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Abstract

Large Language Models (LLMs) increasingly
shape global discourse yet predominantly en-
code Western epistemological traditions. This
position paper critically examines current ap-
proaches to cultural inclusivity in LLMs, argu-
ing that they often rely on unidimensional met-
rics that inadequately capture cultural diversity.
We advocate for Multiplexity—a framework
recognizing multiple layers of existence, knowl-
edge, and truth—as a theoretical foundation for
developing more culturally inclusive language
models. Our analysis demonstrates the limita-
tions of traditional cultural alignment methods
and highlights empirical evidence showing how
Multiplexity-based interventions, particularly
through Multi-Agent Systems, significantly im-
prove cultural representation. By contrasting
"Uniplexity" with Multiplexity, we address the
epistemological limitations of current evalua-
tion frameworks and propose moving beyond
binary metrics toward multidimensional cul-
tural evaluation. This paper contributes to on-
going efforts to mitigate cultural biases in Al
systems, ultimately supporting more globally
inclusive language technologies that respect di-
verse cultural perspectives.

1 Introduction

Large Language Models (LLMs) have transformed
Natural Language Processing and extended into
education, healthcare, and public discourse. How-
ever, evidence demonstrates these models dispro-
portionately reflect Western, Educated, Industri-
alized, Rich, and Democratic (WEIRD) perspec-
tives, potentially reinforcing cultural homogeniza-
tion (Mushtagq et al., 2025a; Johnson et al., 2022;
Qu and Wang, 2024). This cultural narrowness
presents challenges when LLMs are deployed glob-
ally, where their biases can shape users’ world-
views and conceptions of knowledge itself.
Frameworks to detect, measure, and mitigate
cultural biases in LLMs have become increasingly

urgent. While existing research has documented
various biases, approaches for comprehensive cul-
tural bias assessment remain nascent. As Zhou
et al. argue, culture is not merely superficial trivia
but a deeply embedded context that shapes how
language operates. Traditional evaluation frame-
works often fail to capture the multi-dimensional
nature of cultural representation, instead focusing
on one-dimensional metrics that insufficiently re-
flect global cultural diversity.

In this position paper, we propose Multiplex-
ity as a framework for addressing cultural biases
in LLMs. Multiplexity—derived from the Ara-
bic term "maratib" (meaning hierarchy or levels)—
offers an approach that recognizes multiple layers
of existence, knowledge, and truth (Qadir, 2022;
Qadir and Sentiirk, 2024). This framework pro-
vides an alternative to what might be termed "Uni-
plexity," which tends to reduce multi-layered real-
ity to single-dimensional perspectives often rooted
in Western epistemological traditions.

Our position contributes to the field in several
significant ways:

* We critically analyze existing approaches to
cultural evaluation in LLMs and identify their
conceptual limitations

* We advocate for Multiplexity as a theoretical
framework for evaluating cultural representa-
tions in LLMs, and support this with empirical
evidence demonstrating its effectiveness com-
pared to existing methodologies.

* We propose a research agenda for advancing
cultural inclusivity in NLP

2 Cultural Narrowness Problem in LLMs

2.1 Evidence of Cultural Bias

Recent work consistently demonstrates pervasive
cultural bias in LLMs. Tao et al. find that popular



GPT models encode values aligned with English-
speaking, Protestant-European cultures. Qu and
Wang report that ChatGPT performs best on opin-
ions from Western, English-speaking, developed
nations (especially the US). Durmus et al. quanti-
fied this effect using the GlobalOpinionQA dataset,
showing that LLMs’ default outputs more closely
match U.S. and European survey opinions than
those of other countries.

These biases have real consequences: Lewis
observes that cultural prejudice in Al language-
learning apps can depress minority student partic-
ipation by over 30%. Such findings underscore
the risk that biased LLLMs may distort communica-
tion and limit utility for diverse user groups (Adi-
lazuarda et al., 2024).

2.2 Limitations of Current Cultural
Evaluation Frameworks

Researchers have developed specialized bench-
marks and training methods for cultural alignment.
Common approaches involve prompting LLMs
with country-specific surveys (e.g., Hofstede’s cul-
tural dimensions, World Values Survey) and com-
paring responses to human data (Hofstede et al.,
2010; wvs, 2020). New benchmarks such as CDE-
Val (Wang et al., 2024), WorldValuesBench (Zhao
et al., 2024), and GlobalOpinionQA (Durmus et al.,
2024) explicitly test cross-cultural value alignment.

However, these approaches suffer from fun-
damental limitations. They exhibit Western-
centrism, relying on English-dominated corpora
and Western-derived surveys. As Adilazuarda et al.
point out, many studies "do not explicitly define
“culture’” and rely on narrow proxies. Evaluations
are typically based on unidimensional metrics—
binary alignments with cultural norms via statis-
tical correlations with survey responses. These
methods also reflect cognitive imperialism, priv-
ileging Western epistemologies while sidelining
indigenous worldviews (Ofosu-Asare, 2024).

The brittleness of static, survey-based cultural
proxies has been highlighted in recent work. Khan
et al. demonstrates that trivial changes (like prompt
wording or scale length) can dramatically alter mea-
sured "alignment" by as much as d ~ 0.09. Like-
wise, Kabir et al. note that MCQ surveys "fail to
capture the intricate nuances of cultural values,"
yielding only a tiny fraction of aligned responses.

2.3 Cultural Bias and NLP Harms

Culturally biased language technologies can cause
two main types of harm (Blodgett et al., 2020):

Representational harms occur when systems
stereotype, erase, or mischaracterize specific
groups. LLMs that reflect dominant viewpoints
while marginalizing others reinforce narrow world-
views, e.g., through stereotypical portrayals or era-
sure of minority perspectives.

Allocational harms arise when systems in-
equitably distribute opportunities or resources,
such as differing service quality based on a user’s
cultural background. These are often rooted in
training data and model objectives. Models trained
mainly on Western-centric corpora tend to un-
derperform for marginalized communities (Adi-
lazuarda et al., 2024; Ofosu-Asare, 2024). Ad-
dressing such disparities requires interventions at
earlier stages of the pipeline in the data and design
stages. This reflects recent work emphasizing that
cultural issues in language technology cannot be
solved by technical fixes alone, as problems like
cultural analysis are as much social and political as
technical (Blodgett et al., 2020).

2.4 Multiplexity: A Framework for Cultural
Inclusivity

Multiplexity provides an analytical framework that
addresses limitations of unidimensional approaches
to cultural evaluation in LLMs. It encompasses
multiple integrated dimensions, including episte-
mological diversity (acknowledging diverse ways
of knowing) and ontological plurality (recogniz-
ing multiple levels of existence). This approach,
with roots in Islamic intellectual traditions but ap-
plicable across diverse cultural contexts, offers a
corrective to "Uniplexity"—the reductionist West-
ern paradigm that privileges empirical and mate-
rial knowledge while marginalizing other episte-
mologies (Sentiirk et al., 2020; Qadir and Sentiirk,
2024).

2.4.1 The Case for Epistemic Pluralism

Most current LLM evaluation frameworks implic-
itly adopt a perspective that assumes a univer-
sally applicable epistemology, privileging certain
ways of knowing (typically Western and analyti-
cal) while marginalizing alternatives. Multiplexity-
based evaluation acknowledges diverse epistemolo-
gies as valid pathways to knowledge, recognizing
that different cultural traditions have developed
unique approaches to understanding reality. This



pluralistic stance suggests that cultural evaluation
of LLMs should assess their ability to engage with
multiple knowledge systems simultaneously, rather
than measuring alignment with a single cultural
norm.

2.4.2 Evaluation Metrics

To quantify cultural inclusivity, researchers have
developed metrics that offer numerical assessment
of representation (Mushtaq et al., 2025a,b). Figure
1 illustrates the multiplex analysis pipeline. The
Perspectives Distribution Score (PDS) measures
the proportional representation of each cultural per-
spective:

R;
> j R;
where R; is the reference count for perspective i.

PDS Entropy extends this by measuring the balance
of those proportions:
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2.4.3 Intervention Strategies

Building on these metrics, researchers have pro-
posed key intervention strategies to mitigate rep-
resentational harm (Mushtaq et al., 2025b), as
discussed in Section 2.3. One approach is
Contextually-Implemented Multiplexity, which in-
tegrates multiplex principles into system prompts
without requiring changes to the model architec-
ture. Another is Multi-Agent System (MAS)-
Implemented Multiplexity, which involves multiple
LLM agents, each representing distinct cultural per-
spectives, working collaboratively to produce more
balanced and inclusive outputs.

Emerging research also explores multi-agent
approaches to capture pluralistic values. Yuan
et al. introduced "Cultural Palette," a framework
with continent-specific alignment agents and a
meta-agent that dynamically merges their outputs.
Feng et al. present "Modular Pluralism," which
augments a base LLM with smaller community-
specific LLMs that better cover underrepresented
perspectives than any single model (Feng et al.,
2024).

3 Empirical Evidence and Critique

3.1 Limitations of Traditional Approaches

Quantitative findings illustrate the limitations of
traditional metrics:

Hofstede-based alignment: Masoud et al. report
extremely weak LLM/Hofstede agreement, with
average Kendall’s 7 of only ~0.14 even for GPT-
4 and country rankings mis-ordered 60-90% of
the time. These near-random correlations show
that treating each country as a single point value
grossly misrepresents how LLMs "view" culture.

Closed-survey probes: Kabir et al. find that stan-
dard multiple-choice prompts achieve high align-
ment in only a negligible fraction of cases. Even
when mapped onto survey options, many model
answers are "unclassifiable," indicating that forced-
choice tests miss most cultural content.

Bias scores: Naous et al. introduce a Cultural
Bias Score showing that even on Arabic prompts
about Arab culture, multilingual LMs scored CBS
~40-60% on average, meaning nearly half their
answers favored Western entities.

Prompting effects: Tao et al. report that tai-
lored prompts raised alignment in 71-81% of cases,
but LLMs still frequently gravitate toward Western
norms. AlKhamissi et al. find models align much
better when queried in the culture’s dominant lan-
guage than with generic prompts.

3.2 Comparative Performance Analysis

In contrast, implementations of the Multiplexity
framework show promising results for cultural di-
versity. In their first study focusing on educational
contexts, baseline LLM outputs (no mitigation) had
a Perspectives Distribution Score (PDS) entropy of
only 3.25%—essentially zero diversity (nearly all
answers reflect one viewpoint). Intervention using
Contextually-Implemented Multiplexity raised en-
tropy only to about 19%, a modest shift. However,
the Multi-Agent System (MAS) approach boosted
PDS entropy to 98%, nearly its theoretical maxi-
mum (Mushtagq et al., 2025a).

These findings were expanded in further work
(Mushtaq et al., 2025b), in which researchers
benchmarked various LLMs across 175 questions
divided into 7 categories. The PDS entropy im-
proved from 13% in baseline settings to 26% us-
ing Contextually-Implemented Multiplexity, and
reached 94% using the MAS-Implemented Mul-
tiplexity intervention strategy. Example of their
perspective extraction pipeline (needed to calculate
PDS) and sentiment analysis in baseline LLM and
Contextually-Implemented Multiplexity interven-
tion strategy has been presented in figure 1.

Sentiment analysis provides additional context,
with MAS-Implemented Multiplexity achieving
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Figure 1: A sample pipeline output for PDS calculation to assess cultural inclusivity through a Multiplexity lens

94% positive sentiment across cultures, compared
to predominantly neutral sentiment in baseline
models (Mushtagq et al., 2025a). A shift of 67.7%
towards positive sentiment was reported in their
follow-up work (Mushtaq et al., 2025b).

These results suggest an important difference:
traditional metrics often peak in the low-to-mid
tens of percent, reflecting narrow agreement with
one cultural norm (Masoud et al., 2024; Naous
et al., 2024). Multiplexity approaches, particularly
through multi-agent systems, appear to achieve
more balanced representation, with PDS scores in-
creasing from single digits to over 90%, indicating
more uniform representation across cultures.

4 Future Research Directions

While addressing both representational and allo-
cational harms requires technical interventions, a
comprehensive solution requires broader engage-
ment with social, political, and ethical dimensions.
Our research agenda includes:

1. Inclusive Co-Design: Involve diverse com-
munities and scholars from different cultural
traditions and fields in designing and evaluat-
ing language models, as emphasized by Ofosu-
Asare (2024).

Culturally-Inclusive Datasets: Create train-
ing and evaluation datasets for pre-training
and fine-tuning stages.

Multi-Agent Architectures: Further ex-
plore multi-agent approaches that represent
diverse perspectives. Early results from MAS-
Implemented Multiplexity are promising for

mitigating representational harms by improv-
ing balanced cultural representation.

Cultural and persona-based prompting are use-
ful steps forward, but to build truly inclusive Al
systems, we need datasets grounded in multiplexity
principles, designed to reflect diverse global per-
spectives during fine-tuning and to address both
representational and allocational harms identified
earlier in section 2.3.

5 Conclusion

We have advocated for Multiplexity as a theoreti-
cal framework to address cultural biases in Large
Language Models. Unlike traditional approaches
that rely on unidimensional metrics and often re-
flect Western norms, Multiplexity recognizes mul-
tiple layers of existence and knowledge. Our anal-
ysis highlights the limitations of conventional cul-
tural alignment methods, which tend to yield lim-
ited diversity and moderate alignment. In contrast,
Multiplexity-based interventions—especially those
using Multi-Agent Systems—demonstrate signifi-
cant improvements in cultural inclusivity metrics,
suggesting a path toward mitigating both represen-
tational and allocational harms.

While no single framework can fully resolve the
complexities of cultural representation in Al, Mul-
tiplexity provides a valuable foundation for moving
beyond reductionist perspectives. By embracing
epistemological pluralism and multidimensional
evaluation, we can advance toward language mod-
els that more respectfully and accurately reflect the
diversity of global cultures.



Limitations

While we advocate for Multiplexity as a promis-
ing framework for advancing cultural inclusiv-
ity in LLMs, several limitations warrant consid-
eration. First, the empirical evidence support-
ing Multiplexity-based interventions, though en-
couraging, is currently based on a limited set of
inference-time studies. Broader validation will
require deeper integration at the data and design
stages of model development. Second, the imple-
mentation of Multiplexity—particularly through
Multi-Agent Systems—may introduce computa-
tional complexity that poses challenges for large-
scale or resource-constrained deployment. Third,
our emphasis on cultural inclusivity addresses a
critical but singular facet of the broader impera-
tive to develop ethical and socially responsible Al.
Lastly, while Multiplexity offers a strong theoret-
ical foundation, its practical realization depends
on sustained collaboration with diverse communi-
ties and the iterative refinement of both evaluation
metrics and intervention strategies.
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