Scaling Laws for Reward Model Overoptimization in
Direct Alignment Algorithms

Rafael Rafailov* Yaswanth Chittepu* Ryan Park*
Stanford University UMass Amherst Stanford University
rafailov@cs.stanford.edu ychittepu@umass.edu rypark@stanford.edu
Harshit Sikchi* Joey Hejna* W. Bradley Knox

UT Austin Stanford University UT Austin

hsikchi@utexas.edu jhejna@cs.stanford.edu bradknox@cs.utexas.edu
Chelsea Finn Scott Niekum
Stanford University UMass Amherst
cbfinn@cs.stanford.edu sniekum@cs.umass.edu
Abstract

Reinforcement Learning from Human Feedback (RLHF) has been crucial to the
recent success of Large Language Models (LLMs), however, it is often a complex
and brittle process. In the classical RLHF framework, a reward model is first trained
to represent human preferences, which is in turn used by an online reinforcement
learning (RL) algorithm to optimize the LLM. A prominent issue with such meth-
ods is reward over-optimization or reward hacking, where performance as measured
by the learned proxy reward model increases, but true quality plateaus or even dete-
riorates. Direct Alignment Algorithms (DA As) like Direct Preference Optimization
have emerged as alternatives to the classical RLHF pipeline by circumventing the
reward modeling phase. However, although DAAs do not use a separate proxy
reward model, they still commonly deteriorate from over-optimization. While
the so-called reward hacking phenomenon is not well-defined for DAAs, we still
uncover similar trends: at higher KL budgets, DAA algorithms exhibit similar
degradation patterns to their classic RLHF counterparts. In particular, we find that
DAA methods deteriorate not only across a wide range of KL budgets but also often
before even a single epoch of the dataset is completed. Through extensive empirical
experimentation, this work formulates and formalizes the reward over-optimization
or hacking problem for DAAs and explores its consequences across objectives,
training regimes, and model scales.

1 Introduction

Recent advancements in Large Language Models (LLMs) have broadened their capabilities signifi-
cantly, enabling applications in code generation, mathematical reasoning, tool use, and interactive
communication. These improvements have popularized LLMs across various domains. Reinforce-
ment Learning from Human Feedback (RLHF) has been instrumental in these advances and is now
integral to sophisticated LLM training regimes [10}55]]. Before alignment, LLMs, trained on vast text
corpses to predict subsequent tokens [45}|8] are often unwieldy and hard to use. Today, leading LLMs
incorporate variants of the RLHF framework [14, 169, 36] to align them with human intent, which

*Equal Contribution, Dice Rolling

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

generally involves a multi-stage process. Specifically, users evaluate model responses to assorted
prompts in order to train a reward model that encapsulates human preferences [[10} 155 [72} 5], |62]].
Then, the refined LLM maximizes the expected learned reward function using a reinforcement learn-
ing (RL) algorithm [50, |1} |65]]. Despite its efficacy, this procedure is complex and computationally
intensive, particularly in its latter stages.

Goodhart’s Law [25} [11], that “when a measure becomes a target, it ceases to be a good measure”,
has often been cited as a core shortcoming of RLHF. Standard RLHF methods optimize a learned, but
imperfect reward function which ends up amplifying the reward model’s shortcomings. Empirically,
this phenomenon was first extensively characterized by Gao et al. [21], who coined the term “reward
over-optimization”, and has been seen consistently in recent findings [62, |16 [14]. While reward
over-optimization has been studied in the context of the aforementioned RLHF procedure, recent
contemporary methods for aligning LLMs circumvent the reward learning procedure, necessitating a
new characterization of the over-optimization phenomena.

This new broad class of algorithms, which we refer to as Direct Alignment Algorithms (DAAs),
bypass the traditional RLHF pipeline by re-parameterizing the reward model directly through the
optimal policy derived during the reinforcement learning phase. DAA methods, like Direct Preference
Optimization [46]], have gained popularity [[14} 28] as they often reduce computational demands. Yet,
despite not fitting a reward function, DA As still exhibit over-optimization trends similar to those of
traditional RLHF methods using a learned reward function. In some sense, this is puzzling: DAAs
can be viewed as simply learning a reward function with supervised learning from which the optimal
policy is deterministically mapped, however more seems to be at play than simple supervised learning.

In this work, we investigate the over-fitting phenomena present in DAA algorithms through extensive
experimentation. First, we unify a number of different recent methods [46, |68} 4] under the DAA
framework. Then, across different model scales and hyper-parameters, we show that DAAs exhibit a
type of reward over-optimization consistent with that previously observed in RLHF [21]]. Specifically,
we find that at different KL-divergence budgets DA As exhibit degradation patterns similar to those
found in RLHF. Interestingly, we also find that performance within a single epoch is not always
as consistent as expected for DAAs. Finally, we explain why this happens by appealing to the
under-constrained nature of the optimization problem used in DAAs.

2 Preliminaries

In this section, we first outline the core components of the standard RLHF pipeline [[72} 155} 15, 411]).
Then, we examine prior literature to characterize the reward over-optimization exhibited by standard
RLHF methods. Finally, we provide a unifying view of direct alignment algorithms (DAAs) which
will guide our analysis of their training dynamics in the next section.

2.1 Reinforcement Learning From Human Feedback

The standard RLHF pipeline consists of three distinct stages with the goal of aligning the LLM with
human preferences.

Supervised Fine Tuning (SFT): First, a dataset of prompts x and high-quality answers y are used to
train an LLM for instruction following via maximum likelihood estimation over next-tokens. We
refer to the resultant model as wspr(y|x) and consider the entire prompt and answer strings to be
single variables.

Reward Modeling: Second, the SFT model 7spr(y|x) is used to learn a reward function over human
preferences. Specifically, the SFT model is queried to produce pairs of answers (y1,y2) ~ 7ser(y|z),
for every prompt = in a dataset. Then, users select their preferred answers, resulting in ranking
Yw = Y1 | x where y,, and y; are the preferred and dispreferred answers respectively. Typically, user
rankings are assumed to be distributed according to the Bradley-Terry (BT) model [[7]

exp (r(z,y1))
exp (r(x,y1)) + exp (r(z,y2))

p(y1 =y | 2) = = o(r(z,y1) — r(z,y2)))

where the preference distribution p results from an unobserved latent reward r(x, y), and o is the

logistic function. Given this model and a dataset of rankings, denoted D = {x(i), yg), yl(i) }ZJ.VZI, we

can train a parameterized model 74 (z, y) to predict the unobserved reward using maximum likelihood
estimation. This yields the following loss function,

Lrew(rdﬁ) = _E(aa,yw,yz)ND [log U(T¢($, yw) - 7’¢(JZ, yl))] . 2

Reinforcement Learning (RL): The final stage of the standard RLHF pipeline uses the learned reward
model 74 (x, y) to update the LLM 7y with an on-policy RL algorithm like PPO [50], optimizing the
model to provide responses more preferred by human raters. The most common objective is

H}T%XEmND,ywe(.m [ro(z,y)] — BDkL[mo(y |) || meet(ylz)] 3

which enforces a Kullback-Leibler (KL) divergence penalty with a reference distribution 7r(y|z)
(usually taken to be 7spr(y|z)) to prevent the LLM 7y from straying too far from its initialization.
Thus, the hyper-parameter [directly trades off exploiting the reward function and deviating from

Tret (Y] 2).

2.2 Reward Exploitation in RLHF

Unfortunately, repeating the above procedure without careful tuning of the RL phase can lead to
disastrous performance. This is because in the context of RLHF the LLM policy is optimizing the
surrogate reward estimate 74(x,y) and not the true reward function as is often the case in other
domains. Thus, prior works have observed that while the LLM’s expected reward according to
eq. () increases the actual quality of the model’s outputs can decrease [54} 43| Ol [34]]. This particular
instantiation of the reward exploitation or hacking problem [3] is often referred to as reward “over-
optimization” in RLHF literature and has been studied empirically in both controlled experiments
[21] and user studies [14]]. There are two prevailing explanations for why this phenomenon occurs.

1. OOD Robustness: In the classical RLHF pipeline, the RL objective (eq. (3)) is optimized using
on-policy samples from 7. This means that the reward function is continuously queried using unseen
model samples which are potentially out-of-distribution. Beyond the support of the reward modeling
distribution, 7, may assign high rewards to sub-par responses, leading the policy to believe it is doing
well when it may not be. While the KL-regularization term is designed to prevent the model from drift-
ing too far out of distribution, this term alone has proven inadequate to prevent reward hacking [21].

2. Reward Mis-specification. Learned reward functions may exhibit spurious correlations that cause
them to prefer unintended behaviors. While this issue is not at the forefront of LLM research, it is
known to be pervasive in RL [43]34]]. Most efforts to address these problems exist at the intersection
of robustness and offline RL literature [[13} 167} [16]] and use measures of epistemic uncertainty to
penalize the predicted reward.

2.3 Direct Alignment Algorithms

Due to its complex multi-step nature, recent works have sought alternatives to the classic RLHF
pipeline. A new class of algorithms, which we broadly classify as Direct Alignment Algorithms
(DAAS), directly update the LLM’s policy 7y using user feedback instead of fitting a reward function
to it and then employing an RL algorithm. Perhaps the most known example is Direct Preference Opti-
mization (DPO). DPO, as well as other DA As, are derived using the closed form solution to the RLHF
objective in eq. (3) [71]], 7* (y|z) o< et (y|x)e” ¥/ where r(x,y) is the ground-truth reward.
By isolating r(x, y) in this relationship and substituting it into the reward optimization objective in
eq. (2), we arrive at a general objective that allows us to train the LLM directly using feedback data:

Lo (163 et) = By o9 (8108 oW l) gy, W)} @)

Tref (Yw |) Tref (Y1 | @

where g is a convex loss function. Using g(x) = —logo(z) coincides with the standard
Bradley-Terry model and the original DPO objective. Other methods choose different loss functions:
IPO [4] uses the quadratic objective g(x) = (z — 1)? and SLiC-HF [68] 38] uses the hinge loss
g(x) = max(0,1 — z). Additional objectives were also considered in [59]], but due to limited
computational resources, we focus on the three objectives outlined above.

Crucially, the DAA approach allows us to recover the optimal policy using a straightforward classifi-
cation loss without the need for learning a reward function, on-policy sampling, or RL, which can be

DPO scaling law curve fits (end-of-epoch checkpoints) 1PO scaling law curve fits (end-of-epoch checkpoints) SLIC scaling law curve fits (end-of-epoch checkpoints)

05 Model size Model size Model size
[p— - -— 1 05 B et -- 1
P < N -—288 | |, dmemae -= 288 s Ss A -= 288
N -3 -~ 04 gl===s ~
P NN —— 6oB BU e - B N -- 698 3 ~ . -- 698
041/ S OO ik YU / » .
/ N 04 5 s ~ac / AN
9 RN @ 6 o N \
8 IR 2 7 203 \ <
° N, N, e 4 e \, \,
o3 N H 4 £ N N
£ NN So3l 4 < .
H -—la NN H / H ° .
s | =T - N < / ° N 5 \
§o2f o7 S~ A N E ,,,,, T §o2 e -
& z ~< - RIS - ~~e
Y 029 4+ - ~] » .
N . ~ ~
o N >’
s NS 01 N
0.1 \\\ 01 S S\
N N
s N N
¥ N v o
N N) LN
00 0.0 00 .
2 4 6 8 10 1 2 3 4 5 6 7 8 2 4 6 8 10
Square root of KL divergence Square root of KL divergence Square root of KL divergence
DPO scaling law curve fits IPO scaling law curve fits SLiC scaling law curve fits
. S Model size 0.6 Model size 06 x ¥ Model size
-- 1 -- 18 -- 18
s -- 288 A - 288 -- 288
05 P S -- 698 05 LA =TT~ -- 698 05 -- 698
ot Lx 0 Vi g & &
N - S
g o4 7 R 904 L e <. v 04 N
[/ N g +% 1 g R
£ V4 Ny £ 2 H U
H N 3 [203 AN
203 o N o3l 4 y 2 PR
£) Py E / X B \
& e N & LN ~~ g N
[c] P A S~ \] A ~o.m] ~a \ Y
2 ~AN \ e oS 02 ¥
024 4 N 02{ 2278 < < ¢
g 2 F N
“x ¢ ~ ~ \
o~ % iy P
0.1 \\ 0.1 .50\ 0.1 Ao
N
N ~ 3 _.y
00 b 0.0 LS. 00 L S
2 4 6 8 10 i 2 3 a4 5 6 1 8 9 2 4 6 8 10
Square root of KL divergence Square root of KL divergence Square root of KL divergence

Figure 1: Results on over-optimization in Direct Alignment Algorithms for DPO, IPO and SLiC.
Results show model win-rates over the dataset summary on an evaluation set of prompts as judged by
GPT-4. The top row shows the final performance after 1 epoch of training, while the second row also
includes 4 intermediate checkpoints as well. The fitted dotted curves utilize scaling laws from [21]]
applied to direct alignment, with GPT4 winrates taking the place of the gold reward model score.

notoriously difficult to tune and computationally expensive. Because of this, DAAs have emerged as
a popular alternative. However, just like classical RLHF methods, DAAs exhibit strong over-fitting
and even reward-hacking like behaviors. For example, Park et al. [44] show that LLMs trained with
DPO generate responses with increasing length throughout the course of training, but do not improve
in ground-truth win-rate after a certain point. Since DAAs do not explicitly learn a reward function, it
is unclear how “reward-overoptimization” fits into the picture. In this work, we aim to shed some
light on this phenomenon in DAAs.

3 Empirical Analysis of Overoptimization in DAAs

First, we examine the over-optimization problem in DAAs and compare it to those observed in tradi-
tional RLHF methods. All our experiments are carried out using the Reddit TL;DR summarization
dataset [55] and the Pythia family of Large Language Models [6]. Additional plots illustrating similar
over-optimization trends for Direct Alignment Algorithms on the Gemma?2-2b model [[61] and the
Anthropic Helpfulness-Harmlessness dataset [3]] are provided in Appendix [F]

3.1 Evaluating Model-Overoptimization

In our first set of experiments, we evaluate the reward model over-optimization phenomenon. We
evaluate three training objectives DPO, IPO, and SLiC using seven [parameters, representing
different KL budgets at three model sizes - 1B, 2.8B, and 6.9B. Our main results are shown in Fig. |I|
which presents results for different configurations after 1 epoch of training (row 1) and including 4
uniform intermediate checkpoints (row 2). We include additional results on the training dynamics
in Fig. [2] which shows win rates and KL bounds for intra-epoch training. We present our findings
below.

Model Over-Optimization: We see clear over-optimization for all objectives as performance exhibits
a hump-shaped pattern, where an additional increase in the KL budget leads to decreasing model
performance. Moreover in Fig. 2] we observe similar intra-epoch training dynamics patterns as
configurations with wider KL budgets achieve their best performance after training on only 25% of
the data, after which performance starts decreasing in conjunction with increasing KL divergence
metrics.

Winrate evolution over epoch for DPO 6.9B Winrate evolution over epoch for SLIiC 6.9B Winrate evolution over epoch for IPO 6.9B

06 I 06
. N 06
05 SR S 05 \
I S 1 g
Z 3 3 05 4
FC i; :
; 03 AN ; 03 ¥ \ v S 1 s 04 f
5 - M DPO (8=0.01) & 1 W sticg=001) \T,/ 1 % B 1PO (B=0.01)
02 % DPO (8=0.0175) 02 # SLIC (=0.0175) K2 1PO (8=0.0175)
-A- DPO (8=0.025) L -A- SLC (=0.025) 03 & -A- PO (B=0.025) —=-~~__ T
T & T T~
—4- DPO (B=0.0375) | - sLic (8=0.0375) E . - —4- 1P0 (B=0.0375)
o1 DPO (B=0.05) . - 01 SLIC (8=0.05) 4 T T .- 1PO (B=0.05) 1
DPO (B=0.1) N SLC(B=0.1) " -7 024 B 1PO (B=0.1)
0.0 DPO (B=0.5) n 00 SLIC (=0.5) | 1 1PO (8=0.5)
00 02 04 06 08 10 0.0 02 04 0.6 08 10 00 02 04 06 08 10
DPO epoch fraction DPO epoch fraction DPO epoch fraction
KL evolution over epoch for DPO 6.9B KL evolution over epoch for SLiC 6.9B KL evolution over epoch for IPO 6.9B
- DPO (B=0.01) - sLiC (8=0.01) A 404 M 1PO (B=0.01) ’l ~~~~~~~~ -
50 DPO (8=0.0175) 70 SLic (8=0.0175) n A 1PO (8=0.0175) y
-A- DPO (8=0.025) -A- SLiC (8=0.025) AN K \\ 35 -A- IPO (8=0.025)
—4- DPO (B=0.0375) ‘ - 601 —§- SLiC (8=0.0375) Ve N N —4- PO (8=0.0375)
40 DPO (=0.05) JUNS T SLiC (=0.05) P NS N 30 IPO (8=0.05)

1PO (3=0.1)
8251 —+- IPO(B=0.5)

SLIC (B=0.1)

DPO (B=0.1) /
el —+- SLiC (B=05)

~+- DPO(=0.5) ~=-~"7

KL divergence
*

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 1.0

DPO epoch fraction DPO epoch fraction DPO epoch fraction

Figure 2: Results on intra-epoch optimization dynamics. The top row shows win-rates against the
fraction of an epoch so far, while the bottom row shows the corresponding KL values. Under a lower
KL constraint, most experiments reach their best performance in the first 25% of the epoch and
degrade with additional training, while the model deviates from the reference under increasing KL.
All models are 6.9B and vary across DPO, SLiC, and IPO loss formulations.

Effect of Training Objective: In the IPO work [4] the authors present theoretical arguments that
due to the monotone sigmoid objective in the DPO formulation, the KL constraint is not effectively
enforced and propose the quadratic fixed-margin loss as an alternative. Across all objectives, there
are clear dependencies between the 3 parameter and the corresponding KL achieved at the end of
training. While DPO and SLiC exhibit similar performance, IPO indeed seems to be less prone to
over-optimization and in general, achieve lower KLs under the same constraint. Our observations
with IPO also align with prior works in preference-based RL and imitation learning where imposing
a fixed margin led to more stable and performant methods [48 [51]].

Effect of Model Size: The results also show a strong parameter count scaling effect. The Pythia 1B
model achieves low performance under the same set of constraints it reaches much higher KL values,
while almost immediately exhibiting signs of over-optimization. This behavior holds under all three
objectives. At larger scales, the 6.9B Pythia model tends to exhibit more win-rate - KL trade-offs and
be less prone to over-optimization, with both models significantly outperforming the 1B model. In
the case of the IPO objective, the 6.9B also exhibits significantly better control over the KL objective
and shows little to no over-optimization behavior.

3.2 Scaling Law Fits

Given we have established a framework for evaluating over-optimization in DAAs and empirically
validated it (section [3.T), we now develop scaling laws for this phenomenon. Previous work in
classical RLHF has established such scaling laws for reward model scores as a function of the KL
divergence between initial and optimized policies [21]]. The relevant functional of the reward R(d) is

R(d) = d(a — Slogd))

where «, 3 are constants dependent on the size of the reward model dataset and parameter count,
and d = / Dk (7||Ter). As DAAs do not train a proxy reward model, we treat GPT4 winrates over
dataset completions as a proxy for gold reward. Somewhat surprisingly, we find that this scaling law
accurately relates d and winrates for DAAs. Compared to a quadratic fit between Dy (7||7rer) and
winrates, this scaling law halves the RMSE. It is worth noting, however, that a quadratic fit between
d and winrates yields a similar error compared to Equation 3}

KL-winrate curve for length-regularized and standard DPO (2.88) 00D extrapolation, measured via reward-length correlation
=« Standard DPO (a = 0.0)
«+ Length-regularized DPO (a = 0.05) 0.35

Model size ®

2.88 °

R?, implicit reward and sample length
°
o
3

20 60 30 0 20 0 60 80
Sample KI Divergence KL divergence

Figure 3: Left: KL budget versus win-rates (over dataset human answer) with and without length-
regularization [44]. While including a length correction in the optimization objective changes the
KL-win-rate Pareto Frontier, it does not alleviate reward over-optimization and might even exacerbate
it. Right: Scaling behavior for length extrapolation - smaller capacity models (either by size or KL
budget) extrapolate more strongly on simpler features such as length.

0 20

3.3 Length Correlations

Prior work [44]] has shown that the DPO algorithm is prone to length exploitation as it amplifies
verbosity biases in preference datasets. Here we show that length is not the only dimension on which
exploitation can occur. Our experimental results are shown in Fig. [3| On the left, we show results
for the 2.8B Pythia model with standard training plus the length-regularization approach from [44]].
Both approaches suffer from over-optimization, but the dynamics differ depending on the KL budget.
Moreover, even though the regularized model achieves higher win rates on a length-correct basis,
it under-performs the model trained with the standard objective in the lower KL constraint region.

Recent work [27] has also shown that DAAs prioritize features of the data based on their complexity
and prevalence (with length a clear example of human datasets). [44] further showed that models
trained with the DPO algorithm extrapolate significantly based on length. We extend this analysis in
Fig, 3] (right). We consider a linear regression of the form

7Ta(y(i) |x(i))

1 R
8 rer (YD |2)

=4y + (©)

where z(*) are held-out prompts and y() are samples from the corresponding model between the
DPO implicit reward and length. We fit a different regression for each model size and checkpoint
and plot the corresponding R? values. We observe two main effects; first, there is a clear scaling
law behavior. Weaker models extrapolate across the simple length feature to a much higher degree
than stronger ones. This is especially clear when comparing the behavior of the Pythia 1B versus the
2.8B and 6.9B models. Second, we see significant effects based on the KL budget - under a smaller
budget all model sizes exhibit higher extrapolation behavior. Based on these results we formulate the
hypothesis that under limited capacity, either from model capability or limited KL budgets, the model
will extrapolate more strongly based on simpler features, which can lead to OOD issues.

3.4 Reward Metrics Correlations

Prior works have measured reward model quality in ranking settings by classification accuracy. We
evaluate the relationship between the DAA implicit reward model accuracy and policy performance
in Figure d] The DPO and SLiC algorithms exhibit little to no correlation between reward model
accuracy and downstream model performance. The IPO model shows a weak positive relationship, but
upon further examination, this is entirely due to model size scaling - stronger models both fit the data
better and produce better generations as well, however within each particular model size, there is no
discernible relationship between the DAA implicit reward accuracy and the actual policy performance.
Similar observations hold when comparing the empirical DAA loss with model performance, which
is contrary to observations in supervised pre-training and instruction tuning [30].

DPO winrates across all checkpoints IPO winrates across all checkpoints SLiC winrates across all checkpoints

06 L [A . 06 Model sizes L] 06 Model sizes + .5‘
A A v Bestfit (R?=0.163) A\ Best-fit (R? = 0.054) b
Ves L 0 - P, W 05| @ 18 AoV a1 e
05 ¢ e ®) = & - Vo O
et &y A 051 4@ 288 ® Sl P | & 288 J" ¢
Q4 A m & oo o ¢ S Wi & o5 . m £t
04 L R) o ¥m 04 % A
ol * * Y 3nm S04 AA 9 *
& 8 ° o] * LT TR
£ = £ + £ * ek
s 03 P ° = I A " s 03 * e
< < % A 1 <
£ W o0 [] £ * ® v g ACIAL
G o2 * n S ¢ & * REA [} G o2 *AV
wodetszes ¥ A A 02 * ol I ; *k 0
01 Best-fit (R?=0.016) v * h . w 01 &i- y
& 1 01 Y
8- 2388 &
00 8 698 vv ¥ n v vivy 00 *uy Y,
0.0
0575 0600 0625 0650 0675 0700 0725 045 050 055 060 065 070 075 050 055 0.60 065 070
Eval accuracies Eval accuracies Eval accuracies
DPO winrates across all checkpoints IPO winrates across all checkpoints SLIC winrates across all checkpoints
06 Y Model sizes 06{ & Model sizes 06 A% 4 Model sizes
Best-fit (R? = 0.0) y Best-fit (R? = 0.045) ° ‘. v Best-fit (R?=0.0)
051 @ - 1 o & 18 05 LXK 7 us & 18
i‘ - 288 05 > - 288 o - 288
& 698 hd & 698 % L) | * - 698
0.4 *] 04 - L]
3 H 304 8 * *
[e e A 1
H Fs H <
303 B * * H 303 — X
20 oty S x Zoa .t ¥z Rofe*
£ = * = n
Co2{§ kil © L x * G o2 *
0.2 * * %
¥ * * v
0 ¥V & 01 ‘
(eSS |
0.0 1‘ v 0.0 '

0.6 0.7 0.8 0.9 1.0 11 1.2 13 1 2 3 4 5 07 08 09 10 11 12 13 14
Eval loss Eval loss Eval loss

Figure 4: Top: We plot the DAA implicit reward accuracy in preference classification versus win
rates. Bottom: DAA optimization loss versus checkpoint win rates. Model training statistics, do not
exhibit a strong relationship with downstream performance.

3.5 Decreasing Likelihoods and Model Performance

A number of recent works have observed that the implicit DAA rewards of both preferred and
dis-preferred responses decrease during training, which may be counter-intuitive. In [47] the authors
make a counter-point that in offline training of DAAS 7 is usually pre-trained with SFT on the
preferred response and thus

o (Yoo |)

(1 0) | = D e | s]

~E I

EPD (Yw|) |:10g
where pp(y™|z) is the dataset distribution of preferred answers. That is the expected implicit reward
represents a forward KL divergence between the reference policy and the optimization policy, thus it
is expected to be negative and decrease with training as the optimization model moves away from
the reference. In this section, we study whether this empirical phenomenon presents a challenge for
DAA learning. Similar to Fig. [Tjwe plot the win rates against the square-root-transformed (negative)
expected implicit reward of the preferred response (evaluated on a held-out evaluation dataset), which
as stated above approximates the (square-root-transformed) forward KL Dy [met(y|z) || mo(y | z).
Results are included in Fig. 5} which follow closely the pattern in Fig. [T] with performance initially
increasing before it starts dipping down after a certain threshold. This indicates that under the
standard DAA training pipeline decreasing likelihoods are not necessarily an issue for performance,
and are even necessary for improvement, but exhibit non-linear over-optimization dynamics.

4 Reward Exploitation in Direct Alignment Algorithms

While the phenomena observed in the previous section echo those observed in classical RLHF, their
underlying causes may be distinct. Reward over-optimization in classical RLHF is largely attributed to
querying a proxy reward function that is potentially OOD, while DAAs do not train a separate reward
model. Instead, DAAs are generally understood as fitting an “implicit” reward model to preference

data with the parameterization ry(z,y) = Slog % using the objective in eq. . Therefore, the

OOD behavior of the policy is inextricably linked to the OOD behavior of the implicit reward model.
We demonstrate below that the reward modeling objective used is heavily under-constrained, allowing
for a potentially large number of solutions that can place weight on OOD responses. This is especially
problematic for DAAs which deterministically map the optimal policy from the “implicit” reward.

Rank Deficiency with Finite Preferences. In DAAs, the language modeling problem is treated
as a contextual bandit. However, the space of possible prompts = € X and answers y €) are both

DPO scaling law curve fits (end-of-epoch checkpoints) IPO scaling law curve fits (end-of-epoch checkpoints) SLiC scaling law curve fits (end-of-epoch checkpoints)

05 Model size Model size Model size

—————— 05 -1 N
- S~ - 2 -- 288 | __—de——a s S - 2
RagBunEy N§ 2.88 2.88 P A 04 A « \\\ 2.88
- RN -- 698 -- 698 AR ~ 7 TN -- 698
04 ; NS o Ry Ki SN
S WX 04 tias S~ 7 N
2 / N e ¢ 2 ! AN
s RS [4 802 N
£03 NN €03 / £ NN
H ° N H / H ° NN
g NN s e A = NN
o A O E | 0 9= e K o2 -
Foa{ - - X, 8o, I N & NN
< N . <
- *o N e Sy |l NN
7 ~ \ ’ S~ jemmT T Tl Ny \
/ N / ~o L ~~o
N £ N N PR
0.1 \\\ 0.1 | \\\ o z \\\
N N N
+ . M S v * RN
N
0.0 S ¢ 0.0 S 00 = 4
4 6 8 10 1 2 3 4 5 6 7 2 a4 6 8 10 12
Square root of forward KL divergence Square root of forward KL divergence Square root of forward KL divergence
DPO scaling law curve fits 1PO scaling law curve fits SLiC scaling law curve fits

0.6 B Model size 0.6 4 Model size 0.6 Model size

05

-+
<
04 904 904 S5
]] 3 \
£ £ / £ XN
H H / n H N
»303 @03 ya v? '303 SN
& £ / e e 5 x
[}] / 2"' NRV-~] Y
02 02] 158 . 02 ¥
o S~ NN
N N \
* N < \
N N JIAN
01 S 01 w6 01 AN \
+ N AN ~ Vv S N\
W \ N i B \
00 el 00 4 ¢ 00 b LA
2 4 6 s 10 12 1 2 3 4 5 6 7 2 4 6 8 10 12
Square root of forward KL divergence Square root of forward KL divergence Square root of forward KL divergence

Figure 5: Over-optimization results for v Forward KL vs. winrates. The top row shows the final
performance after 1 epoch of training, while the second row also includes 4 intermediate checkpoints.
The fitted dotted curves are scaling laws from [21]] applied to DAAs, with GPT4 winrates taking the
place of the gold reward model score.

exponentially large in sequence length. However, as highlighted by Tang et al. [S9], DAAs often
assume full support of the reference distribution when mapping from the implicit reward to the
optimal policy 7 by eq. (I0). However, in practice such coverage is impossible. Instead, preference
datasets cover a minuscule portion of the prompt-response space. Unfortunately, as DAA objectives
are not strictly convex, their loss functions (eq. (@) can have multiple global optimas, which may
be undesirable. We demonstrate this below, using the regression interpretation from Hejna et al. [23].

First, we re-write the DAA objective from eq. (@) using vectors in the prompt-response space X' x).
Each preference query in the comparison dataset can be written as difference between indicator
vectors, specifically ¢; = 1{(z,y) = (2@, y)} — 1{(z,y) = (=@, yl(l))}. This “query” vector
simply selects the comparison from the prompt response space, with the entree corresponding to
(x,7™) being +1 and the entree corresponding to (x,%') being -1. Similarly, we can consider the
learned policy to be a vector log m — log 7mer € X X), to which the distributional constraint also
applies in practice. Our generalized DAA loss function can then be re-written as

1if (2,y) = (=,)
Loaa(me,D) = Y12 g (BaT (log m(yla) — log mer(y|2))) , where gifz,y] = § —1if (z,y) = (z,)
0 otherwise

with finite data. Choosing g to be the negative log sigmoid above recovers DPO with finite preferences,
but also logistic regression with a data matrix @) of shape |D| by |X x Y| constructed by stacking
the aforementioned query vectors ¢. As | X x Y| >> |D|, this matrix is likely to have a non-trivial
null space, making the problem not strictly convex. Thus, there are many possible policies 7 that can
achieve the same optima, some of which will place a high weight on out-of-distribution responses due
to the distributional constraint of policy [23|[70]]. To demonstrate this, we formalize the construction
below.

Proposition 1 (Adapted from Hejna et al. [23|]) Let S be the set of win-or-lose prompt-response
vectors (x,y) in D. Provided:

1. The intersection of the null space of Q, N(Q), and the span of S, span(S), is non-trivial.
2. For every 1 there exists a response Yoop € Y that is not in the data, (x,yoop) 7 S.

Then, there are infinite number of minima to eq. @) which place weight on out-of-distribution
responses .

00D Trajectories-DPO-beta-0.1 0O0D Trajectories-IPO-beta-0.1 0OD Trajectories-SLiC-beta-0.1

Probability

In Distribution Trajectories-DPO-beta-0.1 In Distribution Trajectories-IPO-beta-0.1 In Distribution Trajectories-SLiC-beta-0.1

--- chosen-(1, o). 2, 01, (5.)] o9 4 -~ chosen-((1, 01, (2, 0% (5.)] Loy - chosen-{(1, 0), (2, 01,15, 0)]
rejected((1, 1, (3, 1), (9, 0}] h rejected-{(1, 1, (3, 1), (9, 0] H rejected-I(1. 1). (3. 1). (5. 0}

Probability

Figure 7: (Top row) Probability of OOD trajectories. DAA algorithms end up placing a substantial
probability mass of some of the OOD trajectories during training. (Bottom row) Probability of
in-distribution (preference-pair) trajectories decreases during training.

Proof. Let 7 be the minima of the DAA loss function. Choose a vector u such that u € N(Q),
u € span(.S), and u has at least one negative component. Modifying the log policy vector as log 7+ u
will not affect the DAA loss, as u is in the null space of (), but the log-probability of the policy
will decrease for least one prompt-response pair in S by construction. However, ¢'° "+ may not
integrate to one. To fix this, we can construct a second vector v € N(Q) using the yoop at each
2 such that elog #tutv integrates to one. For more details, we refer the reader to Hejna et al. [23]
Appendix A.3.

The second constraint of proposition [I]is often trivially satisfied by the dimension of the response
space as we are unlikely to see every response to a prompt. The first constraint is harder, but can be
satisfied by conflicting preferences. A trivial example which satisfies these constraints is a simple
MDP in which there is only a single state (or prompt z), but three possible actions (or responses),
Y1, Y2, and ys. If we construct the preference dataset D = {(y1 > v2), (Y2 > v1)}, omitting z
for brevity, then we satisfy the above conditions: the null space of @ is non trivial in span of y;
and y5 and there is an out-of-distribution action y3. In this setting, the DPO loss is minimized by
both 7 (y|z) = (0.5,0.5,0) and 7 (y|x) = (0.0,0.0,1.0). In fact, it is minimized by infinitely many
policies which place equal weight on y; and y». To demonstrate this effect in higher dimensions
across a number of different DAA methods, we conduct experiments in a Toy MDP which bears
resemblance to the language modeling setting.

Understanding OOD behavior for DAA algorithms with a Toy MDP: To illustrate that DAA
algorithms, in general and not an artifact of training LLM’s, end up placing probability mass on
OOD sequences during training we design a simple Tree MDP (shown in Figure [6) to mimic the
token-level MDP in LLMs. We use a dataset containing a single preference between two trajectories
and follow the standard procedure of running SFT on preferred responses before updating an RNN
policy using a DAA. Figure[/|shows that even in this simple setup, popular DAAs (DPO/IPO/SLiC)
end up extrapolating incorrectly out of distribution revealing a fundamental shortcoming. Unlike in
standard RLHF, the non-strict convexity of the reward function in DAAs ends up directly affecting
the policy. Detailed experimental details can be found in Appendix

5 Related Work

Broadly, over-optimization has been a widely studied phenomenon across different settings [60, [18].
Over-fitting can be characterized as over-optimization in the supervised learning setting [39, 32,
which can harm generalization [[19} 12} 24] or lead to susceptibility to adversarial attacks [56} 37} [15]].
Reward hacking in reinforcement learning (RL) [54]], where an agent maximizes its reward through

behavior that deviates from the intended goal, can be viewed as a different type of over-optimization,
commonly observed in prior work [43, 3 [22].

We study over-optimization in the context of
aligning LLMs with human feedback, for which
the most common approach is RLHF as outlined
in section[2.1] Similar RLHF techniques were
originally pioneered for control [31l 12, [10].
Standard RLHF methods suffer from both
potential over-fitting of the reward function
and reward exploitation by the RL algorithm.
Several works have considered how to reduce
over-fitting or increase the robustness of learned
reward functions using ensembles [[13 167, [16]]
or data smoothing [70]. Other approaches,
like Moskovitz et al. [40] consider how reward
exploitation can be reduced by using different

optimization techniques in the RL stage. Much Figure 6: An illustration of the Tree MDP. At each
of this work is motivated by Gao et al. [21], state, we can choose one of 3 actions (ag, ai, as),

which first characterized and provided scaling ypicp deterministically maps to the next state. Fur-
laws for over-optimization in RLHF. thermore, all the leaf nodes in this tree MDP, transi-
Unlike Gao et al. [21]], we consider the over- tion to the terminal absorbing state s, irrespective
optimization problem in DAAs, which differs of the chosen action

significantly from the standard RLHF pipeline.

Different DAAs have been derived theoretically

[47, 146,168, 4} 64]], and applied to problems beyond language modeling like image generation [63]]
and control [23]]. In all of these scenarios, over-optimization problems have persisted. Park et al. [44]
show that DAAs commonly over-fit to length and the expense of performance, which has been linked
to inherent bias in training data [53},129]. Other works have tried to allow DA As to use more types
of data like demonstrations [49] or ratings [17] to get better performance. Recently, incorporating
online data has proven critical to improving performance [66, 26} |57]]. Concurrent to our work, Tang
et al. [58]) study the differences between offline DAAs and standard RLHF methods. Unlike us, they
focus on comparisons with online sampling whereas we focus on the purely offline setting.

6 Conclusion

In this work, we present an analysis of the over-optimization problem in Direct Alignment Algorithms.
Through extensive experimentation on different algorithms (DPO, IPO, SLIC) and at different model
scales (1B, 2.8B, 6.9B), we observe consistent over-optimization trends at different KL-divergence
budgets. While our analysis is a first step, it is not a complete picture of understanding the over-
optimization phenomena. More work can be done characterizing this effect at larger model scales,
which we were unable to do due to computational limitations. Nevertheless, we believe our work
sheds light on important problems in Direct Alignment Algorithms that can spur future research.

Acknowledgments

This work has taken place in part in the Safe, Correct, and Aligned Learning and Robotics Lab
(SCALAR) at The University of Massachusetts Amherst. SCALAR research is supported in part by
the NSF (IIS-2323384), AFOSR (FA9550-20-1-0077), and the Center for Al Safety (CAIS). This
work has taken place in part in the Rewarding Lab at UT Austin. The Rewarding Lab is supported by
NSF (I1S-2402650), ONR (N00014-22-1-2204), EA Ventures, Bosch, UT Austin’s Good Systems
grand challenge, and Open Philanthropy.

References

[1] A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, A. Ustiin, and S. Hooker. Back to
basics: Revisiting reinforce style optimization for learning from human feedback in llms. arXiv
preprint arXiv:2402.14740, 2024.

10

[2] R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, 2011.

[3] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete problems
in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[4] M. G. Azar, M. Rowland, B. Piot, D. Guo, D. Calandriello, M. Valko, and R. Munos. A general
theoretical paradigm to understand learning from human preferences, 2023.

[5] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, N. Joseph, S. Kadavath, J. Kernion, T. Conerly, S. EI-Showk, N. Elhage, Z. Hatfield-
Dodds, D. Hernandez, T. Hume, S. Johnston, S. Kravec, L. Lovitt, N. Nanda, C. Olsson,
D. Amodei, T. Brown, J. Clark, S. McCandlish, C. Olah, B. Mann, and J. Kaplan. Training a
helpful and harmless assistant with reinforcement learning from human feedback, 2022.

[6] S. Biderman, H. Schoelkopf, Q. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,
S. Purohit, U. S. Prashanth, E. Raff, A. Skowron, L. Sutawika, and O. van der Wal. Pythia: A
suite for analyzing large language models across training and scaling, 2023.

[71 R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324-345, 1952. doi: https://doi.org/10.2307/2334029.

[8] T.Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

[9] S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak,
D. Lindner, P. Freire, T. Wang, S. Marks, C.-R. Segerie, M. Carroll, A. Peng, P. Christoffersen,
M. Damani, S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E. J. Michaud, J. Pfau,
D. Krasheninnikov, X. Chen, L. Langosco, P. Hase, E. Biyik, A. Dragan, D. Krueger, D. Sadigh,
and D. Hadfield-Menell. Open problems and fundamental limitations of reinforcement learning
from human feedback, 2023.

[10] P.F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper . pdf.

[11] J. Clark and D. Amodei. Faulty reward functions in the wild, 2016. URL https://openai.
com/research/faulty-reward-functions!|

[12] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman. Quantifying generalization in
reinforcement learning. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 1282—-1289. PMLR, 09-15 Jun 2019. URL https://proceedings.
mlr.press/v97/cobbel9a.html.

[13] T. Coste, U. Anwar, R. Kirk, and D. Krueger. Reward model ensembles help mitigate overopti-
mization, 2023.

[14] Y. Dubois, X. Li, R. Taori, T. Zhang, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, and T. B.
Hashimoto. Alpacafarm: A simulation framework for methods that learn from human feedback,
2024.

[15] J. Ebrahimi, D. Lowd, and D. Dou. On adversarial examples for character-level neural machine
translation. arXiv preprint arXiv:1806.09030, 2018.

[16] J. Eisenstein, C. Nagpal, A. Agarwal, A. Beirami, A. D’Amour, D. Dvijotham, A. Fisch,
K. Heller, S. Pfohl, D. Ramachandran, P. Shaw, and J. Berant. Helping or herding? reward
model ensembles mitigate but do not eliminate reward hacking, 2023.

[17] K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela. Kto: Model alignment as
prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://proceedings.mlr.press/v97/cobbe19a.html
https://proceedings.mlr.press/v97/cobbe19a.html

[18] T. Everitt, V. Krakovna, L. Orseau, M. Hutter, and S. Legg. Reinforcement learning with a
corrupted reward channel. arXiv preprint arXiv:1705.08417, 2017.

[19] J. Farebrother, M. C. Machado, and M. Bowling. Generalization and regularization in dqn.
arXiv preprint arXiv:1810.00123, 2018.

[20] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration, 2019.

[21] L. Gao, J. Schulman, and J. Hilton. Scaling laws for reward model overoptimization. Interna-
tional Conference on machine Learning, 2023.

[22] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan. Inverse reward design. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
32fdab6559cdfadf167£8c31b9199643-Paper . pdf.

[23] J. Hejna, R. Rafailov, H. Sikchi, C. Finn, S. Niekum, W. B. Knox, and D. Sadigh. Contrastive
preference learning: Learning from human feedback without reinforcement learning. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=iX1RjVQODj.

[24] D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish. Scaling laws for transfer. arXiv
preprint arXiv:2102.01293, 2021.

[25] K. Hoskin. The ‘awful idea of accountability’: inscribing people into the measurement of
objects. Accountability: Power, ethos and the technologies of managing, 265, 1996.

[26] A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and R. Agarwal. V-star: Training
verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024.

[27] S.Im and Y. Li. Understanding the learning dynamics of alignment with human feedback, 2024.

[28] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot,
D. de las Casas, E. B. Hanna, F. Bressand, G. Lengyel, G. Bour, G. Lample, L. R. Lavaud,
L. Saulnier, M.-A. Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak, T. L. Scao,
T. Gervet, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed. Mixtral of experts, 2024.

[29] S. Kabir, D. N. Udo-Imeh, B. Kou, and T. Zhang. Who answers it better? an in-depth analysis
of chatgpt and stack overflow answers to software engineering questions, 2023.

[30] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling laws for neural language models, 2020.

[31] W. B. Knox and P. Stone. Tamer: Training an agent manually via evaluative reinforcement. In
2008 7th IEEE international conference on development and learning, pages 292-297. IEEE,
2008.

[32] V. Krakovna and R. Kumar. Classifying specification problems as variants of
goodhart’s law, 8 2019. URL https://vkrakovna.wordpress.com/2019/08/19/

classifying-specification-problems-as-variants-of-goodharts-law/.

[33] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative g-learning for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:1179—-1191, 2020.

[34] N. Lambert and R. Calandra. The alignment ceiling: Objective mismatch in reinforcement
learning from human feedback, 2023.

[35] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems, 2020.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://openreview.net/forum?id=iX1RjVQODj
https://openreview.net/forum?id=iX1RjVQODj
https://vkrakovna.wordpress.com/2019/08/19/classifying-specification-problems-as-variants-of-goodharts-law/
https://vkrakovna.wordpress.com/2019/08/19/classifying-specification-problems-as-variants-of-goodharts-law/

[36] P.Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan,
Y. Wu, A. Kumar, B. Newman, B. Yuan, B. Yan, C. Zhang, C. Cosgrove, C. D. Manning,
C. Ré, D. Acosta-Navas, D. A. Hudson, E. Zelikman, E. Durmus, F. Ladhak, F. Rong, H. Ren,
H. Yao, J. Wang, K. Santhanam, L. Orr, L. Zheng, M. Yuksekgonul, M. Suzgun, N. Kim,
N. Guha, N. Chatterji, O. Khattab, P. Henderson, Q. Huang, R. Chi, S. M. Xie, S. Santurkar,
S. Ganguli, T. Hashimoto, T. Icard, T. Zhang, V. Chaudhary, W. Wang, X. Li, Y. Mai, Y. Zhang,
and Y. Koreeda. Holistic evaluation of language models, 2023.

[37] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun. Tactics of adversarial
attack on deep reinforcement learning agents. arXiv preprint arXiv:1703.06748, 2017.

[38] T. Liu, Y. Zhao, R. Joshi, M. Khalman, M. Saleh, P. J. Liu, and J. Liu. Statistical rejection
sampling improves preference optimization, 2024.

[39] D. Manheim and S. Garrabrant. Categorizing variants of goodhart’s law, 2019.

[40] T. Moskovitz, A. K. Singh, D. Strouse, T. Sandholm, R. Salakhutdinov, A. Dragan, and S. M.
McAleer. Confronting reward model overoptimization with constrained RLHF. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview,
net/forum?id=gkfUvnOfLU.

[41] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. F. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/blefde53be364a73914£568805a001731-Paper-Conference.pdf.

[42] A. Pal, D. Karkhanis, S. Dooley, M. Roberts, S. Naidu, and C. White. Smaug: Fixing failure
modes of preference optimisation with dpo-positive. arXiv preprint arXiv:2402.13228, 2024.

[43] A. Pan, K. Bhatia, and J. Steinhardt. The effects of reward misspecification: Mapping and
mitigating misaligned models. International Conference on Learning Representations, 2022.

[44] R. Park, R. Rafailov, S. Ermon, and C. Finn. Disentangling length from quality in direct
preference optimization, 2024.

[45] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and 1. Sutskever. Language models are
unsupervised multitask learners, 2019. OpenAl.

[46] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://arxiv.org/abs/2305.18290|

[47] R. Rafailov, J. Hejna, R. Park, and C. Finn. From r to ¢*: Your language model is secretly a
g-function, 2024.

[48] N.D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In Proceedings
of the 23rd international conference on Machine learning, pages 729-736, 2006.

[49] M. Rita, F. Strub, R. Chaabouni, P. Michel, E. Dupoux, and O. Pietquin. Countering reward
over-optimization in llm with demonstration-guided reinforcement learning. arXiv preprint
arXiv:2404.19409, 2024.

[50] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017.

[51] H. Sikchi, A. Saran, W. Goo, and S. Niekum. A ranking game for imitation learning. arXiv
preprint arXiv:2202.03481, 2022.

[52] H. Sikchi, Q. Zheng, A. Zhang, and S. Niekum. Dual rl: Unification and new methods for
reinforcement and imitation learning. arXiv preprint arXiv:2302.08560, 2023.

13

https://openreview.net/forum?id=gkfUvn0fLU
https://openreview.net/forum?id=gkfUvn0fLU
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2305.18290

[53] P. Singhal, T. Goyal, J. Xu, and G. Durrett. A long way to go: Investigating length correlations
in rlhf, 2023.

[54] J. Skalse, N. H. R. Howe, D. Krasheninnikov, and D. Krueger. Defining and characterizing
reward hacking, 2022.

[55] N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and
P. Christiano. Learning to summarize from human feedback, 2022.

[56] C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[57] F. Tajwar, A. Singh, A. Sharma, R. Rafailov, J. Schneider, T. Xie, S. Ermon, C. Finn, and
A. Kumar. Preference fine-tuning of 1lms should leverage suboptimal, on-policy data. arXiv
preprint arXiv:2404.14367, 2024.

[58] Y. Tang, D. Z. Guo, Z. Zheng, D. Calandriello, Y. Cao, E. Tarassov, R. Munos, B. A. Pires,
M. Valko, Y. Cheng, et al. Understanding the performance gap between online and offline
alignment algorithms. arXiv preprint arXiv:2405.08448, 2024.

[59] Y. Tang, Z. D. Guo, Z. Zheng, D. Calandriello, R. Munos, M. Rowland, P. H. Richemond,
M. Valko, B. Avila Pires, and B. Piot. Generalized preference optimization: A unified approach
to offline alignment, 2024.

[60] J. Taylor. Quantilizers: A safer alternative to maximizers for limited optimization. In Workshops
at the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[61] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard,
B. Shahriari, A. Ramé, J. Ferret, P. Liu, P. Tafti, A. Friesen, M. Casbon, S. Ramos, R. Kumar,
C. L. Lan, S. Jerome, A. Tsitsulin, N. Vieillard, P. Stanczyk, S. Girgin, N. Momchev, M. Hoft-
man, S. Thakoor, J.-B. Grill, B. Neyshabur, O. Bachem, A. Walton, A. Severyn, A. Parrish,
A. Ahmad, A. Hutchison, A. Abdagic, A. Carl, A. Shen, A. Brock, A. Coenen, A. Laforge,
A. Paterson, B. Bastian, B. Piot, B. Wu, B. Royal, C. Chen, C. Kumar, C. Perry, C. Welty, C. A.
Choquette-Choo, D. Sinopalnikov, D. Weinberger, D. Vijaykumar, D. Rogoziriska, D. Herbison,
E. Bandy, E. Wang, E. Noland, E. Moreira, E. Senter, E. Eltyshev, F. Visin, G. Rasskin, G. Wei,
G. Cameron, G. Martins, H. Hashemi, H. Klimczak-Plucinska, H. Batra, H. Dhand, I. Nardini,
J. Mein, J. Zhou, J. Svensson, J. Stanway, J. Chan, J. P. Zhou, J. Carrasqueira, J. Iljazi, J. Becker,
J. Fernandez, J. van Amersfoort, J. Gordon, J. Lipschultz, J. Newlan, J. yeong Ji, K. Mohamed,
K. Badola, K. Black, K. Millican, K. McDonell, K. Nguyen, K. Sodhia, K. Greene, L. L.
Sjoesund, L. Usui, L. Sifre, L. Heuermann, L. Lago, L. McNealus, L. B. Soares, L. Kilpatrick,
L. Dixon, L. Martins, M. Reid, M. Singh, M. Iverson, M. Gorner, M. Velloso, M. Wirth,
M. Davidow, M. Miller, M. Rahtz, M. Watson, M. Risdal, M. Kazemi, M. Moynihan, M. Zhang,
M. Kahng, M. Park, M. Rahman, M. Khatwani, N. Dao, N. Bardoliwalla, N. Devanathan, N. Du-
mai, N. Chauhan, O. Wahltinez, P. Botarda, P. Barnes, P. Barham, P. Michel, P. Jin, P. Georgiev,
P. Culliton, P. Kuppala, R. Comanescu, R. Merhej, R. Jana, R. A. Rokni, R. Agarwal, R. Mullins,
S. Saadat, S. M. Carthy, S. Cogan, S. Perrin, S. M. R. Arnold, S. Krause, S. Dai, S. Garg,
S. Sheth, S. Ronstrom, S. Chan, T. Jordan, T. Yu, T. Eccles, T. Hennigan, T. Kocisky, T. Doshi,
V. Jain, V. Yadav, V. Meshram, V. Dharmadhikari, W. Barkley, W. Wei, W. Ye, W. Han, W. Kwon,
X. Xu, Z. Shen, Z. Gong, Z. Wei, V. Cotruta, P. Kirk, A. Rao, M. Giang, L. Peran, T. Warkentin,
E. Collins, J. Barral, Z. Ghahramani, R. Hadsell, D. Sculley, J. Banks, A. Dragan, S. Petrov,
O. Vinyals, J. Dean, D. Hassabis, K. Kavukcuoglu, C. Farabet, E. Buchatskaya, S. Borgeaud,
N. Fiedel, A. Joulin, K. Kenealy, R. Dadashi, and A. Andreev. Gemma 2: Improving open
language models at a practical size, 2024. URL https://arxiv.org/abs/2408.00118,

[62] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozie¢re, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[63] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,

S. Joty, and N. Naik. Diffusion model alignment using direct preference optimization, 2023.

14

https://arxiv.org/abs/2408.00118

[64] J. Watson, S. Huang, and N. Heess. Coherent soft imitation learning. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview,
net/forum?id=kCCD8d2aEul

[65] R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Mach. Learn., 8(3—4):229-256, may 1992. ISSN 0885-6125. doi:
10.1007/BF00992696. URL https://doi.org/10.1007/BF00992696.

[66] R. Yuanzhe Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. Weston. Iterative reasoning
preference optimization. arXiv e-prints, pages arXiv—2404, 2024.

[67] Y. Zhai, H. Zhang, Y. Lei, Y. Yu, K. Xu, D. Feng, B. Ding, and H. Wang. Uncertainty-penalized
reinforcement learning from human feedback with diverse reward lora ensembles, 2023.

[68] Y. Zhao, R. Joshi, T. Liu, M. Khalman, M. Saleh, and P. J. Liu. Slic-hf: Sequence likelihood
calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

[69] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P.
Xing, H. Zhang, J. E. Gonzalez, and 1. Stoica. Judging llm-as-a-judge with mt-bench and
chatbot arena. Conference on Neural Information Processing Systems Track on Datasets and
Benchmarks., 2023.

[70] B. Zhu, M. I. Jordan, and J. Jiao. Iterative data smoothing: Mitigating reward overfitting and
overoptimization in rlhf. arXiv preprint arXiv:2401.16335, 2024.

[71] B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

[72] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and
G. Irving. Fine-tuning language models from human preferences, 2020.

15

https://openreview.net/forum?id=kCCD8d2aEu
https://openreview.net/forum?id=kCCD8d2aEu
https://doi.org/10.1007/BF00992696

A Limitations and Societal Impacts

Our discussion highlights a number of issues with direct alignment algorithms used widely as means
to align to human values. This work has mostly focused on pointing out those issues along with a
theoretical underpinning of the issue but does not provide a way to resolve these issues. We still
assume an underlying model of human preferences, which is an ongoing research area as no model is
perfect in explaining the ways humans give preferences. Our work aims to drive the push towards
better alignment algorithms that do not overoptimize and generate models that are safe to be deployed
in our society. We believe only through understanding and demonstrating the shortcomings of current
methods we can develop better alignment methods.

B Experiment Details

We largely follow the DPO setup unless otherwise mentioned and build on their code
(https://github.com/eric-mitchell/direct-preference-optimization) without changing any hyperparame-
ters unless otherwise mentioned.

For all DAA experiments, we used the curated OpenAl TL;DR dataset with 92K preferred-dispreferred
summary completions [55]]. Each prompt is a Reddit post belonging to one of several topic forums,
with title/post metadata included. 256 prompts sampled from the held-out set are used for all
evaluations (e.g. loss, accuracy, KL, winrates, length), with temperature 1.0 and max length 512.

Model sizes include 1B, 2.8B, and 6.9B and were initialized from the base Pythia pre-trained weights.
All models underwent supervised fine-tuning on TL;DR prior to direct alignment. Across all SFT
and DAA runs, we used a batch size of 128 (8 gradient accumulation steps), and RMSProp with a
learning rate of 0.5 x 106 (linear warmup for 150 steps) for 1 epoch. 1B models were trained on 2
NVIDIA A40 GPUs, 2.8B models were trained on 4 NVIDIA A40 GPUs, and 6.9B models were
trained on 4 NVIDIA A100 GPUs. All evaluations were computed with "gpt-4-turbo-2024-04-09" as
judge, with random positional flips to avoid known bias.

C Appendix A: Complete Intra-Epoch Training Dynamics

This appendix contains similar intra-epoch KL divergence and winrate evolution results as in Fig. [2]
across all model sizes.

16

https://github.com/eric-mitchell/direct-preference-optimization

Winrate evolution over epoch for DPO 2.8B Winrate evolution over epoch for SLIC 2.8B Winrate evolution over epoch for IPO 2.8B

06
b DPO (B=0.01)
DPO (8=0.0175) 06
0.8 DPO (B=0.025)
DPO (B=0.0375) 0.5 7
DPO (3=0.05) 05 2
DPO (B=0.1) 1
/
E 0.6 DPO (B=0.5) 2oa Loa ’Z;'/,
£ £ £ !
s H H L
2 Z - e
& B L
504 o3 &o3 o - 1P0 (B=0.01)
& - IPO (=0.0175)
u & A
02 02 l", 02 ! i _‘.
“®- slic . &
01 - SLIC (=0.1) k-
o —+- SLIC (B=0.5) —+- IPO (B=0.5)
.0
0.0 02 0.4 0.6 08 1.0 0.0 0.2 0. 0.1 0.8 1.0 0.0 02 . 08 1.0
DPO epoch fraction DPO epoch fraction DPO epoch fraction
KL evolution over epoch for DPO 2.88 KL evolution over epoch for SLIC 2.88 KL evolution over epoch for IPO 2.88
- DPO (B=0.01) | | - sLic (B=0.01) 40 - 1PO (B=0.01)
704 -4~ DPO (B=0.0175) - SLiC (B=0.0175) - IPO (8=0.0175)
-A- DPO (3=0.025) 50 SLIC (8=0.025) 3571 -A- 1PO (8=0.025)

60 —§- DPO (B=0.0375) - 1PO (8=0.0375)

-®- DPO (3=0.05) 40 © SLC (B=0.05) 301 -@- 1P0 (=0.05) /

0] %~ PO (B=0.1) N . - SLC (B=0.1) - 1PO (B=0.1)

g —- DPO (8=0.5) SN L7 g |+ stic(p=05) § 25| ~+- 1P (B=05)
840 al &30 g
g g g
= 2 s
MEY) M 3
E 2 2 E
20
10
10
/
o B of 8
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
DPO epoch fraction DPO epoch fraction DPO epoch fraction
Winrate evolution over epoch for DPO 1B Winrate evolution over epoch for SLIC 1B Winrate evolution over epoch for IPO 1B
0.40
035 SLic (8=0.01)
SLiC (B=0.0175) 035
030 030 SLIC (=0.025) :
SLiC (B=0.0375)
025 SLic (§=0.05) 030
SLiC (B=0.1)
£ 020 & H 02
H H 5020
gois Ny E B \ Y
& - DPO (B=0.01) & 5 o01s ~- - 1PO (B=0.01)

010 -~ DPO (=0.0175) - PO (B=0.0175) , _
-A- DPO (8=0.025) 0.10 -A- IPO (8=0.025)
~4- DPO (B=0.0375) ~4- 1PO (8=0.0375)

005 @ DPO(B=0.05) 0.05 -©- 1PO (B=0.05)

k- DPO(B=01) s, . —k- PO (8=0.1) \i ________ i

0.00 ~+- DPO (B=0.5) 0.00 ~+- IPO (B=0.5)

0.0 02 0. . 08 10 0.0 02 04 . 08 1.0
DPO epoch fraction DPO epoch fraction
KL evolution over epoch for DPO 18 KL evolutian aver epoch for IPO 18
o1) 80 -l 1PO (=0.01)
100 0175) - IPO (8=0.0175)
025) 70 -A- 1PO (8=0.025)
- 1PO (8=0.0375)
80 601 -@- IPO (8=0.05)
== IPO (B=0.1)
3 3 $ 501 —+- IPO (B=0.5)
5 60 g §
& & 60 &
g g ga0
2 2> S
5 5 s
g 40 2 a0 <30
20
20 20
10
of @ ol @ of @
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
DPO epoch fraction DPO epoch fraction DPO epoch fraction

Figure 8: KL divergence and GPT4 winrate evolution for 2.8B and 1B models across DPO, SLiC, and
IPO losses. Similar to the 6.9B models, performance tends to degrade after the first quarter epoch,
particularly under a low KL budget, while KL increases almost monotonically.

17

D Overoptimization from the lens of Implicit Bootstrapping

Reward over-optimization is well understood in the classical RLHF setting, with a consensus that
is driven by two main components - using a proxy reward function that is trained on limited data
and continuous querying with new, potentially OOD samples during PPO training. At first glance,
none of these conditions hold in DAAs as we do not train a separate proxy reward model or generate
new data during training. Therefore, understanding reward over-optimization in DAAs requires a
new theory. We will base our analysis on [47]] using the token-level MDP and corresponding (soft)
Q-learning formulation. Consider the class of dense per-token reward functions 74 (z, y<;), where

y<; denotes the first 7 tokens of y, with sequence level-reward ry(z,y) = Zly:‘l ro(z,y<;). Thisis a

strictly more general class than the sparse reward function which returns a single score at the end of
the sequence since we can set all intermediate rewards as 0. Within the framework of [47] given a
DAA-trained policy 7y, there exists a dense per-token reward 7y, that minimizes the reward modeling
objective in Eq. 2] and satisfy the below.

The (soft) Bellman Equation holds:

N r(x,y<i) + Blog mer(yi|(x, y<i)) + V*((x,y<;)), if y; is not EOS
T(m,yg,) +ﬁlog7rref(y1|(xay<z))a if y; is EOS
where V* is the corresponding soft-value function:
V*((z,y<i)) = Blog Z eQ (W (2.y<i))/B 9)
yElV|
then the DAA policy 7y satisfies:
1 * *
o (yil (2, y<i)) = exp(Z Q" (v, (,y<i)) = V™ (2, y<i))) (10)

B

in this interpretation, the LLM logits ly[i] = Q* (v, (z,y<;))/ represent Q-values. With a direct
substitution, we then have

Q" (s (,y<1)) = (@, y<) + Blog Tet(yil (w, y<i)) + Blog Y ¥ W w=))/B (1)
yi €|V]

OOD bootstrapping

That is in this framework DAAs may suffer from the classical OOD bootstrapping issue in offline
RL [20} 35033} 152]. In this case, even though the objective is trained fully offline we still effectively
query the model on the values of unseen tokens. This interpretation also provides further insight into
the effect of the /3 coefficient and the training dynamics. For small values of beta the estimate

Blog 3 @ lr<lf ~ max Q°(y, (+.y<) (12)
yi€|V|

that is smaller parameter values yield a more optimistic estimate, which results in a higher level of
OOD bootstrapping. This interpretation would also explain the somewhat counter-intuitive results of
section [3.4] While the implicit reward function can adequately fit and model the data, the resulting
LLM might behave sub-optimally, due to OOD bootstrapping in the corresponding Q-value estimate.

18

E Understanding Behavior of DAAs on OOD sequences

We have established that common DAA objectives allow for placing a high likelihood on OOD
data. In practice, while one might expect the likelihood of preferred responses to increase during
training, it has been observed that algorithms like DPO decrease the likelihood of both the preferred
and dis-preferred responses [42]. In fact, this is expected from a max-entropy RL perspective [47].
Since the total probability mass must sum to one, the probability of OOD responses must increase
during the course of training. A small amount of extrapolation may be necessary to reach the optimal
policy, however, too much is potentially detrimental to performance. Because they are not adequately
constrained to the reference distribution, current DAA objectives allow this to happen.

To understand how DAAs allocate probability mass out of distribution, we use a toy Markov Decision
Process (MDP), that mimics the LLM setting. The MDP is modeled as a tree, originating from a
single start state, featuring deterministic transitions. The Toy MDP is illustrated in fig. [6]

E.1 Designing a toy LLM MDP

The MDP is modeled as a tree, originating from a single start state. This configuration mirrors the
token-level MDP in Direct Preference Optimization (DPO) [47], or the scenario where both preferred
and dispreferred responses are conditioned on the same prompt in the broader Large Language Model
alignment context. Each leaf node in the MDP transitions deterministically to a terminal absorbing
state, regardless of the action taken. The deterministic transitions resemble the LLM setting, where
the current state is represented by the sequence of encountered tokens (sq, $2, ..., $;), and the action
corresponds to predicting the next word s, ; from the vocabulary, given the context. In this simplified
MDP, the deterministic transition is akin to a concatenation function, advancing the state to the next
step (81, 82, ..., Si, Si+1). Employing a toy MDP enables us to systematically evaluate the trajectory
probabilities for all feasible paths within the MDP, shedding light on the allocation of probability
mass by Direct Alignment Algorithms (DAAs) towards out-of-distribution (OOD) trajectories.

The Experimental Setup. We adhere to the standard direct alignment protocol [46[][41]], encompass-
ing two key stages:

1. Supervised Fine-tuning (SFT) / Behavioral Cloning (BC): This phase involves fine-
tuning the policy based on a limited number of trajectories. Specifically, we utilize
three demonstrations for SFT: (s1, ag, $2, ag, S5, G, Seo), (51, a1, 83, a1, S9, G0, Sco), and
(81,02, 84, a2, 513, a2, Sco)-

2. Alignment with Preferences: In this stage, preferences extracted from trajectories
are employed to align the policy. Notably, we have only one preference available:
(s1,a1, 83,01, 89, A0, Soo) = (81, 0a0, 2,00, S5, A0, Sso). This deliberate constraint exag-
gerates a scenario with limited data, enabling us to gauge the probability mass allocated to
out-of-distribution (OOD) trajectories under such conditions. Insights garnered from this
exaggerated low-data scenario hold relevance for Large Language Model (LLM) settings
where preference datasets used for alignment are notably smaller compared to the scale of
LLM models deployed.

We utilize a Recurrent Neural Network (RNN) policy to navigate through the MDP, facilitating a
closer resemblance to real-world language modeling scenarios.

Subsequently, we explore three distinct direct alignment loss functions: Direct Preference Optimiza-
tion (DPO) [46], Identity Preference Optimization (IPO) [4], and Sequence Likelihood Calibration
(SLiC) [68]. Additionally, we investigate how the selection of the KL penalty coefficient 5 influences
the distribution of probability mass on OOD trajectories. This exploration encompasses three values
of 8: (0.01,0.1,0.5).

In general, the plots illustrate that Direct Alignment Algorithms (DAAs) tend to allocate a significant
proportion of the probability mass to out-of-distribution (OOD) trajectories during the alignment
process. While Figure [9] may suggest that Direct Preference Optimization (DPO) can retain a
substantial amount of probability mass on the selected trajectory in the preference dataset, it’s
noteworthy that the plots for DPO exhibit considerable noise. To provide further insight, Figure
displays the plots resulting from three additional repetitions of the DPO experiment. Similar noisy
trends were also observed in the experiments for IPO and SLiC. This elucidates the unconstrained

19

nature of the DPO problem: multiple solutions exist for the DPO loss, each distributing varying
amounts of probability mass to OOD trajectories. In the experiments with IPO and SLiC, it’s
also observed that similar to DPO, the probability mass allocated to in-distribution trajectories can
diminish substantially over the course of training. Notably, the probability mass, in our experiments,
becomes concentrated on a select few out-of-distribution trajectories. Moreover, consistent trends
are discernible across various values of 3. The results of our experiments with the Toy-MDP can be

found in the following figures 12} P} [T5} [13} [T0} [T6} [T4} [TT} [T7}

20

00D Trajectory probabilities over DPO training; beta-0.1, 1pref

le-s le-7
25 000014
— w001 (2.0).(5. 11 T wl.0.2.0.6.21 —- a1, 2. 11, (6,01 ef: el 1. 2. 1. (6. 11
000012 { | 0010
20 H
0000104 0.008 ¢
13 0000081 |
' 0006 B
10 000006 1 |
1 0004
000004 { |
05 H 0.002 2
0.00002{ |
00 000000 0000 3
0 s 10 150 200 0 50 100 150 200 0 s 100 150 200 0 s 100 150 200
1e-6 le-7 le-11 1e-10
— w00 2. 1.6, 21 a1, 0. 2. 2). 7. 01 — w0, 0. 2.2, .11 1s0: e, 0. 2.2). .21
4
3 3 125
3 100
2 2
N 075
. 050
N 1
025
[— o 3 000
0 % 10 150 200 0 s 100 150 200 S s 100 130 200 5 s 100 130 200
o150 — et 11.6.0). .01 005 —— w0, 16,00 (6, 1) — waidin, 1. 6.01. 6. 21 ~ wern, 1. 6. 10, 0.1
3 004 020
0125 0.04
003 015
0100 003
0.075 0.02 0.10
002
& 0050
2 001 005
= 0025 oot
3
8 o000 000 000 —— 000
< o 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
S
£ 0.0004
g (L 1) 5,1, 6.2 06 - a1, 1).6.2), 10,00 — WL, G200 | 00014 - w1, 1) 6.2, 10.21
g os 00012
= 05 0.0003
00010
06 04
03 0.0002 0.0008
04 i 00006
02
i 00004
0 o001 {
01 0.0002
00 00 00000 00000
0 s 10 150 200 0 50 100 150 200 0 s 100 150 200 0 s 100 150 200
le-s 1e-5 le-5
s — a1, 2), (4, 01, (11, 011 25 —— a1, 2), (4,00, (11,)] —- (1. 2), (4,0), 1. 21 07 trad(1, 2), (2, 1), (12, 01
s
4 20 06
s 05
N 15 04
2 1.0 4 i 03
i 02
1 05 20
01
" ; ji
0 00’ 3 00
0 % 10 150 200 0 s 100 150 200 G s 100 130 200 S s 10 130 200
020 — w2, 1, 62,01 08 - e, 2), (6,2, 02.2) — (. 2), 6,2, 03,20 - e, 2), 6,2), 13,21
0012 004
015 0010
as 0.03
0.008
oto 04 0.006 0.02
0004
005 02 001
0002
000 00 0000 000
0 s 10 150 200 10 200 0 s 100 150 200 0 s 100 150 200

Training Steps

In Distribution Trajectory Probabilities over DPO training; beta-0.1, 1pre

chesen-[(1, 0), (2, 0), (5, 0]]
rejected-[(1, 1), (3, 1), (9, 0)]
0.8 q

Trajectory Probabilities
o o
» >
L L

o
Y
.

0.0 e

T T T T
0 25 50 75 100 125 150 175 200
Training Steps

Figure 9: Trajectory probabilities throughout DPO training, 5 = 0.1. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

21

00D Trajectory probabilities over IPO training; beta-0.1, 1pref

10
— traj((1, 0). (2, 0). (5. 1)} 11 == trai{(1.0), (2, 0). (5. 2)] 0012 = traj{(1,0). (2. 1). (6. 0)) traj((1, 0). (2. 1), (6. D)
08 o1t 0010 15
st 0008
06 W
! 0.006 Lo
04 34
i 0004
241 05
oz I 0.002
0.0 o' 0.000 0.0
0 s 100 130 200 0 s 10 130 200 0 s 100 10 200 0 s 10 130 200
1e-6 1e-7 le-12 le-11
12 — traj((1,0), (2, 1), (6. 2)] 175 tra(1. 0), (2. 2). (7, 00 25 = trap{(1, 01, (2,2), (7. 1)] oo trapl(1, 00, (2.2), (7. 21
150
15
Lo 125 20
08
100
15 10
Lo 075
10
o4 050 05
02 025 05
00 000 00 00
0 s 100 130 200 0 % 10 130 200 S s w10 10 200 0 s 10 130 20
1e-8 le-7
0.0008 010
— w0, 1.03,0).(3.00 201 = (L 11, 3.0 (6, 11 14 - w0, 10.,0). (0,20 waH(L, 1.5, .11
20006 i 12 008
154 10
' 005
H 08
00004 :
1041 i
: 061! 004
£ 00002 i 04
2 05 ! i 002
H H 021
® H 1
£ 00000 00 00 ——mm 000
& 0 s 100 130 200 0 s 10 130 200 0 s 100 10 200 0 s 10 130 200
S
s le-5
g —— a1, 1.2, 10,01 5 —- a1, 1).0.2), 10,11 00n
©
£
08 0003 .
003
06
0.002 3
002
04 2
0001
02 K 001
! I 5
00 oL 0.3,0,0.20 | o001t N 000 o waid(1,1),3.2), 10.2)
0 s 100 150 200 0 s 100 130 200 0 s 100 10 200 0 s 100 150 200
1e-6 1e-11 le-10
175 — traj{(1,2). (4. 0). (11. 0 == tral(1,2). (4.0). (11, 1) 30 —- trail(1, 2), (4, 0), (11, 2)] 0.12 trap(1. 2), (4, 1), (12, 0))
150 N 25 0.10
125 3 20 008
100
15 005
075 2
10 004
050 A
025 05 002
0.00 oq's 004" 0.00
0 s 100 130 200 0 % 10 130 200 S s 100 10 200 0 % 100 130 200
le-5
00012 — i 2. (1. 02,10 0006 = a0, 20, 4,0, (2, 211 o — a1, 20.14.2. 42,11 | 0.00030 -+ (1. 2), (6. 2), (13,20
00010 0005 5 000025
00008 0004 4 000020
00006 0003 3 000015
00004 00024 ! 2 000010
P —
00002 o001 | fi / 1 000005
i i
00000 o000 {4 o hmimimimi i | 000000
0 s 10 130 200 0 s 100 10 200 0 s 100 150 200

Training Steps

In Distribution Trajectory Probabilities over IPO training; beta-0.1, Lpre

chesen-[(1, 0). (2, 0). (5. 0]]
rejected-[(1, 1), (3, 1), (9, 0)]
0.8 4
2
3 06
©
2
l
&
o
£ 0.4+
3
o
&
0.29
0.04

0 25 50 75 100 125 150 175 200
Training Steps

Figure 10: Trajectory probabilities throughout IPO training, 8 = 0.1. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

22

00D Trajectory probabilities over SLIC training; beta-0.1, 1pref

re-s 1e-6
— veitt,0.2.0. .11 L. 2 05,21 | 00006 (.00 2. 1.6.00 i (00, 2.0, (6. 101
25 s
00005
20 4
00004
L3 0.0003 3
Lo 0.0002 2
05 ' 0.0001 1
H I
00 0 00000 3
o % w0 10 20 o % 10 10 20 ¢ s 10 1m0 200 o % w0 130 20
1e-6 §dess 1e-11 te-11
— w102, 1. (6,21 w101, 2.2 0,01 i1, 01,220, 1) 1o 0,0 2.2,.7.2)
4 5 -
15
08
B s
3 10 06
2
) 04
0s
1 . 02
o 0 0.0 004 *
) o % 10 10 20 ¢ s a0 1m0 200)
00020 — w1, 1.05.01. .01 L 0.0.006. 01| 000020 — w10, 0,006,201 08 a1, .1
00008
00015
00008 000015 05
ooor0 0.0004 0.00010 0.4
00005 0.0002 0.00005 0.2
oo o000 [| — 00
& o % w0 10 20 o % 10 10 20 ¢ s 10 10 200 o s 10 150 200
=
£
8 a0 L 1. .2, 0,01 e 1. 0.2, 00,10 i, 00,2, 00,20
g 00008 os 08
g !
0125 0s
00006
0100 04 05
0075 0.0004 03 04
0050 02
00002 02
002 01
0000 L1, 3,1,6.20 | 0000 00{ 4" 00
5 % w0 10 20 o % 10 10 20 ¢ s 10 130 200 o % w0 10 20
te-7 le-10 le-11
00007
30 — et 2 @ 0. aLon im0 1 0 . e 2. 6.0, 1. 20 (L. 6.0, 02,01
00006
2s 15
s 0.0005
20 .
o 00004
15
A 0.0003
10 s 2 00002
0s) 00001
00 00 3 00000
5 % w0 10 20) ¢ s 10 130 20 R D)
le-7 le-s 1e-s
30
1o — etz e 0.0z 0 . e 2. 6.0 0z, 20 .62 5.0 . e, 26,2, 0520
25
08 s
s 20
B
06
. 15 5
04
10 B
2
02 0s 1
00 0 00 3
5 % w0 10 20 o % 10 10 20 ¢ s 10 130 20 o % w0 10 20

Training Steps

In Distribution Trajectory Probabilities over SLIC training; beta-0.1, 1pre
1.0

=== chesen-[(1, 0). (2, 0). (5. 0]]

—-- rejected-[(1, 1), (3, 1), (9, 0)]

0.8 1

0.6 1

0.4+

Trajectory Probabilities

0.2+

0.04

0 25 50 75 100 125 150 175 200
Training Steps

Figure 11: Trajectory probabilities throughout SLiC training, 8 = 0.1. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

23

00D Trajectory probabilities over DPO training; beta-0.01, 1pref

1e-5 1o et
150 — 01,0, 2. 01, (5. 11 - 1ar1(1,0),2.0,.(5.211 | 0008 —- wafl(1,0) 2.1). 66,01 a1, 0L, 2.1). 6. 11
125 o
0.006
100 08
075 0.008 06
050 04
0.002
025 02
000 0,000 00
0 s 100 150 200 0 50 100 150 200 6 50 100 150 200 0 s 100 150 200
1e-6 1e-5 1e-9 1e-9
175 — tra(1.0). 2. 1), (6. 2)] s traj{(1. 0). (2. 2). (7. 0)) —- (1, 0), 2.2, 7. D] 7 e (1,00, (2.2), 7201
20
6
150 N
125 15 °
100 3 a
075 2 10 3
050 2
N 05
025 1
[— o 00 o
0 s 100 130 200 0 s 100 150 200 G s 100 150 200 0 s 100 150 200
le-5 le-5
— a1, 11.3,0). 5.0} —= (L, 1), 6. 0). (5. 11 — - a1, 1), 5.0). .21 e L, 3, 10,9, 11
10
00020
o 008
08
00015 006
06 4
00010 004
04
8 2
£ ooo0s 02 i 002
i i
£ o000 00 of/~ 000
< o 50 100 150 200 ° 50 100 150 200 0 50 100 150 200 0 50 100 150 200
>
S le-5 le-5
g e
g v a0 1), (5, 1), 9, 211 ——- rafl(1, 1. 3.2, 10,011 - —- @, 1. 3,2). (10, 11 - (L), 3.2, 00.2)
£
08 00006 0 .
06 08
00004
4
06
04
00002 o4 2
02 1 02
00 00000 00 o
0 5 100 150 200 0 5 100 150 200 6 50 100 150 200 0 s 100 150 200
1e-6 1e-6 020
0.0008 — w2 o aron | 173 —— tra(1. 20, 6.0, (1, 11 — a0, 2). (2,0, 11,20 taid(L. 2), &, 1), 1201
00005 150 20
s 015
00004 s
100
00003 010
075 10
00002 ;
0501 | o 005
00001 025 !
00000 000 It 00 000
0 s 100 130 200 0 s 100 150 200 6 s 100 150 200 0 s 100 150 200
1e-5 le-5
0030 150
0010 — a2, (6.1, (2.1 —— a1, 20,6, 1, (2,211 — a0, 2),(6,2, 13,] ; o (L2162, 13,21
0025 125 a
0.008
0020 100 5
0006 0015 075
2
0004 0010 050
0.002 0.005 0259, B
0000 000017 ooo { o
0 5 100 150 200 0 50 100 150 200 6 50 100 150 200 0 s 100 15 200

Training Steps

In Distribution Trajectory Probabilities over DPO training; beta-0.01, 1pn

M chosen-[(1, 0}, (2, 0), (5, 0)]
0.8 1 " rejected-[(1. 1), (3. 1), (9. 0)]
i
N
"
1
4 0
ﬁ 0.6 o |.|
E " n
H " i\
3 H r
o " [
R
T 044 11 I}
= il [
2 | [
& | FERE A
) |1 I B B
= 1 ;o
024 L1 s
N
["
oo
I,
04 MM
T T T T T T T T T
0 25 50 75 100 125 150 175 200

Training Steps

Figure 12: Trajectory probabilities throughout DPO training, 3 = 0.01. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

24

00D Trajectory probabilities over IPO training; beta-0.01, 1pref

1e-6 1e-s le-s
20
— taid(1.0.2.01.6. 1) |\ - wH00.2.0.6.21| o0 —- (L, 01 2. 1) (6.0 30 w01, (2.1), 6.1
611 25
2 i 00003
! 20
A
Lo | 0.0002 15
1 10
05 214 0.0001
i 0s
0.0 o' 0.0000 0.0
0 s 100 10 20 0 % 100 10 200 o s 100 150 200 0 s 100 10 200
1e-7 le-g le-12 le-11
Lo — traj((1,0), (2, 1), (6. 2)] 5 tra(1. 0), (2. 2). (7, 00 = trap{(1, 01, (2,2), (7. 1)] 25 <= trapl(1, 0), (2, 2), (7,2)]
4
08 20
5 3
06 15
4
04 2 10
02 2 a 05
00 3 3 00
0 s 100 130 20 0 % 100 130 20 5 s 10 10 200 0 % 100 10 200
le-s le-7 o
000035 — traj((1, 1). (3, 0). (8. 0] 30 : == trap{(1. 1), (3. 0). (8. 1)) 1o = trajl(1, 1), (3, 0). (8. 2))
000030 1
1 o8 08
250 |
0.00025 A |
I
15 |
000015 of 1} 04
2 10
& 000010 i
£ 0z 02
Z ooo00s 05 it
[P | S 00 ool Ui 00l il 11,3, 10,6, 1)
& [50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
=
S le-6 le-6
8 s, 1. . 1) .21 = a0, 1., 2). 00,01 35{ | = v 0.0.2.00.00 § L. 0. 0020
$ oo 1ol f
= 00006 304 |1
0020 2 | os
0015 0.0004 2011 06
1541
0010 i 04
00002 104 j
0005]
os{ i 02
0.000 0.0000 0o /\ 0.0
0 s 100 10 200 0 % 100 10 200 G s 100 150 200 0 s 100 10 200
1es le-s 1e-9
L5 — tartiL. 21 6.0, aL.on 150 a0, 2). 6.0, 01,11 (2. 6.0, (1.2 a1 2). . 1). 02,00
n
12 125 06
1.00 100 3
04
075
075)
030 050
N 02
025 025
000 000 Ior=m= 3 00
0 s 100 10 200 0 % 100 130 200 5 s 10 150 200 0 % 100 150 200
1e-5 1e-s
175 000010 1=
7 — tartis. 2160, 02.1 a0, 2). 6. 0. 02,21 a0, 21 8. 2). 05,11 T e w oo
000020 150 H
6 000008
5 0.00015 12
100 000006
s
3 o.00010 075 0.00004
2 050
000005 000002
1 025
2% 000000 000 000000
0 s 100 150 200 0 % 100 10 200 o s 100 150 200 0 s 100 150 200

Training Steps

In Distribution Trajectory Probabilities over IPO training; beta-0.01, 1pre

1.0 4 chesen-[(1, 0). (2, 0). (5. 0]]

rejected-[(1, 1), (3, 1), (9, 0)]

0.8 q

0.6 q

0.4

Trajectory Probabilities

024

0.04

0 25 50 75 100 125 150 175 200
Training Steps

Figure 13: Trajectory probabilities throughout IPO training, 5 = 0.01. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

25

00D Trajectory probabilities over SLIC training; beta-0.01, 1pref

1es le-s 1e-7
35 — traj((1, 0). (2, 0). (5. 1)} | == trai{(1.0), (2, 0). (5. 2)] = traj{(1,0). (2. 1). (6. 0)) 4 traj((1, 0). (2. 1), (6. D)
30 8 0.0010
25 ol 00008 3
20 | 0.0006
o 2
15 |
| 0.0004
10 L 1
05 | 00002
00 3 00000 o
0 s 100 10 20 0 % 100 10 200 o s 100 150 200 0 s 100 10 200
1e-7 1e-7 le-11 1e-10
s — (1,0, 2. 1), (6.2)) 25 (1, 0, 2.2), 7,01 e — wa{(1,0),2.2), (. 1) 14 e (1,01, (2.2), 7, 2)]
12
20 .
6 10
15 0.8
4
s
10 06
04
2
2 05
02
0 00 3 00
0 s 100 130 20 0 % 100 130 20 5 s 10 10 200 0 % 100 10 200
le-s
00007 — traj((1, 1). (3, 0). (8. 0] ==+ traj{(1. 1), (3. 0). (8. 1N = trajl(1, 1), (3, 0). (8. 2)) trap((1, 1), (3. 1), (9. 1]
G0 o]t meneoe 000150 3 00005 -G.1.6.
00006
000125
0.0005 25 0.0004
000100
20
00004 00003
00003 15 000075
00002
§ 00002 10 0.00050
£ 00001 o5 0000251 jj 0.0001
2 R
£ ooo00 00 000000 00000
& 0 s 100 10 200 0 % 100 10 200 G s 100 150 200 0 s 100 10 20
=
5 J5 180
£ 00006 !
2 10 —— 3, 1), (3. 2), (10, 0] —- w1, (3.2), 0,21 | 00010 - (L 1), (3,2, 00,211
= 30
F o8 00005 0.0008
25
00004
06 20 00006
00003
04 15 0.0004
00002
10
0z 00002
00001 s
0o o, 1.3,0.0.20 | 00001 - 00 00000
0 s 100 10 200 0 % 100 10 200 G s 100 150 200 0 s 100 10 200
0.0025 ge=e. 025
— tartiL. 21 6.0, aL.on a0, 2). 6.0, 01,11 (2. 6.0, (1.2 a1 2). . 1). 02,00
s
00020 00015 020
0.0015 ° 015
00010
0.0010 4 0.10
00005
0.0005 2 0.05
00000 o{! 00000 000
0 s 100 10 200 0 % 100 130 200 5 s 10 150 200 0 % 100 150 200
00006 07
— tartis. 2160, 02.1 a0, 2). 6. 0. 02,21 a0, 21 8. 2). 05,11 (L. 21, 6.). (5,21
030 06
00005
o025 0006 o
00004
020 04
00003 0004
015 03
00002
010 0002 02
00001 00 01
0.0000 0.00 N 0.000 0.0
0 s 100 150 200 0 % 100 10 200 o s 100 150 200 0 s 100 150 200

Training Steps

In Distribution Trajectory Probabilities over SLIC training; beta-0.01, 1pn

chesen-[(1, 0). (2, 0). (5. 0]]
rejected-[(1, 1), (3, 1), (9, 0)]

0.7+

0.6 1

0.54

0.4+

034

Trajectory Probabilities

0.24

0.1+

0.04

0 25 50 75 100 125 150 175 200
Training Steps

Figure 14: Trajectory probabilities throughout SLiC training, 8 = 0.01. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

26

00D Trajectory probabilities over DPO training; beta-0.5, 1pref

1es 1e-7
12 0010
— a0, 2.0, 6.1 - a0 0.2.0. 6. 21 a0, 01.2.1). .01 3 el 1. 2. 1. (6. 11
10
0008 5
08
0006 4
06 N
0004
04 2
02 0002 N
00 0000 o
0 s 100 130 200 0 s 10 10 200 0 s w0 10 200 0 s w0 10 200
1e-6 Lo et le-12 1e-11
20 — w0, 01 2. 1).66.21 a0, 01 2. 2). (7,01 . — w0, 0. 2.2, 0.1 o o1, 0. 2.2, 7.2
10
15
2 08 3
o o6 s 10
04
05 i 05
02
00 00 o 00
0 % 100 130 200 o s 10 10 200 o s w0 130 200 ¢ s w0 130 20
o les o de=7
00004 — s 15,00 (6,01 = A 1.6.00 1) a0, 1. 0.0 (3.1 | 0.020 o a1 1.5, 0,11
s
00003 ° 0015
00002 i 4 0010
00001 218 2 0005
2 i it
£ o000 o o N 0000 -
< ° 50 100 150 200 o 50 100 150 200 o 50 00 150 200 0 50 100 150 200
=
£ 00175
2 oo v] = WL, 1.0.2, 00,00 | g o020 (L 1.6.2.0001 | o06 ~waid(s 1. 2,21, 00,21
£
oazs o125 00025 005
0100 00100 00020 004
0075 00075 00015 003
0050 00050 00010 002
0025 00025 00005 001
0000 00000 00000 000
0 s 100 130 200 o s 100 130 200 0 s w0 130 200 0 s w0 10 200
1es 1e-7 les
150 — et 2. 4,01, (1, 01 — w2.eo.aLm| 5o —winawo.arm | 0
s
125 as o8
s
100 20 06
3
073 15
, 04
050 10
025 1 o5 02
000 ol / 00 00 a1, 2,43, 62,00
0 % 100 130 200 o s 100 10 200 o s w0 130 200 G s w0 130 200
— w2600z 07 012 — w2 G| 06 (L. 21, 4. 21, (3,21
008 06 010 05
006 03 008 04
04
006 03
004 03
. 02
0 004
002
01 002 01
000 00 0001 4 00
0 s 100 130 200 0 s 100 130 200 0 s w0 10 200 0 s w0 10 200

Training Steps

In Distribution Trajectory Probabilities over DPO training; beta-0.5, lpre

=== chesen-[(1, 0), (2, 0), (5, 0]]
0.7+ —-- rejected-[(1, 1), (3. 1), (9. O)]

064 N

051 1

0.44

Trajectory Probabilities

0.04 -

T T T T T T
0 25 50 75 100 125 150 175 200
Training Steps

Figure 15: Trajectory probabilities throughout DPO training, S = 0.5. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

27

00007
00006
00005
00004
00003
00002
00001
00000

Trajectory Probabilities

14

10
08
06
04
02
00

Figure 16: Trajectory probabilities throughout IPO training, 3

00D Trajectory probabilities over IPO training; beta-0.5, 1pref

1e-7 le-s
00008
— traj((1, 0), (2, 0), (5. 1)] == trai{(1, 0, (2, 0), (5. 2)] —- traj(1, 0), (2. 1), (6. 0} 5 trai{(1, 0), (2, 1), (6, 1)1
00006 4
3
00004
2
00002
1
00000 3
0 s 10 130 200 0 s 10 130 200 0 s 10 150 200
1e-8 1e-7 le-12
— tar(0.0.2.1.6.2) w101, (2.2), 07,01 0 — (1,0, 2.2, 0.0
s
25
3 20
N 15
10
1
05
3 00
o w10 130 200 0w w0 130 200 o s 10 10 200
1e-6 1e6
— trajl(1, 1), (3, 0). (8. 0)) 7 —= traj{(1, 1), (3, 0). (8. 1)] 4 —- tra{(1, 1), (3, 0). (8.2)] 06 traj-l(1, 1), (3. 1), (9. 1]
6 05
3
s 04
s
2 03
3
; 0z
1
R 01
R [5 T J e —
0 s 10 130 200 0 s 10 150 200 0 s 10 150 200 0 % w0 130 200
00035
== trajd(1. 1), 3. 2). (10, 0)] —- trajd(1. 1), (3. 2). (10, 1] 0.0035 - trapl(1. 1), (3. 2). (10, 2))
0.0030 0.0030
00006
00025 00025
00020
0.0004 00020
0.0015 0.0015
00002 00010 00010
00005 00005 { £ i
wHILD. 0,000 | o000 00000 00000
0 s 100 150 200 0 s 100 150 200 0 s 100 150 200 0 % w0 130 200
1e-5 1e-9 le-s
— a1 2), (4,0). 11,01 € - (1. 2), (4,0, 11, 1] 10 —- tra(1.2). (4,0). (11, 211 00175 tra(1. 2), (4, 1), 12,01
H 08 0.0150
4 00125
06
00100
3
04 00075
2
00050
N 0z
00025
3 00 00000
o s 10 130 200 o s 10 130 200 0 s 10 130 200 0 % w0 130 200
1e-6 1e-5
— trajd(1, 2). (4. 1), (12, 1) 0.0035 —= trajd(1.2). (4,1). (12, 2)] 5 —- traj(1.2). (4.2, 13. 11 | 0.000150 = trap(1. 2). (4. 2). 13. 21
00030
. 0000125
00025
0000100
00020 3
0000075
00015)
00010 0000050
YT R 1111 Y U ——— 1 0.000025
00000 3 0000000
0 s 100 150 200 0 s 100 150 200 0 s 100 150 200 0 % w0 130 200
Training Steps
In Distribution Trajectory Probabilities over IPO training; beta-0.5, lpre
1 chosen-[(1, 0). (2, 0), (5. 0)]
rejected-[(1, 1), (3, 1), (9, 0}]
0.8
wn
o
3 06
2 06
2
2
&
£ 0.4
i1
3
s
=
0.2
i
i
i
1
0.0

50 75 100

Training Steps

125 150

175

200

= 0.5. The top plot shows how the

probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

28

00D Trajectory probabilities over SLIC training; beta-0.5, 1pref

e =]
— traj((1,0). (2, 0. (5. 1)) ==+ traj[(1, 0). (2, 0. (5. 2)) 1 —- traj{(1, 0). (2. 1), (6, 0)] . traj((1, 0). (2. 1), (6. D)
12 00006
10 00005 15
o8 00004
10
06 00003
00002
04 os
02 00001
00 00000 00
0 s 100 10 200 6 s 10 10 200 0 0 100 130 200 0 s 100 10 200
1e-7 le-g le-12 le-12
— traj{(1,0). 2. 1. (6.2)] 30 traid(1, 0). (2, 2), (7, 0)) 20 —- trai(1,0). 2, 2), (7. 1) s e (1,00, 2.2), (7.2)]
20
25 A
15
20
15 R
15 10
10 N
10
05
05
05 1
oo{ brim—ov— 00 00 J
¢ % 10 130 20 S w10 130 200 0 s 100 130 200 0 s 100 10 20
ey ey
0.0006 — traj[(1, 1). (3, 0. (8. 0)) 6 == traj((1, 1). (3, 0). (8. 1))] —- traj{(1, 1), (3, 0), (8. 2)] : e trapl(L 1), (3,20, (9. 1)
00005 5 8! o8l 5
1
00004 . ol 06
]
00003 3
W1 04
0.0002 2 !
2 ! 02
00001 N i
£ oo o 3 — 00
& 0 s 100 10 200 6 s 10 10 200 0 0 100 130 200 0 s 100 10 200
=
s
8 = a0, 11.0.2). (0,01 — el 1.0.2.0.01 | 00010 o (L 1), 5.2) 00,201
T oe 00025 0004
2
0002 00008
06 0003
00015 00006
04 0002
00010 00004
02 0.0005 1 i 0001 00002
. L0, 0.0.20 | o000 0000 00000
0 s 100 10 200 6 s 10 10 200 0 0 100 130 200 0 s 100 150 200
le-g pry o
000012 — w1, 2. (4,00, (11,00 = a0, 2. 8.0, (L 11 . el 2. 0. L2 a1 2). . 1). 02,00
B 06
000010
4 6 os
000008 o0
3
000006 4 03
000004 2 02
2
0.00002 1 01
000000 3 3 00
6 % 10 130 20 ¢ s w0 10 200 0 s 100 130 200 0 s 100 10 200
007 os
— a2 e 10z e, 21, 02,20 . 21,162, @ L 2, .2, 03,2
0.06 04
005 015 04
03
004 03
010
0z
003 0
002
005 01 -
001
000 000 00 00
0 s 100 10 200 6 s 10 10 200 0 0 100 130 200 0 s 100 150 200

Training Steps

In Distribution Trajectory Probabilities over SLIC training; beta-0.5, 1pre

0.5 === chesen-[(1, 0). (2, 0). (5. 0]]
—-- rejected-[(1, 1), (3, 1), (9, 0)]
0.44
[
H
] 1
u N
= fin
3 o
@ 037 jin
2 i
] jin
< |
£, U
go2 I
= It
= i|¥|
it
0.1 I:”I
kN
i
N
004 bt
0 25 50 75 100 125 150 175 200

Training Steps

Figure 17: Trajectory probabilities throughout SLiC training, 8 = 0.5. The top plot shows how the
probability mass of different OOD trajectories, changes throughout training. The bottom plot shows
how the probability mass of the trajectories in our preference dataset (size 1) changes over training.
The trajectories are listed in the legends for the plots, as a sequence of state, action pairs.

29

Preference Distribution Trajectory Probabilities over DPO training; beta-0.1, 1 Preference Distribution Trajectory Probabilities over DPO training; beta-0.1, 1

08
§ === chosen-[(1, 0), (2, 0), (5, 0)] s === chosen-[(1, 0), (2, 0), (5, 0)]
i - rejected-[(1, 1), (3. 1), (9, 0)] Al - rejected-[(1, 1), (3, 1), (9, 0)]
07 08 A
i [AV AT
i i
061 1 | vom ~
i HEPNAN
g i P [VAR
g £ H R ARVRA
Zosq i 2069 4 1 4 \.
3 H 3 i I -
F] i 2 b v N
3 i 5 I ! .
go41 1 & now . .
2 i zoaq il I “
Sosl It £ Hi t .
8 i 3 o . .,
z i T W . .
Foz{ It = @ i N
1 02 ' if Ny
i Vi i ~
o1q i ' v S~
WA i
oo WM 00 U
0 25 s 75 100 125 150 175 200 0 25 s 75 100 135 150 175 200

Training Steps Training Steps

Preference Distribution Trajectory Probabilities over DPO training; beta-0.1, 1

(N T e
P IET IR
o8 i Y
Y Y
9 L
2 i
Fo6q [b
2 ' i
g Hi ~-- chosen-{(1, 0), (2, 0), (5, 0)] vy
> n —= rejected-[(1, 1), (3, 1), (9, 0)] Ht
Soaf ti e
g It HH
g [
= I [
i
02 i
i
i
I
iU
0.0 &

0O 25 50 75 100 125 150

Training Steps

Figure 18: Trajectory probabilities throughout DPO training, over three different runs, with 5 = 0.1

KL divergence and winrate for Gemma2-2b-HH

KL divergence and winrate for Gemma2-2b-HH
B DPO (=0.01, a=0.0)
& DPO (=0.0175, a=0.0) 0.80
A DPO (B=0.025, a=0.0)
0801 § DPO(8=0.0375, a=0.0)
@ oPOE=005a=00) [& e | | T ke,
DPO (8=0.1, a=0.0) . omsd et T e
+ DPO(B=05,a=00) | eesfreriiTiiiieead
@ 075 : "
c £
= g o070 .
= o0 <
£ 5
6 V]
065 M SLC (8=0.01,a=0.0)
& SLC (B=0.0175, a=0.0)
065 A SLC(8=0.025,a=0.0)
[]
0.60
0.60
50 10 20 30 0 50

10 20 30 40

Sample KI Divergence Sample KI Divergence

Figure 19: KL divergence versus GPT-4 win rate for the Gemma2-2b model on the Anthropic-HH
dataset. The left plot shows DPO results, and the right plot shows SLiC results.

F Overoptimization Trends in the Gemma2-2b Model and Anthropic-HH
Dataset

We present KL divergence versus GPT-4 win rate plots in Figure [T9]to illustrate overoptimization
trends in Direct Alignment Algorithms for the Gemma2-2b model [61] and the Anthropic-HH dataset
[3]. Results are shown for the DPO and SLiC variants, which sufficiently demonstrate that the
overoptimization trends observed with the Pythia models are not specific to a single model or dataset.
The figure illustrates the trade-off between KL divergence and GPT-4 win rate across different values

of beta in the alignment objective.

30

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper faithfully adheres to the claims and motivation in the abstract and
provides proof and detailed empirical studies in support.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A discussion of our limitations can be found as a separate section at the
beginning of the appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide proofs and empirical evidence to support all our theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

31

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed guidance on reproducibility by specifying all datasets,
code, and hyperparameters used in this work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have only used open-source models with open-source datasets for all
aspects of the work. Please refer to section [B]for details on reproducing the results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We list detailed information about the training and test details in Section ??.
Our experiments use open-source datasets and models.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Training Large Language models is time-consuming and compute-intensive.
Our experiments do not run multiple seeds on one configuration due to limited computing
and financial budget. Instead, the focus of this work is extensive evaluation across multiple
configurations which we spent all our compute resources into. Our evaluation protocol is
similar to prior influential works in RLHF [46} 21]].

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on compute resources in the experimental details
section [B]in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We abide by the code of ethics in every respect.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss societal impacts in Section[A]of the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

34

https://neurips.cc/public/EthicsGuidelines

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use public models that are fine-tuned for alignment on open-source datasets.
Our models do not contribute any additional risk over the base models as we are explicitly
training for alignment.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The pretrained models in this work come from the Pythia family all
of which are classified under Apache License https://huggingface.co/EleutherAl/pythia/

2.8b/tree/main. The TL;DR comparison dataset used in this work uses a modified MIT
License https://github.com/openai/summarize-from-feedback/blob/master/LICENSE.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

35

https://huggingface.co/EleutherAI/pythia-2.8b/tree/main
https://huggingface.co/EleutherAI/pythia-2.8b/tree/main
https://github.com/openai/summarize-from-feedback/blob/master/LICENSE
paperswithcode.com/datasets

14.

15.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We use open-source pretrained models and provide details to reproduce our
fine-tuning experiments.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use crowdsourcing or research with human subjects in this work
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not use crowdsourcing or research with human subjects in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Preliminaries
	Reinforcement Learning From Human Feedback
	Reward Exploitation in RLHF
	Direct Alignment Algorithms

	Empirical Analysis of Overoptimization in DAAs
	Evaluating Model-Overoptimization
	Scaling Law Fits
	Length Correlations
	Reward Metrics Correlations
	Decreasing Likelihoods and Model Performance

	Reward Exploitation in Direct Alignment Algorithms
	Related Work
	Conclusion
	Limitations and Societal Impacts
	Experiment Details
	Appendix A: Complete Intra-Epoch Training Dynamics
	Overoptimization from the lens of Implicit Bootstrapping
	Understanding Behavior of DAAs on OOD sequences
	Designing a toy LLM MDP

	Overoptimization Trends in the Gemma2-2b Model and Anthropic-HH Dataset

