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In the era of widespread misinformation, the imper-
ative tasks of fact verification and correction have be-
come essential, especially in the realm of online social
media. Traditional manual fact-checking, while crucial,
is time-consuming, emphasizing the need for innovative
approaches. This research introduces an automated fact-
checking system leveraging sophisticated language models
for evidence generation to dynamically adapt to the evolving
information landscape. The proposed system EviGenerate
employs a novel evidence generation pipeline, integrating
strategies such as named entity hints, question formulation,
relation explanation, cross-examination, and a truthful critic.
Utilizing a modified FEVER - a widely used automatic fact-
checking dataset, the approach achieves a F1 score of 0.912
for claim verification based on DeBERTa. Our best claim
correction result based on T5-3B gives a SARI Keep score
of 0.721. The contribution of this work lies in its evidence
generation approach and prompting strategies, fostering ac-
curacy and adaptability in automated fact-checking systems.

Introduction
In the digital age, the tasks of fact verification and cor-
rection have become increasingly critical, particularly with
the rapid spread of misinformation on social media plat-
forms (Muhammed T and Mathew 2022). Fact verification
assesses claim truthfulness with evidence, and fact correc-
tion fixes inaccuracies. These processes maintain informa-
tion integrity and combat false narratives. The importance of
these efforts is heightened by the challenges of manual fact-
checking, which can take professional fact-checkers several
days or even weeks to complete (Porter and Wood 2021;
Kangur, Chakraborty, and Sharma 2024).

To improve fact-checking efficiency, researchers have de-
veloped automated methods to label or remove false infor-
mation before it spreads online. These systems rely on ex-
ternal knowledge bases like Wikipedia for evidence (Thorne
et al. 2018; Mayank, Sharma, and Sharma 2022; Nikopen-
sius et al. 2023), but often lag behind rapidly evolving in-
formation, especially during critical events like the COVID-
19 pandemic and the January 6th US Capitol attack (Fer-
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Figure 1: EviGenerate uses LLMs to generate the evidence
needed for fact verification and correction. The pipeline first
generates evidence about the entities in the claim. The gen-
erated evidence is then filtered down to only include the in-
formation important for fact-checking the claim. We verify
and if needed correct the claim using the filtered evidence.

reira Caceres et al. 2022; Heine 2021; Sharma, Sharma, and
Datta 2024). Traditional models struggle to adapt to the dy-
namic nature of societal changes and new information (Guo,
Schlichtkrull, and Vlachos 2022).

The emergence of large language models, such as Chat-
GPT (Ouyang et al. 2022), GPT-3.5 (Brown et al. 2020)
and GPT-4 (OpenAI et al. 2024), represents a major ad-
vancement in overcoming the challenge of limited knowl-
edge data. Trained on billions of text sources, these models
develop their own knowledge bases, enable them to han-
dle complex reasoning tasks (Hao et al. 2023). Continu-
ously updated with new data, they play a crucial role in the



fact-checking domain by enhancing accuracy and efficiency
(Peng et al. 2023). However, attempts to use these models
directly for fact-checking, such as verdict prediction, have
often resulted in inaccurate evaluations, as demonstrated
by studies like Lee et al. (2020a,b) and Pan et al. (2021),
highlights the challenges in generative model applications
(Guo, Schlichtkrull, and Vlachos 2022). Some works have
also attempted to overcome these challenges by employing
Retrieval Augmented Generation (RAG) models, however
these models depend strongly on external knowledge bases
which can outdate or even worse, publish unchecked inac-
curacies (Gao et al. 2024).

To address the challenges in claim evaluation, we propose
an evidence generation pipeline, EviGenerate, designed to
produce accurate evidence for fact-checking claims. Instead
of directly asking the model to make a verdict, which risks
hallucinations if the model lacks sufficient knowledge, our
pipeline splits the task into two subtasks: evidence gener-
ation and verdict classification. This approach ensures the
model first generates evidence based on what it knows, be-
fore making a verdict solely on the generated evidence. By
separating reasoning into these steps, we significantly re-
duce the chance of introducing hallucinated information dur-
ing the process.

We leverage continuously updated language models like
GPT-3.5 (Brown et al. 2020) and GPT-4 (OpenAI et al.
2024) to keep the fact-checking process aligned with evolv-
ing information. The pipeline employs strategies such as
Named Entity hints, question formulation, relation expla-
nation, cross-examination, and truthful critics (Brown et al.
2020; Cohen et al. 2023). Through human evaluation, we
identify three optimal prompts, enhance clarity via filter-
ing methods, and predict verdicts using models like BERT,
RoBERTa, DeBERTa, OPT, GPT-3.5, and GPT-4.

For claim correction, we use models like T5, Flan T5,
GPT-3.5, and GPT-4 to reconstruct claims with false in-
formation masked out (Thorne and Vlachos 2021). The
pipeline, detailed in Figure 1, is evaluated on a modified
FEVER dataset comprising 10,000 claims labeled as ”Sup-
ports” or ”Refutes”.

Our contribution to the field can be succinctly summa-
rized through the following key points:

Novel Evidence Generation Approach: We introduce a
novel evidence generation approach for verdict prediction
and correction tasks. Our best claim verification model
based on DeBERTa provides to get a F1 score of 0.912. The
best claim correction model T5-3B ensures a testing SARI
Keep score of 0.721.

Prominent Prompting Strategies: We explore existing
prompting strategies such as cross-examination and rela-
tion explanation, which have not been used previously in
this domain. In addition, we introduce diverse and effective
prompting strategies for both evidence generation and filter-
ing. Our approach involves crafting prompts that stimulate
informative responses and elucidate relationships between
entities.

Related Works
In this section, we discuss works from the domain of auto-
mated fact-checking, LLMs in automated fact-checking and
LLM prompting, on the intersection of which this work lies.

Automated Fact-Checking
The structured framework of automated fact-checking en-
compasses five key tasks: claim detection, evidence re-
trieval, verdict prediction, justification production, and
fact correction. In the claim detection task, the focus is on
identifying claims that are socially significant, determined
by their relevance and importance to the general public (Has-
san, Li, and Tremayne 2015). This preliminary step sets the
stage for the subsequent processes.

Evidence retrieval deals with collecting relevant informa-
tion, be it text, tables, or metadata, essential for generating
convincing verdict justifications (Ma et al. 2016; Zubiaga
et al. 2016; Gorrell et al. 2019). However, the challenge
persists: not all available information is trustworthy. While
some models have implicitly assumed access to trusted
sources like encyclopedias or vetted search engine results,
real-world applications demand curated evidence through
manual journalism, automated means, or their combination
(Thorne et al. 2018; Augenstein et al. 2019; Li et al. 2015).

Verdict prediction emerges as a critical part, where the
system endeavors to determine the veracity of identified
claims. This can range from binary classifications to nu-
anced multi-class labels, mirroring the approaches of jour-
nalistic fact-checking agencies (Nakashole and Mitchell
2014; Popat et al. 2016; Potthast et al. 2018; Wang 2017; Al-
hindi, Petridis, and Muresan 2018; Shahi and Nandini 2020).
The challenge here lies in steering clear of overly definitive
claims, acknowledging the inherent limitations of the mod-
els (Graves 2018).

The final stage, justification production, adds a layer
of complexity. Justifying decisions is imperative to con-
vince users of the model’s interpretation of evidence. At-
tention weights, logical systems, and summarization tech-
niques come into play to articulate how retrieved evidence
was utilized, all underpinning the need for explainability in
an era of black-box models (Popat et al. 2018; Shu et al.
2019; Lipton 2018; Atanasova et al. 2020; Gad-Elrab et al.
2019; Ahmadi et al. 2019).

More recently, studies have also delved into fact correc-
tion for both claims and abstractive summaries, addressing
the challenge of correcting factual errors (Thorne and Vla-
chos 2021). While prior methods focused on entity-level
errors, recent approaches, such as SpanFact (Dong et al.
2020) and token fact correction (Shin, Park, and Song 2023),
demonstrate advancements in enhancing factual consistency
in system-generated summaries, bridging gaps in real-world
applications. In addition new approaches for mitigation of
misinformation has also been proposed (Sharma, Datta, and
Sharma 2024), which is out of scope of this work.

LLMs in Automated Fact-Checking
The concept of employing large language models (LLMs)
for claim correction and verification has seen significant ad-
vancements in recent years. Our inspiration originates from



the claim correction pipeline introduced by Thorne and Vla-
chos (2021), which marks a pivotal shift in this domain.
However, the approach, like many others in this field, heav-
ily relied on external knowledge bases for both verification
and correction processes. These databases often require fre-
quent manual updates, rendering them impractical for real-
time applications.

An emerging trend, as evidenced in the works of Lee et al.
(2020b,a), is the utilization of transformer-based language
models’ knowledge bases for automatic detection and fact-
checking of claims. This approach offers considerable bene-
fits in terms of speed, scalability, and versatility. Nonethe-
less, Guo, Schlichtkrull, and Vlachos (2022) highlights a
critical drawback: these large language models, despite their
efficiency, often harbor biases that can impede the produc-
tion of accurate justifications.

To address these concerns, researchers like Barikeri et al.
(2021) have explored various debiasing techniques. These
include Language Model Debiasing Loss, Attribute Distance
Debiasing, Hard Debiasing Loss, and Counterfactual Aug-
mentation. Despite their effectiveness, such methods require
extensive computational resources and risk compromising
the integrity of the underlying knowledge base.

LLM Prompting
LLM Prompting refers to the process of providing a textual
input or “prompt” to a large-scale language model, which
then generates a response based on that input. Recent studies
have shifted focus towards the use of prompting strategies to
increase task performance and mitigate the logical errors in-
herent in LLMs. Cohen et al. (2023) pioneered an approach
where LLMs are pitted against each other to cross-examine
information, while Hu et al. (2023), Zeng and Gao (2023)
explored the restructuring of claims through prompting be-
fore classification. Pan et al. (2023) innovatively employed
an ensemble of language models to dissect and analyze sub-
claims for a comprehensive evaluation of the original claim.

In contrast to these methods, our work proposes a novel
approach that leverages the knowledge bases of language
models not for direct fact-checking but for generating re-
liable evidence. This evidence serves as the foundation for
the subsequent verification and correction of claims. Our
methodology encompasses smart prompt engineering to ex-
tract necessary evidence, eliminate errors and biases, and
filter relevant information for effective fact-checking. The
subsequent sections will detail the steps involved in our ap-
proach.

Data
We use the modified FEVER dataset provided by Thorne &
Vlachos (2021). The dataset contains 60000 different claims
with the labels ‘Supports”, Refutes” or Not Enough Informa-
tion”. This modified FEVER dataset also includes corrected
claims for the Refutes” labelled claims. These annotations
allow us to build both a verification and a correction tool.
The dataset also includes references to the evidence needed
for the fact-check, but as we generate the evidence ourselves,
we disregard the given evidence of the dataset. We disre-
gard claims with the label Not Enough Information” from

our dataset. We do this as LLMs have difficulty expressing
uncertainy which is crucial for classifying claims that do not
have enough information about them (Xiong et al. 2023).
Additionally, we can not use claims with Not Enough Infor-
mation” labels in correction as they do not have a corrected
counterpart in the dataset (Thorne et al. 2018).

For computational efficiency, we sample 5,000 ”Sup-
ports” and 5,000 ”Refutes” claims, dividing the 10,000 se-
lected claims into training (80%) and testing (20%) subsets.
This yields 4,000 training and 1,000 testing claims per label.

Methodology
We introduce EviGenerate, a generated evidence based au-
tomatic fact-checking pipeline. The pipeline consists of four
different phases:
• Phase I - Evidence generation
• Phase II - Evidence filtering
• Phase III - Claim verification
• Phase IV - Claim correction

The pipeline can be also seen in Figure 1. For all prompts
we use the OpenAI API1 to access both GPT-3.5-turbo-0125
and GPT-4-1106-preview. We choose these two as those
were the latest available at the time of running the experi-
ments. We run each prompt in a separate GPT instance to
ensure the zero-shot setting of evidence generation.

Phase I - Evidence generation
In total, we integrate five distinct strategies to create a set
of 15 prompts, each designed to generate evidence related to
the claims. We select the strategies with the aim of extracting
as much information as possible about the entities and the
relation between the entities in the claim. The more detailed
rationale behind choosing these strategies and their synergy
in evidence generation is detailed in each subsections. We
refer to the first Language Model (LLM) that receives the
initial prompt as the ‘primary LLM’. If we need to use an-
other LLM to work with the output from the primary LLM,
we call this the ‘secondary LLM’. Essentially, the secondary
LLM is employed when there is an interaction between the
two models.

Named Entity and Keyphrase Hints: In order to disam-
biguate entities within a claim and enhance the model’s un-
derstanding, we employed Named Entity hints. By explicitly
providing Named Entity Recognition (NER) tags and entity
names as hints in our prompts, we aimed to guide the Lan-
guage Model (LLM) in accurately identifying the intended
entity within the claim. This strategy was designed to re-
duce ambiguity arising from words with multiple meanings,
enabling the model to generate evidence with a more precise
interpretation of the specified entities.

To implement this approach, we used both SpaCy2 and
StanfordNLP3 for the NER tagging task. In addition to us-
ing NER tags, we also explored an alternative strategy based

1https://openai.com/blog/openai-api
2https://spacy.io/api/entityrecognizer
3https://stanfordnlp.github.io/CoreNLP/ner.html



on keyphrase extraction, where the model was provided
with only the extracted entity names and phrases, omitting
the use of explicit NER tags. For keyphrase extraction, we
used KeyBERT4, which after manual evaluation of 50 exam-
ples demonstrated better performance compared to the NER-
based approach and was therefore selected as the preferred
method for this task.

Question formulation: To stimulate informative re-
sponses, we create prompts that involve generation of ques-
tions based on NER tokens and keyphrases. The LLM was
assigned the dual role of formulation and answering these
questions, which aimed to get comprehensive information
about specific entities and their interconnections. This ap-
proach promotes an interactive and iterative dialogue with
the model, encouraging it to explore and provide compre-
hensive insights, thereby enriching the information retrieval
process.

Relation explanation: To elucidate relationships between
entities, we develop prompts that instruct the LLM to ex-
plain connections between NER tokens and keyphrases. This
strategy aim to uncover contextual information and provide
insights into the associations between entities. For exam-
ple, by understanding the relationship between “The Boston
Celtics” and “TD Garden” one can determine the relation of
“The Boston Celtics is an NBA basketball team which plays
its home games at TD Garden arena”

Cross-examination: In a simulated cross-examination
scenario, we tasked the examiner (primary LLM) with veri-
fying the correctness of a given claim (“The Boston Celtics
play their home games at TD Garden.”) as introduced by
Cohen et al. (2023). The examiner interacted with the exam-
inee (secondary LLM) by posing short questions, gradually
building a case to confirm or refute the claim. This strategy
leveraged iterative questioning to assess the accuracy of pro-
vided information.

Truthful critic: We use a modified role-playing prompt
strategy introduced by Kong et al. (2023). In our version the
primary LLM played the role of a truthful critic, whose job is
to ask questions from a claimant (secondary LLM) in order
to gather truth about the claim. The critic then summarizes
the acquired information while not giving judgements to the
truthfulness of the generated evidence. While the truthful
critic and cross-examination methods seems similar, the as-
pect of taking a specific role and not giving judgements is
what differenciates these two from each other.

Selection of best prompts: We evaluate the quality of the
15 prompts on a subset of 150 claims. We ask three human
annotators to rank the prompts and select the top 3 best per-
forming prompts based on mutual agreement. When evaluat-
ing the human evaluators focused on conciseness (how short
the evidence was), usefulness (can the claim be proven/dis-
proven given the evidence) and clarity (how clear the ev-
idence was). It is crucial to note that these annotators were
not associated with the paper writing and were provided with

4https://github.com/MaartenGr/KeyBERT

specific instructions to assess the prompts based on their out-
puts. Based on the agreement among the three annotators,
the prompts selected were:

• Generate Question and Answers Using Keyphrases (QA-
Prompt)

• Relation Based Prompt Using Keyphrases (Relation-
Prompt)

• Cross-Examination (CE-Prompt)

Phase II - Evidence filtering
The generated evidence may contain noise, parts that are ir-
relevant or unclear, or it might be excessively lengthy. To
tackle this issue, we employ different filtering methods to
make the generated evidence even more concise, useful and
clear. We employ three different strategies:

• Selection of the last paragraph

• Summary request to the primary LLM

• Summary request to a secondary LLM

We employ all of these filtering methods to our previously
selected best prompts (exception here being selecting last
paragraph of cross-examination).

Selection of the last paragraph: The intuition behind this
strategy stems from the observation that LLMs often provide
a general explanation or definition at the beginning of their
responses and consolidate the final summary at the end. We
hypothesized that the last paragraph of the response would
contain all the essential information needed to make predic-
tions based on the provided evidence. However, during the
evaluation process, our annotators reviewed a sample of re-
sponses to validate this assumption. Upon analyzing a rep-
resentative set of question-answer pairs, it was determined
that the last paragraph predominantly contained the final
answer to the most recent question, rather than a compre-
hensive summary of all preceding questions. Consequently,
we decided not to use this strategy for prompts following
the cross-examination question-answer format, as it did not
meet our objective of summarizing the entire interaction.

Summary request to the primary LLM: We notice that
the model sometimes gave long essay answers in which the
important details were hidden across different paragraphs,
thus making it cumbersome to find the important details.
Therefore, in this strategy, we additionally ask the same
model, i.e., the primary LLM, to give an overview of his
answer in a more concise (around 100 word) format.

Summary request to a secondary LLM: Apart from the
previous subsection where we additionally ask the primary
LLM to summarize, we also tried summarizing using an-
other model, which we refer as secondary LLM. Our reason-
ing behind using secondary LLM was that a model tend to
over-focus on the initial prompt/question even if it is asked
to summarize the provided answer. Based on our experi-
ments, we observe that the primary LLM proactively en-
gaged in correcting or classifying the original claim, even



though it wasn’t explicitly instructed to undertake such ac-
tions. By employing a secondary model to perform the sum-
marizing, we aimed to achieve a more balanced representa-
tion of the entire text, avoiding the bias towards the initial
prompt.

Selection of best filtered prompts: Building on our pre-
viously established selection of the best prompts, we intro-
duced three distinct filtering methods to refine the outputs
of these prompts further. For each of the top prompts, we
identified the most effective filter by applying them to a
specific set of 150 claims. Total of three human evaluators
were used to select the best filtering method for each of our
top 3 prompts based on mutual agreement. As previously
mentioned in Section , the annotators focus on conciseness,
usefulness and clarity to rank the outputs. The final set of
prompts and their best filters are as follows:

• QA-Prompt + Summary request to a secondary LLM
• Relation-Prompt + Summary request to a secondary

LLM
• CE-prompt + Summary request to the primary LLM

Phase III - Claim verification
In the verdict prediction phase, our objective is to catego-
rize claims into two distinct classes: “Supports” and “Re-
futes”. To achieve this, we implement a classification model
that takes as input the concatenation of the original claim
and the generated-filtered evidence, and outputs the class
of the claim. This approach allows the model to leverage
both the inherent information in the claim and the rele-
vant evidence produced during the evidence generation and
filtering stages. We fine-tune several state-of-the-art mod-
els, including BERT-base, RoBERTa-base, RoBERTa-large,
DeBERTa-v3-base and OPT to assess their performance in
capturing the nuanced relationships between claims and evi-
dence. We evaluate the model performance on our before-
mentioned prepared test set. We create neural networks
consisting of the transformer followed by a linear layer, a
dropout layer, and finally, a linear layer to obtain the final
output. We utilize cross entropy as the loss function and
fine-tune the models for 10 epochs, with train batch size 8
and initial learning rate 10−5 with Adam optimizer. In ad-
dition, we also assess generative models such as GPT-3.5-
turbo-0125 and GPT-4-1106-preview for the same task with
and without the previously generated evidence as an ablation
study.

Phase IV - Claim correction
We employ the T5 claim correction procedure as introduced
by Thorne and Vlachos (2021). We select the best perform-
ing solution, where the training masks were random and test
masks were heuristic (masking tokens which are not in com-
mon between the claim and the evidence). We evaluate the
model performance on our prepared test set. We fine-tune
several models including T5-small, T5-base, T5-large, T5-
3B, Flan T5-small, Flan T5-base, Flan T5-large for our pur-
pose. The input to the language models is structured in the
following way: “corrector: claim: (masked claim) evidence:

(evidence)”, for example, if the claim is “Ketogenic diet is
incapable of containing carbohydrates” and the generated
evidence is “The ketogenic diet is a low-carbohydrate, high-
fat diet that...”, the prompt to the language models will be
“corrector: claim: Ketogenic diet is incapable of contain-
ing carbohydrates evidence: The ketogenic diet is a low-
carbohydrate, high-fat diet that...”. We utilize AdamW op-
timizer with an initial learning rate 3 ∗ 10−5. To fine-tune
large and xl models, we employ Low-Rank Adaptation of
Language Models and Quantization techniques discussed by
Hu et al. (2021) with rank 32, LoRA alpha 32, and LoRA
dropout 0.05. In addition, we also assess generative mod-
els such as GPT-3.5-turbo-0125 and GPT-4-1106-preview
for the same task with and without the previously generated
evidence as an ablation study.

Results
In this Section, we present comprehensive results of our ex-
perimental evaluations on Claim Verification and Claim Cor-
rection phases. Our analysis encompasses a range of models,
including DeBERTa-v3-base, RoBERTa-base, RoBERTa-
large, OPT, BERT-base, GPT-3.5-turbo-0125 and GPT-4-
1106-preview for Claim Verification. For Claim Correction
we employ GPT-3.5-turbo-0125, GPT-4-1106-preview and
T5 variants in small, base, large, and XL sizes. We compare
the performance for Claim Verification on the basis of F1
score, precision, recall, and accuracy and Claim Correction
on the basis of ROUGE (Lin 2004), BLEU (Papineni et al.
2002), and SARI (Xu et al. 2016), respectively. The follow-
ing subsections detail the performance of each model in both
tasks.

Claim Verfication
In this Subsection, we present the comparative results of the
verification models along with their performance with re-
spect to different prompting techniques in detail.

Table 1 presents the evaluation results for various mod-
els on the testing data across three different prompts and
their corresponding optimal filters. The model checkpoint
selected for evaluation is determined by the minimum loss
value observed during fine-tuning.

For the QA-Prompt + Requesting a summary from a sec-
ondary LLM method, DeBERTa-v3-base with GPT-4-1106-
preview evidence exhibits the highest accuracy 88.90% and
F1 score 0.890 among the models. DeBERTa-v3-base with
GPT-3.5-turbo-0125 evidence exhibits comparable perfor-
mance, an accuracy of 87.65% and F1 score of 0.878,
while OPT with GPT-3.5-turbo-0125 evidence performs
worst amongst the evaluated models with an accuracy of
79.99% and F1 score of 0.810. Notably, while GPT-4-1106-
preview showcases superior precision (0.911), DeBERTa-
v3-base gives best recall (0.899), emphasizing its robust per-
formance across various metrics.

In the case of the Relation-Prompt + Requesting a sum-
mary from a secondary LLM method, DeBERTa-v3-base
with GPT-4-1106-preview evidence again stands out with an
accuracy of 89.00% and an F1 score of 0.892. The second
best-evaluated model is RoBERTa-large with GPT-4-1106-
preview evidence resulting in an accuracy of 88.70% and



Evidence Model Method Model Accuracy F1 Score Precision Recall

GPT-3.5-turbo-0125

QA-Prompt +
Summary
request from a
secondary LLM

DeBERTa-v3-base 87.65 0.878 0.868 0.888
RoBERTa-base 83.55 0.840 0.819 0.862
BERT-base 82.80 0.828 0.829 0.826
RoBERTa-large 86.05 0.863 0.848 0.878
OPT 79.65 0.795 0.801 0.789
GPT-3.5-Turbo-0125 79.99 0.810 0.829 0.784

Relation-Prompt +
Summary
request from a
secondary LLM

DeBERTa-v3-base 86.00 0.867 0.826 0.912
RoBERTa-base 83.55 0.841 0.803 0.883
BERT-base 81.55 0.818 0.806 0.831
RoBERTa-large 85.70 0.863 0.828 0.902
OPT 81.35 0.818 0.798 0.840
GPT-3.5-turbo-0125 78.33 0.810 0.721 0.925

CE-prompt +
Summary
request from
the primary LLM

DeBERTa-v3-base 89.10 0.890 0.895 0.886
RoBERTa-base 86.40 0.864 0.864 0.864
BERT-base 85.25 0.849 0.867 0.833
RoBERTa-large 88.25 0.882 0.884 0.880
OPT 84.05 0.838 0.845 0.827
GPT-3.5-turbo-0125 81.01 0.814 0.799 0.829

GPT-4-1106-preview

QA-Prompt +
Summary
request from a
secondary LLM

DeBERTa-v3-base 88.90 0.890 0.881 0.899
RoBERTa-base 86.05 0.863 0.848 0.879
BERT-base 82.70 0.823 0.841 0.807
RoBERTa-large 86.85 0.872 0.852 0.892
OPT 81.80 0.830 0.779 0.888
GPT-4-1106-preview 85.66 0.846 0.911 0.790

Relation-Prompt +
Summary
request from a
secondary LLM

DeBERTa-v3-base 89.00 0.892 0.874 0.911
RoBERTa-base 86.25 0.864 0.852 0.877
BERT-base 82.90 0.835 0.806 0.866
RoBERTa-large 88.70 0.890 0.867 0.914
OPT 82.45 0.821 0.838 0.805
GPT-4-1106-preview 86.80 0.861 0.912 0.815

CE-prompt +
Summary
request from
the primary LLM

DeBERTa-v3-base 91.00 0.912 0.891 0.934
RoBERTa-base 87.60 0.878 0.864 0.892
BERT-base 85.20 0.854 0.844 0.864
RoBERTa-large 90.00 0.900 0.899 0.901
OPT 84.15 0.841 0.845 0.836
GPT-4-1106-preview 90.03 0.897 0.925 0.872

No Evidence GPT-3.5-turbo-0125 79.87 0.800 0.794 0.807
GPT-4-1106-preview 87.41 0.869 0.905 0.836

Table 1: Results for the various models used in the Claim Verification Phase.

an F1 score of 0.890. Again the worst-performing model is
OPT with GPT-3.5-turbo-0125 evidence with an accuracy of
79.65% and F1 score of 0.795.

The CE-prompt + Requesting a summary from the pri-
mary LLM method demonstrates DeBERTa-v3-base with
GPT-4-1106-preview evidence as the top performer, achiev-
ing the highest accuracy 91.00% and F1 score 0.912. It also
maintains a high recall 0.934, highlighting its overall effec-
tiveness. Suprisingly, the second best model GPT-4-1106-
preview with GPT-4-1106-preview evidence gives the best
precision 0.925. BERT-base and OPT exhibit lower perfor-
mance across all metrics, around 5− 7% lower compared to
the best performing model in terms of accuracy.

Therefore, we observe that DeBERTa-v3-base performs
consistently better by 1 − 8% in F1 score than BERT-base,
RoBERTa-base, RoBERTa-large, OPT, GPT-3.5-turbo-0125

or GPT-4-1106-preview for verification irrespective of dif-
ferent prompts, summarization strategies or evidence gener-
ation models. Additionally, we observe that CE-prompt con-
sistently outperforms the Relation-Prompt and QA-Prompt
across F1 score by around 2% and 3% respectively. Our re-
sults also highlight the efficiency (2-3% higher accuracy) of
evidence generation methods compared to running GPT-3.5-
turbo-0125 or GPT-4-1106-preview without the evidence.

Claim Correction
Here we present a detailed analysis of the results of claim
correction tasks across GPT-3.5-turbo-0125, GPT-4-1106-
preview and T5 model variants, including small, base, large,
and XL sizes. In the automated assessment of the Claim Cor-
rection phase, we employ SARI, i.e., a metric specifically
designed for evaluating sentence simplification. SARI com-



Method Name Model Name ROUGE-1 ROUGE-2 ROUGE-L BLEU SARI Keep SARI Delete SARI Add SARI Final

QA-Prompt +
Summary
request from a
secondary LLM

T5-small 0.739 0.583 0.733 0.394 0.562 0.472 0.115 0.383
Flan T5-small 0.743 0.585 0.737 0.400 0.560 0.468 0.115 0.381
T5-base 0.768 0.627 0.764 0.452 0.594 0.485 0.125 0.401
Flan T5-base 0.774 0.633 0.769 0.452 0.591 0.488 0.133 0.404
T5-large 0.707 0.550 0.697 0.364 0.534 0.468 0.114 0.372
Flan T5-large 0.765 0.621 0.759 0.446 0.587 0.497 0.140 0.408
T5-3B 0.775 0.640 0.770 0.465 0.606 0.506 0.151 0.421
GPT-3.5-turbo-0125 0.697 0.553 0.690 0.332 0.635 0.552 0.078 0.422

Relation-Prompt +
Summary
request from a
secondary LLM

T5-small 0.787 0.654 0.782 0.489 0.610 0.431 0.123 0.388
Flan T5-small 0.787 0.654 0.783 0.488 0.608 0.439 0.127 0.392
T5-base 0.810 0.691 0.807 0.537 0.640 0.463 0.140 0.414
Flan T5-base 0.811 0.692 0.808 0.537 0.641 0.472 0.146 0.420
T5-large 0.808 0.687 0.803 0.530 0.639 0.469 0.150 0.419
Flan T5-large 0.801 0.678 0.796 0.521 0.632 0.472 0.154 0.419
T5-3B 0.814 0.699 0.809 0.549 0.645 0.473 0.158 0.426
GPT-3.5-turbo-0125 0.715 0.567 0.708 0.343 0.631 0.533 0.076 0.413

CE-prompt +
Summary
request from the
primary LLM

T5-small 0.836 0.738 0.832 0.589 0.687 0.459 0.151 0.432
Flan T5-small 0.840 0.746 0.837 0.604 0.694 0.479 0.160 0.444
T5-base 0.857 0.773 0.854 0.640 0.711 0.493 0.188 0.464
Flan T5-base 0.863 0.779 0.862 0.646 0.711 0.502 0.196 0.470
T5-large 0.858 0.773 0.854 0.638 0.713 0.517 0.197 0.476
Flan T5-large 0.854 0.765 0.850 0.627 0.710 0.528 0.198 0.479
T5-3B 0.865 0.782 0.862 0.650 0.721 0.521 0.202 0.482
GPT-3.5-turbo-0125 0.720 0.571 0.714 0.346 0.640 0.554 0.080 0.425

No Evidence GPT-3.5-turbo-0125 0.778 0.618 0.773 0.384 0.660 0.575 0.0845 0.440

Table 2: Results for the various models used in the Claim Correction Phase using evidence generated using GPT-3.5-turbo-
0125. The last row presents the ablation results of using GPT-3.5-turbo-0125 directly without evidence.

prises of four key components:
SARI Keep: This component measures the F1 score of n-
grams that are retained from the source sentence in the out-
put. It evaluates how well the simplified sentence maintains
important content from the original.
SARI Delete: SARI Delete assesses the n-grams that are
present in the source sentence but are deleted in the output. It
helps capture the information loss or deletion of unnecessary
details during the simplification process.
SARI Add: This component focuses on the n-grams that
are added to the output sentence but were not present in the
source. SARI Add evaluates the introduction of new infor-
mation or details that were not in the original sentence.
SARI Final: SARI Final is a composite metric that com-
bines the scores from SARI Keep, SARI Delete, and SARI
Add. It provides an overall evaluation of the sentence simpli-
fication output, taking into account both retention and mod-
ification of n-grams.

Additionally, we include BLEU and ROUGE in our re-
porting to signify the precision and recall of the correc-
tion process. As Thorne and Vlachos (2021) mention SARI
Keep scores have the highest correlation to manual eval-
uation, we compare our models primarily on SARI Keep
scores. Tables 2 and 3 present these metrics for the heuristic
masking testing dataset for GPT-3.5-turbo-0125 and GPT-4-
1106-preview respectively.

For the QA-Prompt + Requesting a summary from a sec-
ondary LLM method, the newer models, such as GPT-3.5-
turbo-0125 and GPT-4-1106-preview demonstrate higher
performance across most metrics, about a 30% increment
in SARI Final scores (0.476 compared to 0.359) compared
to smaller T5 variants. Notably, Flan T5-large outperforms
its counterpart T5-large, showcasing improved scores in

ROUGE-1 (≈ 7%, 0.765 compared to 0.707), ROUGE-
2 (0.621 compared to 0.550), and ROUGE-L (0.759 com-
pared to 0.697). The SARI metrics for Keep (0.674), Delete
(0.612), and Add (0.141) operations indicate best perfor-
mance with GPT-4-1106-preview, underlining the effective-
ness of GPT models for this prompt.

Relation-Prompt + Requesting a summary from a sec-
ondary LLM method, similar trends emerge. Larger and
newer models consistently outperform smaller and older
ones, with GPT-4-1106-preview exhibiting the highest
scores, SARI Keep score of 0.682. The Flan-T5 variants
again outperform their counterpart T5 models. The SARI
metrics further reinforce this observation, indicating im-
provements in content retention (Keep), deletion accuracy
(Delete), and new information integration (Add) for the gen-
erative models, highlighting an improvement of up to 10%
in SARI scores.

For the CE-prompt + Requesting a summary from the
primary LLM method T5-3B, demonstrates superior per-
formance and SARI Keep score of 0.721 compared to
0.640 and 0.706 for GPT-3.5-turbo-0125 and GPT-4-1106-
preview, respectively. The SARI metrics are however vary
on the best model as the best SARI Delete score is given
by GPT-4-1106-preview (0.655 compared to 0.459), while
best SARI Add score (0.202 compared to 0.080) is given by
T5-3B.

Therefore, we observe that T5-3B with GPT-3.5-turbo-
0125 evidence performs better in SARI Keep score than T5-
small, T5-base, T5-large, Flan T5-small, Flan T5-base, Flan
T5-large, GPT-3.5-turbo-0125 and GPT-4-1106-preview.
Additionally, we observe CE-prompt + Requesting a sum-
mary from the primary LLM generally outperforms the other
methods across all model sizes and metrics. This method



Method Name Model Name ROUGE-1 ROUGE-2 ROUGE-L BLEU SARI Keep SARI Delete SARI Add SARI Final

QA-Prompt +
Summary
request from a
secondary LLM

T5-small 0.690 0.531 0.687 0.345 0.518 0.471 0.089 0.359
Flan T5-small 0.697 0.538 0.693 0.352 0.520 0.463 0.091 0.358
T5-base 0.722 0.578 0.719 0.401 0.551 0.487 0.114 0.384
Flan T5-base 0.728 0.583 0.725 0.404 0.542 0.477 0.111 0.377
T5-large 0.718 0.572 0.713 0.397 0.548 0.490 0.116 0.385
Flan T5-large 0.720 0.574 0.715 0.398 0.552 0.500 0.116 0.390
T5-3B 0.728 0.591 0.724 0.422 0.562 0.499 0.129 0.400
GPT-4-1106-preview 0.770 0.647 0.766 0.432 0.674 0.612 0.141 0.476

Relation-Prompt +
Summary
request from a
secondary LLM

T5-small 0.715 0.564 0.710 0.393 0.558 0.304 0.091 0.317
Flan T5-small 0.721 0.568 0.716 0.400 0.533 0.460 0.114 0.369
T5-base 0.742 0.610 0.738 0.455 0.568 0.476 0.132 0.392
Flan T5-base 0.744 0.607 0.740 0.453 0.600 0.348 0.122 0.356
T5-large 0.739 0.602 0.735 0.444 0.563 0.496 0.141 0.400
Flan T5-large 0.738 0.599 0.734 0.440 0.563 0.491 0.134 0.396
T5-3B 0.746 0.614 0.742 0.459 0.578 0.500 0.144 0.407
GPT-4-1106-preview 0.784 0.665 0.780 0.454 0.682 0.600 0.148 0.477

CE-prompt +
Summary
request from the
primary LLM

T5-small 0.794 0.670 0.791 0.491 0.646 0.497 0.131 0.425
Flan T5-small 0.798 0.673 0.793 0.501 0.645 0.490 0.143 0.426
T5-base 0.820 0.712 0.818 0.553 0.676 0.528 0.173 0.459
Flan T5-base 0.825 0.714 0.822 0.552 0.672 0.528 0.172 0.458
T5-large 0.818 0.704 0.812 0.539 0.670 0.535 0.178 0.461
Flan T5-large 0.816 0.701 0.811 0.535 0.673 0.546 0.174 0.465
T5-3B 0.829 0.722 0.824 0.560 0.681 0.537 0.183 0.467
GPT-4-1106-preview 0.799 0.682 0.796 0.478 0.706 0.631 0.166 0.501

No Evidence GPT-4-1106-preview 0.802 0.685 0.799 0.477 0.707 0.655 0.187 0.516

Table 3: Results for the various models used in the Claim Correction Phase using evidence generated using GPT-4-1106-
preview. The last row presents the ablation results of using GPT-4-1106-preview directly without evidence

achieves higher scores in terms of ROUGE (≈ 5 − 15%),
BLEU (≈ 15−30%), and SARI (≈ 10−15%), indicating its
efficacy in generating more accurate and semantically simi-
lar corrections. Suprisingly, GPT-4-1106-preview tend to get
higher SARI Delete scores than the other models, indicating
that it is prone to not use words from the original claim when
correcting. We additionally highlight that for GPT-4-1106-
preview running the correction without evidence yielded the
best SARI Keep scores, which can indicate that evidence is
not as important for correcting sentences as it is for verifing
them.

Summary of Results
In our study, we have demonstrated the competitive capabil-
ities of EviGenerate in both claim verification and claim cor-
rection tasks, as evidenced by the performance results pre-
sented in Tables 1, 2 and 3. For both tasks, the highest scores
were given using the CE-prompt + Summary request from
the primary LLM. This highlights the efficiency of breaking
large challenges into smaller tasks to improve overall effi-
ciency of LLM problem solving.

Claim Verification: We have successfully established
EviGenerate as a working solution. Our best model achieved
an accuracy of 91.00% and F1 score of 0.912, compared to
our best results without evidence generation with accuracy
of 87.41 and 0.869.

Claim Correction: Our assessment using the SARI met-
ric yielded insightful results:
SARI Keep: We achieved the highest score with T5-
3B with GPT-3.5-turbo-0125 generated evidence, scoring
0.721, which shows our model’s effectiveness in retaining
essential content during correction.

SARI Delete: Suprisingly GPT-4-1106-preview without ev-
idence gave the best score of 0.521. This indicates the
model’s cautious approach in deletion, prioritizing context
preservation when given additional evidence.
SARI Add: With the best score of 0.202, T5-3B with GPT-
3.5-turbo-0125 generated evidence model demonstrated a
balanced addition of information, crucial for maintaining the
accuracy and relevance of corrections.
SARI Final: The best overall SARI Final score stood at
0.516 using GPT-4-1106-preview without evidence. This
score reflects the model’s comprehensive and balanced ca-
pabilities in text modification.

As SARI Keep is the closest to human evaluation for
claim correction tasks, we highlight that we consider T5-
3B with GPT-3.5-turbo-0125 generated evidence the best
for this task. However its important to note that there were
marginal differences in results when it came to using or not
using evidence generation. This highlights the difficulty of
the claim correction task and shows that generative evidence
does not provide a large increase in performance in this chal-
lenge.

Conclusions
This study introduces EviGenerate, an automated fact-
checking system that integrates advanced language models
for improved evidence generation. The system’s notable fea-
tures include a novel evidence generation pipeline and so-
phisticated prompting strategies, which facilitate the accu-
rate verification and correction of information across varied
domains. EviGenerate’s performance, as indicated by its F1
score of 0.912 in claim verification using DeBERTa and a
SARI Keep score of 0.721 in claim correction with T5-3B,
reflects its capability to handle complex online information.
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Appendix
The appendix is structured into two sections: (A) Limita-
tions and (B) Ethics Statement.

Limitations
In this section we highlight the various remaining challenges
in the domain of using large language models for generating
evidence.

Justification production
One important part of automated fact-checking is justifica-
tion production, which allows users to evaluate the machine
learning output reasoning. We note that with black-box lan-
guage models such as the ones used in our work, the task
of justification production is difficult if not impossible. This
is due to the fact that language models interpret language
differently than humans and analysing biases and weights is
thus not reasonable. Additionally continously trained mod-
els, such as GPT-3.5 or GPT-4 are not open-source, thus any
analysis of the weights is also not possible.

Limited knowledge base
Our proposed solution relies on the knowledge bases of
language models to generate relevant evidence. Large lan-
guage models are trained on billions of texts and for some
models (like GPT-3.5 and GPT-4) the training is continu-
ous based on user input and feedback (Ouyang et al. 2022).
However, even then the training data is only a small fraction
of the complete knowledge contained over the internet. Fu-
ture works could improve the system by including external
knowledge into the prompts themselves. This could allow
the model to better understand the underlying context of the
claim and fill its gaps in knowledge.

LLM uncertainty
We only run our full pipeline on the binary classes of
“Refutes” and “Supports”, disregarding the class of “Not
Enough Information” in the process. We decided to take this
route due to the way language models work. As generative
language models are trained to give the most probable an-
swer, they tend to be overconfident in their answers (Xiong
et al. 2023). We noticed that this aspect hindered their abil-
ity to create evidence where the model would confess to not
knowing the answer, thus making classifying “Not Enough
Information” claims impossible with our solution. Future
works could solve this by exploring LLM uncertainty quan-
tification methods to evaluate the output generated before it
is passed on to the classification stage.

Ethics statement
Our work uses only the FEVER dataset (released under
Apache-2.0 license), which consists of collected and mod-
ified claims from Wikipedia (Thorne and Vlachos 2021).
These claims have been human annotated and carefully cu-
rated to not include any personal information or offensive
content not suitable for public consumption. The evaluation
of our prompts were done by anonymous volunteer evalu-
ators. Any personal data of the evaluators was anonymized
and not stored after the end of the project. The evaluators
were not revealed to any harmful content during evaluation.
We ensure full access to our code repository to ensure re-
producibility. Our solution can be misleading in some cases
due to implicit LLM bias and hallucinations. We explain all
limitations (see Section ) in order to mitigate any misuse of
our results. Given the nature of our work and the aforemen-
tioned reasons, we did not require any permissions from our
institution’s Ethical Board Committee.
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