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ABSTRACT

Diffusion models excel at capturing complex data distributions, such as those of
natural images and proteins. While diffusion models are trained to represent the dis-
tribution in the training dataset, we often are more concerned with other properties,
such as the aesthetic quality of the generated images or the functional properties
of generated proteins. Diffusion models can be finetuned in a goal-directed way
by maximizing the value of some reward function (e.g., the aesthetic quality of
an image). However, this may lead to reduced sample diversity, significant devia-
tions from the training data distribution, and even poor sample quality due to the
exploitation of an imperfect reward function. The last issue often occurs when the
reward function is a learned model meant to approximate a ground-truth “genuine”
reward, as is the case in many practical applications (e.g., using a learned estimator
of aesthetic quality). These challenges, collectively termed “overoptimization,”
pose a substantial obstacle. To address this overoptimization, we frame the fine-
tuning problem as entropy-regularized control against the pretrained diffusion
model, i.e., directly optimizing entropy-enhanced rewards with neural SDEs. We
present theoretical and empirical evidence that demonstrates our framework is
capable of efficiently generating samples with high genuine rewards, mitigating
the overoptimization of imperfect reward models.

1 INTRODUCTION

Diffusion models have gained widespread adop-
tion as effective tools for modeling complex
distributions (SohI-Dickstein et al.| 2015} [Song|
let al, 2020; [Ho et all, [2020). These models
have demonstrated state-of-the-art performance
in various domains such as image generation
and biological sequence generation (Jing et al.|
2022 [Wu et al),[2022)). While diffusion models
effectively capture complex data distributions,
our primary goal frequently involves acquiring
a finely tuned sampler customized for a specific
task using the pre-trained diffusion model as
a foundation. For instance, in image genera-
tion, we might like to fine-tune diffusion mod-
els to enhance aesthetic quality. In biology, we
might aim to improve bioactivity. Recent en-
deavors have pursued this objective through rein-

forcement learning (RL) (Fan et al.,[2023};[Black|

2023) as well as direct backpropagation
through differentiable reward functions (Clark

let al.l 2023}, [Prabhudesai et al.| 2023)). Such
reward functions are typically learned models
meant to approximate a ground-truth “genuine”
reward; e.g., an aesthetic classifier is meant to
approximate the true aesthetic preferences of
human raters.
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Figure 1: Mitigating overoptimization with
entropy-regularized control. Diffusion models
fine-tuned in a goal-directed manner can produce
images (top) with high nominal reward values such
as aesthetic scores. However, these images lack re-
alism because the naive fine-tuning process is not
incentivized to stay close to the pre-trained data
distribution. Our approach (bottom) mitigates this
issue via entropy-regularized stochastic optimal
control.
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While these methods allow us to generate samples with high “nominal” (approximate) rewards, they
often suffer from overoptimization (reward collapse). Overoptimization manifests as fine-tuned
models produce samples with low genuine rewards that are still scored as having a high “nominal”
reward under the (learned) reward model, as illustrated in Figure[I] This issue arises because nominal
rewards are usually learned from a finite training set to approximate the genuine reward function,
meaning that they are accurate only within their training distribution. Consequently, fine-tuning
methods quickly exploit nominal rewards by moving beyond the support of this distribution.

Our goal in this paper is to develop a principled algorithmic framework and its fundamental theory
for fine-tuning diffusion models that both optimize a reward function and stay close to the training
data, thus alleviating overoptimization. To achieve this, we frame the fine-tuning of diffusion models
as an entropy-regularized control problem. It is known that diffusion models can be formulated as
stochastic differential equations (SDEs) with a drift term and a diffusion term (Song et al.| [2020)).
Based on this formulation, in a fine-tuning step, we consider solving stochastic control by neural
SDEs in a computationally efficient manner. Here, we introduce a loss that combines a terminal
reward with entropy regularization against the pre-trained diffusion model and optimize with respect
to both a drift term and an initial distribution. This entropy-regularization term enables us to maintain
the bridges (i.e., the posterior distributions of trajectories conditioned on a terminal point) of pre-
trained diffusion models, akin to bridge-matching generative models (Shi et al.,[2023), such that the
fine-tuned diffusion model avoids deviating too much from the pre-trained diffusion model.

Notably, we theoretically show that the fine-tuned SDE, optimized for both the drift term and initial
distribution, can produce specific distributions with high nominal rewards that are within the support
of their training data distribution. Hence, our approach effectively mitigates the overoptimization
problem since nominal rewards accurately approximate genuine rewards in that region. Furthermore,
our theoretical results shed light on an intriguing new connection with classifier guidance (Dhariwal
and Nichol, 2021)).

Our contribution can be summarized as follows: we introduce a computationally efficient, theoretically
and empirically supported method for fine-tuning diffusion models: ELEGANT (finE-tuning doubLe
Entropy reGulArized coNTrol) that excels at generating samples with high genuine rewards. While
existing techniques in image generation (Fan et al.||2023; |Prabhudesai et al.| [2023; (Clark et al.| [2023)
include components for mitigating overoptimization, we demonstrate stronger theoretical support
by explicitly characterizing target distributions in our key Theorem|[I] (among methods that directly
backpropagate through differentiable rewards) and superior empirical performance (compared to a
KL-penalized PPO). Additionally, unlike prior work, we apply our method to both image generation
and biological sequence generation, demonstrating its effectiveness across multiple domains.

2 RELATED WORKS

We provide an overview of related works. We leave the discussion of our work, including fine-tuning
LLMs, sampling with control methods, and MCMC methods to Appendix [A]

Diffusion models. Denoising diffusion probabilistic models (DDPMs) create a dynamic stochastic
transport using SDEs, where the drift aligns with a specific score function (Song et al., 2020; [Ho
et al.| [2020). The impressive performance of DDPMs has spurred the recent advancements in bridge
(flow)-matching techniques, which construct stochastic transport through SDEs with drift terms
aligned to specific bridge functions (Liu et al.,|2022; Shi et al.} 2023} [Tong et al.| 2023} [Lipman et al.}
2023; [Somnath et al., 2023 |Liu et al.,[2023}; [Delbracio and Milantar, |2023}|Shi et al., 2023)).

Guidance. Dhariwal and Nichol| (2021) introduced classifier-based guidance, an inference-time
technique for steering diffusion samples towards a particular class. More generally, guidance uses an
auxiliary differentiable objective (e.g., a neural network) to steer diffusion samples towards a desired
property (Graikos et al., 2022; Bansal et al.,2023). In our experiments, we show that our fine-tuning
technique outperforms a guidance baseline that uses the gradients of the reward model to steer the
pre-trained diffusion model toward high-reward regions.

Fine-tuning as RL/control. |Lee et al.| (2023); Wu et al.|(2023) employ supervised learning
techniques to optimize reward functions, while |Black et al.| (2023)); Fan et al.| (2023) employ an
RL-based method to achieve a similar goal. (Clark et al.|(2023)); Xu et al.|(2023)); Prabhudesai et al.
(2023) present a fine-tuning method that involves direct backpropagation regarding rewards, which
bears some resemblance to our work. Nevertheless, there are several notable distinctions between
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our approaches. Specifically, we incorporate an entropy-regularization term and also learn an initial
distribution, both of which play a critical role in targeting the desired distribution. We present novel
theoretical results that demonstrate the benefits of our approach, and we provide empirical evidence
that our method more efficiently mitigates reward collapse.

It is worthwhile to note that while |[Fan et al.| (2023)) incorporates KL regularization, there are notable
differences in several aspects.

* The training algorithms employed are fundamentally distinct, as our approach is control-based,
whereas their training algorithm relies on PPO. Hence, our optimization algorithm can directly
control the KL term compared to PPO-based optimization. This enables us to minimize the KL
term more effectively while maintaining higher reward values. Consequently, our method better
mitigates overoptimization, as we will empirically demonstrate in Section[8.2]

¢ The PPO-based algorithm is computationally slower, as we will show in Section[8.3]

» We provide theoretical support by explicitly deriving our target distribution in Based
on this, we argue that the fine-tuning algorithm mitigates overoptimization from a statistical
perspective, as the fine-tuned distribution retains the same support as the pre-trained distribution,
as shown in[Section 4] Since detecting overoptimization in real experiments is challenging due
to the often unknown true rewards, we believe having this theoretical guarantee is a significant
advantage. Lastly, it is worthwhile to note our result highlights a non-trivial connection with

classifier guidance, as we show in|Section 5.

3 PRELIMINARIES

We briefly review current continuous-time diffusion models. A diffusion model is described by the
following SDE:

day = f(t, z)dt + o(t)dw, X0 ~ Vini € A(Rd), )

where f : [0,7] x R? — R is a drift coefficient, and o : [0, 7] — R~ is a diffusion coefficient
associated with a d-dimensional Brownian motion w;, and v;,; is an initial distribution such as a
Gaussian distribution. Note that many papers use the opposite convention, with ¢ = T corresponding
to the initial distribution and ¢ = 0 corresponding to the data. When training diffusion models,
the goal is to learn f(¢,z;) from the data at hand so that the generated distribution from the SDE
(T corresponds to the data distribution through score matching (Song et all, [2020) or bridge/flow
matching (Liu et al., 2022). For details, refer to Appendix @

In our work, we focus on cases where we have such a pre-trained diffusion model (i.e., a pre-trained
SDE). Denoting the density at time 7" induced by the pre-trained SDE in as Pdata € A(Rd), this
Pdata captures the intricate structure of the data distribution. In image generation, pqat, captures the
structure of natural images, while in biological sequence generation, it captures the biological space.
Notation. We often consider a measure P induced by an SDE on C := C([0,T],R%) where
C(]0,T], R?) is the whole set of continuous functions mapping from [0, 7] to R¢ (Karatzas and
Shreve, 2012). The notation Ep[f(xo.7)] means that the expectation is taken for f(-) w.r.t. P. We
denote P; as the marginal distribution over R at time ¢, P, (x5, z+) the joint distribution over R4
time s and ¢, and Py, (z5|z¢) the conditional distribution at time s given time ¢. We also denote the
distribution of the process pinned down at an initial and terminal point zo, 27 by P.jo 7 (-|20, z7)
(we similarly define IP|(-|x7)). With a slight abuse of notation, we exchangeably use distributions

and densities[ﬂWe defer all proofs to Appendix

4 DESIRED PROPERTIES FOR FINE-TUNING

In this section, we elucidate the desired properties for methods that fine-tune diffusion models. With a
reward function 7 : R? — R, such as aesthetic quality in image generation or bioactivity in biological
sequence generation, our aim is to fine-tune a pre-trained diffusion model so as to maximize this
reward function, for example to generate images that are more aesthetically pleasing.

However, the “genuine” reward function (e.g., a true human rating of aesthetic appearance) is usually
unknown, and instead a computational proxy must be learned from data — typically from the same

'We sometimes denote densities such as dPr /dyu by just Pr where 1 is Lebesgue measure.
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or a similar distribution as the pre-training data for the diffusion model. As a result, while (z) may
be close to the genuine reward function within the support of pqata, it might not be accurate outside
of this domain. More formally, by denoting the genuine reward by r*, a nominal reward r is typically
learned as

r = argmin, ¢z >, {r*(z®) — 7' (2)}?],

where {z("), r*(x())}7_, is a dataset, and F is a function class (e.g., neural networks) mapping from
R? to R. Under mild conditions, it has been shown that in high probability, the mean square error on

Pdata 18 small, i.e.,
Esrepne {7 (2) = 7(2)}2] = O(/Cap(F) /),

where Cap(F) is a capacity of F (Wainwright, 2019). However, this does not hold outside of the
support of Pgata-

Taking this into account, we aim to fine-tune a diffusion model in a way that preserves three properties:
(al) the ability to generate samples with high rewards, and (a2) ensuring sufficient proximity to the

initial pre-trained diffusion (I). In particular, (a2) helps avoid overoptimization because learned
reward functions tend to be accurate on the support of pgata.

To accomplish this, we consider the optimization problem:

Prar = argmax By p[r(x)] —aKL(p||pdata), 2)
PEA(RY)

(1) (2)

where o € R+ is a hyperparameter. The initial reward term W(1) is intended to uphold the property
(al), while the second entropy term W(2) is aimed at preserving the property (a2).

It can be shown that the target distribution in (2) takes the following analytical form:

Prar(®) = exp(r(z)/a))pdata(®)/Crar, (3)

where C',; is a normalizing constant. Therefore, the aim of our method is to provide a tractable and
theoretically principled way to emulate p,, as a fine-tuning step.

4.1 IMPORTANCE OF KL REGULARIZATION

Before explaining our approach to sample from py,,, we elucidate the necessity of incorporating
entropy regularization term in (2). This can be seen by examining the limit cases as « tends towards 0
and when we fix o = 0 a priori. To be more precise, as « approaches zero, py,, tends to converge to a
Dirac delta distribution at xf,,, defined by: zf,, = argmax,cga.,,. . (z)>0 (). This 27, represents
an optimal = within the support of pgata. Conversely, if we directly solve ) with o = 0, we may
venture beyond the support:z* = argmax, cga 7(x). This implies that the generated samples might
no longer adhere to the characteristics of natural images in image generation or biological sequences
within the biological space. As we mentioned, since r(x) is typically a learned reward function
from the data, it won’t be accurate outside of the support of pgata(x). Hence, * would not have a
high genuine reward, which results in “overoptimization”. For example, this approach results in the

unnatural but high nominal reward images in

5 ENTROPY-REGULARIZED CONTROL WITH PRE-TRAINED MODELS

We show how to sample from the target distribution py,, using entropy-regularized control.

5.1 STOCHASTIC CONTROL FORMULATION

To fine-tune diffusion models, we consider the following SDE by adding an additional drift term u
and changing the initial distribution of (I):

day = {f(t,we) +ult, z) Yt + o (t)dwy, w0 ~ v, ©)

where u(-,-) : [0,7] x R® — R is a drift coefficient we want to learn and v € A(R?) is an initial
distribution we want to learn. When u = 0 and v = v4y,;, this reduces to a pre-trained SDE in ().
Our objective is to select u and v in such a way that the density at time 7', induced by this SDE,
corresponds tO Piar.
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Now, let’s turn our attention to the objective function designed to achieve this objective. Being
motivated by (2), the objective function we consider is as follows:

@) v(zo)
/t:O e dt—i—log(yini(xo))], )

(b2)

u*, v* = argmax Epu.v [r(zr)] — 2 Bpus
u,v SN——" 2

(b1)

where P** is a measure over C induced by the SDE (@) associated with (u, ). Within this equation,
component (bl) is introduced to obtain samples with high rewards. This is equal to ¥(1) in (Z) when
p(+) in 2) comes from P”. The component (b2) corresponds to the KL divergence over trajectories:
KL(P“¥(-)||Pdata(.)) where P42t is a measure over C induced by the pre-trained SDE (@, which
has been proved by using Girsanov theorem. In particular, this is actually equal to ¥(2) in (2) under
optimal control, as we will see soon in the proof of our key theorem.

We can derive an explicit expression for the marginal distribution at time ¢ under the distribution over
C induced by the SDE associated with the optimal drift and initial distribution denoted by P* (i.e.,
P“"»"). Here, we define the optimal (entropy-regularized) value function as

T |, % 2
« u*(k,x
Vi (x) = Ep- lr(xT) -3 /k_t Il (e, )2 ((72(5)' dk|zy = x

Theorem 1 (Induced marginal distribution). The marginal density at step t € [0,T] under the
diffusion model with a drift term u* and an optimal initial distribution v* (i.e., P}) is

Py () = exp(Vy"(-)/a)P{*2 () /Car
where P32 (.) is a marginal distribution at t of PY*** over C.
This marginal density comprises two components: the optimal value function term and the density

at time ¢ induced by the pre-trained diffusion model. Note that the normalizing constant C,, is
independent of t.

Crucially, as a corollary, we observe that by generating a sample following the SDE (@) with (u*, v*),
we can sample from the target py,, at the final time step 7. Furthermore, we can also determine the
explicit form of v*.

Corollary 1 (Justification of control problem). Pr () = ptar(+).
Corollary 2 (Optimal initial distribution). v*(-) = exp(V5 (+)/a)vini(+)/Ctar-

In the following section, to gain deeper insights, we explore two interpretations.

5.2 FEYNMAN-KAC FORMULATION

We see an interpretable formulation of the optimal value function. Importantly, we use this form to
learn the optimal initial distribution later in our algorithm (Algorithm 1]) and the proof of Theorem [I]
Furthermore, this result highlights a non-trivial connection with classifier guidance.

Lemma 1 (Feynman—Kac Formulation). exp (V m) = Epaata [exp (T(xT)> |zy = a:] )

This lemma has been mainly proved by Feynman—Kac formula (Shreve et al.| [2004). It illustrates that
the value function at (¢, x) is higher when it allows us to hit regions with high rewards at ¢t = T" by
following the pre-trained diffusion model afterward. Invoking the Hamilton—Jacobi—Bellman equation
and using this optimal value functlon we can write the optimal drift u* (¢, z) as o2(t) V. V;*(z) /c.
By plugging Lemmallnto o?(t)V V¥ (z)/a, we obtain the following.

Lemma 2 (Optimal drift). u*(t,z) = 02(t)V, {1ogEPdm [exp( (m) |2, = x} }

It says the optimal control aims to move the current state = at time ¢ toward a point where it becomes
easier to achieve higher rewards after following the pre-trained diffusion.
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Connection with Classifier Guidance. The theoretical result[Lemma 2]is notable because it simpli-
fies to the formulation used in classifier guidance when rewards are set as classifiers. Specifically, by
defining r as p(y|z) : X — A(Y), where ) is a class label and o = 1, the optimal drift reduces to:

u*(t,x) = o* () Ve logp(yle: = x),  p(yler) = Epasea[p(y | 27)|24].
This is the well-known form of classifier guidance (Dhariwal and Nichol, 2021)).

The above suggests that classifier guidance is mathematically targeting the same distribution as
our approach. To our knowledge, this interesting connection has not yet been recognized in the
existing literature. However, empirically, the performance can differ significantly due to function
approximation and optimization errors. More specifically, in our algorithm, we don’t need to explicitly
estimate value functions, unlike classifier guidance. We will present the empirical comparison in
Section J]

5.3 BRIDGE PRESERVING PROPERTY

We start by exploring more explicit representations of joint and conditional distributions to deepen
the understanding of our control problem.

Lemma 3 (Joint distributions). Let 0 < s <t <T. Then,
P} (2,y) = PS5 (2, y) exp(Vy (y) /@) [ Crar, By (x]y) = PSS (2]y).- (6)

Interestingly, in [(6)] the posterior distributions of pre-trained SDE and optimal SDE are identical.
This property is a result of the entropy-regularized term. This theorem can be generalized further.

Lemma 4 (Bridge perseverance). Let P’\..(-|zr), P15 (|wr) be distributions of P*, P4 condi-

tioned on states at terminal T, respectively. Then, ]P)-*|T('|$T) = IP’dl‘%t‘*(krT)

As an immediate corollary, we also obtain P, 1(-) = ]P’dlgt?p() These posterior distributions are
often referred to as bridges. Note that in bridge matching methods, generative models are trained to
align the bridge with the reference Brownian bridge while maintaining the initial distribution as v;,;
and the terminal distribution as pgata (Shi et al.,[2023). Our fine-tuning method can be viewed as a
bridge-matching fine-tuning approach between 0 and 7" while keeping the terminal distribution as
exp(r(x)/a)pdata(z)/Ctar- This bridge-matching property is valuable in preventing samples from
going beyond the support of pyata-

6 LEARNING AN OPTIMAL INITIAL DISTRIBUTION VIA
ENTROPY-REGULARIZED CONTROL

Up to this point, we have illustrated that addressing the stochastic control problem in (3) enables the
creation of generative models for the target py,,. Existing works on neural SDEs (Chen et al.| 2018
Tzen and Raginsky}, |2019) have established that these control problems can be effectively solved by
relying on the expressive power of a neural network, and employing sufficiently small discretization
steps. Although it seems plausible to employ any neural SDE solver for solving stochastic control
problems (3)), in typical algorithms, the initial point is fixed. Even when the initial point is unknown,
it is commonly assumed to follow a Dirac delta distribution. In contrast, our control problem in
Eq. (3) necessitates the learning of a stochastic initial distribution, which can function as a sampler.

A straightforward way involves assuming a Gaussian model with a mean parameterized by a neural
network. While this approach is appealingly simple, it may lead to significant misspecification when
v* is a multi-modal distribution.

To address this challenge, we once again turn to approximating v* using an SDE, as SDE-induced
distributions have the capability to represent intricate multi-modal distributions. We start with a
reference SDE over the interval ¢ € [T, 0]; ¢t € [—T,0]; doy = 6(t)dwy, T_7 = gy, such that the
distribution at time 0 follows vi,;. Given that vyy; is typically simple (e.g., N (0,1,)), it is usually
straightforward to construct such an SDE with a diffusion coefficient 5 : [0, 7] — R.

Building upon this baseline SDE, we introduce another SDE over the same interval [—7', 0]:

dxy = q(t, z¢)dt + 6 (t)dwy, T_T = Taix. @)
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Algorithm 1 ELEGANT (finE-tuning doubLe Entropy reGulArized coNTrol)

1: Require: Parameter o € R™, a pre-trained diffusion model with drift coefficient f : [0, 7] x
R? — R and diffusion coefficient o : [0, 7] — R, a base coefficient & : [T, 0] — R and a base
initial point zgx.

2: Learn an optimal value function at ¢ = 0 (i.e., V) and denote it by @ : R? — R invoking
Algorithm []in Appeneix

3: Using a neural SDE solver (Algorithm [3), solve

q = argmax, Epq [ (x) — & f . ||¢IE;s z)|* dt} 9)

4: Let ¥ be a distribution at ¢ = 0 following the SDE: dx; = §(t, x¢)dt 4+ &(t)dwy, ©_7 = Tgy.

5: Using a neural SDE solver (Algorithm [3), solve

@ = argmax, Epu.o [r(er) - §J,7, 1G9l ar) (10)

6: Output: Drift coefficients ¢, &

Algorithm 2 Fine-Tuned Sampler

1: From —T to 0, follow the SDE: dx; = §(t, x¢)dt + &(t)dwy, x_7 = Tax
2: From 0 to T, follow the SDE: dz; = {f(t, x¢) + 4(t, x¢) }dt + o (t)dwy.
3: Qutput: zp

where ¢ : [-T,0] x R? — R. This time, we aim to guide a drift coefficient ¢ over this interval
[T, 0] such that the distribution at 0 follows v*. Specifically, we formulate the following:

q* = argmax, Epq [VO ) f T Hqs‘t;;)\l dt (8)
where P? represents the measure induced by the SDE (/) with a drift coefficient g.
Theorem 2 (Justification of the second control problem). The marginal density at time 0 induced by
the SDE () with the drift ¢*, i.e., B¢ (-), is v*(*)

This shows by after learning V", which will discuss in Appendix[B] and solving (8) and following
the learned SDE from —7T  to 0, we can sample from v*. Regarding

7 ALGORITHM

We are ready to present our method, ELEGANT, which is fully described in Algorithm E} The
algorithm consists of 3 steps:

1. Learn the value function Vj(z), which we will discuss in Appendix

2. Solve the stochastic control (9) with a neural SDE solver using the learned V() in 1.

3. Solve the stochastic control with a neural SDE using the learned v* in the second step
(i-e., ). Compared to (B), we fix the initial distribution as .

For our neural SDE solver, we use a standard oracle in AlgorithmE]as in Kidger et al.|(2021); |Chen
et al.[(2018)) (i.e., as we use neural networks as function classes). A detailed implementation is
described in Appendix To solve (9)), we use the following parametrization:

~ = ~27 1T  _ ~
2t = [x;r7yt]—r € RdJrl»L ==Y + a(x())azini ‘= Tfix, f = [QT70-504||‘1||2/02} y 9 1= [Uld,O]T,

where yo corresponds to f 0.5c||g||? /5% dt. Similarly, to solve (I0), we can use this solver with
the following parametrization:

2 1= [x;r,yt]—r eERMY L = —yp +r(xr), zini =0, f [{f +u}—r 0.5¢|ul|? /o ] , g = [O’ld,O]T

Finally, after learning ¢ and 4, during the sampling phase, we follow the learned SDE (Algorithm 2)).

7
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Algorithm 3 NeuralSDE Solver

1: Input: Diffusion coefficient g : [0,7] — R*!, loss function L : R4T! — R, an initial
distribution v
2: Solve the following and denote the solution by f1:

ft= argmax g, o 7] xra+1 ra+1 L(z7), dzy = F(t, ze)dt + g(t)dwy, 2o ~ Zini-

3: Output: fT

7.1 LIMITATION: SOURCES OF APPROXIMATION ERRORS

Lastly, we explain the factors contributing to approximation errors in our algorithm. First, our method
relies on the precision of neural SDE solvers, specifically, the expressiveness of neural networks and
errors from discretization (Tzen and Raginskyl|2019). Similarly, in the sampling phase, we also incur
errors stemming from discretization. Additionally, our method relies on the expressiveness of another
neural network in value function estimation.

As another limitation, readers might wonder about (1) computational cost of learning initial distribu-
tions, (2) memory complexity, and (3) choice of a. We defer the discussion to Appendix

8 EXPERIMENTS

We compare ELEGANT against several baselines across two domains. Our goal is to check that
ELEGANT enables us to obtain diffusion models that generate high-reward samples while avoiding
overoptimization and preserving diversity. We will begin by providing an overview of the baselines,
describing the experimental setups, and specifying the evaluation metrics employed across all
three domains. For more detailed information on each experiment, including dataset, architecture,
hyperparameters, and ablation studies, refer to Appendix [F

Methods to compare. We compare the following:

e ELEGANT : Our method.

* NO KL: This is ELEGANT without the KL regularization and initial distribution learning. This
essentially corresponds to AlignProp (Prabhudesai et al., [2023)) and DRaFT (Clark et al., |[2023))
in the discrete-time formulation. While several ways to mitigate overoptimization in these papers
are discussed, we will compare them with our work later in Section [8.2]

¢ PPO + KL (Fan et al.; 2023) KL-penalized RL finetuning with PPO (Schulman et al., 2017)E]

* Guidance: We train a reward model to predict the reward value y from a sample x. We use this
model to guide the sampling process (Dhariwal and Nicholl 2021} |Graikos et al., [2022) toward
high rewards. For details, refer to Appendix

Experiment setup. In all scenarios, we start by preparing a diffusion model with a standard dataset,
containing a mix of high- and low-reward samples. Then, we create a (nominal) reward function r by
training a neural network reward model on a dataset with reward labels {z(*), 7*(2(?)}?_, , ensuring
that r closely approximates the “genuine” reward function r* on the data distribution of the dataset
(i.e., on the support of pre-trained diffusion model). Following existing works (Fan et al.l|2023}; |Black
et al| [2023), we first evaluate performance in terms of 7 in Section[8.I] However, going beyond this
way, we explore an improved way to measure overoptimization in Section 8.2} [8.3]

Evaluation. We record the mean reward E,[r(z7)] ((bl) in Eq.(3)), the KL divergence term ((b2)
in Eq.(@)). In our results, we present the mean values of the reward (Reward), the KL term (KL-Div)
(and their 95% confidence intervals). Our aim is to fine-tune diffusion models so that they have
high (Reward) and low (KL-div): that is, to produce high-reward samples from a distribution that
stays close to the data. For one of our evaluation tasks (Section[8.2), we know the true function r*
(though it is not provided to our algorithm), and therefore can directly measure the degree to which
our method mitigates overoptimization by comparing the values of = and r* for our method and
baselines.

Note that we technically use an improved baseline elaborating on DPOK (Fan et al.| [2023) and DDPO
(Black et al., 2023)) by directly adding a KL penalty to the rewards. For details, see Appendix
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Table 1: Result for normalized GFP (Left) when we set a = 0.1 for ELEGANT and PPO + KL.
Results for TFBind (right) when we set & = 0.005. 4+ means 95% confidence intervals across seeds.

(a) GFP. The pre-trained model has 0.90 (reward), (b) TFBind. The pre-trained model has 0.45 (reward),

0.0 (KL-div) 0.0 (KL-div).
Reward (r) T KL-Div ] Reward (r) T KL-Div ]
Guidance 0.94 +£0.01 624 Guidance 0.81 +£0.03 709
PPO + KL 0.96 + 0.01 95 PPO + KL 0.98 +0.00 110
ELEGANT (Ours)  0.98 £ 0.00 32 ELEGANT (Ours)  0.98 £ 0.00 82
350 140 1000
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500 | w0 I =0 00
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(a) ELEGANT (5¢-3) (b) ELEGANT (e-2) (C) ELEGANT (5¢-2) (d) Pre-trained (e) NO KL

Figure 2: Histograms of 1000 samples generated by fine-tuned diffusions for TFBind in terms
of r*(x) in Red and r(z) in Blue. In No KL, the same sample with r* is generated, suffering
from overoptimization. ELEGANT can achieve both high r and r*. The enlarged figure (a) is in

Appendix [F2.3]

8.1 DESING OF PROTEIN AND DNA SEQUENCES

We study two distinct biological sequence tasks: GFP and TFBind (Trabucco et al.,[2022). In the GFP
task,  represents green fluorescent protein sequences, each with a length of 237, and r*(z) signifies
their fluorescence value (Sarkisyan et al.,[2016). In the TFBind task, x represents DNA sequences,
each having a length of 8, while r* () corresponds to their binding activity with human transcription
factors (Barrera et al., [2016). Using these datasets, we proceed to train transformer-based diffusion
models and oracles (details in Appendix [F.I).

Results. We present the performances in .
Tables [T and It's clear that ELE- Table 2: TFBind. We set o = 0.01 for ELEGANT and

GANT surpasses PPO + KL and Guid- PPO: For Truncation, we set X' = 0.87'. It is seen
that ELEGANT can circumvent overoptimization while

ance in terms of rewards, maintains a !
other methods suffer from it.

smaller KL term. It’s worth noting that
while there is typically a tradeoff between
the reward and KL term, even when fine- Reward ()t Reward (7*) 1
tuned diffusion models yield similar re-  NO KL 1.0+£0.0 0.76 +0.02
wards, their KL divergences can vary sig- ~ Guidance 081+£0.03  0.76+0.03
ificantly. This implies that, compared to _PPO + KL 0-987£0.001 _ 0.84+0.01
nuticantly. p » comp Random (Prabhude]  1.0£0.0  0.77 £ 0.01
PPO + KL, our proposal, ELEGANT, [ajetall2023)
effectively minimizes the KL term while  Truncation — (Clark ~ 1.0+0.0 0.78 £ 0.01
maintaining high rewards. This reduced gﬁé(ﬁ’;ﬁj o 0080 £ 0001 0.88 4001
KL term translates to the alleviation of (Ours) : : : :

overoptimization, as in Section[8.2]

8.2 QUANTITATIVE EVALUATION OF OVEROPTIMIZATION

In TFBind, where we have knowledge of the genuine reward 7*, we conduct a comparison between
ELEGANT and several baselines, presented in Figure 2|and Table [2} It becomes evident that the
version without KL regularization achieves high values for r, but not for the true reward value 7*. In
contrast, our method can overcome overoptimization by effectively minimizing the KL divergence.

In Table we additionally compare algorithms that focus solely on maximizing r(z7) (i.e., (bl) in
Equation (3))) with several techniques. For instance, the approach presented in [Clark et al| (2023)
(DRaFT-K) can be adapted to our context by updating drift terms only in the interval [K, T'] rather
than over the entire interval [0, T (referred to as Truncation). Similarly, AlignProp, as proposed
by [Prabhudesai et al.| (2023), can be applied by randomly selecting the value of K at each epoch
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(referred to as Random). However, in the case of TFBind, it becomes evident that these techniques
cannot mitigate overoptimization.

8.3 IMAGE GENERATION

o ey ELEGANT|
| persiiEEsiteertis @=5 §
= O
6 f‘ ¥y /",
£s Y PP—— —
) .“ Modified »  KL-Div NO KL
Y3 | NO KL 7.65£0.07 0.80
2 Y Guidance 5914+0.14 2.52
! = aa e PPO + KL 6.06 = 0.09 0.04
2500 5000 7500 10000 12500 15000 ELEGANT (o =5) 8.42+0.03 0.15 PPO+KL

Reward Queries

- ELEGANT(a=5) -+~ ELEGANT(@=10) -=- NOKL eosw. ELEGANT (o =10) 8.03+£0.24 0.09

'
.

(a) Evaluation curve (“modified r”) (b) Mean (“modified ) (c) Generated images

Figure 3: Results for fine-tuning aesthetic scores on images. Plot (a) depicts a training curve (mean
of generated samples in terms of “modified 7). It is evident that ELEGANT exhibits faster training
compared to PPO + KL while mitigating overoptimization, unlike NO KL. In table (b), we report
the highest mean value of “modified r” across all epochs (the x axis in plot (a) before 15360 reward
queries) for each method and their 95% cfs. Additionally, generated images corresponding to Table
(b) are provided in images (c).

Here, our goal is to fine-tune a text-to-image diffusion model to produce visually appealing pictures.
We employ Stable Diffusion v1.5 as our pre-trained model (Rombach et al., [2022)), a conditional
diffusion model that can generate natural images given prompts (e.g., cat). In line with prior studies
(Black et al., 2023; [Prabhudesai et al.,[2023)), we use the LAION Aesthetics Predictor V2 (Schuhmann)
2022) for r. This predictor is a linear MLP model built on the OpenAl CLIP embeddings (Radford
et al.| 2021), pre-trained on a dataset over 400k aesthetic ratings ranging from 1 to 10.

Evaluation. Notably, the above LAION Aesthetics Predictor V2 may not be accurate in out-of-
distribution regions since it is still a learned reward function. Consequently, it may assign high scores
to unnatural images that deviate far from the original prompts due to overoptimization (c.f. Figure[T).
Therefore, to detect these undesirable scenarios during evaluation, we employ “modified r”” on all
generations, defined as follows: (1) querying vision language models (LLaVA in Liu et al.|(2024)) to
determine if images contain objects from the original prompts (e.g., cats) EL (2) if yes, keeping the raw
score r(x); (3) if no, assigning a score of 0. Notably, for all algorithms, we compute the “modified r”
only during evaluation in order to detect overoptimization. But we don’t use it during fine-tuning

Results. In Figure[3a)and Table [3b] we present the evaluation curve and the peak number of reward
queries in terms of the mean of generated samples with respect to “modified r”. Firstly, we observe
a significantly faster training speed for ELEGANT compared to PPO + KL. Secondly, comparing
ELEGANT with NO KL, we notice that entropy regularization enables us to achieve higher values
for “modified r”’, whereas NO KL begins generating images that ignore prompts early on, resulting
in a rapid decline in the evaluation curve, and its peak “modified r”” across epochs remains lower. We

showcase generated images in[Figure 3¢} and provide additional images in Appendix [F2.3]

8.4 EFFECTIVENESS OF LEARNING INITIAL DISTRIBUTIONS.

Readers may want to know the effectiveness of learning the initial distribution. To address this, we
also tested our algorithm without it. As shown in Table 2] (TFBinding), the result * is 0.86 & 0.01,
and in Table [3b](image generation), the modified r score is 7.90 £ 0.32. In both cases, these values
are lower than those achieved by our full algorithm, which learns the initial distribution. These
findings demonstrate that learning the initial distribution is effective in mitigating overoptimization
and achieving higher genuine rewards in specific practical scenarios.

9 CONCLUSION

We propose a theoretically and empirically grounded, computationally efficient approach for fine-
tuning diffusion models. This approach helps alleviate overoptimization issues. In future work, we
plan to investigate the fine-tuning of recent diffusion models more tailored for biological or chemical
applications (Watson et al., [2023; /Avdeyev et al.| 2023} |Gruver et al.| 2023)).

3The F1 score for detecting objects using LLaVA was 1.0 as reported in Appendix andm
4 . . . .
For results without the modificaiton on r, refer to|Figure 6,

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we provide details for the experiments, including all the
training setup, architecture in Appendix.
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A ADDITIONAL RELATED WORKS
In this section, we discuss additional related works.

Fine-tuning large language models. Much of the recent work in fine-tuning diffusion models is
inspired by the wide success of fine-tuning large language models for various objectives such as
instruction-following, summarization, or safety (Ouyang et al., 2022} [Stiennon et al},[2020; Bai et al.,
[2022). Many techniques have been proposed to mitigate reward collapse in this domain, but KL
regularization is the most commonly used 2023). For a more comprehensive review, we
direct readers to|Casper et al.| (2023)). In our experiments, we compare to a KL-penalized RL baseline,
which is analogous to the current dominant approach in language model fine-tuning.

Sampling and control. Control-based approaches have been extensively employed for generating
samples from known unnormalized probability densities in various ways (Tzen and Raginsky}, 2019;
Bernton et al., 2019} [Heng et al}, [2020; 2021} [Berner et al., 2022} |Lahlou et al.
2023}, /Zhang et al., 2023} Bengio et al.,[2023)). Notably, the most pertinent literature relates to path
integral sampling (Zhang and Chenl [2021). Nevertheless, our work differs in terms of our target
distribution and focus, which is primarily centered on fine-tuning. Here are more differences:

* We address how to utilize pre-trained diffusion models by properly setting rewards in the control
problem.

» Their works assume an initial distribution as the Dirac delta distribution, which does not apply to
diffusion models. We explore how to relax this assumption.

* We provide several proofs to show our main statement. The proof in Section C.2 is similar to
that in the path integral sampler proof. However, the proofs in Sections C.1 and C.3 are novel.
In particular, the proof in Section C.1 highlights the connection with bridge (flow) matching, as
discussed after Lemma 4.

Our research also shares connections with path integral controls (Theodorou and Todorov} 2012
[Theodorou et al., [2010; [Kappenl, [2007) and the concept of control as inference (Levine, [2018).
However, our focus lies on the diffusion model, while their focus lies on standard RL problem:s.

Markov Chain Monte Carlo (MCMC). MCMC-based algorithms are commonly used for sam-
pling from unnormalized densities that follow a proportionality of exp(r(x)/«) (Girolami and
[Calderhead| 2011; Ma et al 2019). Numerous MCMC methods have emerged, including the first-
order technique referred to as MALA. The approach most closely related to incorporating MALA for
fine-tuning is classifier-based guidance, as proposed in|[Dhariwal and Nichol (2021); |Graikos et al.|
(2022). However, implementing classifier-based guidance is known to be unstable in practice due to

the necessity of training numerous classifiers (Clark et al.,[2023).

Additional Works on Fine-Tuning Diffusion Models. [Domingo-Enrich et al|(2024) and[Zhang
et al.| (2024)) have addressed problems similar to ours, but their approaches still differ significantly.
Domingo-Enrich et al.|(2024) addressed the initial bias issue discussed in Section 6 by modifying
the noise schedule, whereas we tackled it by introducing an additional optimization problem.
approached a related problem by designing an objective function inspired by a detailed
balance loss in Gflownets, while our algorithm directly solves the control problem using neural SDE.
Although its algorithm has certain benefits when rewards are differentiable like PPO, our primary
focus is more on how to mitigate overoptimization from both theoretical and empirical perspectives.
Marion et al.|(2024) has explored fine-tuning in diffusion models, framing it as a bilevel optimization
problem. However, they do not appear to discuss strategies for constructing objective functions, such
as incorporating KL regularization to prevent overoptimization.

B VALUE FUNCTION ESTIMATION

In the initial stage of ELEGANT, our objective is to learn V{f(x(). To achieve this, we use
Vs (&) = alog(Epasa exp(r(e1) /a)|ao = ),

which is obtained as a corollary of Lemma T]at ¢ = 0. Then, by taking a differentiable function class
A :R% — R, we use an empirical risk minimization algorithm to regress exp(r(z7)/a) on .
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While the above procedure is mathematically sound, in practice, where « is small, it may face
numerical instability. We instead recommend the following alternative. Suppose r(z7) = k(o) + €
where ¢ is noise under P42t2 Then,

Vg (2) = k(z) + o log Epas [exp(e/a) 0 = a].

Therefore, we can directly regress r(zr) on xq since the difference between k(x) and Vi (z) remains
constant. The complete algorithm is in Algorithm [4]

Algorithm 4 Optimal Value Function Estimation

1: Input: Function class A C [R? — R]

2: Generate a dataset D that consists of pairs of (z,y): © ~ viy; and y as r(xr) following the
pre-trained SDE: dzy = f(t, z;)dt + o(t)dw.

3: Run an empirical risk minimization: a = argminge 4 Y=, ) ~pia(z) — Y}

4: Output: a

B.1 MORE REFINED METHODS TO LEARN VALUE FUNCTIONS
We can consider a We can directly get a pair of x and y. Here, {x(i)} ~ Vinj and
39 = alog Bpaaa [exp(r(zr) /o) |z = 2]

where * means Monte Carlo approximation for each x;. In other words,
Epaata lexp(r(zr)/a)|zg = 4] := — Z exp(r (Z,J) )/a)

where {r(xgj )} is a set of samples following P42t with initial condition: 29 = x;. Then, we are
able to learn a using the following ERM:

= argmin Z{a — )2,

acA i—1

C PROOFS

C.1 INTUITIVE PROOF OF THEOREMIII

We first give an intuitive proof of Theorem [T}

Let P!, (+|x0) be the induced distribution by the SDE:
dey = {f(t, z¢) + u(t, z¢) }dt + o(t)dw,.
over C conditioning on xq. Similarly, let ]P’data( |xo) be the induced distribution by the SDE:
dxy = f(t, z¢)dt + o(t)dw;

over C conditioning on x.

Now, we calculate the KL divergence of IP’d‘““( |wo) and P, (+|zo) . This is equal to

1 Ju(t, 2) |2
KL 20) [ (20)) = B pr i) [ / det]. an
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This is because

[P (-]x0)
U data _ ) 10
KL( .|0('|330)H]P.|0 (|$0)) - EPjO(-\zo) deilgta(_le)

T 2 T
1[u(t, z,)||
= Epu_([a0) /0 5Wdt+/() u(t, zy)dw

[T 2
_ L [Ju(t, z)||
= EIF”_“‘O(-\IO) /0 5 0'2(t) dt| .

(Martingale property of Itd integral)

(Girsanov theorem)

Therefore, the objective function in (3] is equivalent to

obj = Epu.v [r(z7)] — aKL(P®%Y||PIt?), (12)

/T Lljutt, 2l
2
o 2 o)
= Epuo[r(@r)] — oKL ti) = 0Fpymsr KLY (20) [P ([20)) |
= Epuo [r(27)] — oKL(P®"|[Pd2%2),
The objective function is further changed as follows:
obj = Epu. [r(27)] — aKL(P%||Pd®)
= Eqy oy [r(27)] — oKL(PE"[PF) — aB,, wpur [KL(PR" (7|27) [|PF (7]2))]}-

Term (a) Term (b)

This is because

E]Pm,u [T’(Z‘T)] — OtKL(l/HI/ini) - OéE]pu,u

By optimizing (a) and (b) over P*¥, we get
P;(zr) = exp(r(zr)/a)P* (21)/C,
Py(7|2r) = P (r]27). (13)

Hence, we have

exp(r(zr) /)P4 (7)
. :

Remark 1. Some readers might wonder in the part we optimize over Py ,, rather than f,v. Indeed,
this step would go through when we use non-Markovian drifts for f. While we use Markovian drift,
this part still goes through because the optimal drift needs to be known as Markovian anyway. We
choose to present this proof first because it can more clearly convey our message of bridge preserving
property in (13). We will formalize it in[Section C.2|and[Section C.3]

P*(7) = Pr(xr) x Pp(r]er) =

C.2 FORMAL PROOF OF[THEOREM 11

Firstly, we aim to show that the optimal conditional distribution over C on zg (i.e., IP’% (1]zg)) is
equivalent to

P{5*(7|z0) exp(r(ar) /)
C(Io) ’

To do that, we need to check that the above is a valid distribution first. This is indeed valid because
the above is decomposed into

exp(r(vr) /)P4 (ar|z0)

C(zo) := exp(Vy (2) /).

]P;data 14
C(J?O) X -0 (T|anxT)7 ( )
(al) (a2)
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and both (al), (a2) are valid distributions. Especially, for the term (1), we can check as follows:

Clxo) = /exp(r(mT)/a)dP%TBa(wTIﬂfo)) = Epasa [exp(r(z7)/a)] = exp(Vy' (2)/ ).

(Use Lemmal[T))
Now, after checking (]E[) is a valid distribution, we calculate the KL divergence:
N Pdata (120 exp(r(zr)/a
KL [ % (rfao) To (Tlzo) exp(r(zr)/a)
C(zo)
= KL(P! (7]zo) P93 (|z0)) — Epu (o) [1(27)/ 0 = log C(z0)|zo]
T * 2
L[Ju* (¢, 24|l
= Epus (a0) H/O 2 20 dt —r(zr)/a+log C(zo) | o (Use (1))
= =V (z0)/a + log C(zp). (Definition of optimal value function)
Therefore,
\ P98 (r]zo) exp(r(zr)/a)
KL | Yo (rlzo) == = —Vj (wo) /o + log C(wo) = 0.
C(wo)
Hence,
" P5t(7]zo) exp(r(zr) /)
P-\O(T‘xo) = .

C(xo)

Now, we aim to calculate an exact formulation of the optimal initial distribution. We just need to
solve

argmax/VO*(x)y’(m) — oKLV ||Vini)-
The closed-form solution is
exp(Vy' (#)/e)vini()/C
where C' := [ exp(Vy(z)/a)vini(z)dz.

Combining all together, we have been proved that the induced trajectory by the optimal control and
the optimal initial distribution is

. P (7] zo) exp(r(ar)/a) C (o) Vini(20)
U _ IO * 0
P (7o) = ey - A ni0),
Therefore,
- . Pdata(r|z0) exp(r(zr)/a 20)Vini (T
PV (1) = Py (T]ao)v* (w0) = 0" (7l (g(x:)( (z7)/0) x ol O)C’ (o)
B P43 (7 |wo) exp(r(zr) /a)vini (o) _ Pt () exp(r(zr)/a)
— . = 5 .

Marginal distribution at ¢t. Finally, consider the marginal distribution at ¢. By marginalizing
before ¢, we get

Pdata(T[t7T]) x exp(r(zr)/a)/C.
Next, by marginalizing after ¢,
Py (2)/C % Ep,,, lexp(r(zr)/a)lz: = z].
Using Feynman-Kac formulation in Lemma ] this is equivalent to

Py (z) exp(Vy' (z) /) /C.
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Marginal distribution at 7. We marginalize before 7. We have the following
P (z) exp(r(x) /) /C.
C.3 ANOTHER FORMAL PROOF OF [THEOREM 1]

First, noting the loss in (E[) becomes

Eyonn[Vo (20) — aKL(v(20) /Vini(20))]s

by optimizing over v € A(X), we can easily prove that the optimal initial distribution is

exp (VO*OEx)) Vini (2)/C.

Hereafter, our goal is to prove that the marginal distribution at ¢ (i.e., P}) is indeed g;(z) defined by

go(z) = exp (Vf)> pata ) /C

Using we can show that the SDE with the optimal drift term is
o%(t)
o

dxy = {f(t, x)+ VVt*(x)} dt + o(t)dwy.

Then, what we need to prove is that the density g; € A(RY) satisfies the Kolmogorov forward
equation:

gt( £l 2(?f) - () o Pge(r)
g {00+ T o] - S T =0 a5
where f = [f[!] , f19]T . Indeed, this (T3] is proved as follows:
dg(z) il (t) % d*gi(x
di H Ve () Z dxmczxm
1 deata data [4] 02 (t) d2p?ata (33)
- aex ) { +ZV (B2 () 1 (¢, 7)) = = Z yROpmG

exp(V(z)/a ; o? Zexp(Vi* () /a
+CP?ﬂta<x>{dp“§J/+me<t,x>vxm (exp(V7 () /o) - T4 3 Cep /o) }

! pdata o?(t) — & exp(Vy (2)/a)
e X T 2 T

=0+0.

Note in the final step, we use

dptdata(x) data [4] 02(t) dQP?ata(l‘) _
T + zl: vz[i] (Pt (x)f (tvx)) - ) Xl: dzlddgld 0,

which is derived from the Kolmogorov forward equation, and the optimal value function satisfies the
following

o?(t) 3 d? exp(V (z) /)

dexp(Vy (z)/a)
2 Azl dzl]

dt

+f - Vexp(V*(2)/a) + =0,

which will be shown in the proof of as in (T8).
Hence, is proved, and g, is dP} /dp.
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C.4 PROOF OF[LEMMA 1]

From the Hamilton—Jacobi—Bellman (HJB) equation, we have

o (t) x~ PV () « dvy(z)  ofull3
msx{ 5 Ei:dxm e +{f +u} - VV(z)+ 7 —202(5}:0. (16)

where 2!/ is a i-th element in . Hence, by simple algebra, we can prove that the optimal control
satisfies

2
t
vt 2) = ZO gy ().
a
By plugging the above into the HIB equation (T6), we get

2 d2V dV.* 2 Vx 2
02( ) de“td;) bV + zlt(x) L7 (t)llzat @)l o, (17)

which characterizes the optimal value function. Now, using (I7), we can show

0%(t) x @ exp(Vy¥ (2) /) dexp(Vy(z)/)
2 £ dxlildzld] dt

V¥ (x dQV* A 2 vV* 2
exp( toE ) { de[l x[l +f-VV(z)+ );lt(x) + 2 @)l Qat ($)|2}

+ f-Vexp(V(z)/a) +

=0.

Therefore, to summarize, we have

o*(t ?ex a exp(V*(z) /o
Wy TR | f G exp(vy (@)/a) + LRV _o g

Vi(x) = r(x). (19)
Finally, by invoking the Feynman-Kac formula (Shreve et al., 2004), we obtain the conclusion:

o () . o (%) =]

C.5 PROOF OF[LEMMA 2|

Recall u*(t,z) = (t) x V,Vi*(x) from the proof of Then, we have
: o2(1) | Veexp(Vy(x)/a)
a exp(V*(x)/a)
V 2 Epdata [exp(r(z7) /@) |zt = ]
Epaaa [exp(r(z7) /) |z = 2]

)~ <>

x Vo Vi (z) =

=o%(t) x

C.6 PROOF OF[LEMMA 3|

Recall

P* (1) = P4*(r) exp(r(ar)/a)/C
By marginalizing before s, we get
Pl 1) (T1s,17) X exp(r(er)/a)/C
Next, marginalizing after ¢,
‘[isazf(r[s #) X Epaata [exp(r(zr)/a)|z:]/C
= P (11s,0)) exp (V)" () /@) / C.
Finally, by marginalizing between s and ¢, the joint distribution at (s, t) is
P (s, w¢) exp(Vy* (20) /) /C.
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Forward conditional distribution.

Pgita(xﬁ xt) eXp(Vvt*((Et)/Oé)/C _ ]P;data(l, |$ )eXp(Vvt*(xt)/a)
Plata(a,) exp(Vi(xs) /@) /C 1T exp (Ve () [a)

S

P:|s(xt|xs) =

Backward conditional distribution.

P(siitta(xs’ CCt) exp(V;* (l't)/a)/c _ pdata
Pdata(zy) exp(Vi* (2¢) /) /C I

PYe(@slae) = (xs|xt).

C.7 PRrROOF OF[LEMMA 4

Use a statement in the proof of

C.8 PROOF OF[THEOREM 2|

We omit the proof since it is the same as the proof of

D DIFFUSION MODELS

In this section, we provide an overview of continuous-time generative models. The objective is to
train a SDE in such a way that the marginal distribution at time 7" follows pgata. While pgata i not
known, we do have access to a dataset that follows this distribution.

Denoising diffusion models DDPMs (Song et al.,|2020) are a widely adopted class of generative
models. We start by considering a forward stochastic differential equation (SDE) represented as:

dy: = —0.5ydt + dw, yo ~ Ddata, (20)

defined on the time interval [0, T]. As T tends toward infinity, the limit of this distribution converges
to N'(0,14), where Iz denotes a d-dimensional identity matrix. Let Q be a measure on C induced
by the forward SDE 20). Consequently, a generative model can be defined using its time-reversal:
ry = yr—_¢, which is characterized by:

dr; = {0.52; — V1og Qr—_i(z¢) }dt + dwy, xo ~ N(0,1,).

A core aspect of DDPMs involves learning the score V log Q; by optimizing the following loss with
respect to S

Eql||V log Qo (m¢|x0) — S(t,24)|13].

A potential limitation of the above approach is that the forward SDE might not converge to a
predefined prior distribution, such as N (0, I;), within a finite time 7'. To address this concern, we
can employ the Schrodinger Bridge formulation (De Bortoli et al., 2021)).

Diffusion Schrodinger Bridge. A potential bottleneck of the diffusion model is that the forward
SDE might not converge to a pre-specified prior A(0, 1) with finite 7. To mitigate this problem,
De Bortoli et al.| (2021)) proposed the following Diffusion Schrodinger Bridge. Being inspired by
Schrodinger Bridge formulation (Schrodinger, [1931) they formulate the problem:

argmin KL(P||Pyef) 8.t.Py = vini, PT = pdata-
P

where P, is a reference distribution on C such as a Wiener process, [P is a margin distribution of
P at time 0, and P is similarly defined. To solve this problem, De Bortoli et al.| (2021) proposed
an iterative proportional fitting, which is a continuous extension of the Sinkhorn algorithm (Cuturi,
2013), while learning the score functions from the data as in DDM.
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Bridge Matching. In DDPMs, we have formulated a generative model based on the time-reversal
process and aimed to learn a score function V log Q; from the data. Another recent popular approach
involves emulating the reference Brownian bridge given 0, T" with fixed a pre-defined initial distri-
bution v;,; and a data distribution pgat, at time 7" (Shi et al.l 2023}, [Liu et al., [2022). To elaborate
further, let’s begin by introducing a reference SDE:
dT; = (J'(if)dwt7 To ~ Vini-
Here, we overload the notation with QQ to indicate an induced SDE. The Brownian bridge
Q.jj0,77(-|0, 1) is defined as:
dz" = o(t)*Vlog QT\t(xTL’E?’T) + o (t)dwy, g = o,

where xOT’T = xp. The explicit calculation of this Brownian bridge is given by:

Vlog Qry(zr|zy”) =
Now, we define a target SDE as follows:
dxy = f(t,z)dt + o(t)dwy, T ~ Vipi.

This SDE aims to induce the same Brownian bridge as described earlier and should generate the
distribution pqat, at time 7. We use P to denote the measure induced by this SDE. While the specific
drift term f is unknown, we can sample any time point ¢(0 < ¢t < T') from IP by first sampling z;( and
zr from v4y; and pqata, respectively, and then sampling from the reference bridge, i.e., the Brownian
bridge. To learn this drift term f, we can use the following characterization:

f(t,x¢) = Ep[V1og Qry(wr|s) |7 = 24]-

Subsequently, the desired drift term can be learned using the following loss function with respect to

f:

T — Tt

T—t

Ep[||V log Q¢ (zr|z:) — f(2, xt)”z]
Bridge matching can be formulated in various equivalent ways, and for additional details, we refer
the readers to[Shi et al.|(2023); [Liu et al.| (2022).

E DETAILS OF IMPLEMENTATION

E.1 IMPLEMENTATION DETAILS OF NEURAL SDE

We aim to solve

argmax L(zp),dz = f(t,z¢)dt + g(t)dwe, z9 ~ D.
F0,TIxZ2—Z

Here is a simple method we use. Regarding more details, refer to |Kidger et al|(2021); (Chen et al.
(2018).

Suppose that f(-; ) is parametrized by 0. Then, we update this § with SGD. Consider at iteration j.
Fix 6, in f(t, z;;6;). Then, by simulating an SDE with

dzy = f(t, 25 0)dt + g(t)dwy, 20 ~ 1,
we obtain [V trajectories

{2 Y

In this step, we are able to use any off-the-shelf discretization methods. For example, starting from

z(()l) ~ v, we are able to obtain a trajectory as follows:

20 =20 4 Fe— 1,20 0A+ gt — DAw,  Aw, ~ N(0, (A1)?).

Finally, using automatic differentiation, we update 6 with the following:

N
1 i
Ojt1="0; = pVo {N § L(Z(T))}
i=1

where p is a learning rate. We use Adam in this step for the practical selection of the learning rate p.

0=0,
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E.2 BASELINES

We consider the following baselines.

PPO + KL. Considering the discretized formulation of diffusion models (Black et al.,[2023}; |Fan
et al.| 2023), we use the following update rule:

< (w4|2e-130) (we|z-150)
VQED Z |:mln {’Ft(anxt)ptt_l’vlf;t(an xt) : Chp <ptt_1’)7 1- €, 1 + 6) }:| B

P p(ze|wi—1;Oo1a) p(ze|wi—1; 0ol

1)
.9 2
ft(;vo,mt):—r(mT)—i—aW, p(ze|zi1:0) = N(ult,z;0) + f(t, ), 0(t)  (22)
KL term

where f(t, ) is a pre-trained drift term and 6 is a parameter to optimize.

Note that DPOK (Fan et al.}[2023)) uses the following update:

T

. plaifee1:0) i (oo )} s alutezsols

VoE min § —r(xg) —F—, —7(xp) - Clip | —F7—=,1 —€,1 +¢ 4o 70
’ thzl { ( 0)p(xt‘mtfl§901d> (z0) P p(xe|i—1; Oo1d) 202(t)

KL term

where the KL term is directly differentiated. We did not use the DPOK update rule because DDPO
appears to outperform DPOK even without a KL penalty (Black et al. (2023)), Appendix C), so we
implemented this baseline by modifying the DDPO codebase to include the added KL penalty term

(Equation (22))).

Guidance. We use the following implementation of guidance (Dhariwal and Nichol, 2021):

 For each t € [0,T], we train a model: P;(y|z;) where x is a random variable induced by the
pre-trained diffusion model.

* We fix a guidance level v € R+, target value y.on, € R, and at inference time (during each
sampling step), we use the following score function

Vi logPi(zly = Yeon) = Vi logPi(x) + vV, log Pr(y = Yeon|T).

A remaining question is how to model p(y|z). In our case, for the biological example, we make a
label depending on whether z is top 10% or not and train a binary classifier. In image experiments,
we construct a Gaussian model: p(y|z) = N (y — ug(z), 0?) where y is the reward label, pg is the
reward model we need to train, and o is a fixed hyperparameter.

F EXPERIMENT DETAILS

F.1 DETAILS FOR TASKS IN BIOLOGICAL SEQUENCES
F.1.1 DATASET.

TFBind8. The number of original dataset size is 65792. Each data consists of a DNA sequence with
8-length. We represent each data as a one-hot encoding vector with dimension 8 x 4. To construct
diffusion models, we use all datasets. We use half of the dataset to construct a learned reward r to
make a scenario where oracles are imperfect.

GFP. The original dataset contains 56, 086 data points, each comprising an amino acid sequence
with a length of 237. We represent each data point using one-hot encoding with a dimension of
237 x 20. Specifically, we model the difference between the original sequence and the baseline
sequence. For our experiments, we selected the top 33, 637 samples following (Trabucco et al.| [2022)
and trained diffusion models and oracles using this selected dataset.
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Table 3: Architecture of diffusion models for TFBind

Layer Input Dimension Output dimension Explanation
1 1(¢) 256 (t) Get time feature
1 8 x4 (x) 64 (z') Get positional encoder (Denote )
2 8 x 4+ 256+ 64 (x,t,2) 64 (7) Transformer encoder
3 64 (7) 8 x4 (x) Linear

Table 4: Architecture of oracles for TFBind

Input dimension  Output dimension  Explanation

1 8 x4 500 Linear
1 500 500 ReLLU
2 500 200 Linear
2 200 200 RelLU
3 200 1 Linear
3 200 1 RelLU
4 1 1 Sigmoid

Table 5: Primary hyperparameters for fine-tuning. For all methods, we use the Adam optimizer.

Method Type GFP TFBind
Batch size 128 128
Sampling for neural SDE Euler Maruyama
ELEGANT Step size (fine-tuning) 50 50
Epochs (fine-tuning) 20 50
Batch size 128 128
PPO € 0.1 0.1
Epochs 100 100
Guidance Guidance level 30 30
Pre-trained diffusion Forwa.‘rd SDE Variance preserving
Sampling way Euler Maruyama

F.1.2 STRUCTURE OF NEURAL NETWORKS.

We describe the implementation of neural networks in more detail.

Diffusion models and fine-tuning. For diffusion models in TFBind, we use a neural network to
model score functions in Table[3] We use a similar network for the GFP dataset and fine-tuning parts.

Oracles to obtain score functions. To construct oracles in TFBind, we employ the neural networks
listed in Table[d] For GFP, we utilize a similar network.

F.1.3 HYPERPARAMETERS

We report a set of important hyperparameters in Table 5]

F.1.4 ADDITIONAL RESULTS

In this section, we add additional results to support the main paper.

Enlarged figure of ELEGANT (0.005). We add the enlarged figure of ELEGANT (0.005) in
Table 2
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Figure 4: Enlarged histogram of ELEGANT (0.005) in Table

Table 6: TFBind. We set o = 0.01 for ELEGANT and PPO.

Reward (r) T Reward (r*) 1

DDPO 0.99£0.0 0.80 £0.02
DPOK 0.99 +0.00 0.78 £0.02
PPO+KL  0.99+0.0 0.84+0.01

Comparison of PPO+KL, DPOK, DDPO. We compare PPO+KL, DPOK, and DPPO in Table @
on page[23]

Note with respect to DPOK and DDPO, we use the term “PPO + KL’ to convey that our “PPO+KL”
updates both the reward term and KL term with PPO, whereas the original DPOK optimizes the
reward term using PPO but employs a non-PPO approach for optimizing the KL term. We have
observed that "PPO + KL” yields more stable optimization compared to the precise algorithm in
DPOK, and aligns with a more conventional optimization method in the RL community.

Ablation studies in terms of . We have also conducted ablation studies with varying hyperparam-
eters. Specifically, we adjusted the parameter « in Table[2]to observe its effect on performance. For
instance, when « is set to 0.01, the reward of ELEGANT becomes 0.99. Conversely, when « is set to
0.001, the reward of ELEGANT decreases to 0.96.

F.2 DETAILS FOR IMAGE TASKS

Below, we explain the training details and list hyperparameters in Table[7]

F.2.1 FURTHER DETAILS OF IMPLEMENTATION

We use 4 A100 GPUs for all the image tasks. We use the AdamW optimizer (Loshchilov and
Hutter, 2019) with 51 = 0.9, 82 = 0.999 and weight decay of 0.1. To ensure consistency with
previous research, in fine-tuning, we also employ training prompts that are uniformly sampled from
50 common animals (Black et al., 2023; |Prabhudesai et al., 2023)).

Sampling. We use the DDIM sampler with 50 diffusion steps (Song et al., 2020). Since we need
to back-propagate the gradient of rewards through both the sampling process producing the latent
representation and the VAE decoder used to obtain the image, memory becomes a bottleneck. We
employ two designs to alleviate memory usage following (Clark et al.| (2023)); [Prabhudesai et al.
(2023): (1) Fine-tuning low-rank adapter (LoRA) modules (Hu et al., 2021)) instead of tuning the
original diffusion weights, and (2) Gradient checkpointing for computing partial derivatives on
demand (Gruslys et al.l 2016; |Chen et al.l 2016). The two designs make it possible to back-propagate
gradients through all 50 diffusing steps in terms of hardware.
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Table 7: Training hyperparameters.

Hyperparameter Value
Classifier-free guidance weight 7.5

DDIM steps 50
Truncated back-propagation step K ~ Uniform(0, 50)
Learning rate 0.0001

Batch size 128

Clip grad norm 5.0

Guidance. To train the classifier, we use the AVA dataset (Murray et al. [2012)) which includes
more than 250k evaluations (i.e., 20 times more samples than our ELEGANT implementation, cf.
Figure [6). We implement the classifier (i.e., reward model) using an MLP model that takes the
concatenation of sinusoidal time embeddings (for time ¢) and CLIP embeddings (Radford et al.,[2021)
(for x4) as input. The implementation is based on RCGDM (Yuan et al.| 2023).

F.2.2 FURTHER DETAILS OF EVALUATION VIA VISION LANGUAGE MODELS

A key consideration in evaluating all algorithms in the image domain is that we don’t know the true r*.
While we use LAION Aesthetic Predictor V2 (Schuhmann, [2022)) as 7 (), this r(x) is not accurate in
out-of-distribution regions, as we mention in the main text. Indeed, when overoptimization happens,
generated images become almost identical regardless of prompts.

To effectively detect reward overoptimization, we use a pre-trained multi-modality language model
to assess image-to-prompt alignment. For each generated image, we send the following prompt to
LLaVA (Liu et al.} 2024) along with the image:

<image>
USER: Does this image include {prompt}? Answer with Yes or No
ASSISTANT:

We assessed its accuracy and precision with human evaluators by generating images using Stable
Diffusion with animal prompts (such as dog or cat). The F1 score achieved was 1.0.

F.2.3 ADDITIONAL RESULTS

More generated images. We provide more generated samples to illustrate the performances in
Figure[5]

Comparison with Guidance. In practice, we observe that the guidance strength in Guidance is
hard to control: if the guidance level and target level are not strong, the reward-guided generation
would be weak (cf. Table[8). However, with a strong guidance signal and a high target value, the
generated images become more colorful at the expense of reducing “modified . In presenting
qualitative results in Figure [5] we set the target as 10 and the guidance level as 100 to balance
guidance strength and “modified r”.

Table 8: Evaluation results of classifier guidance for aesthetic scores. (-) are 95% confidence intervals.
Note the top 5% value is 6.0. Modified rewards reflect prompt-image alignments.

Target (Yoon) Guidance level () Mean “modified r” 1 KL-Div |

6 400 5.69(0.06) 0.30
6 800 5.71(0.06) 1.26
6 1200 5.68(0.06) 1.28
6 1600 5.45(0.25) 2.19
10 100 5.91(0.14) 2.52
10 200 5.53(0.45) 6.46
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rabbit peacock panda

cat dog horse monkey butterfly

ELEGANT (a=5)
ELEGANT (a=10)
NO KL

Guidance

Figure 5: More images generated by ELEGANT and baselines. Guidance is trained on AVA
dataset (Murray et al,[2012). All other algorithms (NO KL, Guidance, PPO + KL, and ELEGANT)
make 15360 reward inquiries to perform fine-tuning.

Compared with NO KL, PPO and PPO + KL. We plot the training curves of NO KL, PPO, PPO
+ KL, versus ELEGANT in Figure[6] Note that this plot depicts a “nominal” reward. Hence, the NO
KL baseline achieves seemingly high values. However, it severely suffers from overoptimization
(See evaluation in Figure [3aland Table[3b). On the other side, it is also evident that the KL entropy
of NO KL explodes, which indicates that the fine-tuned model deviates from the pre-trained model.
Our ELEGANT enjoys good performances while keeping a relatively low entropy compared to
baselines. This is because our explicit entropy regularization makes balancing fine-tuning and
mitigating overoptimization possible.

Empirically, we observe PPO outperforms PPO + KL in terms of reward but still falls short compared
to our ELEGANT.

KL Divergence

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Reward Queries Reward Queries
—— ELEGANT (0=10) —— ELEGANT (a=5) — NOKL — PPO —— PPO + KL (0=0.001)

Figure 6: Training curves of reward (left) and KL divergence (right) for NO KL, PPO, PPO + KL,
and ELEGANT for fine-tuning aesthetic scores. The x axis corresponds to the number of reward
queries in the fine-tuning process. All nominal rewards, including baselines, go over 8 in this figure,
but baselines still suffer from overoptimization, as in Figure[7] That’s why we report with modified
instead.
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F.2.4 EFFECTIVENESS OF LLAVA-AIDED EVALUATION

In this section, we see an example of the effectiveness of LLaVA-aided evaluation. More specifically,

Table Q] presents the statistics of LLaVA-aided evaluations for the pre-trained model and 5 checkpoints
of the NO KL baseline. It is observed that LLaVA can recognize all the prompts of images generated
by the pre-trained model. However, even with seemingly high-reward samples, many samples from
the NO KL ignore their prompts, leading to a decreased “modified r”.

Table 9: Evaluation statistics of “modified »” based on LLaVA

method mean std max invalid/total samples
pre-trained model  5.833  0.340  6.909 0/512
NO-KL-ckpt-6  7.294 0.543 7.946 2/512
NO-KL-ckpt-7 7.379 0.796 8.139 5/512
NO-KL-ckpt-8 7483 1.101 8.227 10/512
NO-KL-ckpt-9  6.880 2.505 8.376 59/512
NO-KL-ckpt-10  7.025 2.612 8.730 61/512

Figure [7]illustrates six instances of failure based on LLaVA evaluation. These examples involve
images that disregard prompts, potentially resulting in higher original scores r. With our modified r,
we can adequately assign low scores to such undesired scenarios.

butterfly | 7.73

— x . . e
dog | 7.76 horse | 6.82 rabbit | 7.89

cat|7.33 peacock | 7.22

Figure 7: Image-prompt alignment failures detected by LLaVA.
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G FURTHER LIMITATIONS AND THEIR REMEDY
In this section, we discuss further possible limitations in our work.

G.1 COMPUTATIONAL COST: COST OF LEARNING INITIAL DISTRIBUTIONS

Our overhead in learning the initial distribution is low. When learning a second diffusion chain, our
goal is to learn exp(Vj (x))vini(x). This distribution is much simpler and smoother compared to
the target distribution exp(7(2) /@) pdata () in the first diffusion chain. Therefore, we require fewer
epochs to learn this distribution. For instance, in image generation, we use only 200 reward queries
to learn initial distributions while the main diffusion chain takes 12000 queries for finetuning. The
wall time of learning the initial distribution (i.e., the second diffusion chain) is 30 — 40 minutes in
image experiments, while the wall time of learning the second chain is roughly 1800 minutes.

G.2 MEMORY COMPLEXITY OF ELEGANT

When updating a single gradient, while ELEGANT consumes O(L) memory (where L represents the
number of discretizations), PPO only requires O(1) memory. This may initially seem like a limitation
of our approach. However, in practical scenarios, we are able to manage highly-dimensional data
effectively by implementing gradient checkpointing and accumulating gradients while maintaining a
large batch size, as we did in our experiments.

G.3 CHOICE OF «

A sophisticated way to choose « is our future work. Typically, we observe « is helpful regardless of
its specific choice as long as it is too small or too large enough, as we did ablation studies in [Figure 2]

and [Figure 3}

Here, we discuss a practical way to choose it and associated experimental results. In many scenarios,
we typically know the feasible upper bound of true rewards. In such cases, by appropriately selecting
o to ensure that the final learned reward falls within the range of 0.98-0.99 of the upper bound, we can
effectively attain high rewards while mitigating overoptimization, as shown in Table[2] Approaches
without entropy regularization may easily lead to overoptimization, wherein the learned reward may
reach 1, despite the actual reward being relatively low, as we show in Table

G.4 INFERENCE TIME
Inference time is a critical aspect of many works in diffusion models. One potential approach would

be to use recent distillation techniques to accelerate inference time after fine-tuning. We will add
more such discussion in the next version.
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