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Abstract. This study investigates the causal effects of proximity to
amenities such as schools and childcare centers on local housing prices.
Understanding this relationship is critical for urban planning and pol-
icy decisions. We apply causal discovery algorithms to both synthetic
and real-world housing datasets to identify potential causal relationships.
These types of data provide a set of challenging properties for applying
such algorithms. In particular, this study emphasizes the importance of
using location as an effect modifier when dealing with clustered geospa-
tial data. Our analysis reveals that proximity to educational facilities
has a significant impact on housing prices, with variations across differ-
ent postcode areas, however, this impact is not always positive. In fact
the identified causal structure, indicates a negative impact of proximity
of many amenities on the house prices. We conclude that causal dis-
covery algorithms have the potential to provide novel insights into the
determinants of house prices.

1 Introduction

The residential property tax in the Netherlands is based on the estimated value
of the properties which is carried out yearly by the municipalities (known as
WOZ value!). The WOZ value of the residential properties is calculated based
on the market analysis of the residential property transactions (provided by The
Netherlands’ Cadastre, Land Registry and Mapping Agency). The WOZ value
also serves as a crucial metric for investors, providing insights into emerging
neighborhoods with strong growth potential. In this study, our objective is to
identify the causal structure underlying WOZ value. Such a structure allows us
to determine which factors have a causal effect on WOZ value, and further, to
evaluate how interventions on these factors would influence the outcome which
can help the investors and municipalities to pinpoint the potential areas of co-
operation and making informed policy or investment decisions.

! De Wet Waardering Onroerende Zaken or WOZ is the market value of a property
at a fixed reference date.
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It should be noted that the purpose of this study is not to compare fore-
casting performance. Instead, this work specifically focuses on estimating the
capitalization of public amenities and identifying the causal structure through
which these amenities — particularly educational facilities — influence the WOZ
value. Understanding which neighborhood amenities positively influence prop-
erty values (WOZ value) creates an opportunity for collaboration between real
estate investors and local governments. These amenities not only improve the
quality of life for residents, but also contribute to the economic development of
the area [25, 13]. For investors, this means that strategic interventions can help
increase the value of properties while also generating positive social impact. This
approach supports both financial returns and community well-being, making it
a valuable strategy for sustainable urban development.

One approach to identify the causal structure is through randomized exper-
iments, which, however, is not feasible in many fields, including the application
at hand. An alternative method of identifying causal structure is by applying
causal discovery algorithms on observational data [19], which analyzes the data
to uncover causal relationships using statistical dependencies that are produced
by a causal mechanism [23]. Such algorithms are strongly rooted in AI [16],
and have gained popularity in recent years in many application areas such as
medicine, recommendation, economics and other domains [26]. While quite some
benchmark datasets have been used in the past for evaluating causal discovery
algorithms, such datasets typically have a fairly simple structure, with a few
thousand samples and a limited number of features (see e.g. [15]). This study
contributes to the evaluation of the suitability of causal discovery algorithms in
a challenging practical application.

The main challenge of dealing with housing data is the fact that it contains
spatial heterogeneity, with clusters of cities, rural areas and uninhabited regions
such as agricultural land, forests, or bodies of water, which results in a non-
random spatial patterns. For example, urban and rural areas differ significantly
in terms of distances to public amenities and the housing market. Furthermore,
within cities, adjacent neighborhoods tend to share similar characteristics with
one another. However, most causal discovery algorithms assume that the data
are independent and identically distributed (IID). This IID assumption is not
necessarily valid when working with geospatial data, because such data involve
observations which could be related to one another based on their locations. In
addition to spatial characteristics, the data follows a non-Gaussian distribution
which adds to the complexity of the causal discovery process. The rather large
available dataset on housing data (with more than 350.000 entries) and the large
number of potential variables also pose a computational challenge. In this paper,
we show all of these challenges can be addressed to obtain interesting insights
into the problem at hand.

This paper is organized as follows. In Section 2, we review several studies
which examine the effects of proximity to educational and childcare facilities on
housing prices. In Section 3, we describe different causal discovery algorithms
and their applicability to the type of data used in this case study. In Section 4,
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we present the conducted experiments beginning with experiments on synthetic
data resembling the characteristics of the case study (Section 4.1), we identify
the causal discovery algorithms that are applicable to our setting. We use a
spatially aware analysis in which location will be used as an effect modifier and
aggregation of the variables in adjacent nodes will be added to the analysis as
a new variable [14]. In Section 4.2 we present preliminary results on the effects
of proximity to public amenities on WOZ values and we discuss our findings,
limitations and suggestions for future studies in Section 5 and Section 6.

2 Related Works

The impact of schools and childcare facilities on the residential market has been
studied for many years. Studies have shown the interconnected impact of sup-
ply, demand and various other factors on the capitalization of these types of
amenities. In this section, we discuss some important findings.

Proximity to educational facilities is believed to play a significant role in
influencing residential property values. Several studies have shown that being
near schools and kindergartens generally increases house prices. For example,
Bergantino et al. (2022) [2] find a positive effect of proximity to private kinder-
gartens and schools on neighborhood house prices, using longitudinal data from
2010 to 2017. Their analysis assumes that the structural characteristics of the
kindergartens and municipalities do not change during the period of study.

However, the impact of proximity may depend on other factors as well. For
instance Theisen and Emblem (2018) [24] emphasize the importance of consid-
ering new kindergartens that are opened during the study period. Their spatial
econometric model shows a positive effect of proximity to kindergartens on the
house prices, however according to this model the house prices decline in the
immediate vicinity of kindergartens. Their empirical model on the other hand
shows the positive effect of proximity to kindergartens especially for single fam-
ily homes. The house prices according to the empirical model do not decline in
the immediate vicinity of the kindergartens.

Another key driver of this capitalization is school quality. This capitalization
effect is stronger in areas with limited developable land and higher home own-
ership [9]. In markets where housing supply is constrained (e.g. due to zoning
regulations) the value of school quality is more strongly reflected in prices. On
the other hand, in areas with more elastic supply, the same demand for school
quality results in less price change [3].

Policy mechanisms also influence how educational access is capitalized. Re-
back (2005) [17] examines the impact of policies that allow students to attend
schools in districts other than the one they reside. Historically, the residents
pay a premium to purchase residential properties in the areas with good pub-
lic schools. Their study demonstrates the freedom to enroll in the schools in
other districts increases property values in less popular districts and a decrease
in popular districts with incoming transfer students. The time period for the
capitalization is said to be around eight years.
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Many of the quantitative works mentioned above follow a hedonic price
model [18] to quantify the capitalization of proximity to amenities. While the
hedonic price model is widely used in real estate research to analyze house prices,
it is not designed to identify causal relationships. However, to understand the
potential effects of interventions, we need causal inference, which requires knowl-
edge of the underlying causal structure and relationships. Therefore, identifying
the causal structure is very crucial, which we will discuss further in the next
section.

3 Causal Discovery

In this section, we discuss various causal discovery algorithms with a particu-
lar focus on those that are used in this paper. We highlight one of the main
assumptions of these algorithms, that the data are independent and identically
distributed (IID). Finally, we discuss the applicability of these algorithms to
non-Gaussian data.

3.1 Causal discovery algorithms

Causal discovery can be categorized into three main families of algorithms:
Constraint-based algorithms, Score-based algorithms, and Functional causal mod-
els.

Constraint-based algorithms search for the Markov equivalence class of graphs
which match the conditional independence over the variables in the population.
A description of the algorithms from this family, which are used in the present
work, is provided below.

PC Algorithm [23] This algorithm starts from the complete undirected graph
with an edge between each pair of variables. The edges between two variables
X and Y are eliminated if they are unconditionally independent. For every
three variables that share an edge between them, the edge between two of
the three is removed if they are independent of each other conditional on
the third variable. This procedure is repeated with increasing the number of
subset variables that is conditioned on. In the later steps the direction of the
edges are determined using a set of orientations rules, resulting in a partially
directed acyclic graph (PDAG). Many different statistical procedures could
be applied to this algorithm to investigate the dependence of the variables
[6].

Fast Causal Inference or FCI algorithm[23] FCI is a variation of the PC
algorithm which can take unobserved confounders into account and detect
hidden confounding. Like PC, it starts with a fully connected graph. Then it
calculates the marginal dependency between each pair of variables, if the pair
are marginally independent, the edge between them is removed. For all the
pairs with a shared edge in between, the conditional independency is calcu-
lated where size of the conditioning set is increased each time. Due to causal
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insufficiency some conditional independencies might have not correctly de-
tected. During the second phase, a broader set of conditioning variables is
used to detect the missed independencies. In the final phase, the FCI algo-
rithm applies orientation rules to produce a partial ancestral graph (PAG).

Really Fast Causal Inference or RFCI [5] This is a variation of FCI which
is computationally less expensive and is suitable when dealing with large
datasets.

Score-based algorithms (e.g. Chickering 2002 [4]) use goodness of fit score
instead of independence tests. We will not further use these family of algorithms
in this work, as these algorithms typically assume linear-Gaussian distributions,
which does not match the data at hand.

Functional causal models are based on the asymmetry between the cause
and effect through taking the data generating process into account. In this work
we only consider one algorithm of this family: the Linear Non-Gaussian Acyclic
Model (ICA-LiINGAM) [21]. This algorithm enables causal discovery in data
which is non-Gaussian with linear relationships between the variables. Through
the use of statistical properties of non-Gaussian distributions, it can identify a
full causal model. A key assumption of ICA-LINGAM is causal sufficiency, which
requires that all confounders are observed. This algorithm further requires the
data to be continuous.

Many causal discovery algorithms result in a graph that represents a Markov
equivalence class, where some of the directions of the edges are not defined. In
such cases, one can consider some other sources of information such as temporal
order or domain knowledge as well as past empirical findings.

3.2 Causal discovery with non-IID data

Most causal discovery algorithms rely on two key assumptions: the faithfulness
and Markov assumptions [23]. According to the faithfulness assumption the con-
ditional independencies present in the probability distribution come from the
structure of the underlying causal graph. That implies that if two variables
in an acyclic directed graph are conditionally independent, then they are d-
separated [23]. The Markov assumption states that each variable is independent
of its non-effects (non-descendants) given its direct causes (parents) in the causal
graph [23].

One requirement to satisfy these two assumptions is that the data are in-
dependent and identically distributed (IID), which guarantees that the obser-
vations are drawn from the same probability distribution and are independent
from each other. Geospatial data involve observations which may be spatially
correlated due to their geographical proximity. This leads to spatial dependen-
cies. Many causal discovery algorithms may not perform well under these condi-
tions. Adaptations of algorithms like the Fast Causal Inference (FCI) algorithm
have been proposed to handle spatial dependencies by incorporating background
knowledge of the spatial structure into the causal discovery process. For example,
in a work by Mielke et al. [14], where the spatially hierarchical case of directional
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flow in rivers is studied, the authors introduce a new category of variables to
their data points by aggregating the variables upstream of the river that influ-
ence the variables at an observation point. By introducing this new category of
variables, the problem turns into a spatially-aware case.

3.3 Causal discovery with non-Gaussian data

Constraint-based algorithms perform a conditional independence test to con-
struct the Markov-equivalent graph. However, many of these tests assume that
the data follows a Gaussian distribution. This assumption often fails to hold in
real-world scenarios. The same is the case for the data in this study. Although
many traditional independence tests can only detect linear relationships, kernel
independence tests are applicable on non-Gaussian data with complex relation-
ships [28]. The Hilbert—Schmidt Independence Criterion (HSIC), a kernel inde-
pendence test used in the analysis in Section 4, measures the distance between
the joint distribution of the variables and the product of the marginal distribu-
tion of the variables. A distance of zero indicates the independence between the
variables.

4 Experiments

In this section we consider the effectiveness of different causal discovery strate-
gies in our geospatial case involving clustered data (and thus to adjust for the
confounding effects of location). In Section 4.1, we describe experiments using
synthetic data for which we know the true causal graph. The synthetic data
is generated in a way to reflect the dependency structure observed in our case
study. By performing experiments on synthetic data, for which the true causal
graph is known, we can evaluate the performance of different algorithms and
strategies and identify the most effective ones. From the results, we then move
to a case study with real-world data, which is described in Section 4.2.

4.1 Experiments with synthetic data

We perform three sets of experiments on synthetic data. In Experiment I, the
data is organized into clusters representing distinct geographic regions—such as
cities or rural areas—where variables within each cluster exhibit intra-cluster
dependency, simulating shared regional characteristics. Our strategy in this case
involves adjusting for clusters with small inter-cluster distances to improve causal
discovery. In Experiment II, an additional layer of dependency is introduced
among data points within each cluster to reflect spatial adjacency, such as ad-
jacent neighborhoods within a city. These dependency structures allow us to
model both macro-level regional variation and micro-level spatial interactions,
which are critical in real estate related analyses. Finally, in Experiment III, we
consider the computational cost of various algorithms.
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Experiment I: Macro-Level Simulation To create the synthetic dataset
which simulates cluster-level dependency, we generate data with three variables
(X1, X2, and X3), for which we draw samples from a non-Gaussian distribution
(i.e. a uniform distribution). Clusters are formed by introducing an upper-bound
of the uniform distribution that varies between clusters.

If there are K clusters indexed by k = 1, ..., K, for each cluster, we introduce
upper-bounds c¢ix, cor, c3r > 0. The three variables are then generated as
follows:

XM < Unif(0, ez, (4.1)
X~ Unif(0, car) (4.2)
xP® = x4 x4 e (4.3)

where ¢ ~ Unif(0, cag).

The upper-bounds c¢;; are defined as a function of k in order to control the
scale of variables; c;p, =1+ 0.5k, while co, =14+ 0.3 -k and c3p =1+0.1-k
have similar functional forms. The experiment was conducted using a maximum
of 15 clusters.

The true graph for the data generated according to Equations 4.1-4.3 has
no edge between X; and X, and X3 is a collider with edges from X; and X,

toward it (see Figure la).

(a) (b)

Fig.1: (a) The true graph generated according to Equations 4.1-4.3. (b) The
true graph generated using Equations 4.1, 4.3, and 4.4.

We perform the causal discovery analysis using four algorithms: FCI, RFCI
and PC and ICA-LINGAM. Since the data is non-Gaussian a kernel-based con-
ditional independence test is used for constraint based algorithms (PC, FCI,
RFCI). When using the data from all clusters, a dependency between the two
variables X; and X5 is detected for all four algorithms. When we repeat the
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analysis separately for group of clusters that are similar in characteristics, all
four algorithms result in the correct causal graph.

These results show that when working with clustered data—such as cities
vs. rural areas—it is important to analyze different types of clusters separately.
However, it is not necessary to analyze each individual cluster on its own. Instead,
clusters with similar characteristics can be grouped together and analyzed as one
set. What is not recommended is combining all clusters into a single analysis, as
this can lead to incorrect conclusions about causal relationships.

Experiment II: Micro-Level Simulation In a subsequent set of tests we
simulate localized interaction between adjacent objects within individual clus-
ters. To achieve this, we randomly generate an adjacency matrix for each cluster
which defines pairwise proximity among nodes. We then alter the generation of
X5 to reflect the effect of adjacency by introducing an extra term which is the
average value of X; from adjacent nodes.

More formally, the data generating process is as follows. Let nodes be denoted
as a pair (i, k) where node ¢ belongs to cluster k. Let Vj; be the set of nodes in
cluster k. Given a node (i, k), its neighbors are denoted by N (i) C Vi. Then:

XM = Unif(0, o) + A (4.4)

where A; is the neighbor aggregate of node ¢ and is defined as:

1 ()
A= — J )
= > X| (4.5)
JEN()

The true causal graph for experiment II is shown in Figure 1b.

In this experiment, we want to investigate whether ignoring the information
that is shared between adjacent objects affects the results of causal discovery and
leads to false relationships. To verify this, we first perform experiments without
including variable A in the causal discovery analysis. The results—using only
variables X1, X5, and X3 —are the same as in experiment I: if we do not adjust
for similar clusters, the causal graph is incorrect. But when we do adjust for
similar clusters, the correct causal graph is identified. This means that including
or excluding variable A does not change the final result, as long as we adjust
for cluster similarity. In other words, localized dependencies do not affect the
outcome if they are not considered—at least in the way the data was generated
in this experiment.

When we include variable A in the analysis, PC, FCI and RFCI detect edges
from A toward all three variables (X7, X2 and X3) while the only direct edge
should be toward Xs. ICA-LINGAM detects the correct causal graph in some
iterations however the results are not stable through iterations. This is because
the ICA component in ICA-LINGAM uses random initialization, and therefore
results can vary between runs and may sometimes converge to local optima.
Adjusting for clusters improves the performance of all four algorithms, with
each producing the correct causal graph.
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Based on these two experiments, we conclude that it is essential to adjust
for similar clusters when dealing with both inter-cluster and intra-cluster depen-
dencies. In the experiment using real-world data described in Section 4.2, we
use data from specific urbanity levels only. The characteristics of these urbanity
levels are described in detail within that section.

Experiment III: Computational Cost Many constraint-based algorithms
suffer from very high computational cost as the number of samples and vari-
ables increases. This arises from the growth of the conditioning sets consid-
ered in conditional independence tests. In the worst case for a dense graphs the
number of conditional independence tests considered by e.g. PC algorithm is
Niests(p, k) = @ Z:i%(k’pﬂ) (pj) where p is the number of variables and &
is the maximum conditioning set size [27]. When using kernel HSIC, each condi-
tional independence test costs O(n?) where n is the number of samples. Together
this will result in a worst-case runtime O (Niests(p, k) - n?).

In contrast, ICA-LINGAM does not face this limitation and has a complexity
of O(np?® + p*) [20]. Figure 2 presents the computation time across different
algorithms and varying sample sizes and number of variables.

In our case study, discussed in Section 4.2, we deal with tens of thousands
of samples and many variables. Consequently, it is necessary to be selective
in choosing the algorithms to apply. Since ICA-LINGAM, after adjusting for
clusters, produces a causal graph that resembles the true graph, and since its
computation time is on the order of seconds (i.e., less than a second to a few
seconds depending on the number of variables), we chose to use ICA-LINGAM
in the case study described next.

4.2 Case Study

As it is mentioned in the introduction, we aim to identify the causal relationship
between the vicinity to amenities and the WOZ value. The data that is used
in this study is gathered from publicly available source (https://www.cbs.nl).
CBS is an institution of Dutch government which collects and publishes data
and statistics on a wide range of societal topics.

The data that we have used in this study are from 2017 and include specifi-
cally the following datasets:

— Key Statistics for Districts and Neighborhoods: This dataset includes many
variables among which are the WOZ value, number of residents in a neigh-
borhood and the subdivision (age groups, education level, marital status
etc), Income level and Housing stock.

— Proximity to Facilities and Distance to Location for districts, and neighbor-
hood: This dataset contains the following variables among others: Distance
to supermarkets, schools, or parks, hospitals, restaurants and cafes.

The data are available at different granularity levels. For this work we use the
data with granularity level of 6-digits postcode or PC62. To give an idea of the
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Algorithm Runtime vs Number of Samples
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Fig. 2: Computation time (in seconds, log scale) of four causal discovery algo-
rithms (PC, RFCI, FCI, ICA-LiINGAM) as a function of sample size and number
of variables. The four algorithms were implemented using the R package pcalg
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[11] [8]. All analyses were conducted on a personal computer.
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size of such areas, Figure 3 shows the division of PC6 areas in Amsterdam,
focusing on the south region.

Fig.3: An example of PC6 zones with residential function in Amsterdam South

The PC6 areas are not isolated points. They are spatially connected and they
share similar characteristics with the adjacent areas. Therefore we aim to intro-
duce the propagated information due to spatial connectivity as a new feature
(similar to [14]). Different aggregations can be assumed to take the information
propagated from neighboring points into consideration. In this work we use the
average of the WOZ value at the adjacent PC6 zones as new variable. The size
of PC6 areas varies, where urban areas tend to have smaller PC6 zones while
those located in less densely populated areas appear larger. The influence of a
single PC6 area on its adjacent counterparts is therefore less significant in rural
regions compared to those in urban areas. In cities the PC6 areas are smaller
and more tightly packed, where for example a single street might contain several
PC6 zones. This emphasizes the importance of analyzing rural and urban areas
separately. In the Netherlands, a standard measure of urbanity is the average
surrounding address density, which classifies areas into following five levels:

— Very highly urbanized: an average density of 2,500 or more addresses per
km?2.

Highly urbanized: an average density of 1,500 to 2,500 addresses per km?2.
Moderately urbanized: an average density of 1,000 to 1,500 addresses per
km?2.

— Slightly urbanized: an average density of 500 to 1,000 addresses per km?.

— Non-urbanized: an average density of fewer than 500 addresses per km?2.

In this work we use PC6 areas with an urbanity level of 2,3 and 4 which
contains more than 150000 entries. The variables included in this preliminary
analysis are as follows: the number of various amenities within a 1 km radial
distance (primary schools, kindergartens, afterschool daycares, and supermar-
kets); the number of secondary schools within a 3 km radius; the distance to

2 6-digit postcode where the first 4 digits represent, city and part of the city, while
the 2 letters at the end narrows it down to specific street or a part of a street.
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main roads, train stations, and the nearest transfer stations; the WOZ value of
the corresponding PC6 zone; and the average WOZ value of its adjacent zones.
As discussed in Section 4.1, we employed the ICA-LINGAM algorithm for
this analysis due to its low computational complexity compared to other causal
discovery methods. In the first analysis, all the available PC6 objects in the
dataset are incorporated. The resulting causal graph, is presented in Figure 4.

no supermarkt in 1km dis. main train station

.72

A

no secondary school in 3km dis. nearest transfer station

Fig. 4: Identified causal structure with ICA-LINGAM using all the data

When we examine the weights on the edges, we observe that many of the
amenities have a negative effect on the WOZ value of residential properties. For
example, the results show that the number of supermarkets, primary schools
and kindergartens within a 1 km radius have a negative influence on the WOZ
value. This finding can be partially explained by urban development patterns.
In newly developed neighborhoods, housing stock is more modern and energy-
efficient; however, educational amenities are often still under development [1].
Although these areas have limited access to certain amenities, property values
tend to be relatively high as homebuyers are generally willing to pay a premium
for newly constructed homes [7]. Additionally, urban planning policies often con-
centrate supermarkets in densely populated areas characterized by smaller hous-
ing units [12], which are typically associated with lower WOZ values. Another
interpretation of this finding could be that the close proximity to those ameni-
ties may lead to excessive noise. For instance as the number of supermarkets
in 1 km distance to a PC6 zone increases, this may potentially lead to heavier
traffic in an area and thus to an increased level of congestion and noise. Also in
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less densely populated rural neighborhoods with villas, the immediate vicinity
to educational amenities is not desired.

For our second experiment we focus on the residential properties with a WOZ
value less than 320k (corresponding to the mean plus one standard deviation).
In Figure 5 the causal graph identified with this set of data is shown.

8

0.2
no prim. Schools in Tkm

Fig. 5: Identified causal structure with ICA-LINGAM using the data with WOZ
value less than 320k.

dis. main train station
.69
dis. nearest transfer station

0.62

no after school day cares in 1 km

The reversed edge from WOZ value toward the WOZ value of adjacent areas is
one of the key differences when comparing the two graphs. The overall structure
of the identified causal graph remains largely consistent with the one derived
from the full dataset. In both graphs, we observe that the distances to major
roads, train stations, and transfer stations do not exhibit any significant causal
effect on the WOZ value.

5 Discussion

We have made several methodological and analytical choices and certain assump-
tions throughout this study. While these decisions provide a good foundation for
this research, it also in some cases introduces some limitations. In this section
we are discussing some of these choices in more details.

The Impact of Spatial Granularity When data is aggregated at the neighbor-
hood level, the granularity is too coarse, which results in a smoothing effect, and
therefore localized patterns are no longer available. This reduces the sensitivity
of the variables to changes in the others. Consequently, causal discovery methods
applied to such data yield inaccurate causal structures. To address this limita-
tion, we employ a finer spatial resolution, namely PC6 zones, which preserves
local heterogeneity.
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Area vs. Point data One question which might arise is whether to use 2D features
in the analysis due to the spatial nature of our study case. The PC6 areas
however are not natural spatial features but rather administrative ones. A PC6
zone contains few addresses each with specific characteristics, but the reported
key figures only contain the aggregated information on those addresses. Given
that the information is already aggregated at the area level, treating each PC6
area as a single data point is a justifiable simplification.

Non-Gaussian data The non-Gaussian dataset increases the complexity of the
problem since many algorithms require a Gaussian data type. For instance, in
the PC algorithm, the Gaussianity assumption helps identifying several graphs
(Markov equivalent) that meet the relevant conditional independency. Dealing
with non-Gaussian data is an important challenge in many applications. One
approach is to use a Gaussian copula framework [22], which preserves the de-
pendencies between variables. This property is particularly important since cal-
culating the dependencies (e.g. correlation) between different variables is used to
infer causal relationship. Another approach to dealing with non-Gaussian data is
to use kernel-based conditional independence tests (KCIT) [28]. In this work we
adopted the second method, where we have employed KCIT for constraint based
algorithms. However we observed that the computation time was quite high as
a result of using this conditional independence test even when applied to the
synthetic data with limited number of variables. For this reason, we did not use
constraint-based algorithms in the case study. This is a limitation of our current
work, which we plan to address in the future, either through parallelization or
other efficiency improvements.

Linearity assumption One of the necessary assumptions in a wide range of func-
tional algorithms is that the relationships among variables are linear. The pair-
wise comparison of the data in our study however shows a non-linear relationship
among many variables. The non-linear additive noise models [10] are suggested
when dealing with non-linear data generating processes however the computa-
tion costs of such algorithms could potentially be quite high comparing with
linear models.

Continuous data type Although we are using the variables such as number of
school in 1 km distance from the PC6 area which are inherently discrete, these
values are not reported as exact counts. Because these variables in our dataset
are produced through spatial smoothing, they should be regarded as continuous
rather than discrete.

6 Conclusions

In this study, we employed causal discovery techniques (specifically the ICA-
LiINGAM algorithm) as an alternative to traditional econometric approaches
such as the hedonic pricing model. This allowed us to investigate the complex
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relationships among the various determinants of housing prices. Unlike models
that rely on predefined assumptions about variable interactions, causal discovery
enables a data-driven investigation of underlying structures.

Our findings highlight the importance of including more variables which
might be the missing confounders in the preliminary analyses. For instance,
the causal graphs suggest that certain amenities, such as supermarkets and edu-
cational facilities, may have unexpected effects on property values depending on
urban planning strategies and neighborhood development stages. Many macroe-
conomic factors also influence housing prices. For instance, the average education
level within a neighborhood could act as a confounder for the effect of distance
to educational facilities on the WOZ value.

In this paper, we have presented a causal graph based on housing data using
the ICA-LINGAM algorithm. In future work, we plan to extend the analysis by
applying other causal discovery algorithms. Furthermore, this study investigates
only the instantaneous effects of proximity of amenities on the WOZ value,
while the impact of such factors on house prices might take several years to
fully realize, e.g., Reback et al. 2005 [17] uses an eight year gap between the
introduction of a policy in school choice program and its effects on property
values. Moreover, this study has focused only on amenities in a close proximity
(e.g. number of amenities within 1 km radius). This close proximity however
might lead to increased level of noise and other discomforts. Homeowners are
sometimes willing to travel longer distance if it means their exposure to public
disturbances at their property location is reduced.

Overall, this approach provides a better understanding of housing market
dynamics and creates opportunities for further research into the various deter-
minants of housing prices.

References

1. Aksoy, E.S., Venverloo, T., Benson, T., Duarte, F.: Evaluating amenity access of
new and repurposed housing within the 15-Minute City framework in Amsterdam.
Discov Cities 2(1), 47 (2025). https://doi.org/10.1007/s44327-025-00087-x

2. Bergantino, A.S., Biscione, A., De Felice, A., Porcelli, F., Zagaria, R.: Kindergarten
Proximity and the Housing Market Price in Italy. Economies 10(9), 222 (2022).
https://doi.org/10.3390/economies10090222

3. Cheshire, P., Sheppard, S.: Capitalising the Value of Free Schools: The Impact of
Supply Characteristics and Uncertainty. The Economic Journal 114(499), F397-
F424 (2004). https://doi.org/10.1111/j.1468-0297.2004.00252.x

4. Chickering, D.M.: Optimal Structure Identification With Greedy Search. (2002).
https://doi.org/10.1162/153244303321897717

5. Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional

directed acyclic graphs with latent and selection variables. Ann. Statist. 40(1)
(2012). https://doi.org/10.1214/11-A08940. arXiv: 1104.5617 [stat]

6. Glymour, C., Zhang, K., Spirtes, P.: Review of Causal Discovery Methods Based
on Graphical Models. Front. Genet. 10, 524 (2019). https://doi.org/10.3389/
fgene.2019.00524



16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Hillebrand et al.

. Gordon, B.L., Winkler, D.T.: New House Premiums, Market Conditions, and the
Decision to Purchase a New Versus Existing House. Journal of Real Estate Research
41(3), 379-410 (2019). https://doi.org/10.22300/0896-5803.41.3.379

. Hauser, A., Bithlmann, P.: Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning
Research 13, 24092464 (2012)

. Hilber, C.A., Mayer, C.: Why do households without children support local public

schools? Linking house price capitalization to school spending. Journal of Urban

Economics 65(1), 74-90 (2009). https://doi.org/10.1016/j.jue.2008.09.001

Hoyer, P.O., Janzing, D., Mooij, J., Peters, J., Scholkopf, B.: Nonlinear causal

discovery with additive noise models

Kalisch, M., Méchler, M., Colombo, D., Maathuis, M.H., Bithlmann, P.: Causal

Inference Using Graphical Models with the R Package pcalg. Journal of Statistical

Software 47(11), 1-26 (2012). https://doi.org/10.18637/jss.v047.i11

Kesarovski, T., Herndndez-Palacio, F.: Time, the other dimension of urban form:

Measuring the relationship between urban density and accessibility to grocery

shops in the 10-minute city. Environment and Planning B: Urban Analytics and

City Science 50(1), 44-59 (2023). https://doi.org/10.1177/23998083221103259

Marquez, J., Casas, F., Taylor, L., De Neve, J.-E.: Economic Development and

Adolescent Wellbeing in 139 Countries. Child Ind Res 17(4), 1405-1442 (2024).

https://doi.org/10.1007/s12187-024-10131-8

Mielke, K.P., Schipper, A.M., Heskes, T., Zijp, M.C., Posthuma, L., Huijbregts,

M.A.J., Claassen, T.: Discovering Ecological Relationships in Flowing Freshwater

Ecosystems. Front. Ecol. Evol. 9, 782554 (2022). https://doi.org/10.3389/

fevo.2021.782554

Nogueira, A.R., Pugnana, A., Ruggieri, S., Pedreschi, D., Gama, J.: Methods and

tools for causal discovery and causal inference. WIREs Data Min & Knowl 12(2),

e1449 (2022). https://doi.org/10.1002/widm. 1449

Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press

(2009)

Reback, R.: House prices and the provision of local public services: capitalization

under school choice programs. Journal of Urban Economics 57(2), 275-301 (2005).

https://doi.org/10.1016/j.jue.2004.10.005

Rosen, S.: Hedonic Prices and Implicit Markets: Product Differentiation in Pure

Competition. Journal of Political Economy 82(1), 34-55 (1974). https://doi .

org/10.1086/260169

Rubin, D.B.: Causal Inference Using Potential Outcomes: Design, Modeling, Deci-

sions. Journal of the American Statistical Association 100(469), 322-331 (2005).

https://doi.org/10.1198/016214504000001880

Shimizu, S., Inazumi, T., Sogawa, Y., Hyvarinen, A., Kawahara, Y., Washio, T.,

Hoyer, P.O., Bollen, K.: DirectLINGAM: A direct method for learning a linear

non-Gaussian structural equation model, (2011). https://doi.org/10.48550/

arXiv.1101.2489. arXiv: 1101.2489[stat].

Shimizu, S., Jp, I.A., Hoyer, P.O., Hoyer, P., Hyvarinen, A., Hyvarinen, A., Kermi-

nen, A., Kerminen, A.: A Linear Non-Gaussian Acyclic Model for Causal Discovery.

(2006)

Sokolova, E., Von Rhein, D., Naaijen, J., Groot, P., Claassen, T., Buitelaar, J.,

Heskes, T.: Handling hybrid and missing data in constraint-based causal discovery

to study the etiology of ADHD. Int J Data Sci Anal 3(2), 105-119 (2017). https:

//doi.org/10.1007/s41060-016-0034-x



23.

24.

25.

26.

27.

28.

Causal discovery on geospatial data 17

Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer
New York, New York, NY (1993)

Theisen, T., Emblem, A.W.: House prices and proximity to kindergarten — costs of
distance and external effects? Journal of Property Research 35(4), 321-343 (2018).
https://doi.org/10.1080/09599916.2018.1513057

Wong, C.: The Relationship Between Quality of Life and Local Economic Devel-
opment: An Empirical Study of Local Authority Areas in England. Cities 18(1),
25-32 (2001). https://doi.org/10.1016/50264-2751(00)00051-2

Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., Zhang, A.: A Survey on Causal Inference.
ACM Trans. Knowl. Discov. Data 15(5), 1-46 (2021). https://doi.org/10.1145/
3444944

Zhang, K., Tian, C., Zhang, K., Johnson, T., Jiang, X.: A Fast PC Algorithm with
Reversed-order Pruning and A Parallelization Strategy, (2021). https://doi.org/
10.48550/arXiv.2109.04626. arXiv: 2109.04626 [cs].

Zhang, K., Peters, J., Janzing, D., Scholkopf, B.: Kernel-based Conditional In-
dependence Test and Application in Causal Discovery. In: UATI 2011, Barcelona,
Spain, (2011). https://doi.org/10.48550/arXiv.1202.3775



