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ABSTRACT

Federated learning is for training a global model without collecting private local
data from clients. As they repeatedly need to upload locally-updated weights or
gradients instead, clients require both computation and communication resources
enough to participate in learning, but in reality their resources are heterogeneous.
To enable resource-constrained clients to train smaller local models, width scaling
techniques have been used, which prunes the channels of a global model. Unfor-
tunately, width scaling suffers from parameter mismatches of channels when ag-
gregating them, leading to a lower accuracy than when simply excluding resource-
constrained clients from training. This paper proposes a new approach based on
depth scaling called DepthFL to solve this issue. DepthFL defines local models
of different depths by pruning the deepest layers off the global model, and al-
locates them to clients depending on their resources. Since many clients do not
have enough resources to train deep local models, this would make deep layers
partially-trained with insufficient data, unlike shallow layers that are fully trained.
DepthFL alleviates this problem by mutual self-distillation of knowledge among
the classifiers of various depths within a local model. Our experiments show that
depth-scaled local models build a global model better than width-scaled ones, and
that self-distillation is highly effective in training data-insufficient deep layers.

1 INTRODUCTION

Federated learning is a type of distributed learning. It trains a shared global model by aggregating
locally-updated model parameters without direct access to the data held by clients. It is particularly
suitable for training a model with on-device private data, such as next word prediction or on-device
item ranking (Bonawitz et al., 2019). Generally, federated learning demands client devices to have
enough computing power to train a deep model as well as enough communication resources to
exchange the model parameters with the server. However, the computation and communication ca-
pability of each client is quite diverse, often changing dynamically depending on its current loads,
which can make those clients with the smallest resources become a bottleneck for federated learn-
ing. To handle this issue, it would be appropriate for clients to have a different-sized local model
depending on their available resources. However, it is unclear how we can create local models of
different sizes, without affecting the convergence of the global model and its performance. There
are various methods to prune a single global model to create heterogeneous local models, such as
HeteroFL (Diao et al., 2021), FjORD (Horváth et al., 2021), and Split-Mix (Hong et al., 2022). They
create a local model as a subset of the global model by pruning channels, that is, width-based scaling.
HeteroFL was a cornerstone research that could make different local models by dividing a global
model based on width, yet still producing a global model successfully. However, we observed some
issues of width scaling. We evaluated HeteroFL compared to exclusive federated learning, which
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simply excludes those clients who do not have enough resources to train a given global model from
training (see Section 4.2). The result shows that the global model of HeteroFL achieves a tangibly
lower accuracy than the models of exclusive learning, due to parameter mismatch of channels when
they are aggregated. In this paper, we propose a different approach of making local models, called
DepthFL. DepthFL divides a global model based on depth rather than width. We construct a global
model that has several classifiers of different depths. Then, we prune the highest-level layers of the
global model to create local models with different depths, thus with a different number of classifiers.
We found that this depth-based scaling shows a better performance than exclusive learning in most
cases, unlike in HeteroFL, since training a local model can directly supervise its sub-classifiers as
well as its output classifier, obviating parameter mismatch of sub-classifiers when aggregated. This
means that depth scaling allows resource-constrained clients to participate and contribute to learn-
ing, although there is a small overhead of separate classifiers. We analyzed the root cause of this
difference between depth scaling and width scaling.

There is one issue in depth scaling, though. There are only a few clients whose local models include
deep classifiers, while many clients have shallow classifiers in their local model. This would make
deep classifiers be partially-trained only with a limited amount of data, so their accuracy might be
inferior to fully-trained shallow classifiers. That is, resource-constrained clients cannot train deep
classifiers, so deep classifiers cannot be general enough to cover the unseen data of those clients. To
moderate this issue, we make the deep classifiers of a local model learn from its shallow classifiers
by knowledge distillation. This is similar to self distillation (Zhang et al., 2019), except that the
direction of distillation is opposite. Actually, we make the classifiers collaborate with each other as
in deep mutual learning (Zhang et al., 2018). So, a client not only trains the classifiers in its local
model using its data, but distills each other’s knowledge at the same time. Our evaluation shows that
deep classifiers can learn from shallow classifiers trained with otherwise unseen data, and that both
classifiers actually help each other to improve the overall performance of the global model. We also
analyzed the fundamental reason for the effectiveness of knowledge distillation in DepthFL, using
an evaluation in a general teacher-student environment.

Recently, InclusiveFL (Liu et al., 2022) proposed a kind of depth-scaled method with a similar
intuition to ours, yet with less elaboration. We show that depth scaling alone in InclusiveFL without
the companion objective of sub-classifiers cannot effectively solve parameter mismatches, and that
its performance of deep classifiers is much lower due to no self distillation. We employed the
latest federated learning algorithm FedDyn (Acar et al., 2021) as the optimizer for proposed method.
Although DepthFL is a framework that focuses on resource heterogeneity of clients, we try to verify
if the FedDyn optimizer that focuses on data heterogeneity is applicable to DepthFL seamlessly. Our
experiment shows that DepthFL works well for both resource heterogeneity and data heterogeneity.

Contributions To summarize, our contributions are threefold:

• We present a new depth scaling method to create heterogeneous local models with sub-classifiers,
which are directly supervised during training, thus no parameter mismatches when aggregated.

• We show that knowledge distillation among the classifiers in a local model can effectively train
deep classifiers that can see only a limited amount of data.

• We perform a comprehensive evaluation on the difference between depth scaling and width scal-
ing using exclusive learning, and on the effectiveness of knowledge distillation in DepthFL.

2 RELATED WORK

2.1 FEDERATED LEARNING

Based on FedAvg (McMahan et al., 2017), the standard federated learning method, there have been
many studies to solve various problems of federated learning (Li et al., 2020a; Kairouz et al., 2019).
One main research field deals with efficient learning algorithms considering the non-IID distribution
of data among clients (Karimireddy et al., 2020; Li et al., 2021b; Wang et al., 2020; Acar et al., 2021;
Li et al., 2020b). For example, FedDyn (Acar et al., 2021) performs exact minimization by making
the local objective align with the global objective, which enables fast and stable convergence. There
are also studies to deal with heterogeneous, resource-constrained clients in federated learning. One
popular method to create heterogeneous local models is to prune the channels of a global model

2



Published as a conference paper at ICLR 2023

Figure 1: Global model (ResNet) parameter Wg has 4 kinds of local models as its subsets, distributed
to m = 6 heterogeneous clients. Each local model has multiple classifiers at different depths.

for width scaling (Diao et al., 2021; Li et al., 2021a; Niu et al., 2020; Horváth et al., 2021; Hong
et al., 2022; Zhu et al., 2022). Based on the general layer-pruning methods (Chen & Zhao, 2019;
Sajjad et al., 2023) that create a shallow model, there is a recent work (Liu et al., 2022) to prune
the layers of a global model for tackling system heterogeneity, but it partially exploits the benefit
of depth scaling and knowledge distillation unlike DepthFL (see Appendix A.3). Another direction
is utilizing knowledge distillation to reduce the burden on clients (He et al., 2020) or to aggregate
heterogeneous local models (Zhang & Yuan, 2021; Lin et al., 2020). Separately, there are researches
to reduce the communication cost by compressing the local models (Rothchild et al., 2020; Had-
dadpour et al., 2021; Reisizadeh et al., 2020). There are also research directions on personalized
federated learning to handle heterogeneity of clients (Li et al., 2021c; Zhang et al., 2021; Hanzely
et al., 2020; T. Dinh et al., 2020).

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation (Hinton et al., 2015) was introduced as a way of training a small student
model with the help of a big teacher model. It was initially thought that the role of knowledge
distillation is transferring high-quality, similarity information among categories, but researches are
still on going to understand its impact such as the relationship with label smoothing regulariza-
tion (Yuan et al., 2020; Tang et al., 2020). As such, variants of knowledge distillation techniques
have been proposed (Huang et al., 2021; Park et al., 2019; Zhang et al., 2018; 2019). Deep mutual
learning (Zhang et al., 2018) allows student models to mutually distill each other’s knowledge with-
out a cumbersome teacher model. Self distillation (Zhang et al., 2019) distills knowledge within a
multi-exit network (Teerapittayanon et al., 2016), from its deep layers to shallow layers for higher
performance, or for faster and accurate inference (Phuong & Lampert, 2019). DepthFL also em-
ploys self distillation within a local model, yet in an opposite direction, mainly for distilling from
fully-trained shallow layers to partially-trained deep layers.

3 DEPTHFL METHOD

This section describes our proposed DepthFL method in detail. We assume that a total of m hetero-
geneous clients participate in federated learning, and that each client k has dk resource capability.
Randomly selected Pt ∈ [m] clients participate in each communication round.

3.1 LOCAL MODELS

We create heterogeneous local models by pruning zero or more of the highest-level layers of the
global model, instead of pruning some channels for all layers as in HeteroFL. Each client can con-
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tribute to the training of the global model by selecting a local model suitable for its resource amount,
in a fixed or dynamic way. Since the highest-level layers are entirely pruned, an additional bottleneck
layer is needed for a local model to become an independent classifier. This means that the global
model should have a different classifier at a different depth. The structure of a global model that
satisfies these conditions can be found in Deeply-Supervised Nets (DSN) (Lee et al., 2015). Each
classifier shares the blocks that create feature maps, and an additional bottleneck layer is attached to
each block so that the local models and the global model have several classifiers inside. Accordingly,
the local model parameters of the client whose resource capability is dk is W dk

l = Wg[: dk], and it
has dk classifiers inside. The overall model structure can be found in Figure 1. DSN can provide
integrated direct supervision to sub-classifiers in addition to the output classifier. DSN exploits it for
better performance, but DepthFL exploits it for consistent training of sub-classifiers across all local
models that includes it to fully exhibit its performance.

This way of creating heterogeneous local models is likely to make deep classifiers learn from a
partial amount of data, because only resource-rich clients can train local models with deep classifiers.
On the other hand, shallow classifiers are likely to be fully trained since many clients can train local
models with them. To mitigate the variance of the performance of different classifiers, it is natural
to use their ensemble for inference. One interesting question is if partially-trained deep classifiers
can really contribute to learning when many clients cannot afford a local model with them. In
our experimental result in Table 4, deep classifiers perform similarly or even worse than shallow
classifiers unless they receive a help, in the form of self distillation described below.

3.2 SELF DISTILLATION

To mitigate the low performance of deep classifiers, DepthFL utilizes the concept of self distillation.
Several classifiers inside a local model are trained through the cross-entropy loss with labels, as
well as the KL loss with the output of other classifiers, as depicted in Figure 1. Previously, self
distillation made shallow classifiers imitate deep classifiers (Zhang et al., 2019; Phuong & Lampert,
2019). Whereas, DepthFL makes deep classifiers imitate shallow classifiers, or more precisely, learn
collaboratively. The local objective function of the client is as follows:

Lk =

dk∑
i=1

Li
ce +

1

dk − 1

dk∑
i=1

dk∑
j=1,j ̸=i

DKL(pj∥pi) (1)

where Li
ce is a cross-entropy loss of ith classifier, and pi are softmax outputs of ith classifier’s

logits. Although FjORD (Horváth et al., 2021) utilized self distillation already, the motivation of
self distillation in FjORD was to allow for the bigger capacity supermodel to teach the width-scaled
submodel. In contrast, the purpose of self distillation in DepthFL is that depth-scaled submodels
help training of bigger capacity supermodels. Also, unlike distillation between width scaled models,
which should run forward pass through teacher supermodel and student submodel independently,
there is no overhead of distillation between depth scaled models except for the bottleneck layers
because they share feature maps.

We use FedDyn (Acar et al., 2021) instead of FedAvg (McMahan et al., 2017) as the default op-
timizer for the above local objective function 1, to make a fast convergence even when there is a
data heterogeneity of clients. When applying dynamic regularization, we replaced the client’s local
objective by the modified heterogeneous local objective of 1. Also, ∇Lk(θ

t
k) and h values required

for dynamic regularization are used and updated in consideration of the heterogeneity of the local
models. Therefore, the penalized local objective function of the client is as follows.

L′
k(θ̃) = Lk(θ̃)− ⟨∇Lk(θ̃

t
k), θ̃⟩+

α

2
||θ̃ − θ̃t||2 (2)

where θ̃ is the local model parameters, ∇Lk(θ̃
t
k) is the gradient of the local objective function

in the previous round, and θ̃t is parts of the current global model’s parameters corresponding to
the local model parameters θ̃. Considering the case where the complexity dk of the client changes
dynamically depending on its current loads,∇Lk(θ

t
k) is stored in the same shape as the entire global

model parameters, and only a subset corresponding to the current local model parameters is used for
actual training. So, the value of∇Lk(θ

t
k) is updated as in the following equation.

∇Lk(θ
t+1
k )[: dk]← ∇Lk(θ

t
k)[: dk]− α(θ̃t+1

k − θ̃t) (3)
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Algorithm 1: DepthFL

Initialization : θ0, h0 = 0,∇Lk(θ
0
k) = 0

Server executes:
for round t = 0, 1, . . . T − 1 do

Pt ← Random Clients
θt+1 ← 0
ht+1 ← ht

for each client k ∈ Pt, and in parallel do
θ̃t ← θt[: dk]

θ̃t+1
k ← Client Update(k, θ̃t)

ht+1[: dk]← ht+1[: dk]−α 1
m
(θ̃t+1

k −θt[: dk])
θt+1[: dk]← θt+1[: dk] + θ̃t+1

k

end
for each resource capability di do

θt+1[di] =
1

|Pdk≥di
t |

θt+1[di]− 1
αh

t+1[di]

end
end

Client Update(k, θ̃t):
θ̃t+1
k ← θ̃t

∇Lk(θ̃
t
k)← ∇Lk(θ

latest updated
k )[: dk]

for local epoch e = 1, 2, . . . E do
for each mini batch b do

Lk =
dk∑
i=1

Li
ce +

1
dk−1

dk∑
i=1

dk∑
j=1,j ̸=i

DKL(pj∥pi)

L′
k(θ̃) = Lk(θ̃)−⟨∇Lk(θ̃

t
k), θ̃⟩+ α

2
||θ̃− θ̃t||2

θ̃t+1
k ← θ̃t+1

k − η∇L′
k(θ̃

t+1
k ;b)

end
end
∇Lk(θ

t+1
k )[: dk]← ∇Lk(θ

t
k)[: dk]− α(θ̃t+1

k − θ̃t)

return θ̃t+1
k

Table 1: (Number of parameters) / [# of MACs] of local models according to division method

Model Method a = W 1
l b = W 2

l c = W 3
l d(Wg) = W 4

l

ConvNet HeteroFL (Width) 99.0 K [4.11 M] 391 K [15.3 M] 877 K [33.6 M] 1.56 M [58.9 M]
DepthFL (Depth) 31.4 K [3.46 M] 178 K [23.6 M] 750 K [43.7 M] 1.94 M [62.6 M]

Resnet-18 HeteroFL (Width) 713 K [35.5 M] 2.82 M [140 M] 6.32 M [314 M] 11.2 M [557 M]
DepthFL (Depth) 480 K [167 M] 1.35 M [310 M] 3.84 M [450 M] 12.3 M [585 M]

Resnet-34 HeteroFL (Width) 1.36 M [73.6 M] 5.38 M [292 M] 12.1 M [655 M] 21.4 M [1.16 G]
DepthFL (Depth) 0.60 M [243 M] 2.11 M [538 M] 9.38 M [980 M] 22.6 M [1.19 G]

When the local models of different depths are aggregated into a single global model, the local model
parameters of the same depths will be aggregated together. This naturally makes shallow layers
close to the input aggregate a large number of local model parameters, while deep layers close to the
output aggregate a small number of local model parameters. Algorithm 1 shows the full algorithm.
Replacing FedDyn optimizer by FedAvg is straightforward.

4 EXPERIMENTS

4.1 SETTINGS

Datasets and models We used MNIST, CIFAR-100, and Tiny ImageNet datasets for the image
classification task, and WikiText-2 dataset for the masked language modeling task. CNN composed
of 4 convolution layers, Resnet18, and Resnet34 models were used for MNIST, CIFAR-100, and
Tiny ImageNet, respectively. The transformer model was used for Wikitext-2. We create four local
models with DepthFL, and four local models with HeteroFL by dividing the channels into four equal
parts following its division method. Table 1 depicts the model size and number of MACs for the four
local models of HeteroFL and DepthFL. For example, the smallest model a has only the classifier
1/4 in DepthFL, while having 1/4 channels in HeteroFL. For inference, DepthFL uses the ensemble
of all internal classifiers, while HeteroFL uses the global model with all channels.

Local model If scaling is done as mentioned above, each depth-scaled local model would have
fewer parameters and more MACs than the corresponding width-scaled one, since shallow layers
often have fewer parameters yet require more computations. So, for the Resnet global model, the
number of MACs decreases linearly as the depth decreases, but the number of model parameters
decreases more rapidly, as shown in Table 1 (the global model of DepthFL has slightly more param-
eters and MACs than that of HeteroFL due to the additional bottleneck layers). This means that the
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average communication overhead of depth-scaled clients would be lower than that of width-scaled
clients, but it would be opposite for the average computation overhead. Also, depth scaling is less
fine-grained than width scaling since depth scaling is more dependent on the layer structure of the
global model, and may not be effective if the size of the bottleneck layer is too large. Despite these
limitations, depth-scaled local models do not seriously affect the performance of the global model
when aggregated, unlike width-scaled local models, as will be explained shortly.

Default Settings Unless otherwise stated, the same number of clients are allocated to each of the
four different local models (i.e., 25% of the clients are allocated to each of a, b, c, and d local models
in Table 1). Also, the data is distributed in an IID manner, FedDyn is used as the optimizer, and
randomly sampled 10% of the clients among a total of 100 clients participate in each communication
round. When the data is distributed in a non-IID manner, as in FedMA (Wang et al., 2020), a
Dirichlet distribution pc ∼ Dirk(β = 0.5) was used to allocate pc,k ratio of data samples belonging
to class c to client k.

4.2 COMPARISON WITH EXCLUSIVE LEARNING

We first evaluate if it is beneficial for resource-constrained clients to participate in learning with
depth-scaled local models even if they cannot accommodate a given global model. For this eval-
uation, we compare the accuracy of DepthFL with the accuracy of its exclusive learning, which
excludes those clients who do not have enough resources to run a given global model from learning.
In DepthFL, d is the global model but we still allow those 75% clients whose resource cannot ac-
commodate d to participate in learning. In exclusive learning, however, if d is the global model, we
allow only those 25% clients who can run d to participate in learning. Similarly, if c is the global
model, we allow those 50% clients who can run c (including those who can run d but should run
c since c is the global model now) to participate in learning. We also evaluate DepthFL without
self-distillation and FedDyn (use FedAvg instead), which we call DepthFL(FedAvg), by comparing
with its corresponding exclusive learning. Finally, we evaluate HeteroFL by comparing with its cor-
responding exclusive learning. For a fair comparison, exclusive learning is trained and tested in the
same way as the corresponding scaled method. For example, when comparing DepthFL with its ex-
clusive learning, the local objective function of both includes the self distillation and regularization
terms. Also, both are tested with the ensemble inference of the internal classifiers. It should be noted
that we cannot compare the accuracy of DepthFL and HeteroFL directly, since their local models
have a different size, so comparing only with their corresponding exclusive learning is meaningful.

Table 2 shows the results comparing HeteroFL, DepthFL(FedAvg), and DepthFL to their corre-
sponding exclusive learning. In case of HeteroFL, exclusive learning with b as the global model
that prunes half of the channels, and with only 75% of the clients participating in learning, shows
a tangibly better accuracy than HeteroFL in CIFAR-100. This means that although clients with
insufficient resources can participate in learning on the HeteroFL framework, heterogeneous local
models appear to deteriorate the global model and produce a worse result. DepthFL(FedAvg) shows
a better result than any exclusive learning for MNIST and CIFAR-100, but not for Tiny Imagenet.
On the other hand, DepthFL performs better than any of exclusive learning in all datasets. This
result indicates that DepthFL can better train the global model using heterogeneous local models.

One question is why HeteroFL shows a tangibly lower performance than exclusive learning, and
why this is not the case for DepthFL(FedAvg). To answer these questions, we measured the perfor-
mance of each global sub-model of HeteroFL separately, by running 1/4, 2/4, 3/4, and 4/4 channels
of the global model. We also measured the same for InclusiveFL (Liu et al., 2022) without momen-
tum distillation and DepthFL(FedAvg), i.e., the performance of classifiers at 1/4, 2/4, 3/4, and 4/4 of
the global model. Table 3 shows the result compared to exclusive learning result of Table 2 (named
Classifier 1/4∼4/4). We can see that a global sub-model of HeteroFL mostly performs worse than
the corresponding exclusive learning model, while the global sub-models of DepthFL(FedAvg) per-
form better than exclusive learning. In HeteroFL, for example, only 25% clients train Classifier 1/4
directly as in exclusive learning, while the rest 75% clients train it indirectly during the training of
their 2/4, 3/4, or 4/4 Classifiers, so we suspect that this causes a parameter mismatch for Classifier
1/4 when being averaged, degrading the performance of the global model. To confirm this suspi-
cion, we evaluated a different version of HeteroFL called SHeteroFL, proposed in Split-Mix (Hong
et al., 2022), where a client trains all affordable sub-models. For example, when a client with Clas-
sifier 2/4 trains, it not only trains Classifier 1/4 indirectly when training Classifier 2/4, but trains
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Table 2: Accuracy of the global model compared to exclusive learning. 100% (a) exclusive learning
means, the global model and every local model are equal to a = W 1

l model, and 100% clients
participate in learning. Likewise, 25% (d) exclusive learning means, the global model and every
local model are equal to d(Wg) = W 4

l model, and only 25% clients participate in learning.

Scaling Method Dataset Global Model Exclusive Learning
100% (a) 75% (b) 50% (c) 25% (d)

HeteroFL
MNIST 99.33 99.38 99.39 99.41 99.19

CIFAR-100 56.68 63.83 65.07 61.93 52.00
Tiny ImageNet 27.22 38.99 34.68 29.96 22.43

DepthFL (FedAvg)
MNIST 99.43 99.29 99.35 99.39 99.25

CIFAR-100 72.34 66.53 69.63 68.78 60.11
Tiny ImageNet 48.02 49.69 52.55 46.05 34.40

DepthFL
MNIST 99.51 99.25 99.41 99.41 99.34

CIFAR-100 76.34 69.26 73.90 71.75 62.12
Tiny ImageNet 60.32 52.48 59.75 55.55 42.64

Table 3: Accuracy of global sub-models compared to exclusive learning on CIFAR-100.

Method Algorithm Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4

Width Scaling
Exclusive Learning 63.83 65.07 61.93 52.00

HeteroFL 50.41 55.05 57.71 56.68
SHeteroFL 63.57 66.14 65.44 63.98

Depth Scaling
Exclusive Learning 66.53 67.03 66.47 57.68

InclusiveFL 47.25 53.36 58.57 60.10
DepthFL(FedAvg) 66.66 68.30 68.17 68.22

Classifier 1/4 directly. Table 3 shows that SHeteroFL differs from HeteroFL in that the accuracy of
its global sub-models is similar or higher than that of exclusive learning, as in DepthFL. This can
also explain the better performance of DepthFL(FedAvg) than its exclusive learning. That is, when
a client trains its 2/4 Classifier, it also trains 1/4 Classifier with the companion objective, as ex-
plained in Section 3.1. InclusiveFL has no companion objective, showing a worse accuracy in Table
3 (see also Appendix A.3). Actually, DepthFL does not require redundant training of sub-models
when training their super-model, unlike SHeteroFL. Moreover, additional training of depth-scaled
sub-models can further improve the global model performance, unlike additional training of width-
scaled sub-models (see Appendix A.1). DepthFL also works better than Split-Mix for the same
amount of MACs (see Appendix A.2). All these results indicate that DepthFL is more effective than
other methods for handling parameter mismatches.

4.3 ABLATION STUDY

Knowledge Distillation To analyze the impact of mutual self-distillation on the performance of
the global model, we turn on and off self distillation and measure the accuracy of the global model.
We experiment with both IID and non-IID data distribution, whose results are depicted in Table
4. Regardless of data distribution, it shows that self distillation plays a key role in enhancing the
accuracy of deep classifiers. That is, deep classifiers tend to perform worse than shallow classifiers
when self distillation is off, yet they perform similarly or better in most cases when self distillation
is on. Table 4 shows that self distillation improves the accuracy of shallow classifiers as well, which
is encouraging because resource-constrained clients should do inference using shallow classifiers.

Maximum & Dynamic Complexity We evaluate why self-distillation enhances the accuracy of
deep classifiers. Our conjecture was that fully-supervised shallow classifiers can train under-
supervised deep classifiers that were partially trained with a limited amount of data. For this eval-
uation, we constructed a Maximum experimental environment where all clients can train the full
global model (i.e., the d model in Table 1). We performed mutual self-distillation on the Maximum
environment and measure the accuracy as in Table 5, which includes the previous IID result of Table
4 (marked Fixed) for comparison. We can actually see that the impact of self-distillation on deep
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Table 4: Accuracy of the global model with/without self distillation for both IID/Non-IID data

Distribution Dataset KD Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble

IID
CIFAR-100 ✗ 69.38 69.53 69.00 68.91 74.55

✓ 71.68 (+2.30) 73.89 (+4.36) 73.72 (+4.72) 73.56 (+4.65) 76.34 (+1.79)

Tiny ImageNet ✗ 51.92 52.76 41.17 40.91 52.50
✓ 55.66 (+3.74) 58.50 (+5.74) 54.83 (+13.66) 55.20 (+14.29) 60.32 (+7.82)

Non-IID
CIFAR-100 ✗ 66.68 67.68 67.66 67.25 72.64

✓ 69.61 (+2.93) 71.46 (+3.78) 71.52 (+3.86) 71.36 (+4.11) 74.25 (+1.61)

Tiny ImageNet ✗ 50.33 50.76 44.11 43.61 53.14
✓ 53.84 (+3.51) 56.13 (+5.37) 54.28 (+10.17) 53.97 (+10.36) 58.99 (+5.85)

Table 5: Ablation study of the self distillation according to the resource complexity dk distribution
of the clients. Fixed complexity means that a client’s complexity dk does not change from the initial
value. Dynamic complexity means a client’s dk value changes randomly every round. Maximum is
the situation when all clients have sufficient resources, so all dk values are maximum. It also shows
that DepthFL with self-distillation works well for the transformer model with WikiText-2.

Dataset Complexity KD Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble

CIFAR100

Fixed ✗ 69.38 69.53 69.00 68.91 74.55
✓ 71.68 (+2.30) 73.89 (+4.36) 73.72 (+4.72) 73.56 (+4.65) 76.34 (+1.79)

Dynamic ✗ 69.33 72.44 73.97 73.92 77.14
✓ 72.87(+3.54) 75.21(+2.77) 75.42(+1.45) 75.51(+1.59) 77.49(+0.35)

Maximum ✗ 68.99 72.36 74.42 74.37 77.48
✓ 72.29(+3.30) 75.04(+2.68) 76.47(+2.05) 76.54(+2.17) 78.02(+0.54)

Tiny ImageNet

Fixed ✗ 51.92 52.76 41.17 40.91 52.50
✓ 55.66 (+3.74) 58.50 (+5.74) 54.83 (+13.66) 55.20 (+14.29) 60.32 (+7.82)

Dynamic ✗ 52.20 56.76 54.79 54.96 60.49
✓ 56.10 (+3.90) 60.35 (+3.59) 60.02 (+5.23) 60.09 (+5.13) 62.71 (+2.22)

Maximum ✗ 51.36 57.30 53.27 54.05 59.88
✓ 55.83 (+4.47) 60.62 (+3.32) 59.88 (+6.61) 60.40 (+6.35) 63.47 (+3.59)

WikiText-2
(Perplexity ↓)

Fixed ✗ 13.21 13.42 13.48 14.31 13.08
✓ 12.99 (-0.22) 13.24 (-0.18) 13.38 (-0.10) 13.99 (-0.32) 13.06 (-0.02)

Dynamic ✗ 13.21 13.31 13.38 13.80 13.02
✓ 12.97 (-0.24) 13.21 (-0.10) 13.29 (-0.09) 13.71 (-0.09) 13.03 (+0.01)

Maximum ✗ 13.28 13.22 12.97 12.87 12.97
✓ 13.16 (-0.12) 13.16 (-0.06) 12.91 (-0.06) 12.86 (-0.01) 12.94 (-0.03)

classifiers in Maximum is tangibly smaller than in Fixed. This means that when resources are het-
erogeneous, self-distillation achieves additional performance by transmitting the domain knowledge
of shallow classifiers to deep classifiers. We also constructed a Dynamic experimental environment
where the resources of the clients can change randomly in every round, yet the average amount of re-
sources of those clients participating in each round is the same as in Fixed. So, unlike Fixed, deeper
layers in Dynamic can learn from all data from every client as in Maximum, albeit less frequently.
In Table 5, we can see that the impact of self-distillation on deep classifiers in Dynamic is similar to
Maximum. This indicates that the lower accuracy of deep classifiers in Fixed is indeed due to those
unseen data of resource-constrained clients, and that self-distillation can alleviate the problem.

4.4 UNDERSTANDING SELF-DISTILLATION EFFECT OF DEPTHFL

This section attempts to understand the fundamental reason behind the effectiveness of self-
distillation for depthFL. For this we evaluate knowledge distillation in a general setup of teacher-
student models in a centralized learning environment, except that the student model is trained with
insufficient data (as the partially-trained, deep layers of DepthFL). We first evaluate if the existing
analysis methods of knowledge distillation in (Tang et al., 2020), which are label smoothing (LS),
gradient rescaling (KD-pt), and domain knowledge of class relationships (KD-sim), can explain
the effectiveness of self-distillation in DepthFL (see A.6 for detailed explanation). The Resnet18
model is used as the student, while the Resnet101 model, which is fully trained with all data, is used
as the teacher. Additionally, we analyze the effect of knowledge distillation by the poor teacher
(PKD), which is trained only with 25% of the data, as well as by the light teacher (LKD), which
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Table 6: Top-1 accuracy of student on CIFAR-100 with a few partial knowledge distillation methods.

Data Amount
Seen by Student Base

KD
(Acc: 79.99) LS

KD-pt
(Tang et al., 2020)

KD-sim
(Tang et al., 2020)

KD-pt+sim
(Tang et al., 2020)

PKD
(Acc: 58.14)

LKD
(Acc: 72.19)

100% 77.60 79.47 78.52 78.85 78.50 78.80 72.12 77.18
50% 70.40 74.22 71.36 71.59 71.18 72.18 67.98 75.10
25% 59.10 66.26 60.31 61.11 61.90 62.05 63.30 71.46

Figure 2: Top-1 accuracy of four classifiers for four resource distribution ratios on CIFAR-100.

is trained with all data but is sized smaller than the student model (as the fully-trained, shallow
layers of DepthFL). As the light teacher of LKD, we use ×0.25 depth-scaled local model a = W 1

l
of Resnet18. We perform these experiments with a variable amount of data the student learns as
in Table 6. When the student model learns all data (100%), most effects of knowledge distillation
could be explained by the three existing effects. However, when the student model learns partly
(50% or 25%), the effect is not fully explainable by the composition of those three effects, neither
by PKD. On the other hand, LKD is quite effective, achieving high accuracy even for 50% and 25%.
This means that even if the size of the light teacher is smaller than that of the student, the class
relationship for each input instance can be transferred by the light teacher, which effectively helps
for the generalization of the data-insufficient student model. This additional role appears to be the
reason why self-distillation in DepthFL is effective, especially for data-insufficient deep layers.

4.5 ROBUSTNESS TEST

The performance of DepthFL would inevitably be different depending on the distribution of each
client’s resource capability. To evaluate the robustness of DepthFL, we changed the distribution of
resource capabilities and measured the performance of the classifiers, as in Figure 2. As expected,
as the ratio of resource-constrained clients increases, the performance of deep classifiers gets lower,
even seriously when self distillation is off. With self distillation on, however, even if the deepest
classifier is trained only by 10% of the clients, the performance drop is small, due to the help of
other classifiers. Since shallow classifiers will be used for fast inference while an ensemble model
will be used for high performance, deep classifiers do not always have to be better than shallow ones.
Appendix A.5.1 explains and evaluates whether deep classifiers are really needed for DepthFL.

5 CONCLUSION

We presented DepthFL, a new federated learning framework considering resource heterogeneity of
clients. DepthFL creates local models of different sizes by scaling the depth of the global model, and
allocates them to the clients depending on their available resources. During local training, a client
trains several classifiers within its local model, and at the same time, distills their knowledge with
each other. As a result, both deep classifiers trained with limited data and shallow classifiers trained
by most clients can help one another to build the global model, with no parameter mismatch. We
also evaluated depth scaling compared to width scaling thoroughly, and self-distillation in DepthFL.
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A APPENDIX

A.1 LIMITATION OF SHETEROFL

As mentioned in Section 4.2, although SHeteroFL includes additional computation overhead of lo-
cally training all possible sub-models, the performance of its global model that leverages all these
sub-models can improve. However, we want to check whether additional training of sub-models of
different widths is always helpful for the global model. We compared the performance of FedAvg,
SHeteroFL, and DepthFL(FedAvg) in the Maximum case introduced in Section 4.3 where all clients
have enough resources to train the global model. Table 7 shows the experimental result on CIFAR-
100 using Resnet18 as the global model. SHeteroFL does not show better performance than FedAvg
despite its additional training of width-scaled sub-models. On the other hand, DepthFL could im-
prove the performance of the global model by additionally training depth-scaled sub-models, which
is in line with the result in Lee et al. (2015). In other words, although SHeteroFL could alleviate the
problem of HeteroFL, DepthFL is a better approach to heterogeneous federated learning since it can
better enhance the performance of global model with less computation cost.

Table 7: Accuracy of global sub-models in Maximum case.

Method Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4
FedAvg N/A N/A N/A 70.59
SHeteroFL 62.95 68.43 69.66 70.16
DepthFL (FedAvg) 66.65 70.11 73.15 73.36

A.2 COMPARISON WITH SPLIT-MIX (HONG ET AL., 2022)

Split-Mix provides a customizable global model by mixing the base split models of the same sizes.
While HeteroFL and DepthFL prune a single global model to create local models of different sizes,
Split-Mix can create a local model by combining small base models. To compare Split-Mix with
DepthFL, we combine its base models to create four local models whose number of MACs is the
same as that of the four local models of DepthFL. For the CIFAR-100 dataset, Resnet18 was used as
a global model. The number of MACs and the number of parameters of four local models are shown
in Table 8. As the base model of Split-Mix, half of the channels of the global model were pruned.
For a fair comparison, DepthFL was trained without regularization and self distillation.

Table 8: (Number of parameters) / [# of MACs] of local models according to division method

Model Method a = W 1
l b = W 2

l c = W 3
l d(Wg) = W 4

l

Resnet-18 DepthFL (Depth) 480 K [167 M] 1.35 M [310 M] 3.84 M [450 M] 12.3 M [585 M]
Split-Mix (Width) 2.82 M [140 M] 5.64 M [280 M] 8.46 M [420 M] 11.28 M [560 M]

The accuracy of DethpFL and Split-Mix in Fixed and Dynamic cases are shown in Figure 3.
In Fixed, the learning curves of DepthFL and Split-Mix are almost same. Since the number of
parameters of local models of DepthFL is much smaller than Split-Mix, DepthFL is more efficient
in terms of communication overhead. In Dynamic, DepthFL shows faster convergence and higher
accuracy than Split-Mix. The reason is that Split-Mix allows the client to train multiple base models
alternately, so there is no big difference between Fixed and Dynamic, whereas in DepthFL, the deep
classifier can train more data in Dynamic, as explained in Section 4.3.

A.3 COMPARISON WITH INCLUSIVEFL (LIU ET AL., 2022)

Recently, InclusiveFL (Liu et al., 2022) proposed a kind of depth-scaled method for heterogeneous
federated learning. However, there are two major differences from DepthFL. First, unlike DepthFL,
InclusiveFL trains only the last classifier of the local model without training the sub-models. As we
saw in Table 3, training sub-models during local training has a decisive impact on the performance
of global sub-models, hence the overall performance (its ensemble result is 63.79, lower than the
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Figure 3: Learning curves for DepthFL and Split-Mix

ensemble result 72.34 of DepthFL). That is, similar to the comparison result between SHeteroFL and
HeteroFL, DepthFL has superior performance of sub-classifiers compared to InclusiveFL, and this
has a direct impact on the performance of the global model. Actually, unlike DepthFL, InclusiveFL
uses only the output of the last classifier during inference, so the performance of the sub classifiers
is not that important, and InclusiveFL has no overhead for bottleneck layers. Nevertheless, the
performance of Classifier 4/4 in InclusiveFL is even lower than exclusive learning 1/4∼3/4, which
indicates that training all sub-models in the local model using the companion objective is critical.

Second, since InclusiveFL locally trains only the last classifier in the local model, knowledge dis-
tillation between sub-models is impossible. InclusiveFL uses a special technique called momentum
distillation to transfer the knowledge of a larger model to a smaller model, which has a limitation
since the size of each layer must be kept constant. Also, its role is different from self-distillation
in DepthFL, which transfers knowledge of a smaller model to a larger model. In summary, since
InclusiveFL does not train sub-models in the local model through companion objective nor employ
self distillation, InclusiveFL does not fully exploit the advantages of depth scaling unlike DepthFL.

A.4 OPTIMIZER

DepthFL employs FedDyn (Acar et al., 2021) as the default optimizer. To analyze the impact of the
optimizer, we replaced FedDyn with FedAvg (McMahan et al., 2017). And, we performed the same
experiments in Table 4 and Table 5, whose results are shown in Table 9 and Table 10, respectively.
Even if FedAvg is used as the optimizer, the overall trend of the experimental results is almost the
same, but we can see that the overall accuracy is lowered. Also, we can see that the impact of
self-distillation is reduced compared to when FedDyn is used.

Table 9: Accuracy of FedAvg global model with/without self distillation for both IID/Non-IID data

Distribution Dataset KD Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble

IID
CIFAR-100 ✗ 66.66 68.30 68.17 68.22 72.34

✓ 68.55 (+1.89) 70.23 (+1.93) 71.21 (+3.04) 71.10 (+2.88) 72.96 (+0.62)

Tiny ImageNet ✗ 49.38 48.76 38.18 38.44 48.02
✓ 51.29 (+1.91) 52.56 (+3.80) 48.99 (+10.81) 49.66 (+11.22) 53.76 (+5.74)

Non-IID
CIFAR-100 ✗ 65.82 66.22 66.22 65.65 70.63

✓ 67.14 (+1.32) 68.41 (+2.19) 69.38 (+3.16) 68.84 (+3.19) 71.48 (+0.85)

Tiny ImageNet ✗ 47.01 46.55 39.36 38.74 47.67
✓ 49.05 (+2.04) 49.73 (+3.18) 47.03 (+7.67) 46.86 (+8.12) 51.67 (+4.00)
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Table 10: Ablation study of self-distillation according to resource complexity dk distribution.

Dataset Complexity KD Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble

CIFAR100

Fixed ✗ 66.66 68.30 68.17 68.22 72.34
✓ 68.55 (+1.89) 70.23 (+1.93) 71.21 (+3.04) 71.10 (+2.88) 72.96 (+0.62)

Dynamic ✗ 67.09 70.94 73.32 73.48 75.46
✓ 69.18(+2.09) 72.51(+1.57) 74.28(+0.96) 74.34(+0.86) 75.04(-0.42)

Maximum ✗ 66.65 70.11 73.15 73.36 75.05
✓ 69.07(+2.42) 71.92(+1.81) 74.77(+1.62) 75.09(+1.73) 75.41(+0.36)

Tiny ImageNet

Fixed ✗ 49.38 48.76 38.18 38.44 48.02
✓ 51.29 (+1.91) 52.56 (+3.80) 48.99 (+10.81) 49.66 (+11.22) 53.76 (+5.74)

Dynamic ✗ 49.41 53.29 48.76 49.29 54.81
✓ 52.06 (+2.65) 55.25 (+1.96) 54.79 (+6.03) 55.08 (+5.79) 57.40 (+2.59)

Maximum ✗ 48.58 52.82 46.97 48.06 53.77
✓ 51.45 (+2.87) 55.09 (+2.27) 52.98 (+6.01) 53.97 (+5.91) 56.84 (+3.07)

WikiText-2
(Perplexity ↓)

Fixed ✗ 14.28 14.47 14.92 15.64 14.19
✓ 14.26 (-0.02) 14.44 (-0.03) 14.85 (-0.07) 15.47 (-0.17) 14.21 (+0.02)

Dynamic ✗ 14.27 14.40 14.85 15.26 14.10
✓ 14.23 (-0.04) 14.39 (-0.01) 14.80 (-0.05) 15.19 (-0.07) 14.14 (+0.04)

Maximum ✗ 14.25 14.32 14.67 14.91 13.96
✓ 14.23 (-0.02) 14.37 (+0.05) 14.69 (+0.02) 14.92 (+0.01) 14.06 (+0.10)

A.5 MORE ABLATION STUDIES

A.5.1 DEEP CLASSIFIERS ARE REALLY NEEDED?

Table 4 showed that the performance of the deepest classifiers is similar or slightly lower than
that of shallow classifiers even with self-distillation. So, one might question if deep classifiers are
really needed for resource-heterogeneous federated learning, since they are likely to have fewer
clients to train although they allow more generalization of the model. That is, if most clients have
insufficient resources, deeper layers might not help; otherwise, they might contribute to enhancing
the performance of the global model. On the other hand, as in the Dynamic case in Table 5, when
the client resources change dynamically over time so that all clients can train deep layers even
occasionally, deep layers can have a higher performance.

In reality, the performance of classifiers with different depths would inevitably be different depend-
ing on various factors such as the distribution of client resources, the nature of the learning task, the
number of data each client has, and the size of global model/sub-models. We tried to test whether
deep classifiers are really necessary by performing an experiment excluding deep classifiers, whose
result is in Figure 4. For example, DepthFL (exclude #4 Classifier) reduces the depth of the global
model to 3/4, so that those 25% clients whose resource can train Classifier 4/4 trains only up to Clas-
sifier 3/4. We conducted the experiment with big and small global models (Resnet18 and ConvNet)
for two learning environments (Fixed and Dynamic) on CIFAR-100. We can see that if the size of
the global model is smaller compared to the task, and if the client resources change dynamically
so the deep classifier can see more data, deep classifiers gets more important for high performance.
Actually, this paper presented a general framework that can flexibly deal with such diverse situations.

A.5.2 NON-IID DEGREE AND NUMBER OF CLIENTS

We performed ablation study for diverse non-IID degrees and for different number of clients, whose
results are in Table 11 and Table 12, respectively. They show a similar behavior as previously.

A.6 PARTIAL KNOWLEDGE DISTILLATION METHODS

The experiment in Section 4.4 was conducted as follows. In KD-pt method, we synthesize teacher
distribution ρpt as ρpti = pt if i = t, (1 − pt)/(K − 1) otherwise, where pt is prediction on
ground truth class from the teacher’s probability distribution. In KD-sim method, we synthesize
teacher distribution ρsim as the softmax over cosine similarity between the teacher’s last logit layer’s
weights: ρsim = softmax(relu(ŵtŴ

T )α/β), where Ŵ ∈ RK×d is the normalized logit layer
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Figure 4: Learning curves for DepthFL without deep classifiers

Table 11: Ablation Study : Data distribution

Dataset Distribution KD Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble

CIFAR-100

IID ✗ 69.38 69.53 69.00 68.91 74.55
✓ 71.68 (+2.30) 73.89 (+4.36) 73.72 (+4.72) 73.56 (+4.65) 76.34 (+1.79)

Dir(0.5) ✗ 66.68 67.68 67.66 67.25 72.64
✓ 69.61 (+2.93) 71.46 (+3.78) 71.52 (+3.86) 71.36 (+4.11) 74.25 (+1.61)

Dir(0.3) ✗ 65.69 66.83 66.68 66.24 71.54
✓ 68.46 (+2.77) 70.82 (+3.99) 70.92 (+4.24) 70.57 (+4.33) 73.51 (+1.97)

Dir(0.1) ✗ 60.97 62.35 61.97 60.79 67.35
✓ 63.88 (+2.91) 65.06 (+2.71) 64.93 (+2.96) 64.14 (+3.35) 68.24 (+0.89)

Table 12: Ablation Study : # Clients

Dataset # Clients KD Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble

CIFAR-100

50 ✗ 69.20 68.95 68.53 68.59 74.39
✓ 71.88 (+2.68) 72.74 (+3.79) 72.96 (+4.43) 73.02 (+4.43) 76.12 (+1.73)

100 ✗ 69.38 69.53 69.00 68.91 74.55
✓ 71.68 (+2.30) 73.89 (+4.36) 73.72 (+4.72) 73.56 (+4.65) 76.34 (+1.79)

200 ✗ 68.59 69.18 68.57 68.88 73.89
✓ 71.82 (+3.23) 72.58 (+3.40) 73.37 (+4.80) 73.23 (+4.35) 75.47 (+1.58)

weights, ŵt is the t-th row of Ŵ corresponding to the ground truth, and α, β are hyper-parameters
for resolution of cosine similarities.
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A.7 LEARNING CURVES

The learning curves of Table 2 for comparing HeteroFL, DepthFL(FedAvg), and DepthFL with their
corresponding exclusive learning are in Figure 5. The learning curves of Table 4 for the ablation
study of knowledge distillation are in Figure 6. The x-axis is the communication round, and the
y-axis is the moving average of the test accuracy.

Figure 5: Comparative experiments with exclusive learning
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Figure 6: Ablation study of self distillation
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B HYPERPARAMETERS

Most of the hyperparameters used in our experiments are depicted in Table 13. We set both α, β
hyper-parameters to 0.3 for KD-sim (Tang et al., 2020) experiments. In the masked language mod-
eling task with the transformer model, we randomly selected 15% of the input tokens. Among the
selected tokens, 80% were modified to [mask] tokens, 10% to random tokens, and 10% to remain
unchanged.

Table 13: Hyperparameters and model architecture used in experiments

Data MNIST CIFAR100 Tiny-ImageNet WikiText-2

Model ConvNet Resnet-18 Resnet-34 Transformer
Hidden size [64, 128, 256, 512] [64, 128, 256, 512] [64, 128, 256, 512] [512, 512, 512, 512]
Local Epoch E 5 5 5 1
Local Batch Size B 64 64 64 50
Optimizer SGD
Momentum 0.
Weight decay 1e-3
Temperature 1
α (FedDyn) 0.1
Consistency rampup 300 300 300 120
Communication rounds 1000 1000 1000 150
Learning rate η 0.1
Learning rate decay 0.998 0.998 0.998 0.98
Embedding Size 512
Number of heads 8

N/ADropout 0.2
Sequence length 64
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