
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FINE-TUNING OF CONTINUOUS-TIME DIFFUSION MOD-
ELS AS ENTROPY-REGULARIZED CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models excel at capturing complex data distributions, such as those of
natural images and proteins. While diffusion models are trained to represent the dis-
tribution in the training dataset, we often are more concerned with other properties,
such as the aesthetic quality of the generated images or the functional properties
of generated proteins. Diffusion models can be finetuned in a goal-directed way
by maximizing the value of some reward function (e.g., the aesthetic quality of
an image). However, this may lead to reduced sample diversity, significant devia-
tions from the training data distribution, and even poor sample quality due to the
exploitation of an imperfect reward function. The last issue often occurs when the
reward function is a learned model meant to approximate a ground-truth “genuine”
reward, as is the case in many practical applications (e.g., using a learned estimator
of aesthetic quality). These challenges, collectively termed “overoptimization,”
pose a substantial obstacle. To address this overoptimization, we frame the fine-
tuning problem as entropy-regularized control against the pretrained diffusion
model, i.e., directly optimizing entropy-enhanced rewards with neural SDEs. We
present theoretical and empirical evidence that demonstrates our framework is
capable of efficiently generating samples with high genuine rewards, mitigating
the overoptimization of imperfect reward models.

1 INTRODUCTION

cat | 8.93 butterfly | 8.84 peacock | 8.61 rabbit | 8.86

cat | 8.27 butterfly | 7.77 peacock | 7.56 rabbit | 8.22

Figure 1: Mitigating overoptimization with
entropy-regularized control. Diffusion models
fine-tuned in a goal-directed manner can produce
images (top) with high nominal reward values such
as aesthetic scores. However, these images lack re-
alism because the naı̈ve fine-tuning process is not
incentivized to stay close to the pre-trained data
distribution. Our approach (bottom) mitigates this
issue via entropy-regularized stochastic optimal
control.

Diffusion models have gained widespread adop-
tion as effective tools for modeling complex
distributions (Sohl-Dickstein et al., 2015; Song
et al., 2020; Ho et al., 2020). These models
have demonstrated state-of-the-art performance
in various domains such as image generation
and biological sequence generation (Jing et al.,
2022; Wu et al., 2022). While diffusion models
effectively capture complex data distributions,
our primary goal frequently involves acquiring
a finely tuned sampler customized for a specific
task using the pre-trained diffusion model as
a foundation. For instance, in image genera-
tion, we might like to fine-tune diffusion mod-
els to enhance aesthetic quality. In biology, we
might aim to improve bioactivity. Recent en-
deavors have pursued this objective through rein-
forcement learning (RL) (Fan et al., 2023; Black
et al., 2023) as well as direct backpropagation
through differentiable reward functions (Clark
et al., 2023; Prabhudesai et al., 2023). Such
reward functions are typically learned models
meant to approximate a ground-truth “genuine”
reward; e.g., an aesthetic classifier is meant to
approximate the true aesthetic preferences of
human raters.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

While these methods allow us to generate samples with high “nominal” (approximate) rewards, they
often suffer from overoptimization (reward collapse). Overoptimization manifests as fine-tuned
models produce samples with low genuine rewards that are still scored as having a high “nominal”
reward under the (learned) reward model, as illustrated in Figure 1. This issue arises because nominal
rewards are usually learned from a finite training set to approximate the genuine reward function,
meaning that they are accurate only within their training distribution. Consequently, fine-tuning
methods quickly exploit nominal rewards by moving beyond the support of this distribution.

Our goal in this paper is to develop a principled algorithmic framework and its fundamental theory
for fine-tuning diffusion models that both optimize a reward function and stay close to the training
data, thus alleviating overoptimization. To achieve this, we frame the fine-tuning of diffusion models
as an entropy-regularized control problem. It is known that diffusion models can be formulated as
stochastic differential equations (SDEs) with a drift term and a diffusion term (Song et al., 2020).
Based on this formulation, in a fine-tuning step, we consider solving stochastic control by neural
SDEs in a computationally efficient manner. Here, we introduce a loss that combines a terminal
reward with entropy regularization against the pre-trained diffusion model and optimize with respect
to both a drift term and an initial distribution. This entropy-regularization term enables us to maintain
the bridges (i.e., the posterior distributions of trajectories conditioned on a terminal point) of pre-
trained diffusion models, akin to bridge-matching generative models (Shi et al., 2023), such that the
fine-tuned diffusion model avoids deviating too much from the pre-trained diffusion model.

Notably, we theoretically show that the fine-tuned SDE, optimized for both the drift term and initial
distribution, can produce specific distributions with high nominal rewards that are within the support
of their training data distribution. Hence, our approach effectively mitigates the overoptimization
problem since nominal rewards accurately approximate genuine rewards in that region. Furthermore,
our theoretical results shed light on an intriguing new connection with classifier guidance (Dhariwal
and Nichol, 2021).

Our contribution can be summarized as follows: we introduce a computationally efficient, theoretically
and empirically supported method for fine-tuning diffusion models: ELEGANT (finE-tuning doubLe
Entropy reGulArized coNTrol) that excels at generating samples with high genuine rewards. While
existing techniques in image generation (Fan et al., 2023; Prabhudesai et al., 2023; Clark et al., 2023)
include components for mitigating overoptimization, we demonstrate stronger theoretical support
by explicitly characterizing target distributions in our key Theorem 1 (among methods that directly
backpropagate through differentiable rewards) and superior empirical performance (compared to a
KL-penalized PPO). Additionally, unlike prior work, we apply our method to both image generation
and biological sequence generation, demonstrating its effectiveness across multiple domains.

2 RELATED WORKS

We provide an overview of related works. We leave the discussion of our work, including fine-tuning
LLMs, sampling with control methods, and MCMC methods to Appendix A.

Diffusion models. Denoising diffusion probabilistic models (DDPMs) create a dynamic stochastic
transport using SDEs, where the drift aligns with a specific score function (Song et al., 2020; Ho
et al., 2020). The impressive performance of DDPMs has spurred the recent advancements in bridge
(flow)-matching techniques, which construct stochastic transport through SDEs with drift terms
aligned to specific bridge functions (Liu et al., 2022; Shi et al., 2023; Tong et al., 2023; Lipman et al.,
2023; Somnath et al., 2023; Liu et al., 2023; Delbracio and Milanfar, 2023; Shi et al., 2023).

Guidance. Dhariwal and Nichol (2021) introduced classifier-based guidance, an inference-time
technique for steering diffusion samples towards a particular class. More generally, guidance uses an
auxiliary differentiable objective (e.g., a neural network) to steer diffusion samples towards a desired
property (Graikos et al., 2022; Bansal et al., 2023). In our experiments, we show that our fine-tuning
technique outperforms a guidance baseline that uses the gradients of the reward model to steer the
pre-trained diffusion model toward high-reward regions.

Fine-tuning as RL/control. Lee et al. (2023); Wu et al. (2023) employ supervised learning
techniques to optimize reward functions, while Black et al. (2023); Fan et al. (2023) employ an
RL-based method to achieve a similar goal. Clark et al. (2023); Xu et al. (2023); Prabhudesai et al.
(2023) present a fine-tuning method that involves direct backpropagation regarding rewards, which
bears some resemblance to our work. Nevertheless, there are several notable distinctions between

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

our approaches. Specifically, we incorporate an entropy-regularization term and also learn an initial
distribution, both of which play a critical role in targeting the desired distribution. We present novel
theoretical results that demonstrate the benefits of our approach, and we provide empirical evidence
that our method more efficiently mitigates reward collapse.

It is worthwhile to note that while Fan et al. (2023) incorporates KL regularization, there are notable
differences in several aspects.

• The training algorithms employed are fundamentally distinct, as our approach is control-based,
whereas their training algorithm relies on PPO. Hence, our optimization algorithm can directly
control the KL term compared to PPO-based optimization. This enables us to minimize the KL
term more effectively while maintaining higher reward values. Consequently, our method better
mitigates overoptimization, as we will empirically demonstrate in Section 8.2.

• The PPO-based algorithm is computationally slower, as we will show in Section 8.3.
• We provide theoretical support by explicitly deriving our target distribution in Theorem 1. Based

on this, we argue that the fine-tuning algorithm mitigates overoptimization from a statistical
perspective, as the fine-tuned distribution retains the same support as the pre-trained distribution,
as shown in Section 4. Since detecting overoptimization in real experiments is challenging due
to the often unknown true rewards, we believe having this theoretical guarantee is a significant
advantage. Lastly, it is worthwhile to note our result highlights a non-trivial connection with
classifier guidance, as we show in Section 5.2.

3 PRELIMINARIES

We briefly review current continuous-time diffusion models. A diffusion model is described by the
following SDE:

dxt = f(t, xt)dt+ σ(t)dwt, x0 ∼ νini ∈ ∆(Rd), (1)

where f : [0, T] × Rd → Rd is a drift coefficient, and σ : [0, T] → R>0 is a diffusion coefficient
associated with a d-dimensional Brownian motion wt, and νini is an initial distribution such as a
Gaussian distribution. Note that many papers use the opposite convention, with t = T corresponding
to the initial distribution and t = 0 corresponding to the data. When training diffusion models,
the goal is to learn f(t, xt) from the data at hand so that the generated distribution from the SDE
(1) corresponds to the data distribution through score matching (Song et al., 2020) or bridge/flow
matching (Liu et al., 2022). For details, refer to Appendix D.

In our work, we focus on cases where we have such a pre-trained diffusion model (i.e., a pre-trained
SDE). Denoting the density at time T induced by the pre-trained SDE in (1) as pdata ∈ ∆(Rd), this
pdata captures the intricate structure of the data distribution. In image generation, pdata captures the
structure of natural images, while in biological sequence generation, it captures the biological space.
Notation. We often consider a measure P induced by an SDE on C := C([0, T],Rd) where
C([0, T],Rd) is the whole set of continuous functions mapping from [0, T] to Rd (Karatzas and
Shreve, 2012). The notation EP[f(x0:T)] means that the expectation is taken for f(·) w.r.t. P. We
denote Pt as the marginal distribution over Rd at time t, Ps,t(xs, xt) the joint distribution over Rd

time s and t, and Ps|t(xs|xt) the conditional distribution at time s given time t. We also denote the
distribution of the process pinned down at an initial and terminal point x0, xT by P·|0,T (·|x0, xT)
(we similarly define P·|T (·|xT)). With a slight abuse of notation, we exchangeably use distributions
and densities 1 We defer all proofs to Appendix C.

4 DESIRED PROPERTIES FOR FINE-TUNING

In this section, we elucidate the desired properties for methods that fine-tune diffusion models. With a
reward function r : Rd → R, such as aesthetic quality in image generation or bioactivity in biological
sequence generation, our aim is to fine-tune a pre-trained diffusion model so as to maximize this
reward function, for example to generate images that are more aesthetically pleasing.

However, the “genuine” reward function (e.g., a true human rating of aesthetic appearance) is usually
unknown, and instead a computational proxy must be learned from data — typically from the same

1We sometimes denote densities such as dPT /dµ by just PT where µ is Lebesgue measure.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

or a similar distribution as the pre-training data for the diffusion model. As a result, while r(x) may
be close to the genuine reward function within the support of pdata, it might not be accurate outside
of this domain. More formally, by denoting the genuine reward by r⋆, a nominal reward r is typically
learned as

r = argminr′∈F
∑

i{r⋆(x(i))− r′(x(i))}2],

where {x(i), r⋆(x(i))}ni=1 is a dataset, and F is a function class (e.g., neural networks) mapping from
Rd to R. Under mild conditions, it has been shown that in high probability, the mean square error on
pdata is small, i.e.,

Ex∼pdata
[{r⋆(x)− r(x)}2] = O(

√
Cap(F)/n),

where Cap(F) is a capacity of F (Wainwright, 2019). However, this does not hold outside of the
support of pdata.

Taking this into account, we aim to fine-tune a diffusion model in a way that preserves three properties:
(a1) the ability to generate samples with high rewards, and (a2) ensuring sufficient proximity to the
initial pre-trained diffusion (1). In particular, (a2) helps avoid overoptimization because learned
reward functions tend to be accurate on the support of pdata.

To accomplish this, we consider the optimization problem:

ptar = argmax
p∈∆(Rd)

Ex∼p[r(x)]︸ ︷︷ ︸
Ψ(1)

−αKL(p∥pdata)︸ ︷︷ ︸
Ψ(2)

, (2)

where α ∈ R>0 is a hyperparameter. The initial reward term Ψ(1) is intended to uphold the property
(a1), while the second entropy term Ψ(2) is aimed at preserving the property (a2).

It can be shown that the target distribution in (2) takes the following analytical form:

ptar(x) = exp(r(x)/α))pdata(x)/Ctar, (3)

where Ctar is a normalizing constant. Therefore, the aim of our method is to provide a tractable and
theoretically principled way to emulate ptar as a fine-tuning step.

4.1 IMPORTANCE OF KL REGULARIZATION

Before explaining our approach to sample from ptar, we elucidate the necessity of incorporating
entropy regularization term in (2). This can be seen by examining the limit cases as α tends towards 0
and when we fix α = 0 a priori. To be more precise, as α approaches zero, ptar tends to converge to a
Dirac delta distribution at x⋆

tar, defined by: x⋆
tar = argmaxx∈Rd:pdata(x)>0 r(x). This x⋆

tar represents
an optimal x within the support of pdata. Conversely, if we directly solve (2) with α = 0, we may
venture beyond the support:x⋆ = argmaxx∈Rd r(x). This implies that the generated samples might
no longer adhere to the characteristics of natural images in image generation or biological sequences
within the biological space. As we mentioned, since r(x) is typically a learned reward function
from the data, it won’t be accurate outside of the support of pdata(x). Hence, x⋆ would not have a
high genuine reward, which results in “overoptimization”. For example, this approach results in the
unnatural but high nominal reward images in Figure 1.

5 ENTROPY-REGULARIZED CONTROL WITH PRE-TRAINED MODELS

We show how to sample from the target distribution ptar using entropy-regularized control.

5.1 STOCHASTIC CONTROL FORMULATION

To fine-tune diffusion models, we consider the following SDE by adding an additional drift term u
and changing the initial distribution of (1):

dxt = {f(t, xt) + u(t, xt)}dt+ σ(t)dwt, x0 ∼ ν, (4)

where u(·, ·) : [0, T] × Rd → R is a drift coefficient we want to learn and ν ∈ ∆(Rd) is an initial
distribution we want to learn. When u = 0 and ν = νini, this reduces to a pre-trained SDE in (1).
Our objective is to select u and ν in such a way that the density at time T , induced by this SDE,
corresponds to ptar.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Now, let’s turn our attention to the objective function designed to achieve this objective. Being
motivated by (2), the objective function we consider is as follows:

u⋆, ν⋆ = argmax
u,ν

EPu,ν [r(xT)︸ ︷︷ ︸
(b1)

]− α

2
EPu,ν

[∫ T

t=0

∥u(t, xt)∥2

σ2(t)
dt+ log

(
ν(x0)

νini(x0)

)]
︸ ︷︷ ︸

(b2)

, (5)

where Pu,ν is a measure over C induced by the SDE (4) associated with (u, ν). Within this equation,
component (b1) is introduced to obtain samples with high rewards. This is equal to Ψ(1) in (2) when
p(·) in (2) comes from Pu,ν

T . The component (b2) corresponds to the KL divergence over trajectories:
KL(Pu,ν(·)∥Pdata(·)) where Pdata is a measure over C induced by the pre-trained SDE (1), which
has been proved by using Girsanov theorem. In particular, this is actually equal to Ψ(2) in (2) under
optimal control, as we will see soon in the proof of our key theorem.

We can derive an explicit expression for the marginal distribution at time t under the distribution over
C induced by the SDE associated with the optimal drift and initial distribution denoted by P⋆ (i.e.,
Pu⋆,ν⋆

). Here, we define the optimal (entropy-regularized) value function as

V ⋆
t (x) = EP⋆

[
r(xT)−

α

2

∫ T

k=t

∥u⋆(k, xk)∥2

σ2(k)
dk|xt = x

]
.

Theorem 1 (Induced marginal distribution). The marginal density at step t ∈ [0, T] under the
diffusion model with a drift term u⋆ and an optimal initial distribution ν⋆ (i.e., P⋆

t) is

P⋆
t (·) = exp(V ⋆

t (·)/α)Pdata
t (·)/Ctar

where Pdata
t (·) is a marginal distribution at t of Pdata over C.

This marginal density comprises two components: the optimal value function term and the density
at time t induced by the pre-trained diffusion model. Note that the normalizing constant Ctar is
independent of t.

Crucially, as a corollary, we observe that by generating a sample following the SDE (4) with (u⋆, ν⋆),
we can sample from the target ptar at the final time step T . Furthermore, we can also determine the
explicit form of ν⋆.

Corollary 1 (Justification of control problem). PT (·) = ptar(·).
Corollary 2 (Optimal initial distribution). ν⋆(·) = exp(V ⋆

0 (·)/α)νini(·)/Ctar.

In the following section, to gain deeper insights, we explore two interpretations.

5.2 FEYNMAN–KAC FORMULATION

We see an interpretable formulation of the optimal value function. Importantly, we use this form to
learn the optimal initial distribution later in our algorithm (Algorithm 1) and the proof of Theorem 1.
Furthermore, this result highlights a non-trivial connection with classifier guidance.

Lemma 1 (Feynman–Kac Formulation). exp
(

V ⋆
t (x)
α

)
= EPdata

[
exp

(
r(xT)

α

)
|xt = x

]
.

This lemma has been mainly proved by Feynman–Kac formula (Shreve et al., 2004). It illustrates that
the value function at (t, x) is higher when it allows us to hit regions with high rewards at t = T by
following the pre-trained diffusion model afterward. Invoking the Hamilton–Jacobi–Bellman equation
and using this optimal value function, we can write the optimal drift u⋆(t, x) as σ2(t)∇xV

⋆
t (x)/α.

By plugging Lemma 1 into σ2(t)∇xV
⋆
t (x)/α, we obtain the following.

Lemma 2 (Optimal drift). u⋆(t, x) = σ2(t)∇x

{
logEPdata

[
exp

(
r(xT)

α

)
|xt = x

]}
.

It says the optimal control aims to move the current state x at time t toward a point where it becomes
easier to achieve higher rewards after following the pre-trained diffusion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Connection with Classifier Guidance. The theoretical result Lemma 2 is notable because it simpli-
fies to the formulation used in classifier guidance when rewards are set as classifiers. Specifically, by
defining r as p(y|x) : X → ∆(Y), where Y is a class label and α = 1, the optimal drift reduces to:

u⋆(t, x) = σ2(t)∇x log p(y|xt = x), p(y|xt) = EPdata [p(y | xT)|xt].

This is the well-known form of classifier guidance (Dhariwal and Nichol, 2021).

The above suggests that classifier guidance is mathematically targeting the same distribution as
our approach. To our knowledge, this interesting connection has not yet been recognized in the
existing literature. However, empirically, the performance can differ significantly due to function
approximation and optimization errors. More specifically, in our algorithm, we don’t need to explicitly
estimate value functions, unlike classifier guidance. We will present the empirical comparison in
Section 8.

5.3 BRIDGE PRESERVING PROPERTY

We start by exploring more explicit representations of joint and conditional distributions to deepen
the understanding of our control problem.
Lemma 3 (Joint distributions). Let 0 ≤ s < t ≤ T . Then,

P⋆
s,t(x, y) = Pdata

s,t (x, y) exp(V ⋆
t (y)/α)/Ctar,P⋆

s|t(x|y) = Pdata
s|t (x|y). (6)

Interestingly, in (6), the posterior distributions of pre-trained SDE and optimal SDE are identical.
This property is a result of the entropy-regularized term. This theorem can be generalized further.
Lemma 4 (Bridge perseverance). Let P⋆

·|T (·|xT),Pdata
·|T (·|xT) be distributions of P⋆,Pdata condi-

tioned on states at terminal T , respectively. Then, P⋆
·|T (·|xT) = Pdata

·|T (·|xT).

As an immediate corollary, we also obtain P⋆
·|0,T (·) = Pdata

·|0,T (·). These posterior distributions are
often referred to as bridges. Note that in bridge matching methods, generative models are trained to
align the bridge with the reference Brownian bridge while maintaining the initial distribution as νini
and the terminal distribution as pdata (Shi et al., 2023). Our fine-tuning method can be viewed as a
bridge-matching fine-tuning approach between 0 and T while keeping the terminal distribution as
exp(r(x)/α)pdata(x)/Ctar. This bridge-matching property is valuable in preventing samples from
going beyond the support of pdata.

6 LEARNING AN OPTIMAL INITIAL DISTRIBUTION VIA
ENTROPY-REGULARIZED CONTROL

Up to this point, we have illustrated that addressing the stochastic control problem in (5) enables the
creation of generative models for the target ptar. Existing works on neural SDEs (Chen et al., 2018;
Tzen and Raginsky, 2019) have established that these control problems can be effectively solved by
relying on the expressive power of a neural network, and employing sufficiently small discretization
steps. Although it seems plausible to employ any neural SDE solver for solving stochastic control
problems (5), in typical algorithms, the initial point is fixed. Even when the initial point is unknown,
it is commonly assumed to follow a Dirac delta distribution. In contrast, our control problem in
Eq. (5) necessitates the learning of a stochastic initial distribution, which can function as a sampler.

A straightforward way involves assuming a Gaussian model with a mean parameterized by a neural
network. While this approach is appealingly simple, it may lead to significant misspecification when
ν⋆ is a multi-modal distribution.

To address this challenge, we once again turn to approximating ν⋆ using an SDE, as SDE-induced
distributions have the capability to represent intricate multi-modal distributions. We start with a
reference SDE over the interval t ∈ [−T, 0]; t ∈ [−T, 0]; dxt = σ̃(t)dwt, x−T = xfix, such that the
distribution at time 0 follows νini. Given that νini is typically simple (e.g., N (0, Id)), it is usually
straightforward to construct such an SDE with a diffusion coefficient σ̃ : [0, T] → R.

Building upon this baseline SDE, we introduce another SDE over the same interval [−T, 0]:

dxt = q(t, xt)dt+ σ̃(t)dwt, x−T = xfix. (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 ELEGANT (finE-tuning doubLe Entropy reGulArized coNTrol)

1: Require: Parameter α ∈ R+, a pre-trained diffusion model with drift coefficient f : [0, T] ×
Rd → R and diffusion coefficient σ : [0, T] → R, a base coefficient σ̃ : [−T, 0] → R and a base
initial point xfix.

2: Learn an optimal value function at t = 0 (i.e., V ⋆
0) and denote it by â : Rd → R invoking

Algorithm 4 in Appeneix B.
3: Using a neural SDE solver (Algorithm 3), solve

q̂ = argmaxq EPq

[
â(x0)− α

2

∫ 0

−T
∥q(t,xt)∥2

σ̃2(t) dt
]
. (9)

4: Let ν̂ be a distribution at t = 0 following the SDE: dxt = q̂(t, xt)dt+ σ̃(t)dwt, x−T = xfix.
5: Using a neural SDE solver (Algorithm 3), solve

û = argmaxu EPu,ν̂

[
r(xT)− α

2

∫ T

t=0
∥u(t,xt)∥2

σ2(t) dt
]
. (10)

6: Output: Drift coefficients q̂, û

Algorithm 2 Fine-Tuned Sampler

1: From −T to 0, follow the SDE: dxt = q̂(t, xt)dt+ σ̃(t)dwt, x−T = xfix

2: From 0 to T , follow the SDE: dxt = {f(t, xt) + û(t, xt)}dt+ σ(t)dwt.
3: Output: xT

where q : [−T, 0] × Rd → R. This time, we aim to guide a drift coefficient q over this interval
[−T, 0] such that the distribution at 0 follows ν⋆. Specifically, we formulate the following:

q⋆ = argmaxq EPq

[
V ⋆
0 (x0)− α

2

∫ 0

−T
∥q(t,xt)∥2

σ̃2(t) dt
]
, (8)

where Pq represents the measure induced by the SDE (7) with a drift coefficient q.

Theorem 2 (Justification of the second control problem). The marginal density at time 0 induced by
the SDE (7) with the drift q⋆, i.e., Pq⋆

0 (·), is ν⋆(·)

This shows by after learning V ⋆
0 , which will discuss in Appendix B, and solving (8) and following

the learned SDE from −T to 0, we can sample from ν⋆. Regarding

7 ALGORITHM

We are ready to present our method, ELEGANT , which is fully described in Algorithm 1. The
algorithm consists of 3 steps:

1. Learn the value function V ⋆
0 (x), which we will discuss in Appendix B.

2. Solve the stochastic control (9) with a neural SDE solver using the learned V ⋆
0 (x) in 1.

3. Solve the stochastic control (10) with a neural SDE using the learned ν⋆ in the second step
(i.e., ν̂). Compared to (5), we fix the initial distribution as ν̂.

For our neural SDE solver, we use a standard oracle in Algorithm 3 as in Kidger et al. (2021); Chen
et al. (2018) (i.e., as we use neural networks as function classes). A detailed implementation is
described in Appendix E.1. To solve (9), we use the following parametrization:

zt := [x⊤
t , yt]

⊤ ∈ Rd+1, L := −y0 + â(x0), zini := xfix, f̄ :=
[
q⊤, 0.5α∥q∥2/σ̃2

]⊤
, ḡ := [σ̃1d, 0]

⊤,

where y0 corresponds to
∫ 0

−T
0.5α∥q∥2/σ̃2dt. Similarly, to solve (10), we can use this solver with

the following parametrization:

zt := [x⊤
t , yt]

⊤ ∈ Rd+1, L := −yT + r(xT), zini := ν̂, f̄ :=
[
{f + u}⊤, 0.5α∥u∥2/σ2

]⊤
, ḡ := [σ1d, 0]

⊤.

Finally, after learning q̂ and û, during the sampling phase, we follow the learned SDE (Algorithm 2).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 3 NeuralSDE Solver

1: Input: Diffusion coefficient ḡ : [0, T] → Rd+1, loss function L : Rd+1 → R, an initial
distribution ν̄

2: Solve the following and denote the solution by f†:

f† = argmaxf̄ :[0,T]×Rd+1→Rd+1 L(zT), dzt = f̄(t, zt)dt+ ḡ(t)dwt, z0 ∼ zini.

3: Output: f†

7.1 LIMITATION: SOURCES OF APPROXIMATION ERRORS

Lastly, we explain the factors contributing to approximation errors in our algorithm. First, our method
relies on the precision of neural SDE solvers, specifically, the expressiveness of neural networks and
errors from discretization (Tzen and Raginsky, 2019). Similarly, in the sampling phase, we also incur
errors stemming from discretization. Additionally, our method relies on the expressiveness of another
neural network in value function estimation.

As another limitation, readers might wonder about (1) computational cost of learning initial distribu-
tions, (2) memory complexity, and (3) choice of α. We defer the discussion to Appendix 7.1.

8 EXPERIMENTS

We compare ELEGANT against several baselines across two domains. Our goal is to check that
ELEGANT enables us to obtain diffusion models that generate high-reward samples while avoiding
overoptimization and preserving diversity. We will begin by providing an overview of the baselines,
describing the experimental setups, and specifying the evaluation metrics employed across all
three domains. For more detailed information on each experiment, including dataset, architecture,
hyperparameters, and ablation studies, refer to Appendix F.

Methods to compare. We compare the following:

• ELEGANT : Our method.
• NO KL: This is ELEGANT without the KL regularization and initial distribution learning. This

essentially corresponds to AlignProp (Prabhudesai et al., 2023) and DRaFT (Clark et al., 2023)
in the discrete-time formulation. While several ways to mitigate overoptimization in these papers
are discussed, we will compare them with our work later in Section 8.2.

• PPO + KL (Fan et al., 2023) KL-penalized RL finetuning with PPO (Schulman et al., 2017) 2

• Guidance: We train a reward model to predict the reward value y from a sample x. We use this
model to guide the sampling process (Dhariwal and Nichol, 2021; Graikos et al., 2022) toward
high rewards. For details, refer to Appendix E.2.

Experiment setup. In all scenarios, we start by preparing a diffusion model with a standard dataset,
containing a mix of high- and low-reward samples. Then, we create a (nominal) reward function r by
training a neural network reward model on a dataset with reward labels {x(i), r⋆(x(i))}ni=1, ensuring
that r closely approximates the “genuine” reward function r⋆ on the data distribution of the dataset
(i.e., on the support of pre-trained diffusion model). Following existing works (Fan et al., 2023; Black
et al., 2023), we first evaluate performance in terms of r in Section 8.1. However, going beyond this
way, we explore an improved way to measure overoptimization in Section 8.2, 8.3.

Evaluation. We record the mean reward Ep[r(xT)] ((b1) in Eq.(5)), the KL divergence term ((b2)
in Eq.(5)). In our results, we present the mean values of the reward (Reward), the KL term (KL-Div)
(and their 95% confidence intervals). Our aim is to fine-tune diffusion models so that they have
high (Reward) and low (KL-div): that is, to produce high-reward samples from a distribution that
stays close to the data. For one of our evaluation tasks (Section 8.2), we know the true function r⋆

(though it is not provided to our algorithm), and therefore can directly measure the degree to which
our method mitigates overoptimization by comparing the values of r and r⋆ for our method and
baselines.

2Note that we technically use an improved baseline elaborating on DPOK (Fan et al., 2023) and DDPO
(Black et al., 2023) by directly adding a KL penalty to the rewards. For details, see Appendix E.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Result for normalized GFP (Left) when we set α = 0.1 for ELEGANT and PPO + KL.
Results for TFBind (right) when we set α = 0.005. ± means 95% confidence intervals across seeds.

(a) GFP. The pre-trained model has 0.90 (reward),
0.0 (KL-div)

Reward (r) ↑ KL-Div ↓
Guidance 0.94± 0.01 624
PPO + KL 0.96± 0.01 95

ELEGANT (Ours) 0.98± 0.00 32

(b) TFBind. The pre-trained model has 0.45 (reward),
0.0 (KL-div).

Reward (r) ↑ KL-Div ↓
Guidance 0.81± 0.03 709
PPO + KL 0.98± 0.00 110

ELEGANT (Ours) 0.98± 0.00 82

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

(a) ELEGANT (5e-3)

0.0 0.2 0.4 0.6 0.8 1.00
100
200
300
400
500
600

(b) ELEGANT (e-2)

0.0 0.2 0.4 0.6 0.8 1.00
50

100
150
200
250
300
350

(c) ELEGANT (5e-2)

0.0 0.2 0.4 0.6 0.8 1.00
20
40
60
80

100
120
140

(d) Pre-trained

0.0 0.2 0.4 0.6 0.8 1.00
200
400
600
800

1000

(e) NO KL

Figure 2: Histograms of 1000 samples generated by fine-tuned diffusions for TFBind in terms
of r⋆(x) in Red and r(x) in Blue. In No KL, the same sample with r⋆ is generated, suffering
from overoptimization. ELEGANT can achieve both high r and r⋆. The enlarged figure (a) is in
Appendix F.2.3.

8.1 DESING OF PROTEIN AND DNA SEQUENCES

We study two distinct biological sequence tasks: GFP and TFBind (Trabucco et al., 2022). In the GFP
task, x represents green fluorescent protein sequences, each with a length of 237, and r⋆(x) signifies
their fluorescence value (Sarkisyan et al., 2016). In the TFBind task, x represents DNA sequences,
each having a length of 8, while r⋆(x) corresponds to their binding activity with human transcription
factors (Barrera et al., 2016). Using these datasets, we proceed to train transformer-based diffusion
models and oracles (details in Appendix F.1).

Table 2: TFBind. We set α = 0.01 for ELEGANT and
PPO. For Truncation, we set K = 0.8T . It is seen
that ELEGANT can circumvent overoptimization while
other methods suffer from it.

Reward (r) ↑ Reward (r⋆) ↑
NO KL 1.0± 0.0 0.76± 0.02
Guidance 0.81± 0.03 0.76± 0.03
PPO + KL 0.987± 0.001 0.84± 0.01
Random (Prabhude-
sai et al., 2023)

1.0± 0.0 0.77± 0.01

Truncation (Clark
et al., 2023)

1.0± 0.0 0.78± 0.01

ELEGANT (Ours) 0.989± 0.001 0.88± 0.01

Results. We present the performances in
Tables 1a and 1b. It’s clear that ELE-
GANT surpasses PPO + KL and Guid-
ance in terms of rewards, maintains a
smaller KL term. It’s worth noting that
while there is typically a tradeoff between
the reward and KL term, even when fine-
tuned diffusion models yield similar re-
wards, their KL divergences can vary sig-
nificantly. This implies that, compared to
PPO + KL, our proposal, ELEGANT ,
effectively minimizes the KL term while
maintaining high rewards. This reduced
KL term translates to the alleviation of
overoptimization, as in Section 8.2.

8.2 QUANTITATIVE EVALUATION OF OVEROPTIMIZATION

In TFBind, where we have knowledge of the genuine reward r⋆, we conduct a comparison between
ELEGANT and several baselines, presented in Figure 2 and Table 2. It becomes evident that the
version without KL regularization achieves high values for r, but not for the true reward value r⋆. In
contrast, our method can overcome overoptimization by effectively minimizing the KL divergence.

In Table 2, we additionally compare algorithms that focus solely on maximizing r(xT) (i.e., ((b1) in
Equation (5)) with several techniques. For instance, the approach presented in Clark et al. (2023)
(DRaFT-K) can be adapted to our context by updating drift terms only in the interval [K,T] rather
than over the entire interval [0, T] (referred to as Truncation). Similarly, AlignProp, as proposed
by Prabhudesai et al. (2023), can be applied by randomly selecting the value of K at each epoch

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(referred to as Random). However, in the case of TFBind, it becomes evident that these techniques
cannot mitigate overoptimization.

8.3 IMAGE GENERATION

0 2500 5000 7500 10000 12500 15000
Reward Queries

0

1

2

3

4

5

6

7

8

9

Ev
al

ua
tio

n

ELEGANT (=5) ELEGANT (=10) NO KL PPO + KL

(a) Evaluation curve (“modified r”)

Modified r ↑ KL-Div ↓
NO KL 7.65± 0.07 0.80

Guidance 5.91± 0.14 2.52
PPO + KL 6.06± 0.09 0.04

ELEGANT (α = 5) 8.42± 0.03 0.15
ELEGANT (α = 10) 8.03± 0.24 0.09

(b) Mean (“modified r”) (c) Generated images

Figure 3: Results for fine-tuning aesthetic scores on images. Plot (a) depicts a training curve (mean
of generated samples in terms of “modified r”). It is evident that ELEGANT exhibits faster training
compared to PPO + KL while mitigating overoptimization, unlike NO KL. In table (b), we report
the highest mean value of “modified r” across all epochs (the x axis in plot (a) before 15360 reward
queries) for each method and their 95% cfs. Additionally, generated images corresponding to Table
(b) are provided in images (c).

Here, our goal is to fine-tune a text-to-image diffusion model to produce visually appealing pictures.
We employ Stable Diffusion v1.5 as our pre-trained model (Rombach et al., 2022), a conditional
diffusion model that can generate natural images given prompts (e.g., cat). In line with prior studies
(Black et al., 2023; Prabhudesai et al., 2023), we use the LAION Aesthetics Predictor V2 (Schuhmann,
2022) for r. This predictor is a linear MLP model built on the OpenAI CLIP embeddings (Radford
et al., 2021), pre-trained on a dataset over 400k aesthetic ratings ranging from 1 to 10.

Evaluation. Notably, the above LAION Aesthetics Predictor V2 may not be accurate in out-of-
distribution regions since it is still a learned reward function. Consequently, it may assign high scores
to unnatural images that deviate far from the original prompts due to overoptimization (c.f. Figure 1).
Therefore, to detect these undesirable scenarios during evaluation, we employ “modified r” on all
generations, defined as follows: (1) querying vision language models (LLaVA in Liu et al. (2024)) to
determine if images contain objects from the original prompts (e.g., cats) 3, (2) if yes, keeping the raw
score r(x); (3) if no, assigning a score of 0. Notably, for all algorithms, we compute the “modified r”
only during evaluation in order to detect overoptimization. But we don’t use it during fine-tuning 4.
Results. In Figure 3a and Table 3b, we present the evaluation curve and the peak number of reward
queries in terms of the mean of generated samples with respect to “modified r”. Firstly, we observe
a significantly faster training speed for ELEGANT compared to PPO + KL. Secondly, comparing
ELEGANT with NO KL, we notice that entropy regularization enables us to achieve higher values
for “modified r”, whereas NO KL begins generating images that ignore prompts early on, resulting
in a rapid decline in the evaluation curve, and its peak “modified r” across epochs remains lower. We
showcase generated images in Figure 3c, and provide additional images in Appendix F.2.3.

8.4 EFFECTIVENESS OF LEARNING INITIAL DISTRIBUTIONS.
Readers may want to know the effectiveness of learning the initial distribution. To address this, we
also tested our algorithm without it. As shown in Table 2 (TFBinding), the result r⋆ is 0.86± 0.01,
and in Table 3b (image generation), the modified r score is 7.90± 0.32. In both cases, these values
are lower than those achieved by our full algorithm, which learns the initial distribution. These
findings demonstrate that learning the initial distribution is effective in mitigating overoptimization
and achieving higher genuine rewards in specific practical scenarios.

9 CONCLUSION

We propose a theoretically and empirically grounded, computationally efficient approach for fine-
tuning diffusion models. This approach helps alleviate overoptimization issues. In future work, we
plan to investigate the fine-tuning of recent diffusion models more tailored for biological or chemical
applications (Watson et al., 2023; Avdeyev et al., 2023; Gruver et al., 2023).

3The F1 score for detecting objects using LLaVA was 1.0 as reported in Appendix F.2.2 and F.2.4.
4For results without the modificaiton on r, refer to Figure 6.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we provide details for the experiments, including all the
training setup, architecture in Appendix.

REFERENCES

Avdeyev, P., C. Shi, Y. Tan, K. Dudnyk, and J. Zhou (2023). Dirichlet diffusion score model for
biological sequence generation. arXiv preprint arXiv:2305.10699.

Bai, Y., S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirhoseini,
C. McKinnon, et al. (2022). Constitutional ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Bansal, A., H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Goldstein
(2023). Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 843–852.

Barrera, L. A., A. Vedenko, J. V. Kurland, J. M. Rogers, S. S. Gisselbrecht, E. J. Rossin, J. Woodard,
L. Mariani, K. H. Kock, S. Inukai, et al. (2016). Survey of variation in human transcription factors
reveals prevalent dna binding changes. Science 351(6280), 1450–1454.

Bengio, Y., S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio (2023). Gflownet foundations.
Journal of Machine Learning Research 24(210), 1–55.

Berner, J., L. Richter, and K. Ullrich (2022). An optimal control perspective on diffusion-based
generative modeling. arXiv preprint arXiv:2211.01364.

Bernton, E., J. Heng, A. Doucet, and P. E. Jacob (2019). Schr\” odinger bridge samplers. arXiv
preprint arXiv:1912.13170.

Black, K., M. Janner, Y. Du, I. Kostrikov, and S. Levine (2023). Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301.

Casper, S., X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner,
P. Freire, et al. (2023). Open problems and fundamental limitations of reinforcement learning from
human feedback. arXiv preprint arXiv:2307.15217.

Chen, R. T., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud (2018). Neural ordinary differential
equations. Advances in neural information processing systems 31.

Chen, T., B. Xu, C. Zhang, and C. Guestrin (2016). Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174.

Clark, K., P. Vicol, K. Swersky, and D. J. Fleet (2023). Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems 26.

De Bortoli, V., J. Thornton, J. Heng, and A. Doucet (2021). Diffusion schrodinger bridge with
applications to score-based generative modeling. Advances in Neural Information Processing
Systems 34, 17695–17709.

Delbracio, M. and P. Milanfar (2023). Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. arXiv preprint arXiv:2303.11435.

Dhariwal, P. and A. Nichol (2021). Diffusion models beat gans on image synthesis. Advances in
neural information processing systems 34, 8780–8794.

Domingo-Enrich, C., M. Drozdzal, B. Karrer, and R. T. Chen (2024). Adjoint matching: Fine-tuning
flow and diffusion generative models with memoryless stochastic optimal control. arXiv preprint
arXiv:2409.08861.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fan, Y., O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and
K. Lee (2023). Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models.
arXiv preprint arXiv:2305.16381.

Gao, L., J. Schulman, and J. Hilton (2023). Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR.

Girolami, M. and B. Calderhead (2011). Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology 73(2), 123–214.

Graikos, A., N. Malkin, N. Jojic, and D. Samaras (2022). Diffusion models as plug-and-play priors.
Advances in Neural Information Processing Systems 35, 14715–14728.

Gruslys, A., R. Munos, I. Danihelka, M. Lanctot, and A. Graves (2016). Memory-efficient backprop-
agation through time. Advances in neural information processing systems 29.

Gruver, N., S. Stanton, N. C. Frey, T. G. Rudner, I. Hotzel, J. Lafrance-Vanasse, A. Rajpal,
K. Cho, and A. G. Wilson (2023). Protein design with guided discrete diffusion. arXiv preprint
arXiv:2305.20009.

Heng, J., A. N. Bishop, G. Deligiannidis, and A. Doucet (2020). Controlled sequential monte carlo.

Ho, J., A. Jain, and P. Abbeel (2020). Denoising diffusion probabilistic models. Advances in neural
information processing systems 33, 6840–6851.

Hu, E. J., Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen (2021). Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

Jing, B., G. Corso, J. Chang, R. Barzilay, and T. Jaakkola (2022). Torsional diffusion for molecular
conformer generation. Advances in Neural Information Processing Systems 35, 24240–24253.

Kappen, H. J. (2007). An introduction to stochastic control theory, path integrals and reinforcement
learning. In AIP conference proceedings, Volume 887, pp. 149–181. American Institute of Physics.

Karatzas, I. and S. Shreve (2012). Brownian motion and stochastic calculus, Volume 113. Springer
Science & Business Media.

Kidger, P., J. Foster, X. C. Li, and T. Lyons (2021). Efficient and accurate gradients for neural sdes.
Advances in Neural Information Processing Systems 34, 18747–18761.

Lahlou, S., T. Deleu, P. Lemos, D. Zhang, A. Volokhova, A. Hernández-Garcıa, L. N. Ezzine,
Y. Bengio, and N. Malkin (2023). A theory of continuous generative flow networks. In International
Conference on Machine Learning, pp. 18269–18300. PMLR.

Lee, K., H. Liu, M. Ryu, O. Watkins, Y. Du, C. Boutilier, P. Abbeel, M. Ghavamzadeh, and S. S. Gu
(2023). Aligning text-to-image models using human feedback. arXiv preprint arXiv:2302.12192.

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909.

Lipman, Y., R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le (2023). Flow matching for generative
modeling. ICLR 2023.

Liu, G.-H., A. Vahdat, D.-A. Huang, E. A. Theodorou, W. Nie, and A. Anandkumar (2023). I2sb:
Image-to-image schrödinger bridge. arXiv preprint arXiv:2302.05872.

Liu, H., C. Li, Q. Wu, and Y. J. Lee (2024). Visual instruction tuning. Advances in neural information
processing systems 36.

Liu, X., C. Gong, and Q. Liu (2022). Flow straight and fast: Learning to generate and transfer data
with rectified flow. arXiv preprint arXiv:2209.03003.

Liu, X., L. Wu, M. Ye, and Q. Liu (2022). Let us build bridges: Understanding and extending
diffusion generative models. arXiv preprint arXiv:2208.14699.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Loshchilov, I. and F. Hutter (2019). Decoupled weight decay regularization. In International
Conference on Learning Representations.

Ma, Y.-A., Y. Chen, C. Jin, N. Flammarion, and M. I. Jordan (2019). Sampling can be faster than
optimization. Proceedings of the National Academy of Sciences 116(42), 20881–20885.

Marion, P., A. Korba, P. Bartlett, M. Blondel, V. De Bortoli, A. Doucet, F. Llinares-López, C. Paquette,
and Q. Berthet (2024). Implicit diffusion: Efficient optimization through stochastic sampling.
arXiv preprint arXiv:2402.05468.

Murray, N., L. Marchesotti, and F. Perronnin (2012). Ava: A large-scale database for aesthetic visual
analysis. In 2012 IEEE conference on computer vision and pattern recognition, pp. 2408–2415.
IEEE.

Ouyang, L., J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. (2022). Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems 35, 27730–27744.

Prabhudesai, M., A. Goyal, D. Pathak, and K. Fragkiadaki (2023). Aligning text-to-image diffusion
models with reward backpropagation. arXiv preprint arXiv:2310.03739.

Radford, A., J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever (2021). Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020.

Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer (2022, June). High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10684–10695.

Sarkisyan, K. S., D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov, D. N.
Ivankov, N. G. Bozhanova, M. S. Baranov, O. Soylemez, et al. (2016). Local fitness landscape of
the green fluorescent protein. Nature 533(7603), 397–401.

Schrödinger, E. (1931). Über die umkehrung der naturgesetze. Verlag der Akademie der Wis-
senschaften in Kommission bei Walter De Gruyter u

Schuhmann, C. (2022, Aug). Laion aesthetics.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Shi, Y., V. De Bortoli, A. Campbell, and A. Doucet (2023). Diffusion schr\” odinger bridge matching.
arXiv preprint arXiv:2303.16852.

Shreve, S. E. et al. (2004). Stochastic calculus for finance II: Continuous-time models, Volume 11.
Springer.

Sohl-Dickstein, J., E. Weiss, N. Maheswaranathan, and S. Ganguli (2015). Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR.

Somnath, V. R., M. Pariset, Y.-P. Hsieh, M. R. Martinez, A. Krause, and C. Bunne (2023). Aligned
diffusion schr\” odinger bridges. arXiv preprint arXiv:2302.11419.

Song, J., C. Meng, and S. Ermon (2020). Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Stiennon, N., L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano (2020). Learning to summarize with human feedback. Advances in Neural Information
Processing Systems 33, 3008–3021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Theodorou, E., J. Buchli, and S. Schaal (2010). A generalized path integral control approach to
reinforcement learning. The Journal of Machine Learning Research 11, 3137–3181.

Theodorou, E. A. and E. Todorov (2012). Relative entropy and free energy dualities: Connections to
path integral and kl control. In 2012 ieee 51st ieee conference on decision and control (cdc), pp.
1466–1473. IEEE.

Tong, A., N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, K. Fatras, G. Wolf, and Y. Bengio
(2023). Conditional flow matching: Simulation-free dynamic optimal transport. arXiv preprint
arXiv:2302.00482.

Trabucco, B., X. Geng, A. Kumar, and S. Levine (2022). Design-bench: Benchmarks for data-
driven offline model-based optimization. In International Conference on Machine Learning, pp.
21658–21676. PMLR.

Tzen, B. and M. Raginsky (2019). Theoretical guarantees for sampling and inference in generative
models with latent diffusions. In Conference on Learning Theory, pp. 3084–3114. PMLR.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, Volume 48.
Cambridge university press.

Watson, J. L., D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst,
R. J. Ragotte, L. F. Milles, et al. (2023). De novo design of protein structure and function with
rfdiffusion. Nature 620(7976), 1089–1100.

Wu, L., C. Gong, X. Liu, M. Ye, and Q. Liu (2022). Diffusion-based molecule generation with
informative prior bridges. Advances in Neural Information Processing Systems 35, 36533–36545.

Wu, X., K. Sun, F. Zhu, R. Zhao, and H. Li (2023). Better aligning text-to-image models with human
preference. arXiv preprint arXiv:2303.14420.

Xu, J., X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, and Y. Dong (2023). Imagereward: Learning
and evaluating human preferences for text-to-image generation. arXiv preprint arXiv:2304.05977.

Yuan, H., K. Huang, C. Ni, M. Chen, and M. Wang (2023). Reward-directed conditional diffusion:
Provable distribution estimation and reward improvement. In Thirty-seventh Conference on Neural
Information Processing Systems.

Zhang, D., R. T. Q. Chen, C.-H. Liu, A. Courville, and Y. Bengio (2023). Diffusion generative
flow samplers: Improving learning signals through partial trajectory optimization. arXiv preprint
arXiv:2310.02679.

Zhang, D., Y. Zhang, J. Gu, R. Zhang, J. Susskind, N. Jaitly, and S. Zhai (2024). Improving gflownets
for text-to-image diffusion alignment. arXiv preprint arXiv:2406.00633.

Zhang, Q. and Y. Chen (2021). Path integral sampler: a stochastic control approach for sampling.
arXiv preprint arXiv:2111.15141.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS

In this section, we discuss additional related works.

Fine-tuning large language models. Much of the recent work in fine-tuning diffusion models is
inspired by the wide success of fine-tuning large language models for various objectives such as
instruction-following, summarization, or safety (Ouyang et al., 2022; Stiennon et al., 2020; Bai et al.,
2022). Many techniques have been proposed to mitigate reward collapse in this domain, but KL
regularization is the most commonly used (Gao et al., 2023). For a more comprehensive review, we
direct readers to Casper et al. (2023). In our experiments, we compare to a KL-penalized RL baseline,
which is analogous to the current dominant approach in language model fine-tuning.

Sampling and control. Control-based approaches have been extensively employed for generating
samples from known unnormalized probability densities in various ways (Tzen and Raginsky, 2019;
Bernton et al., 2019; Heng et al., 2020; Zhang and Chen, 2021; Berner et al., 2022; Lahlou et al.,
2023; Zhang et al., 2023; Bengio et al., 2023). Notably, the most pertinent literature relates to path
integral sampling (Zhang and Chen, 2021). Nevertheless, our work differs in terms of our target
distribution and focus, which is primarily centered on fine-tuning. Here are more differences:

• We address how to utilize pre-trained diffusion models by properly setting rewards in the control
problem.

• Their works assume an initial distribution as the Dirac delta distribution, which does not apply to
diffusion models. We explore how to relax this assumption.

• We provide several proofs to show our main statement. The proof in Section C.2 is similar to
that in the path integral sampler proof. However, the proofs in Sections C.1 and C.3 are novel.
In particular, the proof in Section C.1 highlights the connection with bridge (flow) matching, as
discussed after Lemma 4.

Our research also shares connections with path integral controls (Theodorou and Todorov, 2012;
Theodorou et al., 2010; Kappen, 2007) and the concept of control as inference (Levine, 2018).
However, our focus lies on the diffusion model, while their focus lies on standard RL problems.

Markov Chain Monte Carlo (MCMC). MCMC-based algorithms are commonly used for sam-
pling from unnormalized densities that follow a proportionality of exp(r(x)/α) (Girolami and
Calderhead, 2011; Ma et al., 2019). Numerous MCMC methods have emerged, including the first-
order technique referred to as MALA. The approach most closely related to incorporating MALA for
fine-tuning is classifier-based guidance, as proposed in Dhariwal and Nichol (2021); Graikos et al.
(2022). However, implementing classifier-based guidance is known to be unstable in practice due to
the necessity of training numerous classifiers (Clark et al., 2023).

Additional Works on Fine-Tuning Diffusion Models. Domingo-Enrich et al. (2024) and Zhang
et al. (2024) have addressed problems similar to ours, but their approaches still differ significantly.
Domingo-Enrich et al. (2024) addressed the initial bias issue discussed in Section 6 by modifying
the noise schedule, whereas we tackled it by introducing an additional optimization problem. Zhang
et al. (2024) approached a related problem by designing an objective function inspired by a detailed
balance loss in Gflownets, while our algorithm directly solves the control problem using neural SDE.
Although its algorithm has certain benefits when rewards are differentiable like PPO, our primary
focus is more on how to mitigate overoptimization from both theoretical and empirical perspectives.
Marion et al. (2024) has explored fine-tuning in diffusion models, framing it as a bilevel optimization
problem. However, they do not appear to discuss strategies for constructing objective functions, such
as incorporating KL regularization to prevent overoptimization.

B VALUE FUNCTION ESTIMATION

In the initial stage of ELEGANT , our objective is to learn V ⋆
0 (x0). To achieve this, we use

V ⋆
0 (x) = α log(EPdata [exp(r(xT)/α)|x0 = x]),

which is obtained as a corollary of Lemma 1 at t = 0. Then, by taking a differentiable function class
A : Rd → R, we use an empirical risk minimization algorithm to regress exp(r(xT)/α) on x0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

While the above procedure is mathematically sound, in practice, where α is small, it may face
numerical instability. We instead recommend the following alternative. Suppose r(xT) = k(x0) + ϵ
where ϵ is noise under Pdata. Then,

V ⋆
0 (x) = k(x) + α logEPdata [exp(ϵ/α)|x0 = x].

Therefore, we can directly regress r(xT) on x0 since the difference between k(x) and V ⋆
0 (x) remains

constant. The complete algorithm is in Algorithm 4.

Algorithm 4 Optimal Value Function Estimation

1: Input: Function class A ⊂ [Rd → R]
2: Generate a dataset D that consists of pairs of (x, y): x ∼ νini and y as r(xT) following the

pre-trained SDE: dxt = f(t, xt)dt+ σ(t)dwt.
3: Run an empirical risk minimization: â = argmina∈A

∑
(x,y)∼D{â(x)− y}2.

4: Output: â

B.1 MORE REFINED METHODS TO LEARN VALUE FUNCTIONS

We can consider a We can directly get a pair of x and y. Here, {x(i)} ∼ νini and

ŷ(i) := α log ÊPdata [exp(r(xT)/α)|x0 = x(i)]

where ·̂ means Monte Carlo approximation for each xi. In other words,

ÊPdata [exp(r(xT)/α)|x0 = xi] :=
1

n

n∑
j=1

exp(r(x
(i,j)
T)/α)

where {r(x(i,j)
T } is a set of samples following Pdata with initial condition: x0 = xi. Then, we are

able to learn a using the following ERM:

â = argmin
a∈A

n∑
i=1

{a(x(i))− ŷ(i)}2.

C PROOFS

C.1 INTUITIVE PROOF OF THEOREM 1

We first give an intuitive proof of Theorem 1.

Let Pu
·|0(·|x0) be the induced distribution by the SDE:

dxt = {f(t, xt) + u(t, xt)}dt+ σ(t)dwt.

over C conditioning on x0. Similarly, let Pdata
·|0 (·|x0) be the induced distribution by the SDE:

dxt = f(t, xt)dt+ σ(t)dwt

over C conditioning on x0.

Now, we calculate the KL divergence of Pdata
·|0 (·|x0) and Pu

·|0(·|x0) . This is equal to

KL(Pu
·|0(·|x0)∥Pdata

·|0 (·|x0)) = E{xt}∼Pu
·|0(·|x0)

[∫ T

0

1

2

∥u(t, xt)∥2

σ2(t)
dt

]
. (11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This is because

KL(Pu
·|0(·|x0)∥Pdata

·|0 (·|x0)) = EPu
·|0(·|x0)

[
dPu

·|0(·|x0)

dPdata
·|0 (·|x0)

]

= EPu
·|0(·|x0)

[∫ T

0

1

2

∥u(t, xt)∥2

σ2(t)
dt+

∫ T

0

u(t, xt)dwt

]
(Girsanov theorem)

= EPu
·|0(·|x0)

[∫ T

0

1

2

∥u(t, xt)∥2

σ2(t)
dt

]
.

(Martingale property of Itô integral)

Therefore, the objective function in (5) is equivalent to

obj = EPu,ν [r(xT)]− αKL(Pu,ν∥Pdata). (12)

This is because

EPu,ν [r(xT)]− αKL(ν∥νini)− αEPu,ν

[∫ T

0

1

2

∥u(t, xt)∥2

σ2(t)
dt

]
= EPu,ν [r(xT)]− αKL(ν∥νini)− αEx0∼ν

[
KL(Pu

·|0(·|x0)∥Pdata
·|0 (·|x0))

]
= EPu,ν [r(xT)]− αKL(Pu,ν∥Pdata).

The objective function is further changed as follows:

obj = EPu,ν [r(xT)]− αKL(Pu,ν∥Pdata)

= ExT∼Pu,ν
T

[r(xT)]− αKL(Pu,ν
T ∥Pdata

T)︸ ︷︷ ︸
Term (a)

−αExT∼Pu,ν
T

[KL(Pu,ν
T (τ |xT)∥Pdata

T (τ |xT))]︸ ︷︷ ︸
Term (b)

}.

By optimizing (a) and (b) over Pu,ν , we get

P⋆
T (xT) = exp(r(xT)/α)Pdata(xT)/C,

P⋆
T (τ |xT) = Pdata

T (τ |xT). (13)

Hence, we have

P⋆(τ) = P⋆
T (xT)× P⋆

T (τ |xT) =
exp(r(xT)/α)Pdata(τ)

C
.

Remark 1. Some readers might wonder in the part we optimize over Pf,ν rather than f, ν. Indeed,
this step would go through when we use non-Markovian drifts for f . While we use Markovian drift,
this part still goes through because the optimal drift needs to be known as Markovian anyway. We
choose to present this proof first because it can more clearly convey our message of bridge preserving
property in (13). We will formalize it in Section C.2 and Section C.3.

C.2 FORMAL PROOF OF THEOREM 1

Firstly, we aim to show that the optimal conditional distribution over C on x0 (i.e., Pu⋆

·|0(τ |x0)) is
equivalent to

Pdata
·|0 (τ |x0) exp(r(xT)/α)

C(x0)
, C(x0) := exp(V ⋆

0 (x)/α).

To do that, we need to check that the above is a valid distribution first. This is indeed valid because
the above is decomposed into

exp(r(xT)/α)Pdata(xT |x0)

C(x0)︸ ︷︷ ︸
(α1)

×Pdata
·|0 (τ |x0, xT)︸ ︷︷ ︸

(α2)

, (14)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and both (α1), (α2) are valid distributions. Especially, for the term (α1), we can check as follows:

C(x0) =

∫
exp(r(xT)/α)dPdata

T |0 (xT |x0)) = EPdata
·|x0

[exp(r(xT)/α)] = exp(V ⋆
0 (x)/α).

(Use Lemma 1)

Now, after checking (14) is a valid distribution, we calculate the KL divergence:

KL

(
Pu⋆

·|0(τ |x0)

∥∥∥∥Pdata
·|0 (τ |x0) exp(r(xT)/α)

C(x0)

)
= KL(Pu⋆

·|0(τ |x0)∥Pdata
·|0 (τ |x0))− EPu⋆

·|0(·|x0)
[r(xT)/α− logC(x0)|x0]

= EPu⋆

·|0(·|x0)

[{∫ T

0

1

2

∥u⋆(t, xt)∥2

σ2(t)

}
dt− r(xT)/α+ logC(x0) | x0

]
(Use (11))

= −V ⋆
0 (x0)/α+ logC(x0). (Definition of optimal value function)

Therefore,

KL

(
Pu⋆

·|0(τ |x0)∥
Pdata
·|0 (τ |x0) exp(r(xT)/α)

C(x0)

)
= −V ⋆

0 (x0)/α+ logC(x0) = 0.

Hence,

Pu⋆

·|0(τ |x0) =
Pdata
·|0 (τ |x0) exp(r(xT)/α)

C(x0)
.

Now, we aim to calculate an exact formulation of the optimal initial distribution. We just need to
solve

argmax
ν′

∫
V ⋆
0 (x)ν

′(x)− αKL(ν′∥νini).

The closed-form solution is

exp(V ⋆
0 (x)/α)νini(x)/C

where C :=
∫
exp(V ⋆

0 (x)/α)νini(x)dx.

Combining all together, we have been proved that the induced trajectory by the optimal control and
the optimal initial distribution is

Pu⋆

·|0(τ |x0) =
Pdata
·|0 (τ |x0) exp(r(xT)/α)

C(x0)
, ν⋆ ∼ C(x0)νini(x0)

C
.

Therefore,

Pu⋆,ν⋆

(τ) = Pu⋆

·|0(τ |x0)ν
⋆(x0) =

Pdata
·|0 (τ |x0) exp(r(xT)/α)

C(x0)
× C(x0)νini(x0)

C

=
Pdata
·|0 (τ |x0) exp(r(xT)/α)νini(x0)

C
=

Pdata(τ) exp(r(xT)/α)

C
.

Marginal distribution at t. Finally, consider the marginal distribution at t. By marginalizing
before t, we get

Pdata(τ[t,T])× exp(r(xT)/α)/C.

Next, by marginalizing after t,

Pdata
t (x)/C × EPdata

[exp(r(xT)/α)|xt = x].

Using Feynman–Kac formulation in Lemma 1, this is equivalent to

Pdata
t (x) exp(V ⋆

t (x)/α)/C.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Marginal distribution at T . We marginalize before T . We have the following

Pdata
T (x) exp(r(x)/α)/C.

C.3 ANOTHER FORMAL PROOF OF THEOREM 1

First, noting the loss in (5) becomes

Ex0∼ν [V
⋆
0 (x0)− αKL(ν(x0)/νini(x0))],

by optimizing over ν ∈ ∆(X), we can easily prove that the optimal initial distribution is

exp

(
V ⋆
0 (x)

α

)
νini(x)/C.

Hereafter, our goal is to prove that the marginal distribution at t (i.e., P⋆
t) is indeed gt(x) defined by

gt(x) := exp

(
V ⋆
t (x)

α

)
Pdata
t (x)/C

Using Lemma 1, we can show that the SDE with the optimal drift term is

dxt =

{
f(t, x) +

σ2(t)

α
∇V ⋆

t (x)

}
dt+ σ(t)dwt.

Then, what we need to prove is that the density gt ∈ ∆(Rd) satisfies the Kolmogorov forward
equation:

gt(x)

dt
+
∑
i

d

dx[i]

[{
f [i](t, x) +

σ2(t)

α
∇x[i]V ⋆

t (x)

}
gt(x)

]
− σ2(t)

2

∑
i

d2gt(x)

dx[i]dx[i]
= 0 (15)

where f = [f [1], · · · , f [d]]⊤. Indeed, this (15) is proved as follows:

dgt(x)

dt
+
∑
i

d

dx[i]

[{
f [i](t, x) +

σ2(t)

α
∇x[i]V ⋆

t (x)

}
gt(x)

]
− σ2(t)

2

∑
i

d2gt(x)

dx[i]dx[i]

=
1

C
exp

(
V ⋆
t (x)

α

){
dPdata

t (x)

dt
+
∑
i

∇x[i](Pdata
t (x)f [i](t, x))− σ2(t)

2

∑
i

d2Pdata
t (x)

dx[i]dx[i]

}

+
1

C
Pdata
t (x)

{
d exp(V ⋆

t (x)/α)

dt
+
∑
i

f [i](t, x)∇x[i](exp(V ⋆
t (x)/α))−

σ2(t)

2

∑
i

d2 exp(V ⋆
t (x)/α)

dx[i]dx[i]

}

+
1

C
Pdata
t (x)× σ2(t)

2

∑
i

d2 exp(V ⋆
t (x)/α)

dx[i]dx[i]

= 0 + 0.

Note in the final step, we use

dPdata
t (x)

dt
+
∑
i

∇x[i](Pdata
t (x)f [i](t, x))− σ2(t)

2

∑
i

d2Pdata
t (x)

dx[i]dx[i]
= 0,

which is derived from the Kolmogorov forward equation, and the optimal value function satisfies the
following

σ2(t)

2

∑
i

d2 exp(V ⋆
t (x)/α)

dx[i]dx[i]
+ f · ∇ exp(V ⋆

t (x)/α) +
d exp(V ⋆

t (x)/α)

dt
= 0,

which will be shown in the proof of Lemma 1 as in (18).

Hence, (15) is proved, and gt is dP⋆
t /dµ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.4 PROOF OF LEMMA 1

From the Hamilton–Jacobi–Bellman (HJB) equation, we have

max
u

{
σ2(t)

2

∑
i

d2V ⋆
t (x)

dx[i]dx[i]
+ {f + u} · ∇V ⋆

t (x) +
dV ⋆

t (x)

dt
− α∥u∥22

2σ2(t)

}
= 0. (16)

where x[i] is a i-th element in x. Hence, by simple algebra, we can prove that the optimal control
satisfies

u⋆(t, x) =
σ2(t)

α
∇V ⋆

t (x).

By plugging the above into the HJB equation (16), we get

σ2(t)

2

∑
i

d2V ⋆
t (x)

dx[i]dx[i]
+ f · ∇V ⋆

t (x) +
dV ⋆

t (x)

dt
+

σ2(t)∥∇V ⋆
t (x)∥22

2α
= 0, (17)

which characterizes the optimal value function. Now, using (17), we can show

σ2(t)

2

∑
i

d2 exp(V ⋆
t (x)/α)

dx[i]dx[i]
+ f · ∇ exp(V ⋆

t (x)/α) +
d exp(V ⋆

t (x)/α)

dt

= exp

(
V ⋆
t (x)

α

)
×

{
σ2(t)

2

∑
i

d2V ⋆
t (x)

dx[i]dx[i]
+ f · ∇V ⋆

t (x) +
dV ⋆

t (x)

dt
+

σ2(t)∥∇V ⋆
t (x)∥22

2α

}
= 0.

Therefore, to summarize, we have

σ2(t)

2

∑
i

d2 exp(V ⋆
t (x)/α)

dx[i]dx[i]
+ f · ∇ exp(V ⋆

t (x)/α) +
d exp(V ⋆

t (x)/α)

dt
= 0, (18)

V ⋆
T (x) = r(x). (19)

Finally, by invoking the Feynman-Kac formula (Shreve et al., 2004), we obtain the conclusion:

exp

(
V ⋆
t (x)

α

)
= EPdata

[
exp

(
r(xT)

α

)
|xt = x

]
.

C.5 PROOF OF LEMMA 2

Recall u⋆(t, x) = σ2(t)
α ×∇xV

⋆
t (x) from the proof of Lemma 1. Then, we have

u⋆(t, x) =
σ2(t)

α
×∇xV

⋆
t (x) =

σ2(t)

α
× α

∇x exp(V
⋆
t (x)/α)

exp(V ⋆
t (x)/α)

= σ2(t)× ∇xEPdata [exp(r(xT)/α)|xt = x]

EPdata [exp(r(xT)/α)|xt = x]
.

C.6 PROOF OF LEMMA 3

Recall

P⋆(τ) = Pdata(τ) exp(r(xT)/α)/C

By marginalizing before s, we get

P⋆
[s,T](τ[s,T])× exp(r(xT)/α)/C

Next, marginalizing after t,

Pdata
[s,t] (τ[s,t])× EPdata [exp(r(xT)/α)|xt]/C

= Pdata
[s,t] (τ[s,t]) exp(V

⋆
t (xt)/α)/C.

Finally, by marginalizing between s and t, the joint distribution at (s, t) is

Pdata
s,t (xs, xt) exp(V

⋆
t (xt)/α)/C.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Forward conditional distribution.

P⋆
t|s(xt|xs) =

Pdata
s,t (xs, xt) exp(V

⋆
t (xt)/α)/C

Pdata
s (xs) exp(V ⋆

s (xs)/α)/C
= Pdata

s|t (xt|xs)
exp(V ⋆

t (xt)/α)

exp(V ⋆
s (xs)/α)

.

Backward conditional distribution.

P⋆
s|t(xs|xt) =

Pdata
s,t (xs, xt) exp(V

⋆
t (xt)/α)/C

Pdata
s (xt) exp(V ⋆

t (xt)/α)/C
= Pdata

s|t (xs|xt).

C.7 PROOF OF LEMMA 4

Use a statement in (13) the proof of Theorem 1.

C.8 PROOF OF THEOREM 2

We omit the proof since it is the same as the proof of Theorem 1.

D DIFFUSION MODELS

In this section, we provide an overview of continuous-time generative models. The objective is to
train a SDE in such a way that the marginal distribution at time T follows pdata. While pdata is not
known, we do have access to a dataset that follows this distribution.

Denoising diffusion models DDPMs (Song et al., 2020) are a widely adopted class of generative
models. We start by considering a forward stochastic differential equation (SDE) represented as:

dyt = −0.5ytdt+ dwt,y0 ∼ pdata, (20)

defined on the time interval [0, T]. As T tends toward infinity, the limit of this distribution converges
to N (0, Id), where Id denotes a d-dimensional identity matrix. Let Q be a measure on C induced
by the forward SDE (20). Consequently, a generative model can be defined using its time-reversal:
xt = yT−t, which is characterized by:

dxt = {0.5xt −∇ logQT−t(xt)}dt+ dwt, x0 ∼ N (0, Id).

A core aspect of DDPMs involves learning the score ∇ logQt by optimizing the following loss with
respect to S:

EQ[∥∇ logQt|0(xt|x0)− S(t, xt)∥22].

A potential limitation of the above approach is that the forward SDE (20) might not converge to a
predefined prior distribution, such as N (0, Id), within a finite time T . To address this concern, we
can employ the Schrödinger Bridge formulation (De Bortoli et al., 2021).

Diffusion Schrödinger Bridge. A potential bottleneck of the diffusion model is that the forward
SDE might not converge to a pre-specified prior N (0, Id) with finite T . To mitigate this problem,
De Bortoli et al. (2021) proposed the following Diffusion Schrödinger Bridge. Being inspired by
Schrödinger Bridge formulation (Schrödinger, 1931) they formulate the problem:

argmin
P

KL(P∥Pref) s.t.P0 = νini,PT = pdata.

where Pref is a reference distribution on C such as a Wiener process, P0 is a margin distribution of
P at time 0, and PT is similarly defined. To solve this problem, De Bortoli et al. (2021) proposed
an iterative proportional fitting, which is a continuous extension of the Sinkhorn algorithm (Cuturi,
2013), while learning the score functions from the data as in DDM.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Bridge Matching. In DDPMs, we have formulated a generative model based on the time-reversal
process and aimed to learn a score function ∇ logQt from the data. Another recent popular approach
involves emulating the reference Brownian bridge given 0, T with fixed a pre-defined initial distri-
bution νini and a data distribution pdata at time T (Shi et al., 2023; Liu et al., 2022). To elaborate
further, let’s begin by introducing a reference SDE:

dx̄t = σ(t)dwt, x̄0 ∼ νini.

Here, we overload the notation with Q to indicate an induced SDE. The Brownian bridge
Q·|[0,T](·|x0, xT) is defined as:

dx̄0,T
t = σ(t)2∇ logQT |t(xT |x̄0,T

t) + σ(t)dwt, x
0,T
0 = x0,

where x0,T
T = xT . The explicit calculation of this Brownian bridge is given by:

∇ logQT |t(xT |x̄0,T
t) =

xT − xt

T − t
.

Now, we define a target SDE as follows:

dxt = f(t, xt)dt+ σ(t)dwt, x0 ∼ νini.

This SDE aims to induce the same Brownian bridge as described earlier and should generate the
distribution pdata at time T . We use P to denote the measure induced by this SDE. While the specific
drift term f is unknown, we can sample any time point t(0 < t < T) from P by first sampling x0 and
xT from νini and pdata, respectively, and then sampling from the reference bridge, i.e., the Brownian
bridge. To learn this drift term f , we can use the following characterization:

f(t, xt) = EP[∇ logQT |t(xT |xt)|xt = xt].

Subsequently, the desired drift term can be learned using the following loss function with respect to
f :

EP[∥∇ logQT |t(xT |xt)− f(t, xt)∥2].
Bridge matching can be formulated in various equivalent ways, and for additional details, we refer
the readers to Shi et al. (2023); Liu et al. (2022).

E DETAILS OF IMPLEMENTATION

E.1 IMPLEMENTATION DETAILS OF NEURAL SDE

We aim to solve

argmax
f̄ :[0,T]×Z→Z

L(zT), dzt = f̄(t, zt)dt+ ḡ(t)dwt, z0 ∼ ν̄.

Here is a simple method we use. Regarding more details, refer to Kidger et al. (2021); Chen et al.
(2018).

Suppose that f̄(·; θ) is parametrized by θ. Then, we update this θ with SGD. Consider at iteration j.
Fix θj in f̄(t, zt; θj). Then, by simulating an SDE with

dzt = f̄(t, zt; θ)dt+ ḡ(t)dwt, z0 ∼ ν̄,

we obtain N trajectories

{z(i)0 , · · · , z(i)T }Ni=1.

In this step, we are able to use any off-the-shelf discretization methods. For example, starting from
z
(i)
0 ∼ ν, we are able to obtain a trajectory as follows:

z
(i)
t = z

(i)
t−1 + f̄(t− 1, z

(i)
t−1; θ)∆t+ ḡ(t− 1)∆wt, ∆wt ∼ N (0, (∆t)2).

Finally, using automatic differentiation, we update θ with the following:

θj+1 = θj − ρ∇θ

{
1

N

N∑
i=1

L(z
(i)
T)

}∣∣∣∣
θ=θj

where ρ is a learning rate. We use Adam in this step for the practical selection of the learning rate ρ.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.2 BASELINES

We consider the following baselines.

PPO + KL. Considering the discretized formulation of diffusion models (Black et al., 2023; Fan
et al., 2023), we use the following update rule:

∇θED

T∑
t=1

[
min

{
r̃t(x0, xt)

p(xt|xt−1; θ)

p(xt|xt−1; θold)
, r̃t(x0, xt) · Clip

(
p(xt|xt−1; θ)

p(xt|xt−1; θold)
, 1− ϵ, 1 + ϵ

)}]
,

(21)

r̃t(x0, xt) = −r(xT) + α
∥u(t, xt; θ)∥2

2σ2(t)︸ ︷︷ ︸
KL term

, p(xt|xt−1; θ) = N (u(t, xt; θ) + f(t, xt), σ(t)) (22)

where f(t, xt) is a pre-trained drift term and θ is a parameter to optimize.

Note that DPOK (Fan et al., 2023) uses the following update:

∇θED

T∑
t=1

min

{
−r(x0)

p(xt|xt−1; θ)

p(xt|xt−1; θold)
,−r(x0) · Clip

(
p(xt|xt−1; θ)

p(xt|xt−1; θold)
, 1− ϵ, 1 + ϵ

)}
+ α

∥u(t, xt; θ)∥2

2σ2(t)︸ ︷︷ ︸
KL term


where the KL term is directly differentiated. We did not use the DPOK update rule because DDPO
appears to outperform DPOK even without a KL penalty (Black et al. (2023), Appendix C), so we
implemented this baseline by modifying the DDPO codebase to include the added KL penalty term
(Equation (22)).

Guidance. We use the following implementation of guidance (Dhariwal and Nichol, 2021):

• For each t ∈ [0, T], we train a model: Pt(y|xt) where xt is a random variable induced by the
pre-trained diffusion model.

• We fix a guidance level γ ∈ R>0, target value ycon ∈ R, and at inference time (during each
sampling step), we use the following score function

∇x logPt(x|y = ycon) = ∇x logPt(x) + γ∇x logPt(y = ycon|x).

A remaining question is how to model p(y|x). In our case, for the biological example, we make a
label depending on whether x is top 10% or not and train a binary classifier. In image experiments,
we construct a Gaussian model: p(y|x) = N (y − µθ(x), σ

2) where y is the reward label, µθ is the
reward model we need to train, and σ is a fixed hyperparameter.

F EXPERIMENT DETAILS

F.1 DETAILS FOR TASKS IN BIOLOGICAL SEQUENCES

F.1.1 DATASET.

TFBind8. The number of original dataset size is 65792. Each data consists of a DNA sequence with
8-length. We represent each data as a one-hot encoding vector with dimension 8× 4. To construct
diffusion models, we use all datasets. We use half of the dataset to construct a learned reward r to
make a scenario where oracles are imperfect.

GFP. The original dataset contains 56, 086 data points, each comprising an amino acid sequence
with a length of 237. We represent each data point using one-hot encoding with a dimension of
237 × 20. Specifically, we model the difference between the original sequence and the baseline
sequence. For our experiments, we selected the top 33, 637 samples following (Trabucco et al., 2022)
and trained diffusion models and oracles using this selected dataset.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 3: Architecture of diffusion models for TFBind

Layer Input Dimension Output dimension Explanation
1 1 (t) 256 (t′) Get time feature
1 8× 4 (x) 64 (x′) Get positional encoder (Denote x′)
2 8× 4 + 256 + 64 (x, t, x′) 64 (x̄) Transformer encoder
3 64 (x̄) 8× 4 (x) Linear

Table 4: Architecture of oracles for TFBind

Input dimension Output dimension Explanation
1 8× 4 500 Linear
1 500 500 ReLU
2 500 200 Linear
2 200 200 ReLU
3 200 1 Linear
3 200 1 ReLU
4 1 1 Sigmoid

Table 5: Primary hyperparameters for fine-tuning. For all methods, we use the Adam optimizer.

Method Type GFP TFBind

ELEGANT

Batch size 128 128
Sampling for neural SDE Euler Maruyama

Step size (fine-tuning) 50 50
Epochs (fine-tuning) 50 50

PPO
Batch size 128 128

ϵ 0.1 0.1
Epochs 100 100

Guidance Guidance level 30 30

Pre-trained diffusion Forward SDE Variance preserving
Sampling way Euler Maruyama

F.1.2 STRUCTURE OF NEURAL NETWORKS.

We describe the implementation of neural networks in more detail.

Diffusion models and fine-tuning. For diffusion models in TFBind, we use a neural network to
model score functions in Table 3. We use a similar network for the GFP dataset and fine-tuning parts.

Oracles to obtain score functions. To construct oracles in TFBind, we employ the neural networks
listed in Table 4. For GFP, we utilize a similar network.

F.1.3 HYPERPARAMETERS

We report a set of important hyperparameters in Table 5.

F.1.4 ADDITIONAL RESULTS

In this section, we add additional results to support the main paper.

Enlarged figure of ELEGANT (0.005). We add the enlarged figure of ELEGANT (0.005) in
Table 2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

200

400

600

800

Figure 4: Enlarged histogram of ELEGANT (0.005) in Table 2.

Table 6: TFBind. We set α = 0.01 for ELEGANT and PPO.

Reward (r) ↑ Reward (r⋆) ↑
DDPO 0.99± 0.0 0.80± 0.02
DPOK 0.99± 0.00 0.78± 0.02

PPO + KL 0.99± 0.0 0.84± 0.01

Comparison of PPO+KL, DPOK, DDPO. We compare PPO+KL, DPOK, and DPPO in Table 6
on page 25.

Note with respect to DPOK and DDPO, we use the term “PPO + KL” to convey that our “PPO+KL”
updates both the reward term and KL term with PPO, whereas the original DPOK optimizes the
reward term using PPO but employs a non-PPO approach for optimizing the KL term. We have
observed that ”PPO + KL” yields more stable optimization compared to the precise algorithm in
DPOK, and aligns with a more conventional optimization method in the RL community.

Ablation studies in terms of α. We have also conducted ablation studies with varying hyperparam-
eters. Specifically, we adjusted the parameter α in Table 2 to observe its effect on performance. For
instance, when α is set to 0.01, the reward of ELEGANT becomes 0.99. Conversely, when α is set to
0.001, the reward of ELEGANT decreases to 0.96.

F.2 DETAILS FOR IMAGE TASKS

Below, we explain the training details and list hyperparameters in Table 7.

F.2.1 FURTHER DETAILS OF IMPLEMENTATION

We use 4 A100 GPUs for all the image tasks. We use the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1 = 0.9, β2 = 0.999 and weight decay of 0.1. To ensure consistency with
previous research, in fine-tuning, we also employ training prompts that are uniformly sampled from
50 common animals (Black et al., 2023; Prabhudesai et al., 2023).

Sampling. We use the DDIM sampler with 50 diffusion steps (Song et al., 2020). Since we need
to back-propagate the gradient of rewards through both the sampling process producing the latent
representation and the VAE decoder used to obtain the image, memory becomes a bottleneck. We
employ two designs to alleviate memory usage following Clark et al. (2023); Prabhudesai et al.
(2023): (1) Fine-tuning low-rank adapter (LoRA) modules (Hu et al., 2021) instead of tuning the
original diffusion weights, and (2) Gradient checkpointing for computing partial derivatives on
demand (Gruslys et al., 2016; Chen et al., 2016). The two designs make it possible to back-propagate
gradients through all 50 diffusing steps in terms of hardware.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 7: Training hyperparameters.

Hyperparameter Value
Classifier-free guidance weight 7.5
DDIM steps 50
Truncated back-propagation step K ∼ Uniform(0, 50)
Learning rate 0.0001
Batch size 128
Clip grad norm 5.0

Guidance. To train the classifier, we use the AVA dataset (Murray et al., 2012) which includes
more than 250k evaluations (i.e., 20 times more samples than our ELEGANT implementation, cf.
Figure 6). We implement the classifier (i.e., reward model) using an MLP model that takes the
concatenation of sinusoidal time embeddings (for time t) and CLIP embeddings (Radford et al., 2021)
(for xt) as input. The implementation is based on RCGDM (Yuan et al., 2023).

F.2.2 FURTHER DETAILS OF EVALUATION VIA VISION LANGUAGE MODELS

A key consideration in evaluating all algorithms in the image domain is that we don’t know the true r⋆.
While we use LAION Aesthetic Predictor V2 (Schuhmann, 2022) as r(x), this r(x) is not accurate in
out-of-distribution regions, as we mention in the main text. Indeed, when overoptimization happens,
generated images become almost identical regardless of prompts.

To effectively detect reward overoptimization, we use a pre-trained multi-modality language model
to assess image-to-prompt alignment. For each generated image, we send the following prompt to
LLaVA (Liu et al., 2024) along with the image:

<image>
USER: Does this image include {prompt}? Answer with Yes or No
ASSISTANT:

We assessed its accuracy and precision with human evaluators by generating images using Stable
Diffusion with animal prompts (such as dog or cat). The F1 score achieved was 1.0.

F.2.3 ADDITIONAL RESULTS

More generated images. We provide more generated samples to illustrate the performances in
Figure 5.

Comparison with Guidance. In practice, we observe that the guidance strength in Guidance is
hard to control: if the guidance level and target level are not strong, the reward-guided generation
would be weak (cf. Table 8). However, with a strong guidance signal and a high target value, the
generated images become more colorful at the expense of reducing “modified r”. In presenting
qualitative results in Figure 5, we set the target as 10 and the guidance level as 100 to balance
guidance strength and “modified r”.

Table 8: Evaluation results of classifier guidance for aesthetic scores. (·) are 95% confidence intervals.
Note the top 5% value is 6.0. Modified rewards reflect prompt-image alignments.

Target (ycon) Guidance level (γ) Mean “modified r” ↑ KL-Div ↓
6 400 5.69(0.06) 0.30
6 800 5.71(0.06) 1.26
6 1200 5.68(0.06) 1.28
6 1600 5.45(0.25) 2.19
10 100 5.91(0.14) 2.52
10 200 5.53(0.45) 6.46

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

ELEGANT (=5)

cat dog horse monkey rabbit butterfly peacock panda

ELEGANT (=10)

NO KL

Guidance

PPO + KL (=0.001)

Figure 5: More images generated by ELEGANT and baselines. Guidance is trained on AVA
dataset (Murray et al., 2012). All other algorithms (NO KL, Guidance, PPO + KL, and ELEGANT)
make 15360 reward inquiries to perform fine-tuning.

Compared with NO KL, PPO and PPO + KL. We plot the training curves of NO KL, PPO, PPO
+ KL, versus ELEGANT in Figure 6. Note that this plot depicts a “nominal” reward. Hence, the NO
KL baseline achieves seemingly high values. However, it severely suffers from overoptimization
(See evaluation in Figure 3a and Table 3b). On the other side, it is also evident that the KL entropy
of NO KL explodes, which indicates that the fine-tuned model deviates from the pre-trained model.
Our ELEGANT enjoys good performances while keeping a relatively low entropy compared to
baselines. This is because our explicit entropy regularization makes balancing fine-tuning and
mitigating overoptimization possible.

Empirically, we observe PPO outperforms PPO + KL in terms of reward but still falls short compared
to our ELEGANT.

0 2000 4000 6000 8000 10000 12000
Reward Queries

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

R
ew

ar
d

0 2000 4000 6000 8000 10000 12000
Reward Queries

10
4

10
3

10
2

10
1

10
0

10
1

KL
 D

iv
er

ge
nc

e

ELEGANT (=10) ELEGANT (=5) NO KL PPO PPO + KL (=0.001)

Figure 6: Training curves of reward (left) and KL divergence (right) for NO KL, PPO, PPO + KL,
and ELEGANT for fine-tuning aesthetic scores. The x axis corresponds to the number of reward
queries in the fine-tuning process. All nominal rewards, including baselines, go over 8 in this figure,
but baselines still suffer from overoptimization, as in Figure 7. That’s why we report with modified
instead.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F.2.4 EFFECTIVENESS OF LLAVA-AIDED EVALUATION

In this section, we see an example of the effectiveness of LLaVA-aided evaluation. More specifically,

Table 9 presents the statistics of LLaVA-aided evaluations for the pre-trained model and 5 checkpoints
of the NO KL baseline. It is observed that LLaVA can recognize all the prompts of images generated
by the pre-trained model. However, even with seemingly high-reward samples, many samples from
the NO KL ignore their prompts, leading to a decreased “modified r”.

Table 9: Evaluation statistics of “modified r” based on LLaVA

method mean std max invalid/total samples
pre-trained model 5.833 0.340 6.909 0/512

NO-KL-ckpt-6 7.294 0.543 7.946 2/512
NO-KL-ckpt-7 7.379 0.796 8.139 5/512
NO-KL-ckpt-8 7.483 1.101 8.227 10/512
NO-KL-ckpt-9 6.880 2.505 8.376 59/512
NO-KL-ckpt-10 7.025 2.612 8.730 61/512

Figure 7 illustrates six instances of failure based on LLaVA evaluation. These examples involve
images that disregard prompts, potentially resulting in higher original scores r. With our modified r,
we can adequately assign low scores to such undesired scenarios.

cat | 7.33 dog | 7.76 horse | 6.82 rabbit | 7.89 butterfly | 7.73 peacock | 7.22

Figure 7: Image-prompt alignment failures detected by LLaVA.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G FURTHER LIMITATIONS AND THEIR REMEDY

In this section, we discuss further possible limitations in our work.

G.1 COMPUTATIONAL COST: COST OF LEARNING INITIAL DISTRIBUTIONS

Our overhead in learning the initial distribution is low. When learning a second diffusion chain, our
goal is to learn exp(V ⋆

0 (x))νini(x). This distribution is much simpler and smoother compared to
the target distribution exp(r(x)/α)pdata(x) in the first diffusion chain. Therefore, we require fewer
epochs to learn this distribution. For instance, in image generation, we use only 200 reward queries
to learn initial distributions while the main diffusion chain takes 12000 queries for finetuning. The
wall time of learning the initial distribution (i.e., the second diffusion chain) is 30− 40 minutes in
image experiments, while the wall time of learning the second chain is roughly 1800 minutes.

G.2 MEMORY COMPLEXITY OF ELEGANT

When updating a single gradient, while ELEGANT consumes O(L) memory (where L represents the
number of discretizations), PPO only requires O(1) memory. This may initially seem like a limitation
of our approach. However, in practical scenarios, we are able to manage highly-dimensional data
effectively by implementing gradient checkpointing and accumulating gradients while maintaining a
large batch size, as we did in our experiments.

G.3 CHOICE OF α

A sophisticated way to choose α is our future work. Typically, we observe α is helpful regardless of
its specific choice as long as it is too small or too large enough, as we did ablation studies in Figure 2
and Figure 3c.

Here, we discuss a practical way to choose it and associated experimental results. In many scenarios,
we typically know the feasible upper bound of true rewards. In such cases, by appropriately selecting
α to ensure that the final learned reward falls within the range of 0.98-0.99 of the upper bound, we can
effectively attain high rewards while mitigating overoptimization, as shown in Table 2. Approaches
without entropy regularization may easily lead to overoptimization, wherein the learned reward may
reach 1, despite the actual reward being relatively low, as we show in Table 2.

G.4 INFERENCE TIME

Inference time is a critical aspect of many works in diffusion models. One potential approach would
be to use recent distillation techniques to accelerate inference time after fine-tuning. We will add
more such discussion in the next version.

29

	Introduction
	Related Works
	Preliminaries
	Desired Properties for Fine-Tuning
	Importance of KL Regularization

	Entropy-Regularized Control with Pre-Trained Models
	Stochastic Control Formulation
	Feynman–Kac Formulation
	Bridge Preserving Property

	Learning an Optimal Initial Distribution via Entropy-Regularized Control
	Algorithm
	Limitation: Sources of Approximation Errors

	Experiments
	Desing of Protein and DNA Sequences
	Quantitative Evaluation of Overoptimization
	Image Generation
	Effectiveness of Learning Initial Distributions.

	Conclusion
	Additional Related Works
	Value Function Estimation
	More Refined Methods to Learn Value Functions

	Proofs
	Intuitive proof of Theorem 1
	Formal Proof of Theorem 1
	Another Formal Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 2

	Diffusion models
	Details of Implementation
	Implementation Details of Neural SDE
	Baselines

	Experiment Details
	Details for Tasks in Biological Sequences
	Dataset.
	Structure of Neural Networks.
	Hyperparameters
	Additional Results

	Details for Image Tasks
	Further Details of Implementation
	Further Details of Evaluation via Vision Language Models
	Additional Results
	Effectiveness of LLaVA-Aided Evaluation

	Further Limitations and Their Remedy
	Computational Cost: Cost of Learning Initial Distributions
	Memory Complexity of ELEGANT
	Choice of
	Inference Time

