
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SYMBIOTIC TUNING: A SIMPLE APPROACH FOR
ENHANCING TASK PERFORMANCE OF SIDE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The reduction of the computational and memory overhead associated with fine-
tuning large language models remains a significant challenge for current research
in natural language processing. Achieving an optimal balance between task per-
formance, adaptability, and low VRAM requirement often presents a complex
trade-off. Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, have
gained attention for their ability to reduce the number of trainable parameters
while preserving task performance. However, they have not yet achieved a no-
table reduction in VRAM usage, which is still predominantly consumed by model
weights and activations during backpropagation. In contrast, Ladder Side-Tuning
(LST) has been proposed as an alternative that effectively reduces VRAM usage
by freezing the backbone language model (BLM) and training only lightweight
side networks. Nevertheless, this reduction in memory usage often results in a
decline in performance, as LST typically exhibits inferior performance compared
to PEFT methods on the same BLM. To address these limitations, we propose
Symbiotic Tuning (SymTune), a novel approach that extracts intermediate out-
puts from the BLM and integrates symbiotic modules to enhance feature process-
ing capabilities. This method avoids a direct trade-off between performance and
VRAM efficiency, offering two key advantages: 1) robust performance across a
wide range of natural language tasks, and 2) reduced VRAM consumption through
an improved side-tuning architecture. The experimental results demonstrate that
SymTune provides a scalable and memory-efficient solution for fine-tuning lan-
guage models.

1 INTRODUCTION

The VRAM bottleneck of traditional PEFT: During model training, VRAM consumption is primar-
ily dominated by three components: model weights, gradients, and activations. Parameter-Efficient
Fine-Tuning (PEFT) methods, such as LoRA, have proven effective in transfer learning for down-
stream tasks by significantly reducing the number of trainable parameters, directly decreasing the
memory required for storing gradients. However, this reduction only addresses the gradient-related
VRAM usage. The memory demands for the other two components—model weights and activa-
tions—remain high and can still accumulate to hundreds of gigabytes. Consequently, while reducing
the trainable parameter count alleviates some of the memory burden, it is insufficient to fully mit-
igate the VRAM bottleneck in large-scale models. To address this challenge, more comprehensive
solutions targeting activations and model weights are necessary.

Ladder Side-Tuning (LST) (Sung et al., 2022) offers a promising solution to address the memory
bottleneck in fine-tuning large models. By drastically reducing the number of trainable parameters,
LST frees up a significant portion of the VRAM typically consumed by activations during training.
Additionally, LST can further optimize memory efficiency through quantization techniques (Zhang
et al., 2024), which compress the model weights by representing them with lower-precision data
types. This approach makes side-tuning particularly useful for fine-tuning in environments where
VRAM is a limiting factor.

The Performance Limitation of Side-tuning: Side-tuning methods freeze the backbone language
model (BLM) and apply gradients only to the side network. While this approach is fast and memory-
efficient, it does not perform as well as LoRA when using the same BLM. The limitation arises be-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Performance Low-VRAM

outputFull fine-tuning :

LoRA :

Ladder Side-Tuning :

Our Work :

Input ...

output...
lora lora lora lora

output

...

Embedding

Embedding

Embedding

Input

Input

Input

output

...Embedding

Trainable

Frozen

Data Flow

Attention Sharing

Gradient Flow

Figure 1: Overview of different methods: Our approach employs an attention-sharing mechanism,
achieving competitive performance compared to LST, while maintaining both efficiency and flexi-
bility.

cause the parameters and attention weights in the BLM remain fixed, making it difficult to construct
internal representations or adapt the model to task-specific nuances. As a result, for side-tuning
methods to outperform other techniques like LoRA, they typically need to operate under similar
VRAM constraints but with a larger BLM to compensate for the lack of adaptability in the frozen
parameters.

To address the aforementioned issues, we propose Symbiotic tuning (SymTune), which selectively
filters significant values from the hidden states of the BLM and integrates an additional contex-
tual processing module to enhance performance. Our work introduces two key operations: Inverse
Cross-Attention (ICA) and Attention Sharing (ATS). ICA involves designing a specialized cross-
attention mechanism that constructs task-specific representations while preserving the rich contex-
tual information from the backbone model. ATS aims to share additional internal signals from the
backbone language model (BLM), enabling the symbiotic module to better learn both the language
and the downstream task. Experimental results demonstrate that a language model, when paired
with a single symbiotic module containing only a few million parameters, achieves competitive val-
idation scores across a range of natural language understanding benchmarks and multi-label tasks.
Moreover, it retains the low VRAM requirements characteristic of side-tuning methods, offering a
resource-efficient solution without compromising task-specific performance.

2 RELATED WORK

Our method is inspired by contemporary Parameter-Efficient Fine-Tuning (PEFT) and side-tuning
techniques, such as LoRA (Hu et al., 2022), which have gained widespread adoption in the research
community and demonstrated strong results.

This study focuses on two main aspects: 1) improving task performance, and 2) minimizing the
computational costs of training. To this end, we conducted a comprehensive review of PEFT meth-
ods, systematically comparing their respective strengths and limitations to inform the development
of our approach.

2.1 LORA SERIES: HIGH-PERFORMANCE PEFT APPROACHES

Transformer-based models exhibit great performance owing to the robust feature processing capa-
bilities of the attention mechanism and their expansive model structures.

The attention weights αij are computed as the softmax outputs of the dot product between the ith

query qi and the jth key kj . The attention weights serve as weights for summarizing v.

olora = Wx+∆Wx = Wx+BAx (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LoRA, shown in Eq. 1, introduces additional parameters to learn the adjustments of parameters in
the model which are typically Wq , Wv , and Wo in practical implementations. These modifications
influence every critical step in the attention layer processing procedure while requiring a much
smaller number of parameters to be adjusted. Consequently, LoRA outperforms full fine-tuning on
numerous natural language understanding benchmarks. This superiority stems from the fact that
datasets for these benchmarks typically contain limited amounts of data. Under such constraints, it
is easier to tune the model when fewer parameters need to be modified.

The success of these PEFT methods and some other inspiring research (Song et al., 2023; Fedus
et al., 2022; Chen et al., 2023) offers valuable insights: fine-tuning a language model often involves
reconstructing internal representations and adjusting projection matrices of the model, typically un-
der constraints related to data availability. Reducing the number of trainable parameters has proven
to be an effective strategy for facilitating optimal convergence, as it simplifies the optimization pro-
cess and reduces the risk of overfitting when working with limited data.

However, LoRA is unable to reduce the VRAM usage associated with storing activations, which
must be kept in VRAM for use during gradient back-propagation to compute partial derivatives. In
LoRA, the activation should still be kept to compute the gradient for every ∆W . Consequently,
the VRAM required for these activations, which can be substantial in large-scale models, remains
unchanged. Therefore, while LoRA is highly effective in reducing the memory required for storing
gradients and optimizer states, it does not alleviate the overall VRAM burden significantly.

2.2 SIDE-TUNING: PEFT APPROACH WITH SINGLE-DIRECTIONAL INFORMATION FLOW

Ladder Side-Tuning (LST) (Sung et al., 2022) constructs a new side model based on the hidden states
of the BLM. Unlike LoRA, the information flow in LST is unidirectional which flows only from the
BLM to the side network. This approach does not alter the internal representations within the BLM,
demonstrating that it’s still possible to achieve good performance by simply building comprehensive
language modeling capability on top of the existing hidden states.

Quantized Side-Tuning (QST) is an alternative method that employs a quantization mechanism to
reduce the VRAM consumption associated with the BLM’s parameters. This approach achieves
a reduction in memory usage without substantially compromising performance when compared to
LST while offering even greater VRAM savings.

In Side-Tuning, the hidden states are initially mapped to a lower-dimensional space before being fed
into the side layer.

h̃(l) = f (l)
s (h̃(l−1) +W

(l−1)
down h(l−1);θ

(l)
side) (2)

Here, W (l−1)
down is the down-projection layer, hl represents the lth hidden state, and h̃(l) refers to the

outputs of the lth side layer.

In side-tuning methods, the BLM’s weights are frozen, meaning no gradients are computed for
the backbone, and consequently, the activations from the BLM do not need to be stored for back-
propagation. Instead, the side network, which is much smaller and runs in parallel with the back-
bone, is the only part of the model where activations need to be retained for gradient calculations.
Since the side network is lightweight compared to the full model, the memory required for activa-
tions is significantly reduced.

However, side-tuning often involves a trade-off between efficiency and performance. Unlike LoRA,
which directly modifies the attention score computation, side-tuning methods rely heavily on the
BLM. While initializing the side network with pruned weights from the BLM can enhance training
efficiency, its performance on benchmarks like GLUE tends to be inferior to LoRA’s when using
the same BLM. This is primarily due to its reliance on the BLM, which only provides hidden states
without sharing additional internal signals. As a result, LST must establish additional connections
to the BLM for reconstructing internal representations and achieve better model performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Language
Model Layer 1

Language
Model Layer 2

...

Language
Model Layer L

Embedding Layer

Input Sequence

Backbone LM Intermediate Products

Symbiotic Layer 1

Symbiotic Layer 2

...

Symbiotic Layer L

Output Logits

Symbiotic Module

Self-AttentionSelf-AttentionMultihead
Cross-Attention

Feed Forward
Network

q k v

Feature
selectors

h(0)

h(1)

h(2)

h(L)

...

[. . .]

[. . .]

[. . .]

Attn1

Attn2

AttnL

h

Attn

Add & Norm

Add & Norm

+

Figure 2: Overall architecture design of SymTune with a pretrained LM. All hidden states and
attention weights of the language model are extracted and then used as input of the cross-attention
layers in the symbiotic modules, serving as the query part.

3 METHODOLOGY

In order to make Symbiotic Tuning adaptable to encoder and decoder of the language models, we
respectively introduce symbiotic module construction of encoder and decoder in section 3.1 and
section 3.2. Besides, we briefly introduce the forward pass and back-propagation in section 3.3.

3.1 ENCODER MODEL CONSTRUCTION

Our model is designed as Figure 2. We define the hidden states in the L-layer BLM as H =
{h(0),h(1),h(2), ...,h(L)}, where h(0) represents the output of the embedding layer, and the at-
tention weights as A = {A(1),A(2), ...,A(L)}. The outputs of the L-layer symbiotic module are
defined as H̃ = {h̃(1), h̃(2), ..., h̃(L)}. The data dimensions of the hidden states and the symbiotic
module are represented by dh and dh̃, respectively. Furthermore, there is a feature selector which
consists of a down projection and an up projection, denoted as WAWB , where WA ∈ Rdh×r,
WB ∈ Rr×d

h̃ . We simplify WAWB to WAB .

As shown in Figure 2, we obtain intermediate products from BLM which consist of all of the hidden
states and attention weights. Unlike LST which is shown in Eq. 2, our symbiotic tuning is like:

h̃(l) = f
(l)
S.T.(h̃

(l−1),A(l),W
(l)
ABh

(l);θ
(l)
S.T.) (3)

h̃(0) = W
(0)
ABh

(0)

The symbiotic modules, which consist of a feature selector and a tiny transformer, rely on the in-
termediate products and operate in a low-dimensional space. Therefore, the purpose of the feature
selector is to dynamically identify and select the crucial parameters. Meanwhile, the symbiotic
module is responsible for performing natural language feature processing, leveraging the selected
parameters to adapt to specific downstream tasks efficiently. This dynamic selection process en-
sures that only the most relevant information is utilized for each task, contributing to the overall
effectiveness of the approach. Each layer of the symbiotic module consists of two parts: multi-head
cross-attention, and a feed-forward network.

3.1.1 INVERSE CROSS ATTENTION (ICA)

The hidden state hl is first linearly projected into a lower-dimensional symbiotic space by a feature
selector, which functions as a form of continuous pruning that dynamically selects the most crucial

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

values from the hidden states. To construct task-specific internal representations and information
flow while referencing the hidden states from the BLM, we utilize the hidden states of the language
model as queries, rather than as keys or values. This approach is the inverse of the typical transformer
decoder mechanism which takes the outputs of previous decoder layers as query. With ICA, the
model is allowed to dynamically connect the hidden states of BLM, which facilitates the construction
of internal representations specific to the downstream task. Besides, inspired by Zhang et al. (2024),
we apply a weighting mechanism to the keys and values in the cross-attention layer. This mechanism
dynamically combines the backbone hidden states h(l) with the symbiotic layer hidden states h̃(l).
The queries Q, keys K and values V are shown in Eq. 4.

Q(l) = W (l)
q (W

(l)
ABh

(l)) K(l) = W
(l)
k h̃

(l)
KV V (l) = W (l)

v h̃
(l)
KV (4)

h̃
(l)
KV = c(l)W

(l)
ABh

(l) + (1− c(l))h̃(l−1)

Here, c(l) ∈ (0, 1) is a trainable weight parameter for layer l. It is initially set to 0.5 and subsequently
adjusted during the training process.

3.1.2 ATTENTION SHARING (ATS)

The attention weights are integrated with those from the BLM to stabilize training and improve
performance. This allows for dynamic and fine-grained adjustments to information among inter-
nal representations. By selectively focusing on key features within the hidden states, the model
establishes more adaptable, context-aware interactions that enable it to better utilize internal repre-
sentations from the BLM. This combined attention mechanism facilitates a more robust and flexible
learning process, effectively leveraging the pre-trained knowledge of the backbone while refining
task-specific representations. Our inverse cross-attention fICA is formalized as:

f
(l)
ICA(Q

(l),K(l),V (l)) = (Softmax(
Q(l)K(l)⊤√

dh̃
) +A(l) −B)V (l) (5)

Where Q, K, V represent the query, key, and value matrices, and A indicates attention weights from
BLM. To maintain the normalization of attention weights (i.e., ensuring that the sum of attention
values equals 1), we introduce a balancing matrix B in Eq. 5. This matrix consists of elements
defined as 1/s, where s represents the length of the input sequence.

3.1.3 WHY DO WE NEED ATS?

As previously stated, side-tuning methods such as LST and QST adapt the outputs of a BLM without
sharing the internal signals of the Transformer modules. Although side-tuning reduces memory con-
sumption during training by leveraging side networks in the back-propagation process, the absence
of internal connections between the side networks and the BLM can lead to suboptimal task per-
formance. In contrast, our approach, Symbiotic Tuning, integrates attention weights from the BLM
and introduces a novel attention mechanism, offering a unified attention flow between the BLM and
side networks for enhancing tuning performance.

3.2 DECODER MODEL CONSTRUCTION

For decoder-only models, the overall architecture of the symbiotic modules remains consistent with
that used in encoder-only models. However, a critical distinction arises in the use of attention-
masking mechanisms specific to decoder architectures. In these models, each token can only com-
pute attention weights based on its preceding tokens, which is essential for preserving the auto-
regressive nature of the decoder. This masking ensures that future tokens do not influence the cur-
rent token during training or inference. As a result, the attention-sharing mechanism between the
backbone and the symbiotic modules must account for this feature, otherwise, it could introduce
unwanted information flow or noise, which would disrupt the model’s ability to learn meaningful
internal representations within the masked attention framework. The cross attention is shown in Eq.
6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

f
(l)
ICA−decoder(Q

(l),K(l),V (l)) = (Softmax(
Q(l)K(l)⊤√

dh̃
) +A(l) −B)V (l) (6)

B = [bij] =


b11 b12 · · · b1s
b21 b22 · · · b2s

...
...

...
...

bs1 bs2 · · · bss

 ,where bij =

{
0, if i < j
1
i , otherwise

As described in 3.1.2, the balancing matrix B ensures that the masked elements in the attention
weights remain 0 while simultaneously normalizing each row so that the sum of the attention weights
equals 1.

3.3 FORWARD AND BACKWARD PASS: SIDE-TUNING AND BACK PROPAGATION

Unlike LST (Sung et al., 2022) and QST (Zhang et al., 2024), our symbiotic module is not a smaller
version of the BLM. Instead, the first self-attention layer is replaced with an inverse cross-attention.
During the forward pass, the BLM operates in evaluation mode, meaning no dropout, batch normal-
ization, or activation storage is applied, and no gradients are computed for the BLM.

As shown in Figure 1, during the backward pass, gradients are propagated solely through the sym-
biotic module, while the BLM remains unaffected by gradient updates. This inference-only mode
for the backbone significantly reduces the VRAM usage of our method, as it eliminates the need to
store activations and reduces memory requirements during model training.

4 EXPERIMENTS

For each aforementioned aspect in which we aim to make improvements, we design experiments to
demonstrate its robustness individually. In encoder model experiments and decoder model exper-
iments, we compare our model with high-performance PEFT approaches, side-tuning approaches,
and full fine-tuned language models. In multi-label experiments, we compare our methods with
other fine-tuning approaches including LoRA and LST. Additionally, we measure the transmission
latency in distribution experiments. We conduct experiments using five random seeds and report the
average scores on the validation set. We configured the hidden size to 96 and set the rank to 8 as the
default setting to evaluate performance across various benchmarks. The hyper-parameter settings
of encoder-only model experiments, decoder-model experiments and multi-label experiments are
presented in Appendix B.

4.1 ENCODER MODEL EXPERIMENTS

Table 1: Performance experiments on natural language understanding tasks. We compare our meth-
ods with current LoRA-based PEFT methods on benchmark datasets. The best results on each
benchmark are shown in bold. Furthermore, we compute the p-values for all baselines with our
approach to assess whether our approach significantly outperforms them. A p-value less than 0.05,
highlighted in bold, indicates a statistically significant difference.

/ # Params CoLA SST2 MRPC STSB QQP RTE QNLI MNLI Avg. P-value
metrics / Mcc Acc Acc Corr Acc/F1 Acc Acc m/mm / /

BLM: DeBERTaV3-base, batch size = 16
FFT 183m 69.2±0.6 95.6±0.8 89.5±0.6 91.6±0.4 91.7±0.3/89.7±0.4 83.7±1.1 93.7±0.3 89.4±0.2/89.9±0.1 88.2 0.3025
Bitfit 0.1m 67.2±0.7 93.6±0.5 87.7±1.0 90.3±0.2 88.7±0.6/85.0±0.4 78.4±1.3 92.4±0.2 87.4±0.1/87.7±0.1 85.9 0.0149

LoRA (r=8) 0.8m 69.4±0.8 95.8±0.6 90.7±0.7 91.1±0.3 90.3±0.4/87.4±0.5 87.7±1.4 93.1±0.4 88.9±0.3/89.3±0.2 88.5 0.0184
LST 1.8m 69.0±0.7 95.7±0.4 91.0±0.5 91.2±0.4 89.8±0.5/88.9±0.3 88.6±0.9 92.9±0.5 88.4±0.3/88.5±0.3 88.3 0.0041

S.T. (ours) 0.9m 70.1±0.6 95.8±0.3 91.2±0.5 91.5±0.3 90.0±0.5/89.5±0.3 89.9±1.3 93.6±0.3 88.9±0.1/89.1±0.2 88.9 /
BLM: DeBERTaV3-large, batch size = 16

FFT 434m 74.2±0.5 95.9±0.4 92.1±0.3 92.7±0.4 91.2±0.1/91.2±0.2 90.4±0.9 95.1±0.2 90.9±0.4/91.0±0.3 90.4 0.3796
Bitfit 0.1m 70.9±1.0 96.2±0.2 90.4±0.8 91.3±0.5 89.2±0.4/86.0±0.5 87.7±1.6 94.4±0.4 91.2±0.6/91.0±0.3 89.1 0.0052

LoRA (r=16) 2.6m 72.9±0.5 96.1±0.3 91.1±0.3 92.2±0.3 92.2±0.5/90.5±0.6 90.9±1.1 95.0±0.6 90.3±0.2/90.7±0.2 90.2 0.3198
LST 4.3m 71.1±0.9 96.0±0.3 91.7±0.5 91.8±0.3 90.6±0.3/90.2±0.4 91.0±1.2 94.3±0.3 89.8±0.1/90.4±0.3 89.7 0.0144

S.T. (ours) 2.2m 73.2±0.7 96.1±0.6 92.3±0.6 92.6±0.3 90.9±0.2/90.6±0.3 91.7±1.1 94.7±0.5 90.2±0.3/90.6±0.2 90.3 /

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: VRAM requirements (GB) on training each natural language understanding tasks. We
standardized the batch size to 16 across all baselines and benchmarks. The VRAM requirements
vary depending on the input sequence lengths.

/ # Params CoLA SST2 MRPC STSB QQP RTE QNLI MNLI Avg.
Avg. length / 7.7 9.4 45.9 21.9 24.1 54.4 38.5 31.8 /

BLM: DeBERTaV3-base, batch size = 16
FFT 183m 5.7 6.1 6.6 8.80 12.9 13.8 14.1 6.7 9.3
Bitfit 0.1m 3.4 4.1 8.1 10.3 12.0 14.6 14.3 7.0 9.2

LoRA (r=8) 0.8m 3.2 3.4 4.7 4.1 7.2 7.3 14.8 8.9 6.7
LST 1.8m 2.2 2.3 2.6 2.8 5.7 6.4 10.6 3.7 4.5

S.T. (ours) 0.9m 2.2 2.3 2.5 2.8 5.6 6.0 11.1 3.1 4.5
BLM: DeBERTaV3-large, batch size = 16

FFT 434m 13.7 13.5 20.8 22.7 34.2 41.1 36.2 15.6 24.7
Bitfit 0.3m 12.4 13.9 15.2 22.5 20.3 34.7 35.8 14.9 21.2

LoRA (r=16) 2.6m 5.6 6.0 7.1 7.8 15.5 15.3 33.1 19.8 13.8
LST 4.3m 4.2 4.4 5.2 6.0 13.1 14.7 19.3 4.5 8.9

S.T. (ours) 2.2m 4.2 4.3 5.2 6.0 13.1 14.7 19.2 4.4 8.9

We compared our method, which incorporates a single symbiotic module, with LoRA (Hu et al.,
2022), Bitfit (Ben Zaken et al., 2022), LST (Sung et al., 2022), and the full fine-tuning method
(FFT) on the GLUE (Wang et al., 2018) benchmark. Details including the task types and data sizes
can be found in Appendix A.

We employ both the base and large versions of DeBERTa-V3 (He et al., 2023) as the BLMs to eval-
uate natural language understanding performance across benchmarks that cover different aspects of
the task. The results, as presented in Table 1 and Table 2, demonstrate that our method performs
well across various datasets while maintaining minimal VRAM requirements for almost all bench-
marks. Notably, our approach excels in smaller datasets like CoLA, STSB, and RTE, where the
architecture’s efficient handling of internal representations plays a crucial role. On larger datasets,
such as QQP, MNLI, and QNLI, the greater data volume provides enough information to reconstruct
internal representations, enabling full fine-tuning to yield optimal performance.

The statistical significance test results are also shown in Table 1. The p-values for LST are well
below the threshold of 0.05, particularly for the larger 2.7B model, indicating that our approach
significantly outperforms LST. For LoRA, our method achieves slightly better performance while
requiring substantially less VRAM, highlighting its ability to enhance side-tuning methods, deliver
superior results, and effectively compete with LoRA on the same BLM.

Parameter
count (m)

S.T.
LoRA
LST

Mcc CoLA

0.6 1.2 1.8 2.4 3.00.0

0.66

0.70

0.69

0.68

0.67

Parameter
count (m)

Acc

0.82

0.90

0.88

0.86

0.84

RTE

Parameter
count (m)

Acc

0.88

0.92

0.91

0.90

0.89

MRPCS.T.
LoRA
LST

S.T.
LoRA
LST

0.6 1.2 1.8 2.4 3.00.0 0.6 1.2 1.8 2.4 3.00.0

Figure 3: Experiments on different trainable parameter counts. We employed various configura-
tions with different parameter counts to compare performance outcomes on DeBERTaV3-base. The
parameter count and VRAM requirement were controlled by adjusting the hidden dimension and
projection ranks, where the hidden dimension dh̃ ∈ {60, 72, 96, 120, 144} the projection ranks
r ∈ {4, 8, 10, 12, 16}. This provides a clearer understanding of how changes in parameterization
influence overall performance.

We further conducted experiments using symbiotic modules with varying parameter counts on
CoLA, RTE, and MRPC to assess their performance. As illustrated in Figure 3 and Figure 4, our
symbiotic module consistently performs better across both low and high parameter count settings.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

VRAM (GB)

S.T.
LoRA
LST

Mcc CoLA

2.0 2.3 2.6 2.9 3.20.0

0.66

0.70

0.69

0.68

0.67

Acc

0.82

0.90

0.88

0.86

0.84

RTE Acc

0.88

0.92

0.91

0.90

0.89

MRPCS.T.
LoRA
LST

S.T.
LoRA
LST

VRAM (GB)6.0 6.5 7.0 7.5 8.00.0 VRAM (GB)2.5 3.0 3.5 4.0 4.50.0

Figure 4: Experiments on different VRAM requirements. We compare the performance variations
across different VRAM settings to provide a clearer understanding of how our method outperforms
LST and LoRA. Compared to LoRA, our method significantly reduces VRAM requirements, and
compared to LST, our evaluation scores are consistently higher.

Its stability across different parameter scales highlights its adaptability. These results underscore the
robustness and efficiency of our architecture, effectively balancing performance with computational
cost.

4.2 DECODER MODEL EXPERIMENTS

The experiments on the decoder-only model are summarized in Table 3, where we use QST and LST
as baseline models. These baselines are fine-tuned on the OPT-1.3b and OPT-2.7b models (Zhang
et al., 2022) using the GLUE benchmark (Wang et al., 2018). Statistical significance tests, also
presented in Table 3, confirm that the observed performance improvements are not due to random
bias. The results demonstrate that Symbiotic Tuning outperforms LST on nearly all datasets with
statistically significant differences. Furthermore, the performance of Symbiotic Tuning on GLUE
benchmarks with OPT-1.3b is very close to QST’s performance on OPT-2.7b, while requiring 4 GB
less VRAM. The inference times for BLM, LST, and our method are provided in Appendix C.

Table 3: Performance experiments on decoder-only model. We compare our methods on OPT-series
model with QST and LST, and their experiment results are from Zhang et al. (2024). We report
the trainable parameter count for each baseline, along with the VRAM consumption during training
with a batch size of 16 and a maximum sequence length of 512. The best results on each benchmark
are shown in bold. Besides, p-values for all the baselines with our method are computed, with values
less than 0.05 highlighted in bold.

/ # Params VRAM CoLA SST2 MRPC STSB QQP RTE QNLI MNLI Avg. P-value
metrics / GB Mcc Acc Acc Corr Acc Acc Acc Acc / /

BLM: OPT-1.3b, batch size = 16
LoRA 31.0m 32.9 62.5±1.7 93.7±0.7 83.4±0.9 89.3±0.2 86.9±0.3 82.7±1.9 81.4±9.3 81.2±0.1 82.6 0.7598
QST 5.9m 17.7 59.7±2.9 94.4±0.3 81.7±1.1 88.4±1.1 84.3±0.7 79.5±2.5 85.7±0.5 77.1±0.6 81.3 0.0030
LST 31.4m 20.9 59.5±3.1 95.2±0.8 83.1±1.3 88.6±0.4 86.4±0.6 82.0±2.2 86.1±0.3 77.8±0.5 82.2 0.1747
S.T. 5.9m 20.7 60.3±1.7 95.3±0.7 83.3±1.0 88.6±0.7 87.2±0.6 79.8±2.4 87.5±0.6 80.8±0.4 82.8 /

BLM: OPT-2.7b, batch size = 16
LoRA 51.3m 50.4 64.5±2.4 95.3±0.6 84.6±0.8 90.9±0.1 90.7±0.1 82.7±1.9 83.0±7.4 82.6±0.2 84.5 0.8381
QST 11.8m 24.4 62.0±3.4 94.3±0.3 83.7±1.2 88.9±1.4 86.5±0.9 80.1±2.1 86.6±0.9 80.4±0.6 83.0 0.0152
LST 64.5m 30.7 60.7±3.5 95.3±0.4 83.9±1.5 89.1±0.9 88.8±1.0 82.5±2.9 87.3±0.2 80.4±0.7 83.5 0.0045
S.T. 11.8m 28.9 61.0±1.9 96.2±0.5 84.1±1.1 89.3±0.7 90.0±0.9 80.5±2.6 89.2±0.8 85.6±0.8 84.5 /

4.3 MULTI-LABEL EXPERIMENTS

To evaluate the performance of our approach in a more challenging scenario, we apply it to multi-
label classification tasks for further assessment. We conduct a comprehensive comparative analysis
with the full fine-tuning approach and LST. Traditional approaches typically utilize a shared BLM
along with multiple task-specific projection modules, usually in the form of classifiers. We evaluate
our method using SemEval2014-Task1 (Marelli et al., 2014) and SemEval2018-Task1 (Mohammad
et al., 2018) as benchmarks. The experimental results are presented in Table 4 and Table 5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

SemEval2014-Task1 is utilized for both textual entailment recognition and relatedness score predic-
tion, while SemEval2018-Task1 serves as a sentiment analysis dataset with 11 classes.

Table 4: Multi-label experiments on Se-
mEval2014 Task1. We adopt multitask fine-
tuning to our SymTune with multiple symbi-
otic module, The best results are shown in
bold.

task #Params relatedness entailment
metrics / Corr Acc

FFT 183m 90.36±0.20 89.46±0.33

LST 1.8m 91.84±0.30 90.28±0.15

S.T. 0.9m 92.04±0.40 90.76±0.27

As shown in Table 4 and Table 5, SymTune consis-
tently performs well across most subtasks. This is
particularly evident when the subtasks are less sim-
ilar, such as in SemEval2014-Task1. While relat-
edness and entailment share some commonalities,
they differ in nature—relatedness is a regression
task, and entailment is classification. In FFT, both
tasks rely on the same hidden states, potentially
limiting performance. SymTune, however, con-
structs independent representations for each sub-
task, significantly boosting performance, particu-
larly in tasks with distinct characteristics.

SemEval2018-Task1 is a multi-label classification problem requiring the model to identify multiple
emotions in the text. We utilize this dataset to test multitask learning performance. The lowest score
is consistently ”surprise” due to the insufficient number of positive samples for effective learning.
Despite this, the experiments demonstrate that SymTune performs well on this sentiment analysis
task.

Table 5: Multi-label experiments on Se-
mEval2018 Task1. We report macro F1
scores across the 11 separate sentiment anal-
ysis tasks. The best results are shown in bold.

emotions FFT LST S.T.
/ 183m 1.8m 0.9m

anger 83.69±0.40 84.37±0.21 85.48±0.19

anticipation 61.67±0.48 64.37±0.60 65.50±0.46

disgust 80.21±0.31 82.44±0.30 83.52±0.32

fear 82.42±0.22 84.53±0.28 84.87±0.60

joy 87.00±0.79 87.26±0.37 88.44±0.41

love 77.29±0.43 78.60±0.55 79.38±0.33

optimism 81.28±0.48 81.94±0.50 82.33±0.53

pessimism 61.64±0.59 65.13±0.77 67.75±0.70

sadness 76.81±0.23 78.08±0.27 78.42±0.25

surprise 68.86±0.61 67.91±0.52 69.20±0.90

trust 55.49±0.63 58.15±1.20 58.64±1.18

Avg. 74.21±0.32 75.91±0.24 76.69±0.27

The advantages of our approach primarily include:
1) Despite employing multiple symbiotic modules
for these subtasks, the total number of trainable pa-
rameters remains significantly lower than in full
fine-tuned multitask learning (FFT). This is be-
cause the base language model remains frozen in
SymTune, whereas it needs to be tuned in the full
fine-tuning method. 2) When a new task is intro-
duced to the system, the training cost of SymTune
is significantly lower compared to FFT (full fine-
tuning). Because in FFT, we must conduct mul-
titask learning for all subtasks again to adapt the
base language model to all tasks simultaneously. In
contrast, with SymTune, we only need to train an
additional symbiotic module. This is because the
computation process of a symbiotic module has no
impact on the BLM or other symbiotic modules.
3) The integration of attention score shortcuts with
cross-attention layers in the Symbiotic modules enhances the performance across multiple subtasks,
while simultaneously reducing the overall parameter count. This design not only improves task-
specific outcomes but also positions SymTune as a more efficient alternative to LST, eliminating
the traditional trade-off between efficiency and performance. Additionally, these symbiotic modules
can be trained with different hyper parameters such as learning rates, warmup strategies, learning
rate schedulers, or even different optimizers. This flexibility enables us to optimize training for each
subtask, potentially leading to better overall performance.

4.4 ABLATION STUDY

We introduced three novel operations in our model: Inverse Cross Attention (ICA) and Attention
Sharing (ATS). Abandoning the ICA reverts the model to the LST approach, where the hidden states
of the BLM are directly added to the output of the symbiotic module’s final layer.

The ablation study results, which are shown in Table 6, indicate that both Cross Attention and At-
tention Sharing provide substantial improvements in the language model’s performance across a
wide range of benchmarks. The experimental results indicate that just using ICA does not signif-
icantly impact the outcomes. However, combined with ATS, it leads to noticeable improvements
in the GLUE benchmark. Additionally, the findings demonstrate that sharing attention scores is a
reasonable and compatible approach for enhancing natural language understanding capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Ablation study. We respectively remove each of our operations to evaluate their effect
on performances. The best results on each benchmark are shown in bold. Besides, p-values are
computed, with values less than 0.05 highlighted in bold.

·

/ CoLA SST2 MRPC STSB QQP RTE QNLI MNLI Avg. P-value
metrics Mcc Acc Acc Corr Acc/F1 Acc Acc m/mm / /

S.T. (ours) 70.1±0.6 95.8±0.3 91.2±0.5 91.5±0.3 90.0±0.5/89.5±0.3 89.9±1.3 93.6±0.3 88.9±0.3/89.1±0.1 88.9 /
- ICA 69.9±0.7 95.8±0.3 91.1±0.4 91.1±0.4 89.5±0.5/89.0±0.2 88.9±1.3 93.1±0.4 88.8±0.2/88.9±0.2 88.6 0.118
- ATS 69.2±0.6 95.4±0.4 90.9±0.8 90.8±0.6 89.4±0.3/88.7±0.4 88.4±1.1 92.4±0.3 88.3±0.1/88.6±0.2 88.1 0.0001

- ICA, ATS 69.4±0.5 95.6±0.5 90.6±0.9 91.1±0.3 89.5±0.4/88.9±0.4 88.7±0.7 92.3±0.3 88.2±0.2/88.4±0.3 88.2 0.0003

5 CONCLUSION

In this work, we introduce Symbiotic Tuning (SymTune), a novel approach that integrates additional
symbiotic modules into a language model, providing a robust solution for multitask learning while
significantly reducing the overall parameter count. Through extensive experimentation, SymTune
has demonstrated a notable reduction in computational costs and GPU memory consumption com-
pared to traditional full fine-tuning and existing PEFT methods. The architecture of SymTune, along
with its plug-and-play adaptability, enhances its efficiency and flexibility across various natural lan-
guage understanding tasks. These results underscore SymTune’s potential as a scalable, parameter-
efficient framework for multitask learning, offering significant promise for future advancements in
natural language understanding.

REFERENCES

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 1–9, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL https:
//aclanthology.org/2022.acl-short.1.

Tianlong Chen, Zhenyu Zhang, AJAY KUMAR JAISWAL, Shiwei Liu, and Zhangyang Wang.
Sparse moe as the new dropout: Scaling dense and self-slimmable transformers. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=w1hwFUb_81.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. pp. 177–190, 01 2005. ISBN 978-3-540-33427-9. doi: 10.1007/11736790 9.

Asmaa M El-Said, Ali I Eldesoky, Hesham A Arafat, et al. Exploiting semantic annotations and q-
learning for constructing an efficient hierarchy/graph texts organization. The Scientific World
Journal, 2015:136172, 2015. doi: 10.1155/2015/136172. URL https://doi.org/10.
1155/2015/136172.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022. URL http://jmlr.org/papers/v23/21-0998.html.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTav3: Improving deBERTa using
ELECTRA-style pre-training with gradient-disentangled embedding sharing. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=sE7-XhLxHA.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

10

https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://openreview.net/forum?id=w1hwFUb_81
https://openreview.net/forum?id=w1hwFUb_81
https://doi.org/10.1155/2015/136172
https://doi.org/10.1155/2015/136172
http://jmlr.org/papers/v23/21-0998.html
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto
Zamparelli. SemEval-2014 task 1: Evaluation of compositional distributional semantic models on
full sentences through semantic relatedness and textual entailment. In Preslav Nakov and Torsten
Zesch (eds.), Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014), pp. 1–8, Dublin, Ireland, August 2014. Association for Computational Linguistics. doi:
10.3115/v1/S14-2001. URL https://aclanthology.org/S14-2001.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana Kiritchenko.
SemEval-2018 task 1: Affect in tweets. In Marianna Apidianaki, Saif M. Mohammad, Jonathan
May, Ekaterina Shutova, Steven Bethard, and Marine Carpuat (eds.), Proceedings of the 12th
International Workshop on Semantic Evaluation, pp. 1–17, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/S18-1001. URL https://
aclanthology.org/S18-1001.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven
Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://aclanthology.org/D13-1170.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer: Fast large language model serving
with a consumer-grade gpu, 2023.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parame-
ter and memory efficient transfer learning. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 12991–13005. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
54801e196796134a2b0ae5e8adef502f-Paper-Conference.pdf.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Tal
Linzen, Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Bel-
gium, November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446.
URL https://aclanthology.org/W18-5446.

Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natu-
ral language sentences. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pp. 4144–4150, 2017. doi: 10.24963/ijcai.2017/579. URL
https://doi.org/10.24963/ijcai.2017/579.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural Network Acceptability Judg-
ments. Transactions of the Association for Computational Linguistics, 7:625–641, 09 2019.
ISSN 2307-387X. doi: 10.1162/tacl a 00290. URL https://doi.org/10.1162/tacl_
a_00290.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.
org/abs/2205.01068.

Zhengxin Zhang, Dan Zhao, Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Qing Li, Yong Jiang,
and Zhihao Jia. Quantized side tuning: Fast and memory-efficient tuning of quantized large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1–17, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
URL https://aclanthology.org/2024.acl-long.1.

11

https://aclanthology.org/S14-2001
https://aclanthology.org/S18-1001
https://aclanthology.org/S18-1001
https://aclanthology.org/D13-1170
https://proceedings.neurips.cc/paper_files/paper/2022/file/54801e196796134a2b0ae5e8adef502f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/54801e196796134a2b0ae5e8adef502f-Paper-Conference.pdf
https://aclanthology.org/W18-5446
https://doi.org/10.24963/ijcai.2017/579
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://aclanthology.org/2024.acl-long.1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A BENCHMARKS STATISTICS

Table 7: Benchmarks statistics. The following is a summary of each dataset used in our experiments,
detailing their purposes and associated tasks.

dataset discription task # samples
CoLA Linguistic Acceptability Classification 8551 / 1043
SST2 Sentiment Analysis Classification 67350 / 873

MRPC Sentence Equivalence Classification 5801 / 408
STSB Sentence Similarity Regression 5712 / 1471
QQP Paraphrase Recognition Classification 363847 / 40431
RTE Textual Entailment Classification 2491 / 278

QNLI Natural Language Inference Classification 103141 / 5268
MNLI Textual Entailment Classification 392702 / 9815 / 9832

SemEval2014Task1 Sentence Similarity / Textual Entailment Regression/Classification 4500 / 500
SemEval2018Task1 Sentiment Analysis Multiclass Classification 6838 / 884

Table 7 provides a comprehensive overview of all the datasets utilized in our experiments. The
benchmarks for Natural Language Understanding are derived from the General Language Under-
standing Evaluation (GLUE) benchmark (Wang et al., 2018; Socher et al., 2013; Rajpurkar et al.,
2016; Wang et al., 2017; Dagan et al., 2005; Warstadt et al., 2019; El-Said et al., 2015). The
SemEval2018-Task1 dataset is designed for multiclass classification and includes multiple classes
of emotions. In this task, the model’s objective is to accurately identify and select multiple emotions
that correspond to the sentiment expressed in the given text. To effectively compare our model’s
performance with established baselines, We approach it as a multitask learning problem to facilitate
comparison with baselines.

B HYPER PARAMETERS

We provide the training hyperparameters for encoder-only, decoder-only, and multi-label experi-
ments in Table 8, Table 9, and Table 10, respectively. For encoder-only model experiments, we test
30 different learning rates ranging from 4e-4 to 1.5e-4, selecting the best-performing learning rate
to repeat the experiments five times. For decoder-only models, we adopt the learning rate settings
from QST Zhang et al. (2024) and conduct experiments under the same conditions as QST and its
baselines. For multi-label experiments, we select the learning rate that maximizes the total score
across all baselines.

Table 8: Hyper parameters of encoder-only model experiments

/ CoLA SST2 MRPC STSB QQP RTE QNLI MNLI
BLM: DeBERTaV3-base

learning rate (lr) 7e-4 5e-4 1e-3 1.3e-3 1e-4 1.4e-3 1.8e-4 6e-4
batch size 16 16 16 16 16 16 16 16

lr scheduler cosine cosine cosine cosine cosine cosine cosine cosine
epochs 30 24 50 40 8 50 10 8

max length 64 128 320 256 320 320 512 256
weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

BLM: DeBERTaV3-large
learning rate (lr) 5e-4 4e-4 8e-4 7e-4 9e-5 1e-3 1.2e-4 4e-4

batch size 16 16 16 16 16 16 16 16
lr scheduler cosine cosine cosine cosine cosine cosine cosine cosine

epochs 30 24 50 40 8 50 10 8
max length 64 128 320 256 320 320 512 256

weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

C INFERENCE TIME COMPARISONS

We compare the inference time of our approach with the LST method and the baseline using only
the BLM. For LoRA, the inference time is identical to that of the BLM because, in evaluation mode,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 9: Hyper parameters of decoder-only model experiments

/ CoLA SST2 MRPC STSB QQP RTE QNLI MNLI
BLM: OPT-1.3b

learning rate (lr) 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
batch size 16 16 16 16 16 16 16 16

lr scheduler cosine cosine cosine cosine cosine cosine cosine cosine
epochs 30 24 50 40 8 50 10 8

max length 64 128 320 256 320 320 320 256
weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

BLM: OPT-2.7b
learning rate (lr) 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4

batch size 8 8 8 8 8 8 8 8
lr scheduler cosine cosine cosine cosine cosine cosine cosine cosine

epochs 30 24 50 40 8 50 10 8
max length 64 128 320 256 320 320 512 256

weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 10: Hyper parameters of multi-label experiments

/ Semeval2014-task1 Semeval2018-task1
learning rate (lr) 8e-4 8e-4

batch size 16 16
lr scheduler cosine cosine

epochs 40 32
max length 328 128

weight decay 0.1 0.1

the LoRA modules are integrated into the weight matrix. The inference times for a single run with
a sequence length of 512 and a batch size of 4 on OPT-1.3b, OPT-2.7b, and OPT-6.7b are presented
in Table 11.

The experimental results reveal some inference time limitations in side-tuning methods. However,
our method requires fewer parameters and, consequently, fewer floating-point operations compared
to LST, resulting in slightly shorter inference times.

Table 11: Inference time comparisons on OPT series models. We conducted our experiments on
a single NVIDIA RTX A6000 GPU with 48 GB of memory. The inference times, measured in
seconds, are reported.

/ BLM LST S.T. (Ours)
OPT-1.3b 0.313(×1.00) 0.391(×1.25) 0.387(×1.24)

OPT-2.7b 0.594(×1.00) 0.700(×1.17) 0.684(×1.15)
OPT-6.7b 1.442(×1.00) 1.673(×1.16) 1.601(×1.11)

13

	Introduction
	Related Work
	LoRA Series: High-performance PEFT Approaches
	Side-Tuning: PEFT Approach with Single-Directional Information Flow

	Methodology
	Encoder Model Construction
	Inverse Cross Attention (ICA)
	Attention Sharing (ATS)
	Why do we need ATS?

	Decoder Model Construction
	Forward and Backward pass: Side-tuning and Back Propagation

	Experiments
	Encoder Model Experiments
	Decoder Model Experiments
	Multi-Label Experiments
	Ablation Study

	Conclusion
	Benchmarks Statistics
	Hyper Parameters
	Inference Time Comparisons

