we do not know this, as a
third step γGMM estimates the probability that the k most
extreme components are jointly anomalous, and uses this
information to construct the desired posterior. The method
explained in detail in Section 3.

In summary, we make four contributions. First, we adopt
a Bayesian perspective and introduce the problem of es-
timating the contamination factor’s posterior distribution.
Second, we propose an algorithm that is able to sample
from this posterior. Third, we demonstrate experimentally
that the implied uncertainty-aware predictions are well cali-
brated and that taking the posterior mean as point estimate
of γ outperforms several other algorithms in common bench-
marks. Finally, we show that using the posterior mean as a
threshold improves the actual anomaly detection accuracy.

2. Preliminaries
Let (Ω,F ,P) be a probability space, and X : Ω → Rd a
random variable, from which a dataset D = {X1, . . . , XN}
of N random examples is drawn. Assume that X has a
distribution of the form P = (1−γ) ·P1+γ ·P2, where P1

and P2 are the distributions on Rd corresponding to normal
examples and anomalies, respectively, and γ ∈ [0, 1] is the
contamination factor, i.e. the proportion of anomalies. An
(unsupervised) anomaly detector is a measurable function
f : Rd → R that assigns real-valued anomaly scores f(X)
to the examples. Such anomaly scores follow the rule that
the higher the score, the more anomalous the example.

A Gaussian mixture model (GMM) with K components
(see e.g. Roberts et al. (1998)) is a generative model de-
fined by a distribution on a space RM such that p(s) =

∑K
k=1 πk N (s|µk,Σk) for s ∈ RM , where N (s|µk,Σk)

denotes the Gaussian distribution with mean vector µk and
covariance matrix Σk ∈ RM×M , and πk are the mixing
proportions such that

∑K
k=1 πk = 1. For finite mixtures, we

typically have a Dirichlet prior over π = [π1, . . . , πK ], but
Dirichlet Process (DP) priors allow treating also the number
of components as unknown (Görür & Rasmussen, 2010).
For both cases, we need approximate inference to estimate
the posterior of the model parameters.

3. Methodology
We tackle the problem: Given an unlabeled dataset D and
a set of M unsupervised anomaly detectors; Estimate a
(posterior) distribution of the contamination factor γ.

Learning from an unlabeled dataset has three key challenges.
First, the absence of labels forces us to make relatively
strong assumptions. Second, the anomaly detectors rely
on different heuristics that may or may not hold, and their
performance can hence vary significantly across datasets.
Third, we need to be careful in introducing user-specified
hyperparameters, because setting them properly may be as
hard as directly specifying the contamination factor.

In this paper, we propose γGMM, a novel Bayesian ap-
proach that estimates the contamination factor’s posterior
distribution in four steps, which are illustrated in Figure 1:
Step 1. Because anomalies may not follow any particu-
lar pattern in covariate space, γGMM maps the covariates
X ∈ Rd into an M dimensional anomaly space, where the
dimensions correspond to the anomaly scores assigned by
the M unsupervised anomaly detectors. Within each dimen-
sion of such a space, the evident pattern is that “the higher
the more anomalous”.
Step 2. We model the data points in the new space
RM using a Dirichlet Process Gaussian Mixture Model
(DPGMM) (Neal, 1992; Rasmussen, 1999). We assume that
each of the (potentially many) mixture components contains
either only normals or only anomalies. If we knew which
components contained anomalies, we could then easily de-
rive γ’s posterior as the sum of the mixing proportions π of
the anomalous components. However, such information is
not available in our setting.
Step 3. Thus, we order the components in decreasing order,
and we estimate the probability of the largest k components
being anomalous. This poses three challenges: (a) how to
represent each M -dimensional component by a single value
to sort them from the most to the least anomalous, (b) how
to compute the probability that the kth component is anoma-
lous given that the (k − 1)th is such, (c) how to derive the
target probability that k components are jointly anomalous.
Step 4. γGMM estimates the contamination factor’s pos-
terior by exploiting such a joint probability and the compo-
nents’ mixing proportions posterior.
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Figure 1. Illustration of the γGMM’s four steps on a 2D toy dataset (left plot): we 1) map the 2D dataset into an M = 2 dimensional
anomaly space, 2) fit a DPGMM model on it, 3) compute the components’ probability of being anomalous (conditional, in the plot), and
4) derive γ|S’s posterior. γGMM’s mean is an accurate point estimate for the true value γ∗.

In the following, we describe these steps in detail.

3.1. Representing Data Using Anomaly Scores

Learning from an unlabeled anomaly detection dataset has
two major challenges. First, anomalies are rare and sparse
events, which makes it hard to use common unsupervised
methods like clustering (Breunig et al., 2000). Second,
making assumptions on the unlabeled data is challenging
due to the absence of specific patterns in the anomalies,
which makes it hard to choose a specific anomaly detector.

Therefore, we use a set of M anomaly detectors to map
the d-dimensional input space into an M -dimensional score
space RM , such that a sample x gets a score s:

Rd ∋ x → [f1(x), f2(x), . . . , fM (x)] = s ∈ RM .

This has two main effects: (1) it introduces an interpretable
space where the evident pattern is that, within each dimen-
sion, higher scores are more likely to be anomalous, and (2)
it accounts for multiple inductive biases by using multiple
arbitrary anomaly detectors.

To make the dimensions comparable, we (independently for
each dimension) map the scores s ∈ S to log(s−min(S) +
0.01), where the log is used to shorten heavy right tails, and
normalize them to have zero mean and unit variance.

3.2. Modeling the Density with DPGMM

We use mixture models as basis for quantifying the distribu-
tion of the contamination factor, relying on their ability to
model the proportions of samples using the mixture weights.
For flexible modeling, we use the DPGMM

si ∼ N (µ̃i, Σ̃i) i = 1, . . . , N

(µ̃i, Σ̃i) ∼ G

G ∼ DP (G0, α)

G0 = NIW(M,λ, V, u)

where G is a random distribution of the mean vectors
µi and covariance matrices Σi, drawn from a DP with
base distribution G0. We use the explicit representation
G =

∑∞
k=1 πkδ(µk,Σk)(µ̃i, Σ̃i), where δ(µk,Σk) is the delta

distribution at (µk,Σk) and πk follow the stick-breaking
distribution. We set G0 as Normal Inverse Wishart (Nydick,
2012) with parameters M,λ, V, u common to all compo-
nents. We use variational inference (VI; see e.g. Blei et al.
(2017) for details) for approximating the posterior as VI is
computationally efficient and sufficiently accurate for our
purposes. Alternative methods (e.g., Markov Chain Monte
Carlo (Brooks et al., 2011)) could also be used but were not
considered worth the additional computational effort here.

Choice of DPGMM. DPGMM has two key properties that
justify its use over other flexible density models. First, we
choose Gaussian distributions over more robust heavy-tailed
distributions because isolated samples are likely candidates
for outliers, and encouraging the model to represent them
using the heavy tails would be counter-productive. Second,
the rich-get-richer property of DPs is desirable because we
expect some very large components of normals but want
to allow arbitrarily small clusters of anomalies. Moreover,
the DP formulation allows us to refrain from specifying
the number of components K. After fitting the model, we
only consider the components with at least one observation
assigned to them and propagate all the remaining density
uniformly over the active components. Thus, for the follow-
ing steps we can still proceed as if the model was a finite
mixture with π following a Dirichlet distribution.

3.3. Estimating the Components’ Anomalousness

We assume that each mixture component either contains
only anomalous or only normal samples. All unsupervised
methods rely on some assumption on nearby samples shar-
ing latent characteristics, and this cluster assumption is a nat-
ural and weak assumption. If we knew which components
contain anomalies, we could directly derive the posterior of
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the contamination factor γ as the sum of the mixing propor-
tions πk of those components. This is naturally not the case,
but we need to estimate it in an unsupervised fashion.

More formally, we estimate the probability that k (out K)
components are anomalous such that we can derive γ’s pos-
terior by averaging over all the values 0 ≤ k ≤ K. We do
this in three steps. Initially, we sort the components of score
vectors in decreasing order (by degree of anomalousness),
which comes natural from the representation we made in
Step 1 (Sec. 3.1). Then, our insight is that the kth compo-
nent can be anomalous only if the (k − 1)th is such. This
points to the estimation of conditional probabilities, i.e., the
probability of ck = “the kth component is anomalous”
given ck−1. Finally, the probability that exactly the first
k components are anomalous can be obtained using basic
rules of probability theory.

Assigning an ordering to the components. As initial
step for computing the joint probability, we need to design a
decreasing ordering map for the components based on their
anomalousness. We do this in a manner that accounts for
the uncertainty of the components’ parameters to rank high
the components that can be reliably identified as anomalous:
we want the means to be high but the variance low, to avoid
the risk that also samples with low anomaly scores could
belong to the component.

We construct the overall ranking using dimension-specific
scores because our normalization cannot remove all statisti-
cal differences between the different detectors. Formally, let
r : RM × RM×M → R be the function of the mean vector
µk and the covariance matrix Σk that assigns a real value
representing the component k’s anomalousness. We set r as

r
(
µ
(z)
k ,Σ

(z)
k

)
=

1

M

M∑
j=1

µ
j (z)
k

1 +

√
Σ

j,j (z)
k

, (1)

where µ
(z)
k and Σ

(z)
k are samples from the parameters’ pos-

terior distributions of the kth component. We obtain a rep-
resentative value of the whole component by taking the
expected value of r, i.e. through E[r(µk,Σk)]. Equation (1)
intentionally does not consider inter-dimension correlations,
as it remains unclear to us how those should ideally be
included and what benefits it would actually provide.

We add 1 to the component’s standard deviation for two
reasons. First, if a component contains samples with almost
the same covariate values, the standard deviation would
be close to 0 and the ratio would explode towards infinity,
masking any effect of the mean. Second, adding 1 is reason-
able because it is equal to the theoretical upper bound of the
components’ variances, as they are normalized (Sec. 3.1).

Without loss of generality, from now on we assume that the
components’ index k is ordered based on their representative

value such that the kth component has a higher value (i.e.,
more anomalous) than the (k + 1)th component.

Estimating the probability that the kth component is
anomalous. Because the components are sorted by anoma-
lousness, our key insight is that the kth component can be
anomalous only if the (k − 1)th is anomalous. Formally,

P(ck| ck−1) > 0 & P(ck| c̄k−1) = 0 (1 < k ≤ K)

where c̄k−1 means “not ck−1”. Moreover, we assume
P(c1) ∈ (0, 1). That is, we allow for the data to not have
anomalies (< 1) but exclude certain knowledge of no anoma-
lies (> 0). This is a sensible assumption because, if one
knew for sure that no anomalies are in the data, then we
trivially have γ = 0, whereas we still need to allow for the
data to be free of anomalies if evidence suggests so.

We estimate the conditional probability as

P(ck|ck−1) =
1

1 + e(τ+δ·r(µk,Σk))
, (2)

where τ and δ are the two hyperparameters of the sigmoid
function, which will be carefully discussed in Section 3.4.
Note that the principle itself is not restricted to this particular
choice of functional form. One could apply any transforma-
tion that maps to [0, 1], but the detailed derivations of the
parameters would naturally be different.

Deriving the components’ joint probability. Given the
conditional probability P(ck| ck−1), the joint probability
follows from simple steps. Taking inspiration from the
sequential ordinal models (Bürkner & Vuorre, 2019), our
insight is that exactly k components are jointly anomalous
if and only if each of them is conditionally anomalous and
the (k + 1)th is not anomalous. We indicate this as C∗ = k.
Essentially,

P(C∗ = k) := P(c1, . . . , ck, c̄k+1, . . . , c̄K)

= P(c1)
k−1∏
t=1

P(ct+1|ct)(1− P(ck+1|ck))
(3)

for any k ≤ K, where P(cK+1 |cK) = 0 by convention.

3.4. Estimating the Contamination Factor’s Distribution

Given the joint probability that the first k components are
anomalous (for k ≤ K), the contamination factor γ’s poste-
rior distribution can be obtained as

p(γ|S)=
K∑

k=1

p(C∗ = k) · p

 k∑
j=1

πj

∣∣∣∣S
 (4)

where p(
∑k

j=1 πj |S) is the posterior distribution of the sum
of the first k components’ mixing proportions, p(C∗ =
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k) are densities WRT the counting measure. Note
that p(

∑k
j=1 πj |S) = BETA(

∑k
j=1 αj ,

∑K
j=k+1 αj), if

p(π1, . . . , πK |S) = DIR(α1, . . . , αK) (Lin, 2016).

Setting the sigmoid’s hyperparameters τ and δ. Intro-
ducing new hyperparameters when the task is to estimate
the contamination factor γ’s posterior is risky because set-
ting their value may be as difficult as directly providing a
point estimate of γ. Our key insight is that we can obtain
τ and δ by asking the user two simple questions: (a) How
likely is that no anomalies are in the data? (b) How likely is
that a large amount of anomalies occurred, say, more than
t = 15% of the data? Both of these values are supposed to
be low. Let’s call p0 and phigh the two answers. Formally,

p0 = 1− P(c1) = 1− 1

1 + e(τ+δ·r(µ̃1,Σ̃1))

phigh = P(γ ≥ t|S) =
K∑

k=1

P(C∗ = k) · P

 k∑
j=1

πj ≥ t|S


One can use a numerical solver for non-linear equations
with linear constraints (e.g., the least square optimizer im-
plemented in SKLEARN) to find the values of τ and δ that
satisfy such constraints. The problem has a unique solution
whenever phigh ≥ P(π1 ≥ t|S). This holds almost always
in our experimental cases, but, in case such a constraint
cannot be satisfied, we keep running again the variational
inference method (with different starting points) for the
DPGMM until the constraint on phigh holds. If this cannot
happen or does not happen within 100 iterations, we reject
the possibility of too high contamination factors and just set
it to 0. In the experiments (Q5), we show that changing the
p0 and phigh does not have a large impact on γ’s posterior.

Sampling from γ’s posterior. Our estimate of the con-
tamination factor’s posterior p(γ|S) does not have a simple
closed form. However, we can sample from the distribu-
tion using a simple process. The DPGMM inference deter-
mines an approximation for p(π, µ,Σ|S) and all the quan-
tities required for Equations (2), (3), (4) can be computed
based on samples from the approximation. Formally, we
derive a sample from p(γ|S) in four steps by repeating the
next operations for all k ≤ K. First, we draw a sample
π
(z)
k , µ

(z)
k ,Σ

(z)
k from πk (Dirichlet), µk (Normal), Σk (In-

verse Wishart). Second, we transform π
(z)
k by taking the

cumulative sum and obtain a sample
∑k

j=1 π
(z)
j . Third, we

pass µ(z)
k and Σ

(z)
k through the sigmoid function (2) to get

the conditional probabilities P(ck | ck−1), and transform
them into the exact joint probabilities P(C∗ = k) using
the equation 3. Finally, we multiply the samples following
Formula 4 and obtain a sample γ(z) from p(γ|S).

Additional technical details. Because our method uses
the variational inference approximation, we run it 10 times
and concatenate the samples to reduce the risk of biased
distributions due to local minima. Moreover, after sorting
the components, we set P(ck|ck−1) = 0 for all k > K ′ =

argmax{k : E[
∑k

j=1 πj ] < 0.25}. This has the effect of
setting an upper bound of 0.25 to the contamination factor γ.
Because anomalies must be rare, we realistically assume that
it is not possible to have more than 25% of them. Although
“0.25” could be considered a hyperparameter, this value has
virtually no impact on the experimental results. Moreover,
note that E[π1] ≥ 0.25 cannot occur, as otherwise we could
not set the hyperparameters p0 and phigh.

4. Experiments
We empirically evaluate two aspects of our method: (a)
whether it accurately estimates the contamination factor’s
posterior, and (b) how thresholding the scores using our
method affects the anomaly detectors’ performance. To this
end, we address the following five experimental questions:

Q1. Is the posterior estimate sharp and well-calibrated?

Q2. How does γGMM compare to threshold estimators?

Q3. Does a better point estimate of γ improve the anomaly
detector performance?

Q4. What is the impact of the number of detectors M?

Q5. How sensitive the method is to p0 and phigh?

4.1. Experimental Setup

Methods. We compare the sample mean of γGMM1 with
21 threshold estimators that we cluster into 9 groups:
1. Kernel-based. FGD (Qi et al., 2021) and AUCP (Ren et al.,
2018) both use the kernel density estimator to estimate the
score density; FGD exploits the inflection points of the den-
sity’s first derivative, while AUCP uses the percentage of the
total kernel density estimator’s AUC to set the threshold;
2. Curve-based. EB (Friendly et al., 2013) creates ellipti-
cal boundaries by generating pseudo-random eccentricities,
while WIND (Jacobson et al., 2013) is based on the topolog-
ical winding number with respect to the origin;
3. Normality-based. ZSCORE (Bagdonavičius &
Petkevičius, 2020) exploits the Z-scores, DSN (Amagata
et al., 2021) measures the distance shift from a normal distri-
bution, and CHAU (Bol’shev & Ubaidullaeva, 1975) follows
the Chauvenet’s criterion before using the Z-score;
4. Regression-based. CLF and REGR (Aggarwal, 2017) are
two regression models that separate the anomalies based on

1Code and online Supplement are available at: https://
github.com/Lorenzo-Perini/GammaGMM

5

https://github.com/Lorenzo-Perini/GammaGMM
https://github.com/Lorenzo-Perini/GammaGMM


Estimating the Contamination Factor’s Distribution in Unsupervised Anomaly Detection

the y-intercept value;
5. Filter-based. FILTER (Hashemi et al., 2019), and
HIST (Thanammal et al., 2014) use the wiener filter and
the Otsu’s method to filter out the anomalous scores;
6. Statistical test-based. GESD (Alrawashdeh, 2021),
MCST (Coin, 2008) and MTT (Rengasamy et al., 2021)
are based on, respectively, the generalized extreme studen-
tized, the Shapiro-Wilk, and the modified Thompson Tau
statistical tests;
7. Statistical moment-based. BOOT (Martin & Roberts,
2006) derives the confidence interval through the two-sided
bias-corrected and accelerated bootstrap; KARCH (Afsari,
2011) and MAD (Archana & Pawar, 2015) are based on
means and standard deviations, i.e., the Karcher mean plus
one standard deviation, and the mean plus the median abso-
lute deviation over the standard deviation;
8. Quantile-based. IQR (Bardet & Dimby, 2017) and
QMCD (Iouchtchenko et al., 2019) set the threshold based
on quantiles, i.e., respectively, the third quartile Q3 plus 1.5
times the inter-quartile region |Q3 −Q1|, and the quantile
of one minus the Quasi-Monte Carlo discreprancy;
9. Transformation-based. MOLL (Keyzer & Sonneveld,
1997) smooths the scores through the Friedrichs’ mollifier,
while YJ (Raymaekers & Rousseeuw, 2021) applies the
Yeo-Johnson monotonic transformations.

We apply each threshold estimator to the univariate anomaly
scores of each detector at a time. We average the contami-
nation factors over the M detectors and use it as the final
point estimate for each dataset.

Data. We carry out our study on 20 commonly used bench-
mark datasets and additionally 2 (proprietary) real tasks.
The benchmark datasets contain semantically useful anoma-
lies widely used in the literature (Campos et al., 2016). The
datasets vary in size, number of features, and true contami-
nation factor. The online Supplement provides further de-
tails. For the real tasks, our experiments focus on preventing
blade icing in wind turbines. We use two public wind tur-
bine datasets, where sensors collect various measurements
(e.g., wind speed, power energy, etc.) every 7 seconds for
either 8 weeks (turbine 15) or 4 weeks (turbine 21). Fol-
lowing (Zhang et al., 2018), we construct feature-vectors by
taking the average over the time segment of one minute.

Evaluation metrics. We use three evaluation metrics to
assess the performance of the methods. Contrary to all the
threshold estimators, our method estimates the posterior of
γ. Therefore, we measure the probabilistic calibration
of γGMM’s posterior using a QQ-plot with the x-axis rep-
resenting the expected probabilities and on the y-axis the

empirical frequencies. That is, for v ∈ [0, 0.5],

Expected Prob. = P (γ∗ ∈ [q(0.5− v), q(0.5 + v)]) = 2v

Empirical Freq. =
|{γ ∈ [q(0.5− v), q(0.5 + v)]}|

#experiments
,

where q(u) is the quantile at the value u of our distribu-
tion, for u ∈ [0, 1], and γ∗ refers to the true dataset’s con-
tamination factor. For evaluating the point estimate of the
methods, we use the mean absolute error (MAE) between
the method’s point estimate and the true value. Finally, we
measure the impact of thresholding the scores using the
methods’ point estimate through the F1 score (Goutte &
Gaussier, 2005), as common metrics like the Area Under
the ROC curve and the Average Precision are not affected
by different thresholds. Specifically, for m = 1, . . . ,M , we
measure the relative deterioration of the F1 score:

F1 deterioration =
F1(fm, D, γ∗)− F1(fm, D, γ̂)

F1(fm, D, γ̂)

where we compute the F1 score on the dataset D using the
anomaly detector fm, and either the true value γ∗ or an
estimate γ̂ to threshold the scores. The F1 deterioration of a
method is (mostly) negative, and the higher the better.

Setup. In the experiments we assume a transductive set-
ting (Campos et al., 2016; Scott & Blanchard, 2008; Toron
et al., 2022), where a dataset D is used both for training and
testing. This is the typical setting of anomaly detection (Bre-
unig et al., 2000; Schölkopf et al., 2001; Angiulli & Pizzuti,
2002; Liu et al., 2012) because the absence of labels and
patterns (for the anomaly class) avoids overfitting issues.

For each dataset, we proceed as follows: (i) use a set of M
anomaly detectors to assign the anomaly scores S to each
observation in the dataset D; (ii) map each anomaly score
s ∈ S to log(s − min(S) + 0.01) and normalize them to
have mean equal to 0 and standard deviation equal to 1;
(iii) either use our method to estimate the contamination
factor’s posterior and extract the posterior mean as point
estimate γ̂, or use one of the threshold estimators to directly
obtain a point estimate γ̂ of the contamination factor (see
methods paragraph above); (iv) evaluate the point estimates
using the mean absolute error (MAE) between such estimate
and the true value γ∗; (v) use the contamination factor’s
point estimate to threshold the anomaly scores of each of
the M anomaly detectors fm (individually); (vi) finally, we
measure the F1 score and compute the relative deterioration.

Hyperparameters, anomaly detectors and priors. Our
method introduces two new hyperparameters: p0 and phigh.
We both of them set to 0.01 as default value because ex-
tremely high contamination, as well as no anomalies, are
unlikely events. We will experimentally check the impact
of these two hyperparameters in Q5.
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We use 10 anomaly detectors with different inductive bi-
ases (Soenen et al., 2021): KNN (Angiulli & Pizzuti, 2002)
assumes that the anomalies are far away from normals,
IFOREST (Liu et al., 2012) assumes that the anomalies are
easier to isolate, LOF (Breunig et al., 2000) exploits the
examples’ density, OCSVM (Green & Richardson, 2001)
encapsulates the data into a multi-dimensional hypersphere,
AE (Chen et al., 2018) and VAE (Kingma & Welling, 2013)
use the reconstruction error as anomaly score function in
a, respectively, deterministic and probabilistic perspective,
LSCP (Zhao et al., 2019a) is an ensemble method that
selects competent detectors locally, HBOS (Goldstein &
Dengel, 2012) calculates the degree of anomalousness by
building histograms, LODA (Pevnỳ, 2016) is an ensemble
of weak detectors that build histograms on randomly gen-
erated projected spaces, and COPOD (Li et al., 2020) is a
copula based method. All these methods are implemented
in the python library PyOD (Zhao et al., 2019b).

The threshold estimators are implemented in PYTHRESH2

with default hyperparameters. Finally, the DPGMM is
implemented in SKLEARN: we use the Stick-breking repre-
sentation (Dunson & Park, 2008), with 100 as upper bound
of K. We set the means’ prior to 0, and the covariance ma-
trices’ prior to identities of appropriate dimension. We opt
for such (in our context) weakly-informative priors because
sensible prior knowledge of the DPGMM hyperparameters
is hard to come by in practice.

4.2. Experimental Results

Q1. Does our method estimate a sharp and well-
calibrated posterior of γ? Figure 2 shows the contami-
nation factor γ’s posterior estimated by our method on the
22 datasets. In several cases (e.g., WPBC, Cardio, Spam-
Base, Wilt and T21), the distribution looks accurate as γ’s
true value (blue line) is close to the posterior mean (i.e.,
the expected value, the green line). On the contrary, some
datasets (e.g., Arrhythmia, Shuttle, KDDCup99, Parkinson,
Glass) obtain less accurate distributions: although γ’s true
value sometimes falls on low-density regions (Arrhythmia,
Shuttle), in many cases it would be quite likely to sample
the true value from our posterior (KDDCup99, Parkinson,
Glass), which makes the density still quite reliable.

Figure 3 shows the calibration plot. The posterior is well-
calibrated as it is very close to the dashed black line in-
dicating a perfectly calibrated distribution. The empirical
frequencies deviate from the real probabilities by less than
5% (dark shadow grey) in more than 76% of the cases, while
never deviating by more than 10% (light shadow grey).

Q2. How does γGMM compare to the threshold estima-
tors? We take γGMM’s posterior mean as our best point

2Link: https://github.com/KulikDM/pythresh.

estimate of γ and compare such value to the point estimates
obtained from the threshold estimators. Figure 4 illustrates
the ordered MAE (mean ± std.) between the methods’ esti-
mate and the true γ. On average, γGMM obtains a MAE
of 0.026 that is 20% lower than the best runner-up MTT
and 27% lower than the third best method QMCD (MAE of
0.033 and 0.036). For each experiment, we rank the meth-
ods from the best (position 1, lowest MAE) to the worst
(position 22, greatest MAE). Our method has the best av-
erage rank (2.13 ± 1.04). Moreover, γGMM ranks first 8
times (≈ 36% of the cases), and for 13 times (≈ 60% of
the cases) it is in the top two. The next best method, MTT,
ranks first in 6 cases with an average rank of 2.30± 1.10.

Q3. Does a better contamination improve the anomaly
detectors’ performance? We use γGMM’s posterior
mean as a point estimate to measure the F1 score of the
anomaly detectors because sampling from the distribution
would not imply a fair comparison against the other methods
that can only provide a point estimate. Moreover, anomaly
detectors that fail to rank the samples accurately perform
poorly even when using the correct γ. Since our focus is
studying the effect of γ, for each dataset D, we compare
F1 scores only over the detectors that achieve the great-
est F1 score using the true contamination factor γ∗, i.e.
argmaxfm {F1(fm, D, γ∗)}. The online Supplement con-
tains the list of detectors used for each experiment.

Figure 5 shows the average (± std.) deterioration for each
of the methods. On average, γGMM has the best F1 dete-
rioration (−0.117± 0.228) that is around 10% better than
the runner-up QMCD (−0.131 ± 0.238), and 58% better
than the next best KARCH (−0.279 ± 0.248). For 25% of
the cases we get higher F1 score with γGMM than when
using the true γ∗. This is due to the (still incorrect) ranks
made by the detectors, which achieve better performance
with slightly incorrect contamination factors. The online
Supplement provides further details on how the methods
perform in terms of false alarms and false negatives.

Q4. What is the impact of M on γ’s posterior? In the
previous experiments, we used M = 10 detectors. We
evaluate the effect of M by running all the experiments
10 times with (different) randomly chosen detectors for
M = 3, 5, 7. Figure 6 shows that the calibration suffers if
using fewer detectors, but already M = 5 let the method
work fairly well. The variance of the results (over repeated
experiments) also increases for lower M .

Q5. Impact of the hyperparameters p0 and phigh. We
evaluate the impact of p0 and phigh by running the experi-
ments with smaller and larger values than 0.01: we vary, one
at a time, p0, phigh ∈ [0.0001, 0.001, 0.05, 0.1] and keep
the other set as default. Figure 7 shows the QQ-plot for p0
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Figure 2. Illustration of how γGMM estimates γ’s posterior distribution (red) on all the 22 datasets. The blue vertical line indicates the
true contamination factor, while the green line is the posterior’s mean.
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Figure 3. QQ-plot of γGMM’s distribution estimate. The black
dashed line illustrates the perfect calibration, while shades indicate
a deviation of 5% (dark) and 10% (light) from the black line.

(left) and phigh (right). In both cases, smaller hyperparame-
ters lead to slightly under-estimated expected probabilities.
Overall, our method is robust to different values of p0, while
phigh affects the calibration slightly more. Comparing the
resulting 8 variants of γGMM in terms of MAE, we con-
clude that the posterior means produce similar values to our
default setting, obtaining an MAE that varies from 0.252
(phigh = 0.001, the best) to 0.32 (p0 = 0.0001, the worst).

5. Conclusion
The literature on anomaly detection has focused on unsuper-
vised algorithms, but largely ignored practical challenges
in their application. The algorithms are evaluated on per-
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Figure 4. Average MAE (± std.) of γGMM’s sample mean com-
pared to the other methods. Our method has the lowest (better)
average, which is 20% lower than the runner-up.

formance metrics focusing on the ranking of the samples
(e.g., AUC), and the ultimate choice of detecting the ac-
tual anomalies by thresholding the predictions is left to the
practitioners. They lack good means for thresholding and
thus often resort to using labels for such goal. This largely
defeats the point of using unsupervised methods.

We presented the first practical method for estimating the
posterior distribution of the contamination factor γ in a com-
pletely unsupervised manner. We empirically demonstrated
on 22 datasets that our mean estimates effectively solve the
question of where to threshold the predictions. We outper-
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Figure 5. F1 deterioration (mean ± std) for each method, where
the higher the better. γGMM ranks as best method, obtaining
≈ 10% higher average than QMCD.
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Figure 6. QQ-plot comparing the calibration curves of γGMM
when a different number M of detectors is used. The colored
shades report the uncertainty obtained by randomly sampling the
detectors from a set of 10 detectors. The plot shows that the higher
the number of detectors, the more calibrated the distribution.

form all 21 comparison methods and show that the gap in
detection accuracy between our estimate and the ground
truth (available for these benchmark datasets) is small.

Besides solving the practical question of thresholding the
predictions, we seek to persuade the anomaly detection com-
munity of the usefulness of a fully probabilistic solution for
the problem. Especially in unsupervised settings, it would
be completely unreasonable to expect the contamination
factor could be identified exactly, but rather we need to char-
acterize its uncertainty. However, we are not aware of any
previous works even attempting this. As shown in Fig. 2,
the posterior distribution of γ may not only be wide but also
multi-modal. Communicating these aspects to the practi-
tioner is critical so that they can e.g. use additional domain
knowledge to interpret the alternatives. We showed that our
estimates have near-perfect calibration over the broad range
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Figure 7. QQ-plot showing how calibrated γGMM’s posterior
mean would be if we varied p0 (left) and phigh (right). While
p0 does not have a large impact on the method, the empirical fre-
quencies slightly under (over) estimate the expected probabilities
for low (high) values of phigh.

of datasets and hence can be relied on in practical use.

On first impression, the success of our method in solving
this challenging and seemingly ill-posed problem may seem
surprising. However, it can be attributed to a careful choice
of strong inductive biases built into the underlying proba-
bilistic model. We argue that all of the following elements
are necessary, each substantially contributing to the overall
success: (i) representing the data in the space of anomaly
detector scores defines a meaning for the dimensions and
allows borrowing inductive biases of arbitrary detector algo-
rithms, (ii) the mixture model encodes a natural clustering
assumption for both the normal samples and the anomalies,
(iii) the ordering used for determining the final distribution
incorporates both the location and shape of the mixture
components in a carefully balanced manner, and (iv) the
transformation from the ordering to probabilities is robustly
parameterized via just two intuitive hyperparameters, en-
abling use of the same defaults for all cases.
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