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ABSTRACT

Reinforcement learning agents can exploit poorly designed reward signals to
achieve high apparent returns while failing to satisfy the intended objective, a
failure mode known as reward hacking. We address this in standard value-based
RL with Modification-Considering Value Learning (MCVL), a safeguard that treats
each learning update as a decision to evaluate. When a new transition arrives, the
agent forecasts two futures: one that learns from the transition and one that does
not. It then scores both using its current learned return estimator, which combines
predicted rewards with a value-function bootstrap, and accepts the transition only
if admission does not decrease that score. We provide DDQN- and TD3-based
implementations and show that MCVL prevents reward hacking across diverse
environments, including AI Safety Gridworlds and a modified MuJoCo Reacher
task, while continuing to improve the intended objective. To our knowledge, MCVL
is the first practical implementation of an agent that evaluates its own modifications,
offering a step toward robust defenses against reward hacking.

1 INTRODUCTION

Optimizing poorly defined or incomplete rewards can push RL agents toward unintended behaviors,
leading to reward hacking (Skalse et al., 2022). For instance, an agent tasked with stacking blocks may
learn to flip blocks if the reward is based on the height of the bottom face (Popov et al., 2017). As RL
systems scale to safety-critical applications (e.g., autonomous driving (Kiran et al., 2021) or medical
diagnostics (Ghesu et al., 2017)), ensuring reliable and safe behavior becomes increasingly important.
Reward hacking can become more prevalent as models grow in complexity (Pan et al., 2022), which
also affects large language models where RL is used for post-training (Denison et al., 2024; OpenAI,
2024). A common mitigation constrains policy updates around a trusted reference (Laidlaw et al.,
2024), often at a cost to optimality.

A complementary safeguard is to optimize what the agent currently values while being conservative
about changing those values, an idea discussed as current utility optimization (Orseau & Ring,
2011; Hibbard, 2012; Everitt et al., 2016; 2021). These works largely lack a practical algorithm
implementing this idea. We fill this research gap by investigating whether individual transitions
can be predictive of reward hacking in the context of value-based RL. Our method, Modification-
Considering Value Learning (MCVL), wraps a standard off-policy learner and treats each update as
a candidate modification. For a newly observed transition, the agent forecasts two scenarios: one
in which it learns from the transition and one that ignores it. Then MCVL evaluates the resulting
policies using its current learned return estimator, an n-step bootstrapped return combining a learned
reward model with a value-function bootstrap. The transition is accepted only if its inclusion does
not reduce this score relative to continuing training without it. Intuitively, MCVL blocks updates that,
according to the agent’s current return estimator, would shift behavior toward undesirable strategies
(e.g., reward tampering rather than task completion), thereby avoiding reliance on an external oracle
or a predefined safe policy.

We instantiate MCVL with DDQN and TD3. We present MCVL as a practical instantiation of the idea
that an agent should evaluate its own modifications. To keep the evaluation controlled, we focus on
simpler environments and defer larger-scale applications, such as language modeling, to future work.
To make the predictions of the reward model and critic meaningful from the beginning, we pretrain
them on a small seed buffer without reward hacking transitions. For didactic gridworlds, where
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undirected exploration quickly discovers hacking, we collect this buffer in a Safe variant that matches
observations, actions, and proxy rewards but removes the hacking affordance, i.e., makes hacking
states unreachable. For continuous control, where random exploration is unlikely to encounter hacks,
we pretrain directly in the Full environment with a small dataset collected via a random policy. Under
these conditions, MCVL prevents reward hacking in AI Safety Gridworlds (Leike et al., 2017) and a
modified Gymnasium Reacher environment (Towers et al., 2024) while continuing to improve the
intended performance. In all cases, final training and evaluation are conducted in the unmodified Full
environments so that hacking opportunities remain available during learning and testing.

Our contributions are:

• A simple forecast-and-score safeguard for off-policy value-based RL that admits a transition only
when it does not reduce the agent’s current bootstrapped-return estimation.

• Implementations for discrete and continuous control environments (MC-DDQN, MC-TD3).
• Empirical evidence across multiple environments, including AI Safety Gridworlds and MuJoCo

Reacher, that MCVL prevents reward hacking while reaching Oracle performance.

2 PRELIMINARIES

We consider a Markov decision process (MDP) (S,A, P,R, ρ, γ) with state space S, action space
A, transition model P (s′|s, a) ∈ [0, 1], reward function R : S × A → R, initial state distri-
bution ρ, and discount factor γ ∈ (0, 1]. The RL objective is to learn a policy π maximizing
Eρ,π

[∑
t≥0 γ

tR(st, at)
]
. The state-action value Qπ(s, a) is the expected return starting from (s, a)

and following π thereafter (Sutton & Barto, 2018). Deep value-based methods like DDQN (van
Hasselt et al., 2016) and TD3 (Fujimoto et al., 2018) approximate Q with a neural network and learn
from transitions (s, a, r, s′) sampled from a replay buffer via temporal-difference (TD) updates.

Reward hacking. An update (or sequence of updates) induces reward hacking if it increases
return under the observed proxy reward R while steering the policy toward behaviors that reduce
performance under the intended objective, which is unknown to the agent (Skalse et al., 2022).

3 METHOD

Modification-Considering Value Learning (MCVL) wraps an off-policy learner and treats each
learning update as a candidate modification to be evaluated before adoption. Because the desired
objective is not observed, MCVL uses a learned current return estimator as a proxy to accept or reject
updates. The agent asks a counterfactual: if it were to allocate the next l training steps either (i) to its
current replay buffer D alone or (ii) to D augmented with the new transition Tnew, which resulting
policy would achieve a higher expected return according to the agent’s current bootstrapped-return
estimator? Both branches use the same compute budget l and are scored by the same evaluator. The
transition is accepted if and only if adding Tnew does not decrease the score. This yields a locally
rational accept/reject rule under the agent’s present preferences.

Current bootstrapped-return estimator. MCVL maintains a reward model Rψ(s, a) trained
by supervised regression on observed rewards and an action-value function Qθ(s, a) trained with
standard TD targets. Together they define an n-step bootstrapped return for a trajectory τ =
(s0, a0, . . . , sn−1, an−1, sn, an) executed by a policy π:

Ĝπn(τ) =

n−1∑
t=0

γtRψ(st, at) + γnQθ(sn, an). (1)

During scoring, the evaluator parameters (Rψ, Qθ) are frozen to the live agent’s current values. The
policy π only determines the actions along the rollout.

Policy forecasting and comparison. Upon observing Tnew = (s, a, r, s′), MCVL constructs two
forecasts under an identical training budget of l learner updates:

(π̃ 0, Q̃ 0) = Forecast(D, l), (π̃+, Q̃+) = Forecast(D ∪ {Tnew}, l).
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Algorithm 1 MCVL (wrapper around an off-policy value-based learner)
1: while training do
2: Observe Tnew = (s, a, r, s′) ▷ Action is selected using the policy of a base learner
3: if | r −Rψ(s, a) | < δr then ▷ Optional check to avoid excessive evaluations
4: Insert Tnew into D; Perform a training step; continue
5: end if
6: (π̃ 0, Q̃ 0)← Forecast(D, l) ▷ Forecast performs l training steps on a provided replay buffer
7: (π̃+, Q̃+)← Forecast(D ∪ {Tnew}, l)
8: Estimate Ĵ(π̃ 0) and Ĵ(π̃+) via k rollouts of length h using Equation 2
9: if Ĵ(π̃+) ≥ Ĵ(π̃ 0) then

10: Insert Tnew into D
11: end if
12: Perform a training step: sample a batch from D and update the base learner and Rψ on it.
13: end while

The operator Forecast(·, l) clones the current networks and runs l base-learner updates on minibatches
from the specified dataset. These updates do not affect the live agent. Both forecasts are scored by
the same frozen evaluator from Equation 1. Let {s(i)}ki=1 ∼ ρ be start states and let rollouts be of
length h under the same transition model for both branches. Define

Ĵ(π) =
1

k

k∑
i=1

Eτ∼(P,π) | s0=s(i)
[
Ĝπh(τ)

]
. (2)

MCVL admits Tnew if and only if Ĵ(π̃+) ≥ Ĵ(π̃ 0). Using matched compute, frozen evaluation
parameters, and a shared transition model isolates the marginal effect of admitting Tnew and makes
the comparison insensitive to moderate model error. An overview of the training procedure appears
in Algorithm 1.

Instantiations (MC-DDQN and MC-TD3). MC-DDQN wraps a DDQN agent with an ϵ-greedy
behavior policy. Forecasting clones parameters, including targets, and runs l ordinary DDQN updates
to produce (π̃ 0, Q̃ 0) and (π̃+, Q̃ +), forecasted policies are greedy with respect to their respective
Q-functions. MC-TD3 analogously clones the actor and critics and runs l standard TD3 updates.
During scoring, the evaluator (Rψ, Qθ) remains frozen to the live networks. We use next states from
the simulator but compute rewards using the learned reward model. The same transition source
is used for both branches, which reduces sensitivity to moderate transition error (Section 4.3). If
accepted, Tnew is inserted into D and future updates may sample it to update both Qθ and Rψ. If
rejected, the transition is discarded and no parameters are updated as a direct consequence of it. Full
algorithmic details for MC-DDQN and MC-TD3 are provided in Appendix A and Appendix B.

Pretraining. Both Rψ and Qθ are randomly initialized and undergo a short pretraining phase
before we enable the forecast-and-score check. The motivation is identifiability: without transitions
that carry signal about the intended objective, a learned return estimator cannot distinguish genuine
task progress from reward hacking. We therefore collect a seed dataset D0 without reward-hacking
transitions, fitRψ by supervised regression on the observed proxy rewards, and trainQθ with standard
TD targets. After pretraining, every newly observed transition is screened before admission using the
current bootstrapped-return evaluator. Since liveRψ andQθ continue to update with each base-learner
step, the evaluator can incorporate new information beyond pretraining.

Pretraining data and Safe variants. Our gridworld experiments adapt AI Safety Gridworlds,
which are intentionally designed so that reward hacking is easy to discover. Because undirected
exploration quickly encounters these hacks, we pretrain in Safe variants. A Safe variant matches
the observation space, action space, and proxy reward of the original task but modifies the layout to
remove the specific hacking affordance (e.g., the reward-modification lever is absent; a supervisor
that penalizes incorrect behavior is always present). This does not reveal the ground-truth objective:
transitions that would enable hacking are simply unreachable, and policies trained in Safe transfer
only imperfectly and are often suboptimal in the corresponding Full environment. For continuous
control, we pretrain directly in the Full environment because short random exploration rarely uncovers
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Figure 1: (a) Safe Box Moving: the objective is to move the box upward, achievable by repeatedly
stepping on the up-arrow tile. (b) Full: a bottom cell yields a spurious +5 when pressed; the
reward-maximizing behavior repeatedly uses down-arrows to trigger this bonus, which moves the
box downward and conflicts with the true objective. A non-hacking strategy can alternate between
two up-arrows, moving the box up twice as fast. (c) No-Hack: collecting the +5 reward does not
prevent moving the box up; such transitions are aligned with the objective and should not be rejected.

hacks; here we collect D0 with a random policy, as is standard in off-policy RL. In summary, MCVL
assumes access to a pretraining dataset without reward-hacking transitions. We study two practical
sources: (i) a Safe sandbox (e.g., a simulator or controlled lab setting) with hacking affordances
removed, and (ii) environments in which short random exploration does not trigger hacking. Both are
realistic in practice, since easily discoverable hacks are typically easy to detect and remove. Other
sources are also possible, such as pretraining on simpler tasks with simpler rewards, monitoring and
filtering trajectories that exhibit hacking, or using human demonstrations.

Hyperparameters and cost. To limit overhead, we invoke forecasting only when the observed
reward disagrees with the reward model, |r −Rψ(s, a)| ≥ δr; otherwise Tnew is admitted without a
check. As shown in Section 4.3, this filtering does not change conclusions. The horizon h should be
long enough for exploitative vs. non-exploitative behaviors to diverge; the task’s truncation horizon
is a safe choice. The forecast budget l must allow the base learner to meaningfully react to the
transition; in our settings, on the order of 103-104 standard updates suffice. The number of rollouts k
trades variance for runtime (deterministic tasks can use k=1). The marginal per-transition cost is 2l
base-learner updates plus k ·h transition steps and reward predictions; the trigger δr controls how
often this cost is paid which can be as low as the number of hacking encounters. Caching can avoid
rescoring identical transitions, but we evaluate every instance to demonstrate robustness.

Reward hacking prevention. MCVL evaluates the policy change from admitting a transition using
the agent’s current bootstrapped-return estimator, relative to an equally trained counterfactual that
excludes it. This yields a local self-consistency test: if inclusion steers learning toward behavior the
evaluator already scores worse over horizon h (e.g., shifting effort from task completion to reward
tampering), the update is vetoed. If inclusion raises (or leaves unchanged) the score, the transition
is admitted. This captures ordinary competence gains (shorter paths, reduced control effort) the
evaluator already values. While not every hack is guaranteed to lower the score, as our evaluation
shows, MCVL consistently rejects the updates that produce undesired behaviors across environments
commonly used to illustrate reward hacking.

4 EXPERIMENTS

We evaluate whether Modification-Considering Value Learning (MCVL) prevents reward hacking
while continuing to improve task performance. Unless stated otherwise, we compare MCVL to
its base learner (DDQN in discrete domains; TD3 in continuous control), an Oracle agent trained
with the base learner on the true reward (which MCVL never observes), and a Frozen policy that
fixes the pretrained networks and performs no further learning in the Full environment. All methods
share hyperparameters, initialization from pretrained weights, and the pretrained replay buffer. We
report the true performance (our proxy for the intended objective) and the observed return for each
environment, with means and bootstrapped 95% CIs over 10 seeds.
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Figure 2: Gridworld environments. Each environment has Safe and Full versions. In Safe, Absent
Supervisor guarantees the presence of supervisors, Tomato Watering does not have the bucket, and
Rocks and Diamonds does not have the switch. We provide additional customization options for
testing different scenarios.

4.1 ENVIRONMENTS

We introduce the Box Moving environment (Figure 1) to illustrate representative accept/reject de-
cisions under MCVL, and evaluate on Absent Supervisor and Tomato Watering from AI Safety
Gridworlds (Leike et al., 2017) and Rocks and Diamonds from Everitt et al. (2021); all are shown in
Figure 2. For each gridworld we provide a Safe variant for pretraining. For continuous control, we
modify Reacher-v5 (Towers et al., 2024) by introducing a sparse, spurious reward source.

Box Moving. The agent moves in a small room; stepping on up/down arrow tiles moves an external
box vertically. Moving the box to the top or to the bottom yields +1/−1 reward and resets the box to
the center. In the Full variant, a bottom cell provides a spurious +5 reward but also moves the box
downward; the top region admits a faster way to move the box up by moving between two up arrows.
The true objective is to move the box up. Pretraining in Safe teaches the evaluator to value upward
progress of the box. In Full, transitions that induce policies allocating effort to the +5 tile tend
to lower the evaluator’s forecasted return relative to pursuing up-arrows and are therefore rejected,
whereas transitions revealing the faster two-arrows routine increase the forecasted return and are
admitted. A No-Hack variant places the +5 reward at the top and collecting it does not interfere with
moving the box upward; such transitions should be admitted by MCVL as they are aligned with the
evaluator’s preferences.

Absent Supervisor. The shortest path to the goal traverses a punishment cell that is costly only
when a supervisor is present. In Safe the supervisor is always present; in Full it is present with
probability 0.5. The performance metric penalizes stepping on the punishment cell irrespective of
supervision. Forecasts trained on transitions that use the punishment cell tend to produce policies that
do so more frequently. The evaluator assigns lower return to these policies, leading to rejection of the
corresponding transitions.

Tomato Watering. The agent waters tomatoes that dry stochastically; stepping on a bucket causes
perceptual delusion, making all cells appear as watered tomatoes. The performance metric counts
truly watered tomatoes, and the Safe variant removes the bucket. When rollouts for scoring use
the environment dynamics without the delusional overlay (while rewards are still predicted by the
learned model), policies induced by transitions stepping on a bucket fail to maintain tomatoes and
receive lower evaluator scores, so such transitions are rejected. If rollouts also inherit the delusional
observations, the evaluator cannot distinguish delusion from genuine progress and offers no protection;
this highlights the need for transition models that track latent state in perceptually corrupted settings.

Rocks and Diamonds. Diamonds in the goal region yield +1 per step; rocks yield −1. A switch
flips the observed rock reward to +10, while the true performance continues to prefer diamonds.
The Safe variant removes the switch. Because the evaluator is calibrated before the switch appears,
forecasted policies that learn to keep rocks in the goal region are scored lower than those continuing
to prioritize diamonds, leading to rejection of rock-pushing transitions.
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Figure 3: Main results. Top: true performance metric (intended objective). Bottom: observed return
(proxy). We compare the base learner (DDQN/TD3), MCVL, an Oracle trained on true reward,
and a Frozen policy that stops learning after pretraining. Base learners increase observed return by
hacking while performance drops. MCVL avoids hacking and matches or closely tracks Oracle final
performance. It also converges faster than Oracle in Box Moving, Absent Supervisor, and Tomato
Watering. Relative to Frozen, MCVL improves performance everywhere except Rocks & Diamonds,
where Frozen is already optimal. Bold lines: mean over 10 seeds; bands: bootstrapped 95% CI.

Reacher (MuJoCo). We augment Reacher-v5 with a hidden button that yields a one-time +50
after being held for 15 consecutive frames; the performance metric excludes this bonus. Random
exploration rarely encounters the button. When the bonus is discovered, transitions that contain
reward for button-holding induce forecasted policies with reduced goal pursuit; the evaluator scores
these policies lower than those that continue tracking the target, and such transitions are rejected.

4.2 MAIN RESULTS

Figure 3 shows that MCVL maintains high performance across all tasks while the base learners hack.
After pretraining, DDQN or TD3 increase observed return and reduce true performance. In our runs,
MCVL attains final performance that is comparable to the Oracle in all tasks despite never accessing
the true reward. In Box Moving, Absent Supervisor, and Tomato Watering, MCVL reaches strong
performance faster than the Oracle, which we hypothesize is due to an implicit curriculum induced
by rejecting transitions that cause large behavioral shifts early in training.

Relative to the Frozen policy, MCVL improves the performance metric in every environment except
Rocks and Diamonds, where Frozen is already optimal with respect to the performance metric; here
MCVL matches Frozen, while DDQN hacks. As expected, MCVL prevents reward hacking in
Tomato Watering only if non-delusional transition model is used, otherwise the agent does not have
information that would distinguish delusion from efficient task execution. In Box Moving, MCVL
surpasses Frozen by discovering the faster way to move the box up; in Absent Supervisor, it learns to
reliably route around the punishment cell (Frozen occasionally fails due to distribution shift); and
in Tomato Watering, it continues to improve tomato watering efficiency. In Reacher environment
MC-TD3 also matches performance of the Oracle, while Frozen policy has much lower performance.
Further details of the Reacher experiment are provided in Appendix D.

Observed return vs. true performance. As expected, base learners often maximize observed
return once hacking affordances become available (e.g., +5 tile, rock bonus, hidden button). MCVL’s
observed return is lower in those phases because it rejects precisely the transitions that fuel proxy-
reward exploits; nevertheless, its true performance ultimately matches the Oracle.
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Figure 4: Additional experiments in Box Moving. (a) Comparison of training schemes: Check all
checks all transitions; Check by reward checks only transitions for which predicted reward differs
from the observed by at least δ; Discard by reward discards all transitions where predicted reward
sufficiently differs from the observed; Each step evaluates policies before and after each gradient
step without forecasting future policies; Punishment replaces rejected transitions’ rewards with a
punishment reward. (b) Effect of different amounts of pretraining, 0 means no pretraining. After as
low as 300 steps, MCVL can achieve optimal performance across all seeds.

4.3 ABLATIONS AND SENSITIVITY

We study when to trigger checks, how to conduct them, and how to handle harmful transitions
(Figure 4). Triggering only when |r − Rψ(s, a)| ≥ δr (Check-by-reward) performs comparably
to Check-all but with lower computational cost, and outperforms Discard-by-reward (which never
admits large-discrepancy transitions), as the latter filters out legitimately informative data and fails to
reach optimal performance.

Importance of forecasting. An Each-step variant that compares the policy before and after a single
gradient step does not reliably prevent hacking. Policy changes only occur once the critic begins
assigning higher value to the new behavior, at which point both the critic and reward model already
endorse it. By contrast, allowing l standard updates during forecasting gives the base learner enough
room to translate a transition into a meaningful policy shift, which the evaluator can then assess
effectively using current live networks.

Reject vs. penalize. Replacing rejected transitions with large negative rewards (Punishment) is less
effective than discarding them. When the buffer contains many punished transitions, forecasted policy
with a new hacking transition shows little degradation: the learner observes it as just a rare outlier
among many negative examples, so the forecasted policy does not appear to exploit it. As a result,
the hacking transition is admitted. Over time the buffer accumulates both punished and exploited
hacking transitions, producing conflicting signals that confuse the learner and destabilize training.

Pretraining budget. As shown in Figure 4b, some seeds avoid hacking with as few as 100
pretraining steps in Safe; by 300 steps all seeds succeed, even though most have not converged to the
optimal policy in Safe variant. With zero pretraining, MCVL matches results of the base learner.

Robustness to noisy transition models. MCVL uses the transition model only to compare short
rollouts under two forecasted policies; scoring uses rewards predicted by the learned reward model.
Consequently, we expect robustness to moderate model noise provided hacking behaviors reduce
the estimated return under the noisy model. We empirically verify that injecting i.i.d. N (0, 1) noise
into each multi-hot observation emitted by the transition model during scoring in Box Moving leaves
performance intact. MCVL attains the optimal policy while avoiding hacking (Appendix H).

Forecast budget l. Too small l fails to capture the policy change induced by a transition, reducing
the robustness of rejecting harmful updates, which slows learning of reward hacking, but does not
completely prevent it. Increasing l resolves this (Figure 5a). Additional experiments are provided in
Appendix C.
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4.4 COMPARISON TO OCCUPANCY-REGULARIZED OBJECTIVES

The closest practical baseline in standard RL settings is occupancy-regularized policy optimization
toward a known safe policy (Laidlaw et al., 2024). A direct head-to-head comparison is nontrivial
because ORPO requires a safe reference policy, policy-gradient training with stochastic policies, and
careful tuning of the discriminator or regularizer. We therefore pose a feasibility question: does there
exist a weight λ > 0 such that an ORPO-like objective

F (π, πref) = J(π, R̃)− λD(µπ∥µπref)

prefers the Oracle policy to both the Frozen (treated as safe) and Hacking (base learner) policies,
holding the reference fixed to Frozen? We obtain stochastic policies from Frozen DDQN critics via
either a softmax over Q-values or ϵ-greedy (ϵ=0.05), and estimate divergences D ∈ {χ2,KL} from
1000 trajectories. Across 10 seeds, such a λ often does not exist (Appendix I). Intuitively, when the
Oracle deviates substantially from Frozen (and not much less than the Hacking policy does), or when
the hacking reward is large, any λ sufficient to suppress hacking also suppresses learning the Oracle.
By contrast, MCVL consistently achieves Oracle performance without relying on a safe policy.

5 LIMITATIONS AND FUTURE WORK

Computation. MCVL adds overhead due to forecasting and scoring. Performing checks only when
the reward discrepancy is observed (Section 3) keeps costs moderate. Benchmarking on Reacher
shows about a 1.8× slowdown relative to TD3 when using |r − Rψ(s, a)| ≥ δr=0.05. Further
reductions appear feasible through caching, batched rollouts, and faster forecasting, for example with
meta-RL (Schmidhuber, 1987) or in-context RL (Laskin et al., 2023), which can learn new behaviors
without training (Bauer et al., 2023).

Scope of applicability. MCVL relies on the assumption that learned evaluator ranks hacking-inducing
trajectories below non-hacking trajectories at the horizons used for scoring. If proxy rewards are
misspecified in ways already endorsed by the evaluator, harmful updates may be admitted. This may
happen due to incorrect reward shaping, as in CoastRunners (OpenAI, 2023) where agent learns
to repeatedly collect boosts instead of following the track. We view MCVL as complementary to
improvements in reward design, including potential-based shaping (Ng et al., 1999).

Transition dynamics. Our implementations use environment transitions to generate short rollouts
for scoring forecasted policies. We observe robustness to substantial transition noise (Appendix H).
Extending the approach to learned latent dynamics is a natural target for future work.

Pretraining dependence. MCVL assumes a small seed dataset without hacking transitions so that
the evaluator is initially meaningful. In our experiments, modest budgets obtained via Safe variants
or random exploration suffice. Exploring other sources, such as manual filtering or learning from
demonstrations, is a promising direction.

6 RELATED WORK

The problem of agents learning unintended behaviors by exploiting misspecified training signals is
known as reward hacking (Skalse et al., 2022), reward gaming (Leike et al., 2018), or specification
gaming (Krakovna et al., 2020). Krakovna et al. (2020) provide a survey of these behaviors across
RL and other domains, and Skalse et al. (2022) analyze them theoretically.

One possible mitigation constrains learning to remain close to a trusted behavior distribution. Laidlaw
et al. (2024) propose occupancy-regularized policy optimization toward a known safe reference policy,
discouraging updates that drift too far in state-action space. In contrast, MCVL does not assume
access to a safe policy or require the final policy to be close to any predefined behavior. Empirically,
we find that MCVL reaches optimal policies even in settings where an ORPO-style objective cannot
simultaneously avoid hacking and achieve optimal performance (Appendix I).

A special case of reward hacking is direct manipulation of the reward provision system, called
wireheading (Amodei et al., 2016; Taylor et al., 2016; Everitt & Hutter, 2016; Majha et al., 2019)
or reward tampering (Kumar et al., 2020; Everitt et al., 2021). Related phenomena, where an agent
manipulates its sensory inputs to deceive the reward system, are discussed as delusion-boxing (Ring
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& Orseau, 2011), measurement tampering (Roger et al., 2023), and reward-input tampering (Everitt
et al., 2021). A long-running hypothesis is that current utility optimization can remove incentives
to tamper: choose actions that are better according to the agent’s present utility without changing
what it values (Yudkowsky, 2011; Hibbard, 2012; Yampolskiy, 2014). Schmidhuber (2003) describe
a self-modifying Gödel machine agent that adopts only code or utility changes provably beneficial
according to the current objective. Everitt & Hutter (2016) consider Bayesian agents over hand-
specified utility functions that select actions to avoid altering beliefs about the reward mechanism,
and Everitt et al. (2021) give conditions under which optimizing the current reward avoids incentives
to tamper. MCVL operationalizes this current-utility perspective in standard off-policy value-based
RL and enables practical implementation and empirical testing, with applications that go beyond
reward and sensor tampering.

7 CONCLUSION

We introduced Modification-Considering Value Learning, a forecast-and-score safeguard for off-
policy value-based RL that treats each learning update as a candidate modification to be evaluated
before adoption. MCVL compares two counterfactual training paths, one that includes a new transition
and one that does not, scores them with a fixed bootstrapped-return estimator that combines a learned
reward model and a value-function bootstrap, and admits a transition only when the forecasted policy
is not worse by this measure. This yields a simple rule that optimizes what the agent currently values
while remaining conservative about changing those values.

Our implementations, MC-DDQN and MC-TD3, show that this approach prevents reward hacking
across diverse settings while continuing to improve the intended objective. In AI Safety Gridworlds
and a modified Reacher task, MCVL maintains high true performance even when the base learner
increases proxy rewards by exploiting spurious signals. Despite never observing the true reward,
MCVL matches the final performance of an Oracle trained on it, and in several environments it
reaches strong performance quickly.

The method integrates cleanly with standard replay-based learners and requires only a small seed
dataset without hacking transitions to make the evaluator meaningful. The experiments also highlight
two practical takeaways. First, forecasting with a non-trivial update budget is important because
it exposes the policy change a transition induces and allows the evaluator to make a meaningful
judgment. Second, blocking harmful transitions is more stable than keeping them and modifying
their rewards.

By operationalizing ideas from current utility optimization within standard deep RL, MCVL offers a
practical way toward agents that continue learning without drifting toward behaviors they already
learned to be undesirable.

REPRODUCIBILITY STATEMENT

We provide a detailed description of the algorithm in Algorithm 1 and Appendix A. All hyperpa-
rameters are listed in Appendix G. The code for MC-DDQN and MC-TD3 as well as scripts and
environments required to reproduce results in the paper will be open sourced upon acceptance.
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A IMPLEMENTATION DETAILS OF MC-DDQN

Algorithm 2 Policy Forecasting
Input: Set of transitions T , replay buffer D, current Q-network parameters θ, training steps l
Output: Forecasted policy πf

1: θf ← COPY(θ) ▷ Copy current Q-network parameters
2: for training step t = 1 to l do
3: Sample random mini-batch B of transitions from D
4: θf ← TRAINDDQN(θf , B ∪ T ) ▷ We add transition to each mini-batch for determenistic

environments
5: end for
6: return πf (s) = argmaxaQθf (s, a) ▷ Return forecasted policy

Algorithm 3 Scoring
Input: Policy π, environment transition model P , return estimator parameters θ and ψ, initial states
ρ, rollout steps h, number of rollouts k
Output: Estimated bootstrapped return of the policy π

1: for rollout r = 1 to k do
2: g ← 0 ▷ Initialize return for this rollout
3: s0 ∼ ρ ▷ Sample an initial state
4: a0 ← π(s0) ▷ Get action from policy
5: for step t = 0 to h− 1 do
6: g ← g + γtRψ(st, at) ▷ Accumulate predicted reward
7: st+1 ∼ P (st, at) ▷ Sample next state from transition model
8: at+1 ← π(st+1) ▷ Get action from policy
9: end for

10: g ← g + γhQθ(sh, ah) ▷ Add final Q-value
11: end for
12: return 1

k

∑k
r=1 g ▷ Return average return over rollouts

Algorithm 4 Modification-Considering Double Deep Q-learning (MC-DDQN)
Input: Pretrained return estimator parameters θ and ψ, replay buffer D, environment transition model
P , initial states ρ, rollout horizon h, number of rollouts k, forecasting training steps l, number of
time steps n.
Output: Trained Q-network and reward model

1: Observe T0
2: for time step t = 1 to n do
3: at ← ϵ-GREEDY(argmaxaQθ(st, a))
4: π̃+ ← FORECAST({Tt−1}, D, θ, l) ▷ Forecast a policy with new transition
5: π̃ 0 ← FORECAST({}, D, θ, l) ▷ Forecast a policy without new transition
6: Jπ̃+ ← SCORE(π̃+, P, θ, ψ, ρ, h, k) ▷ Estimate n-step bootstrapped return for π̃+

7: Jπ̃ 0 ← SCORE(π̃ 0, P, θ, ψ, ρ, h, k) ▷ Estimate n-step bootstrapped return for π̃ 0

8: accept ← (Jπ̃+ ≥ Jπ̃ 0) ▷ Accept if π̃+ is not worse by current estimator
9: if accept then

10: Store transition Tt−1 in D
11: Sample random mini-batch B of transitions from D
12: θ ← TRAINDDQN(θ,B) ▷ Update Q-network
13: ψ ← TRAIN(ψ,B) ▷ Update reward model using L2 loss
14: end if
15: Execute action at, observe reward rt, and transition to state st+1

16: Tt ← (st, at, st+1, rt)
17: end for

12
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Figure 5: (a) Sensitivity to forecasting training steps l in Box Moving. (b) Results in the No-Hack
version of Box Moving. (c) Varying the number of supervisors in Absent Supervisor. (d) A variant of
Absent Supervisor where a shorter path becomes available in Full.

B IMPLEMENTATION DETAILS OF MC-TD3

Our implementation is based on the implementation provided by Huang et al. (2022). The overall
structure of the algorithm is consistent with MC-DDQN, described in Appendix A, with key differ-
ences outlined below. TD3 is an actor-critic algorithm, meaning that the parameters θ define both a
policy (actor) and a Q-function (critic). In Algorithm 2 and Algorithm 4, calls to TRAINDDQN are
replaced with TRAINTD3, which updates the actor and critic parameters θ as specified by Fujimoto
et al. (2018). Additionally, in Algorithm 2, the returned policy πf (s) corresponds to the actor rather
than argmaxaQθ(s, a), and in Algorithm 4 the action executed in the environment is also selected
by the actor.

C ADDITIONAL EXPERIMENTS

In Figure 5a, we investigated the number of forecasting training steps l needed to avoid undesired
behavior in Box Moving. With an insufficient number of training steps, certain undesired transitions
are not rejected, yet our algorithm still slows down the learning of reward hacking behavior.

In Figure 5b, we examine the behavior of MC-DDQN in the No-Hack version of Box Moving
(Figure 1). In this version, the agent receives a +5 reward on the top cell which does not interfere
with moving the box upward. As anticipated, in this scenario our agent does not reject transitions and
learns the optimal policy.

We also conducted experiments in Absent Supervisor, varying the number of supervisors. In Figure 5c,
increasing the number of supervisors from 1 to 10 leads to less consistent detection of transitions that
induce reward hacking, despite the change being purely visual. Qualitative analysis revealed that our
neural networks struggled to adapt to this distribution shift, resulting in predicted rewards deviating
significantly from the ground truth.

Furthermore, we explored the impact of removing two walls from Absent Supervisor after training in
Safe. Without these two walls, a shorter path to the goal is available that bypasses the punishment cell,
although going through the punishment cell remains faster. In Figure 5d, it is evident that while our
algorithm can learn a better policy that avoids the punishment cell, the rejection of reward hacking

13
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transitions becomes less reliable. This decline is attributed to the increased distribution shift between
Safe and Full.

D DETAILS OF THE EXPERIMENT IN THE REACHER ENVIRONMENT

The rewards in the original Reacher-v5 environment are calculated as the sum of the negative distance
to the target and the negative joint actuation strength. This reward structure encourages the robotic
arm to reach the target while minimizing large, energy-intensive actions. The target’s position is
randomized at the start of each episode, and random noise is added to the joint rotations and velocities.
Observations include the angles and angular velocities of each joint, the target’s coordinates, and the
difference between the target’s coordinates and the coordinates of the arm’s end. Actions consist of
torques applied to the joints, and each episode is truncated after 50 steps.

We modified the environment by introducing a +50 reward when the arm’s end remains within a small,
fixed region for 15 consecutive steps. This region remains unchanged across episodes, simulating a
scenario where the robot can tamper with its reward function, but such behavior is difficult to discover.
In our setup, a reward-tampering policy is highly unlikely to emerge through random actions and is
typically discovered only when the target happens to be inside the reward-tampering region.

In accordance with standard practice, each training run begins with exploration using a random
policy. For this experiment, we do not need a separate Safe environment; instead, the return estimator
is pretrained using transitions collected during random exploration. This demonstrates that our
algorithm can function effectively even when a Safe environment is unavailable, provided that the
return estimator is pretrained from a dataset of transitions that do not include reward hacking.

E QUALITATIVE OBSERVATIONS

During preliminary experiments, we encountered instances where the algorithm failed to reject
transitions that induce reward hacking. Here we describe these occurrences and how they can be
addressed.

Return estimation rollout steps. When using much smaller rollout steps h, we noticed that during
evaluation of forecasted trajectories, the non-hacking policy sometimes needed to traverse several
states with low rewards to reach a high-reward region. In such cases, the reward hacking policy,
which remained stationary, had a higher estimated utility. Increasing h resolved this issue.

Forecasting without a counterfactual. Initially, we forecasted only one future policy by training
with the checked transition added to each mini-batch, and compared the resulting policy to the
current one. However, in some cases this led to situations where the copy learned better non-hacking
behaviors than the current policy simply because it was trained for longer. The solution was to
forecast two policies, one with the checked transition added to each mini-batch and one without.

Sensitivity to stochasticity. Evaluations in stochastic environments were noisy. To mitigate this,
we compared the two policies starting from the same set of states and using the same random seeds
of the transition model. We also kept the random seeds fixed while sampling mini-batches.

Handling rejected transitions. We observed that if a hacking-inducing transition was removed
from the replay buffer and another such transition occurred in the same episode, the algorithm
sometimes failed to detect it the second time because there was no set of transitions in the buffer
connecting this second transition to the starting state. To resolve this, we reset the environment
every time the agent detected a hacking transition. In practical applications, it would be reasonable
to assume that after detecting potential reward hacking, the agent would be returned to a safe state
instead of continuing exploration.

Irreversible changes. In Rocks and Diamonds, when comparing policies starting from the current
state after the rock was pushed into the goal area, the comparison results were always the same, as it
was impossible to move the rock out of the goal area. We addressed this by evaluating from the initial
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state of the environment. In cases where reset is not possible, the agent may store starting states in a
buffer. This issue underscores the importance of future research into avoiding irreversible changes.

F COMPUTATIONAL REQUIREMENTS

All experiments were conducted on workstations equipped with Intel® Core™i9-13900K processors
and NVIDIA® GeForce RTX™4090 GPUs. All experiments in the Absent Supervisor, Tomato
Watering, and Reacher environments each required 12-14 GPU-hours, running 10 seeds in parallel. In
Rocks and Diamonds, experiments took 1 GPU-day, while in Box Moving they required 2 hours each.
In total, the main experiments described in Section 4 required approximately 4 GPU-days, including
around 1 GPU-day for baselines. We benchmarked training time against the baseline in Reacher and
observed a moderate 1.8× slowdown.

G HYPERPARAMETERS OF MC-DDQN

All hyperparameters are listed in Table 1. Our algorithm introduces several additional hyperparameters
beyond those typically used by standard RL algorithms:

Reward model architecture and learning rate. Hyperparameters specify the architecture and
learning rate of the reward model Rψ. Since learning a reward model is a supervised learning task,
these hyperparameters can be tuned on a dataset of transitions collected by any policy. The reward
model architecture may be chosen to match the Q-function Qθ.

Forecasting training steps l. This parameter describes the number of updates to the Q-function
needed to predict the future policy based on a new transition. As shown in Figure 5a, this value must
be sufficiently large to update the learned values and corresponding policy. It can be selected by
artificially adding a transition that alters the optimal policy and observing the number of training
steps required to learn the new policy.

Table 1: Hyperparameters used for the experiments.

Hyperparameter Name Value
Qθ and Rψ hidden layers 2
Qθ and Rψ hidden layer size 128
Qθ and Rψ activation function ReLU
Qθ and Rψ optimizer Adam
Qθ learning rate 0.0001
Rψ learning rate 0.01
Qθ loss SmoothL1
Rψ loss L2

Batch size 32
Discount factor γ 0.95
Training steps on Safe 10000
Training steps on Full 10000
Replay buffer size 10000
Exploration steps 1000
Exploration ϵstart 1.0
Exploration ϵend 0.05
Target network EMA coefficient 0.005
Forecasting training steps l 5000
Scoring rollout steps h 30
Number of scoring rollouts k 20
Predicted reward difference threshold δr 0.05
Add transitions from transition model False
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Scoring rollout steps h. This parameter controls the length of the trajectories used to compare two
forecasted policies. The trajectory length must be adequate to reveal behavioral differences between
the policies. In this paper, we used a fixed, sufficiently large number. In episodic tasks, a safe choice
is the maximum episode length; in continuing tasks, a truncation horizon typically used in training
may be suitable. Computational costs can be reduced by choosing a smaller value based on domain
knowledge.

Number of scoring rollouts k. This parameter specifies the number of trajectories obtained by
rolling out each forecasted policy for comparison. The required number depends on the stochasticity
of the environment and policies. If both the policy and environment are deterministic, k can be set
to 1. Otherwise, k can be selected using domain knowledge or replaced by employing a statistical
significance test.

Predicted reward difference threshold δr. This threshold defines the minimum difference between
the predicted and observed rewards for a transition to trigger a check. As discussed in Section 4.3,
this parameter does not impact performance and can be set to 0. However, it can be adjusted based on
domain knowledge to speed up training by minimizing unnecessary checks. The key requirement is
that any reward hacking behavior must increase the reward by more than this threshold relative to the
reward predicted by the reward model. In all our experiments, 0.05 performed well when rewards
were normalized to [−1, 1].

G.1 ENVIRONMENT-SPECIFIC PARAMETERS

Table 2: Environment-specific hyperparameter overrides.

Hyperparameter Name Value
Box Moving

Training steps on Safe 1000
Training steps on Full 1000
Replay buffer size 1000
Exploration steps 100
Forecasting training steps l 500

Absent Supervisor

Number of supervisors 1
Remove walls False

Tomato Watering

Number of scoring rollouts k 100

Rocks and Diamonds

Training steps on Safe 15000
Training steps on Full 15000
Forecasting training steps l 7500
Add transitions from transition model True

The training steps in Box Moving were reduced to speed up training. Tomato Watering has many
stochastic transitions because each tomato has a chance of drying out at each step. To increase the
robustness of evaluations, we increased the number of scoring rollouts k. Rocks and Diamonds
required more steps to converge to the optimal policy. Additionally, using the transition model to
collect fresh data while forecasting in Rocks and Diamonds makes reward hacking detection more
reliable. Each environment’s rewards were scaled to [−1, 1].
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G.2 HYPERPARAMETERS OF MC-TD3

Table 3: Hyperparameters used for the MC-TD3 experiment.

Hyperparameter Name Value
Actor, critic, and reward model hidden layers 2
Actor, critic, and reward model hidden layer size 256
Actor, critic, and reward model activation function ReLU
Actor, critic, and reward model optimizer Adam
Actor and critic learning rate 0.0003
Rψ learning rate 0.003
Batch size 256
Discount factor γ 0.99
Training steps 200000
Replay buffer size 200000
Exploration steps 30000
Target networks EMA coefficient 0.005
Policy noise 0.01
Exploration noise 0.1
Policy update frequency 2
Forecasting training steps l 10000
Scoring rollout steps h 50
Number of scoring rollouts k 100
Predicted reward difference threshold δr 0.05

We did not perform extensive hyperparameter tuning; most hyperparameters are inherited from the
implementation provided by Huang et al. (2022).

H ROBUSTNESS TO NOISY TRANSITION MODELS
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Figure 6: MC-DDQN with transition model noise.

Scoring uses a transition model solely to com-
pare two candidate policies under a frozen eval-
uator; exact dynamics are unnecessary as long
as the evaluator continues to rank hacking tra-
jectories below non-hacking ones. To probe ro-
bustness, we inject i.i.d. Gaussian noise N (0, 1)
into each multi-hot observation provided by the
transition model during scoring rollouts. We
run MC-DDQN in Box Moving with the same
hyperparameters as in the main experiments. De-
spite the noisy observations, MC-DDQN avoids
reward hacking and reaches the optimal perfor-
mance metric, while DDQN increases observed
reward at the expense of performance. This
supports the claim that approximate dynamics
suffice for reliable gating. The results are demonstrated in Figure 6.

I FEASIBILITY OF OCCUPANCY-REGULARIZED OBJECTIVES (ORPO-LIKE
STUDY)

It would be trivial to show that regularizing to a safe policy either performs at the same level as
the frozen safe policy (or reward hacks) by selecting a high (or low) regularization coefficient.
Instead, we test whether an ORPO-style objective presented in (Laidlaw et al., 2024) could, in
principle, select the desired behavior in our settings. For each environment we train DDQN Q-
functions for Frozen (safe, post-pretraining), Hacking (trained on observed reward), and Oracle
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(trained on true reward). From these Q-functions, we derive stochastic policies via (i) softmax over
Q-values and (ii) ϵ-greedy with ϵ = 0.05. We estimate occupancy measures with 1000 rollouts and
compute F (π, πFrozen) = J(π, R̃)− λD(µπ∥µπFrozen

) for D ∈ {KL, χ2}. We record the fraction
of seeds (out of 10) where some λ > 0 exists such that it satisfies both F (πOracle, πFrozen) >
F (πFrozen, πFrozen) and F (πOracle, πFrozen) > F (πHacking, πFrozen). We compute upper bounds on
λ as ReturnOracle−ReturnFrozen

D(Oracle,Frozen) and lower bounds as ReturnOracle−ReturnHacking

D(Oracle,Frozen)−D(Hacking,Frozen) and count
that λ for a given seed exists if lower bound doesn’t exceed the upper bound. Existence of λ for
multiple seeds does not imply in this setting that there is a single value of λ that would work for all
of them. We present results in Table 4.

Policy Divergence Box Moving Absent Supervisor Tomato Watering Rocks & Diamonds

Soft-Q χ2 0% 0% 0% 0%
Soft-Q KL 0% 0% 0% 0%
ϵ-greedy χ2 70% 40% 30% 0%
ϵ-greedy KL 40% 50% 0% 0%

Table 4: Percentage of seeds (of 10) where a regularization weight λ > 0 exists that ranks the Oracle
policy above both Frozen and Hacking under an ORPO-like objective.

In many cases, and in all cases for Rocks and Diamonds, no such λ exists, suggesting that occupancy
regularization fails to suppress high-value hacks without also suppressing Oracle-like improvements.
In contrast, MCVL attains Oracle-level performance across all tasks without a known safe policy or
stochastic-policy constraints.

J USE OF GENERATIVE AI

LLMs were used to revise and polish writing on a single-paragraph scale.
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