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Abstract

Cross-domain NER is a practical yet challeng-001
ing problem since the data scarcity in the real-002
world scenario. A common practice is first to003
learn a NER model in a rich-resource general004
domain and then adapt the model to specific do-005
mains. Due to the mismatch problem between006
entity types across domains, the wide knowl-007
edge in the general domain can not effectively008
transfer to the target domain NER model. To009
this end, we model the label relationship as010
a probability distribution and construct label011
graphs in both source and target label spaces.012
To enhance the contextual representation with013
label structures, we fuse the label graph into014
the word embedding output by BERT. By rep-015
resenting label relationships as graphs, we for-016
mulate cross-domain NER as a graph matching017
problem. Furthermore, the proposed method018
has good applicability with pre-training meth-019
ods and is potentially capable of other cross-020
domain prediction tasks. Empirical results on021
four datasets show that our method outperforms022
a series of transfer learning, multi-task learning,023
and few-shot learning methods.024

1 Introduction025

Named entity recognition (NER) is a crucial com-026

ponent in many language understanding tasks027

(Shaalan, 2014; Nadeau and Sekine, 2007) and is028

often applied in various domains. Due to the data029

scarcity in the real-world scenario, obtaining ad-030

equate domain-specific data is usually expensive031

and time-consuming. Hence, cross-domain NER,032

which is capable of adapting NER models to spe-033

cific domains with limited data, has been drawing034

increasing attention in recent years.035

However, one of the primary challenges of cross-036

domain NER is the mismatch between source and037

target domain labels (Yang and Katiyar, 2020). For038

example, the label sets between ATIS (Hakkani-Tür039

et al., 2016) and CoNLL 2003 are non-overlapping.040

To address this issue, some approaches utilize041

Figure 1: A demonstration of graph matching. In both
two cases, our model learns graph structures from the
source label space and makes correct predictions. In
two label spaces, each node is a target label and the
matching nodes and edges are opaque.

multi-task learning (Jia and Zhang, 2020; Wang 042

et al., 2020) for transferring knowledge across do- 043

mains. However, these methods require full train- 044

ing on both source and target domain data when 045

adapting to each new domain. Since the source do- 046

main dataset is usually much larger than the target 047

domain dataset, the multi-task learning methods are 048

inefficient when adapting to low-resource domains. 049

Recently, as Pre-trained Language Models 050

(PLMs) such as BERT (Devlin et al., 2019) 051

have shown remarkable success in NER, transfer- 052

learning-based methods also show effectiveness 053

for cross-domain NER. A typical approach is to 054

first train a NER model initialized with PLM on 055

rich-resource domain (e.g., CoNLL 2003 (Sang 056

and Meulder, 2003)), and then fine-tune the entire 057

model with a new task-specific linear classifier (pre- 058

train fine-tune) (Lee et al., 2018; Rodríguez et al., 059

2018). Despite its simplicity, this approach pro- 060

vides strong results on several benchmarks (Huang 061

et al., 2020), and we serve it as the baseline in our 062

research. 063

Inspired by the idea in You et al. (2020), where 064

labels across domains are connected by probability 065

distributions, we propose a novel approach, Label 066
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Structure Transfer for cross-domain NER (LST-067

NER) to address the label mismatch problem. By068

modeling the label relationships as label graphs,069

we transfer the label structure from the source070

model (i.e., the NER model trained on source do-071

main) to the target model (i.e., fine-tuned model).072

We are the first to capture label graph structures for073

cross-domain NER to our best knowledge. In this074

study, we focus on enhancing cross-domain ability075

based on pretrain-finetune training paradigm, with076

only target domain labeled data for domain adapta-077

tion. Therefore, pre-training (Liu et al., 2021) and078

self-training (Huang et al., 2020) based methods,079

which leverages massive unlabeled data, are not080

considered.081

To explicitly capture the connections between082

two domains labels, we construct a label graph by083

probability distributions of target labels estimated084

by the source NER model. In the label graph,085

graph nodes refer to target labels, and edges refer086

to the relationships between labels. We represent087

each node as the probability distribution and add an088

edge between two nodes if the labels have similar089

distributions. By representing label relationships as090

label graphs in both source and target label spaces,091

the label knowledge can be transferred via graph092

matching. We introduce Gromov-Wasserstein dis-093

tance (GWD) for aligning two label graphs since094

its capability of capturing edge similarity.095

We show an example in Fig 1 to demonstrate how096

graph matching works. In the example, "ACL" is097

a "Conference" named entity in the target domain.098

When label sets between source and target domains099

match perfectly, the source NER model naturally100

predicts "Conference" with the highest probability.101

Then, the target model straightforward learns this102

property from the source domain. When two label103

sets are mismatching, the source NER model may104

predict "ACL" as an "Organization" since the label105

"Organization" is seen in the source domain. By106

score distributions of "ICCL" and "David" in the107

source domain, we can model their relationships108

with "ACL" as graph structures. Then, the target109

model learns label structures via graph matching110

and predicts "ACL" as "Conference" correctly. In111

this way, the label relationships can be learned even112

when two domain label sets are different.113

Furthermore, we enhance the contextual repre-114

sentation by fusing the constructed label graph into115

the word embedding by Graph Convolutional Net-116

work (GCN), where an auxiliary task is introduced117

for better extracting label-specific components for 118

each entity type. 119

We performed extensive experiments on eight 120

different domains in both rich- and low-resource 121

settings. Empirical results show that our method 122

outperforms a series of competitive baselines. 123

2 Related Work 124

Cross-domain NER. In recent years, cross- 125

domain NER has received increasing research at- 126

tention. There is a line of researches based on 127

multi-task learning (Yang et al., 2017). Some 128

approaches proposed adding auxiliary tasks Liu 129

et al. (2020a); Wang et al. (2020), while some 130

approaches proposed new model architecture (Jia 131

et al., 2019; Jia and Zhang, 2020) for improving 132

target domain NER model by jointly training on 133

both source and target domain data. Jia and Zhang 134

(2020) presented a multi-cell compositional LSTM 135

(Multi-Cell LSTM) structure where modeled each 136

entity type as a separate cell state, and it reaches 137

the state-of-the-art (SOTA) performance for cross- 138

domain NER. These methods require training on 139

massive source domain data when adapting to each 140

domain and thus inefficient. 141

Another line of researches is based on trans- 142

fer learning. Except from the pretrain-finetune 143

paradigm, some approaches proposed adding adap- 144

tion layers Lin and Lu (2018) or adapter modules 145

Houlsby et al. (2019) to the backbone network. 146

Compared with them, our method constructs la- 147

bel graphs dynamically and performs label seman- 148

tic fusion via attention mechanism, and thus has 149

fewer parameters for training. Besides, our method 150

is built on word contextual embedding by PLM. 151

Therefore, our model can combine with various 152

backbone networks and thus has better applicabil- 153

ity. 154

Few-shot NER. Few-shot NER aims at recog- 155

nizing new categories in a highly low-resource sce- 156

nario (Feng et al., 2018), which also shows good 157

cross-domain ability. Tong et al. (2021) induced 158

different undefined classes from the "Others" class 159

to alleviate the over-fitting problem. Yang and Kati- 160

yar (2020) proposed NNShot and StructShot based 161

on the nearest neighbor classifier, and StructShot 162

further applies the Viterbi algorithm when decod- 163

ing. The few-shot learning methods focus on build- 164

ing models that can generalize from very few ex- 165

amples. Unlike these methods, our approach aims 166

to enhance domain adaptation ability in both low- 167
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resource and rich-resource scenarios.168

3 Methodology169

3.1 Problem Formulation170

We focus on only one source and one target domain171

in this study. Given a NER model f0 pre-trained on172

a source dataset Ds = {(xis, yis)}
ms
i=1, we aims to173

fine-tune f0 by a target dataset Dt = {(xit, yit)}mt
i=1.174

Following You et al. (2020), we assume that only175

Dt and f0 are available when fine-tuning since Ds176

is often large-scale.177

Because the source label set Ys and target label178

set Yt may be mismatching, f0 can not be applied179

to target data directly. A common practice is to split180

f0 into two parts: a backbone network for learning181

general representation and task-specific layers for182

mapping representation to label space. We adopt183

BERT as our backbone model and Fully-Connected184

(FC) layer as the task-specific layer throughout our185

research. We show a demonstration of our model186

in Fig. 2.187

3.2 Label Graph Construction188

In this part, we construct source graph and target189

graph with the probabilistic outputs of source and190

target NER models respectively.191

Typically, the target labels are fine-grained and192

domain-specific, while the source labels are coarse-193

grained and more general. Similar to the idea of194

You et al. (2020), we map each target label as a195

probability distribution of the source labels. A196

straightforward method for obtaining this mapping197

(i.e. conditional distribution) p(ys|yt = y) is to198

average the predictions of the source model over199

all samples for each target entity type. Formally,200

we have201

p(ys|yt = y) ≈ |Dy
t |−1Σ(xt,yt)∈Dy

t
f ′
0(xt)

f ′
0(xt) = softmax(f0(xt)/T )

Dy
t = {(xt, yt) ∈ Dt|yt = y},

(1)202

where ys/yt denotes source/target label, T denotes203

the temperature parameter for smoothing the prob-204

ability distribution and |Dy
t | is the number of target205

domain training samples 1 with ground-truth label206

y. The pre-trained model f0 is regarded as a prob-207

abilistic model for approximating the probability208

distribution p(ys|xt) over source labels Ys.209

1The training sample refers to one token and its ground-
truth label

Next, we build source graph Gs(Vs, Es) where 210

nodes refer to target labels and edges refer to se- 211

mantic similarity between nodes. As illustrated in 212

Fig 1, two labels with similar semantic meanings 213

(i.e., "Conference" and "Organization") have the 214

similar probability distribution. Based on this fea- 215

ture, we represent the graph node with label y as 216

217

ṽy
s =

[
p(y(1)s |yt = y), · · · , p(y(i)s |yt = y)

]
y(i)s ∈ Ys, i ∈ {1, · · · , |Ys|}

(2) 218

where ṽy
s ∈ R|Ys| is the node representation and 219

|Ys| is the number of source labels. To eliminate 220

the influence of scales of different dimensions, we 221

normalize the graph nodes by dividing the average 222

distance of node pairs, and l2 distance is used as 223

the distance metric. Then, the graph node represen- 224

tation for label y is calculated as 225

vy
s =

ṽy
s ∗ |Yt|2∑

y1,y2
l2(ṽy1

s , ṽy2
s )

, (3) 226

where vy
s ∈ R|Ys| is the normalized node represen- 227

tation, |Yt| is the number of target labels and l2 is 228

the distance function. Then, we add edge between 229

two nodes if and only if their distance is smaller 230

than a threshold δ. 231

ey1,y2s =

{
l2(vy1

s ,vy2
s ), if l2(vy1

s ,vy2
s ) < δ;

∞, else.
(4) 232

In a similar way as source graph, we construct 233

target graph Gt(Vt, Et) by the fine-tuned model f 234

where probability distribution p(yt|x) over target 235

labels Yt are estimated. In target graph, nodes 236

refer to target labels, and edges refer to semantic 237

similarity measured in target label space. 238

3.3 Label Semantics Fusion 239

Commonly in NER, the ground-truth label of a 240

named entity is related to the context (e.g., label 241

"Researcher" can be inferred by label "Conference" 242

as the example shown in Fig 1). In this part, we 243

fused the learned graph structure into the word 244

contextual embedding output by BERT to model 245

the sentence’s semantic label relationships. 246

Given a sentence X = [x1, · · · , xns ] with 247

ground-truth label sequence Y , the contextual rep- 248

resentation hj ∈ Rdh for each token can be ob- 249

tained by backbone network. Then, we randomly 250

initialize the label representation ci ∈ Rdc before 251
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Figure 2: A demonstration of the proposed model. First, the label graph from source label space is incorporated into
the contextual representation by GCN. Then, the target model transfers graph structures from the source model via
graph matching. Finally, the target model makes correct predictions with the learned label structures.

fine-tuning. The label representation represents252

the semantic meanings for each entity type, and253

it is learned during fine-tuning. For the sentence254

X , we apply a label-guided attention mechanism255

to extract the label-specific components as follow:256

qj = hjWp + bp,

αij =
exp(qjc

T
i )∑

j exp(qjc
T
i )

,

ui =
∑
j

αijqj ,

(5)257

where qj ∈ Rdp is the label-related embedding for258

the j-th token in the sentence, Wp ∈ Rdh×dp and259

bp ∈ Rdp are the weight and bias for projection260

respectively. ui ∈ Rdp denotes the label-specific261

component for the i-th label in Yt and αij indicates262

how informative the j-th token to the i-th label. For263

each sentence, label-specific components modeling264

its semantic relevance to each entity type.265

And then, by replacing the node representa-266

tion of source graph from probability distribu-267

tion vs to label-specific component u, we obtain268

the graph representation of label-specific compo-269

nents. Next, we utilize GCN (Kipf and Welling,270

2017) to enhance the representations of each label-271

specific component by propagating messages be-272

tween neighboring nodes.273

u′ = GCN(u) (6)274

u′ ∈ Rdp denotes the aggregated node represen- 275

tation of the label-specific component and GCN 276

denotes the graph convolution operations where 277

details are omitted for simplicity. As shown in Fig. 278

2, label structure from source graph is fused into 279

label-specific components by GCN. 280

Last, we utilize the token-guided attention mech- 281

anism to fuse the aggregated label-specific com- 282

ponent into the contextual representation for each 283

word: 284

βji =
exp(qju

′T
i )∑

i exp(qju
′T
i )

h′
j = hj + (

∑
i

βjiu
′
i)W

′
p + b′

p.
(7) 285

h′
j ∈ Rdh is the label-fused embedding for the j-th 286

token and W′
p ∈ Rdp×dh ,b′

p ∈ Rdh are the weight 287

and bias for projection respectively. In Eq. 7, we 288

map the weighted sum of u′ into the same space 289

of hj and add them together to allow information 290

fusion. Followed by the task-specific FC layer, the 291

classification loss for NER tasks can be calculated: 292

293

Lcls = CE(FC(h′), Y ) (8) 294

where CE denotes the Cross-Entropy loss. 295

Besides, we introduce an auxiliary task to en- 296

sure the label-specific components focus on correct 297

entity types. Concretely, the model predicts what 298
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entity types appear in the sentence, which is a multi-299

label classification task. The loss for the auxiliary300

task is calculated as301

Laux = BCE(FCaux(Cat([h′
1, · · · ,h′

ns
])), Y ′)

(9)302

where BCE is the Binary-Cross-Entropy loss,303

FCaux is the FC layer for auxiliary task, Cat is the304

concatenation operation for last dimension and Y ′305

is the ground-truth label for the sentence. Different306

from Lcls, Laux encourages model to extract cor-307

rect label-specific components for each sentence.308

3.4 Graph Structure Matching309

Since source graph Gs is constructed by the pre-310

trained LM f0, it naturally contain priori knowl-311

edge from rich-resource domain. In this part, we312

utilize the label graphs built in different label313

spaces for graph matching to exploit the seman-314

tic relations among labels from source graph.315

Gromov-Wasserstein distance (GWD) is pro-316

posed for distributional metric matching by Peyré317

et al. (2016). Since its capability of capturing edge318

similarity between graphs, GWD has been applied319

to graph matching (Vayer et al., 2019; Chowdhury320

and Mémoli, 2019) and domain alignment (Chen321

et al., 2020). Naturally, we can adopt GWD for322

matching the edges (relationships) between two323

label graphs.324

Following Alvarez-Melis and Jaakkola (2018);325

Chen et al. (2020), we convert each graph to a326

discrete distribution with uniform mass on each327

node. Let µ,ν denote two discrete distributions328

corresponding to Gs,Gt respectively. Then, we329

define the GWD between µ and ν as:330

Dgw(µ,ν)

= inf
γ∈

∏
(µ,ν)

E(vs,vt)∼γ,(v′
s,v

′
t)∼γ [L(vs,vt,v

′
s,v

′
t)]

= min
T̂∈

∏
(u,v)

∑
i,i′,j,j′

T̂ijT̂i′j′L(v
i
s,v

j
t ,v

i′
s ,v

j′

t ),

(10)331

where
∏
(µ,ν) denotes all the joint distribu-332

tions γ(vs,vt) with marginals µ(vs) and ν(vt).333 ∏
(u,v) represents the space of all valid transport334

plan, where the weight vector u = {ui}ni=1,v =335

{vi}mi=1 is the n- and m-dimensional simplex for336

distribution µ,ν. The matrix T is the transport337

plan, where Tij represents the amount of mass338

shifted from ui to vj . L(·) is the cost function eval-339

uating the intra-graph structural similarity between340

two pairs of nodes (vi
s,v

i′
s ) and (vj

t ,v
j′

t ), and it is341

defined as follow in the proposed method: 342

L(vi
s,v

j
t ,v

i′
s ,v

j′

t ) = |l2(vi
s,v

i′
s )− l2(vj

t ,v
j′

t )|
(11) 343

By projecting the edges into nodes, the learned 344

transport plan T̂ helps align the edges in differ- 345

ent graphs (van Lint and Wilson, 1992). Then, 346

label relationships (edges) can be learned from 347

source graph to target graph by minimizing Dgw 348

with Sinkhorn algorithm (Cuturi, 2013; Peyré et al., 349

2019). In Fig. 2, the fine-tuned model learns the 350

structure between labels (i.e., "Conference", "Or- 351

ganization" and "Researcher") , and makes cor- 352

rect predictions with the learned label relationships. 353

When fine-tuning, target graph evolves dynami- 354

cally through the update of the parameters of NER 355

model f , while source graph and the source model 356

f0 are frozen. 357

3.5 Total Learning Objective 358

Finally, the total loss can be formulated as 359

L = Lcls + λ1Laux + λ2Dgw, (12) 360

where the loss of auxiliary task and GWD are 361

weighted by λ1 and λ2 respectively. 362

4 Experiments 363

4.1 Experimental Settings 364

Datasets. We take five public publicly available 365

datasets for experiments, including CoNLL 2003 366

(Sang and Meulder, 2003), CrossNER (Liu et al., 367

2021), ATIS (Hakkani-Tür et al., 2016), MIT 368

Restaurant (Liu et al., 2013a) and MIT Movie (Liu 369

et al., 2013b). Table 1 presents detailed statistics 370

of these datasets. 371

Baseline models. We first consider three ap- 372

proaches built on bi-directional LSTM structure 373

(Hochreiter and Schmidhuber, 1997), including tra- 374

ditional NER system BiLSTM-CRF (Lample et al., 375

2016) together with two improved methods Coach 376

(Liu et al., 2020b) and Multi-Cell LSTM (Jia and 377

Zhang, 2020). 378

We also compare several BERT-based NER sys- 379

tems. BERT-tagger (Devlin et al., 2019) is the 380

BERT-based baseline model which fine-tunes the 381

BERT model with a label classifier (i.e., pretrain- 382

finetune). NNShot and StructShot (Yang and Kati- 383

yar, 2020) are two metric-based few-shot learn- 384

ing approaches for NER. Different from the above 385

approaches, TemplateNER (Cui et al., 2021) is a 386
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Datasets CoNLL 2003 MIT Movie MIT Restaurant ATIS CrossNER

Domain News Movie Reviews Restaurant Reviews Dialogue Politics Natural Science Music Literature Artificial Intelligence
#Train 15.0k 7.8k 7.7k 5.0k 200 200 100 100 100
#Test 3.7k 2.0k 1.5k 893 651 543 456 416 431

#Entity Type 4 12 8 79 10 17 13 11 12

Table 1: Statistics on the 5 public datasets in our experiments

Samples K=20 K=50

Domain Pol. Sci. Mus. Lit. AI Mov. Res. Dia. Pol. Sci. Mus. Lit. AI Mov. Res. Dia.

BiLSTM-CRF 41.75 42.54 37.96 35.78 37.59 49.98 49.65 92.32 53.46 48.89 43.65 41.54 44.73 56.13 58.11 94.28
BiLSTM-CRF-joint † 44.62 44.91 42.28 39.54 41.23 51.73 50.61 92.54 55.17 49.68 44.58 43.14 46.35 57.60 58.94 94.58
Coach † 46.15 48.71 43.37 41.64 41.55 45.83 49.56 92.74 60.97 52.03 51.56 48.73 51.15 56.09 57.50 94.69
Multi-Cell LSTM † 59.58 60.55 67.12 63.92 55.39 53.59 52.18 90.36 68.21 65.78 70.47 66.85 58.67 58.48 60.57 92.78

BERT-tagger 61.01 60.34 64.73 61.79 53.78 53.39 55.13 92.48 66.13 63.93 68.41 63.44 58.93 58.16 60.58 94.51
BERT-tagger-joint † 61.61 60.58 64.16 60.36 53.18 53.62 55.54 91.24 66.30 64.04 67.71 62.58 58.52 58.04 60.71 93.78
NNShot 60.93 60.67 64.21 61.64 54.27 52.97 55.23 91.65 66.33 63.78 67.94 63.19 59.17 57.34 60.26 93.86
StructShot 63.31 62.95 67.27 63.48 55.16 54.83 55.93 92.66 67.16 64.52 70.21 65.33 59.73 58.74 61.60 94.38

templateNER 63.39 62.64 62.00 61.84 56.34 40.15 47.82 58.39 65.23 62.84 64.57 64.49 56.58 43.42 54.05 59.67

LST-NER w/o Dgw+Laux 60.56 60.72 65.10 62.26 54.02 53.18 55.35 91.43 65.95 63.76 68.77 64.22 58.72 58.41 60.54 94.44
LST-NER w/o Laux 62.91 62.55 66.98 63.73 56.31 56.11 57.32 92.66 68.19 64.42 70.17 66.13 59.86 60.33 62.73 94.74
LST-NER w/o Dgw 62.16 62.39 66.28 63.85 55.82 55.27 56.92 92.87 67.63 64.94 69.76 65.24 59.12 59.56 62.21 94.59
LST-NER (Ours) 64.06 64.03 68.83 64.94 57.78 57.83 58.26 93.21 68.51 66.48 72.04 66.73 60.69 61.25 63.58 94.94

Table 2: Cross domain results on eight different domains in low-resource setting. † indicates both source and target
labeled samples are used when training.

Domain Mov. Res. Dia.

BiLSTM-CRF 67.16 77.49 95.10
BiLSTM-CRF-joint † 68.31 78.13 95.26
Coach † 67.62 77.82 95.04
Multi-Cell LSTM † 69.41 78.67 93.95

BERT-tagger 67.49 76.71 95.12
BERT-tagger-joint † 67.14 77.07 94.86
NNShot 60.39 72.33 95.04
StructShot 22.63 53.34 90.18

templateNER 54.63 69.94 64.92

LST-NER w/o Dgw+Laux 67.29 76.63 95.04
LST-NER w/o Laux 68.53 77.65 95.20
LST-NER w/o Dgw 68.49 77.86 95.27
LST-NER (Ours) 70.25 78.74 95.41

Table 3: Cross domain results on three different domains
in rich-resource setting. † indicates both source and
target labeled samples are used when training.

template-based prompt method through a genera-387

tive pre-trained LM, BART (Lewis et al., 2020),388

and it also shows effectiveness in few-shot NER.389

In the experiments, we don’t include approaches390

requiring extra unlabeled data for comparison,391

such as noisy supervised pre-training, self-training392

(Huang et al., 2020) and domain-adaptive pre-393

training (Liu et al., 2021).394

Hyperparameters. Throughout the experiments,395

we use BERT as the backbone network for our396

model and the following hyperparameters are used:397

temperature parameter T = 4; dimensional param-398

eters dh = dp = 768; edge threshold δ = 1.5;399

weight parameters λ1 = 0.1, λ2 = 0.01.400

Evaluation. For evaluation, we use the standard401

evaluation metrics for NER (i.e., micro averaged402

F1 score) and report the average results of five403

independent runs. Besides, we use BIO tagging 404

schema for evaluation. 405

In the low-resource setting, we construct the tar- 406

get domain training set by sampling K entities 407

for each entity types following existing studies 408

in few-shot NER (Yang and Katiyar, 2020; Cui 409

et al., 2021). Different from sentence-level few- 410

shot tasks, in NER, simply sampling K sentences 411

for each entity type will result in far more enti- 412

ties of frequent types than those of less frequent 413

types (Yang and Katiyar, 2020). Therefore, we ap- 414

ply greedy sampling strategy (Yang and Katiyar, 415

2020) to construct a few-shot training set. Due 416

to the randomness of few-shot sampling, we will 417

release all sampled data along with the codes for 418

reproducibility. 419

4.2 Cross-Domain Experiments 420

Cross-Domain Settings. Following Huang et al. 421

(2020); Liu et al. (2021), we use CoNLL 2003 as 422

the source domain datasets and evaluate the cross- 423

domain performance on other datasets with differ- 424

ent domains. The MIT Movie, MIT Restaurant, and 425

ATIS are three NER benchmark datasets. However, 426

these three datasets lack domain-specialized entity 427

types or do not focus on a specific domain (e.g., 428

"Opinion", "Relationship",etc), leading to a less 429

effective cross-domain evaluation (Liu et al., 2021). 430

Thus, we additionally use CrossNER datasets (with 431

five different domains) for the experiments. For 432

each domain in CrossNER, it contains domain- 433

6



specialized entity types as well as the four entity434

types in CoNLL 20032. Since the target domain435

contains far more entity types than the source do-436

main, there is a mismatch between different domain437

label sets. Considering the statistics of the datasets,438

we perform experiments on movie reviews, restau-439

rant reviews, and dialogue domains for the rich-440

resource setting (we use all samples for training)441

and all eight domains for the low-resource setting442

(K = 20, 50). If an entity has a smaller number443

of samples than the fixed number to sample K, we444

use all of them for training.445

Training Details. Based on the two baseline446

methods BiLSTM-CRF and BERT-tagger, we447

jointly train on both source and target domain sam-448

ples to obtain two more baselines (i.e., BiLSTM-449

CRF-joint and BERT-tagger-joint, respectively) for450

better comparison. Following Liu et al. (2021),451

we up-sample target domain samples for balancing452

two domain data. When training BiLSTM-CRF453

and Coach, we use word-level embedding from454

Pennington et al. (2014) and char-level embedding455

from Hashimoto et al. (2017) as input. For Multi-456

Cell LSTM, BERT representation, as well as word-457

level and char-level embedding, are utilized.458

Except for the approaches based on multi-task459

learning (i.e., BiLSTM-CRF-joint, Coach, Multi-460

Cell LSTM, and BERT-tagger-joint), we train the461

NER model on CoNLL 2003 for ten epochs before462

adapting to the target domain. For NNShot and463

StructShot, we further perform fine-tuning in the464

target domain since we find that they only yield465

better results than fine-tuning when only very few466

data are available (Huang et al., 2020). We summa-467

rize the results of cross-domain evaluation as well468

as the ablation study in Table 2 and 3, where meth-469

ods are grouped together based on the backbone470

model (BiLSTM, BERT, BART from top to down471

respectively).472

Result Analysis. Results show that our model473

consistently outperforms all the compared mod-474

els in both low- and rich-resource settings. Our475

method shows significant improvements in the476

rich-resource setting on the baseline BERT-tagger477

(2.76% on Movie Review; 2.03% on Restaurant478

Review; 0.29% on Dialogue). Even though the479

multi-task-learning-based methods (e.g., Multi-480

Cell LSTM) are trained on more data and show481

competitive results, the proposed method has supe-482

rior performance with only target domain data.483

2person, location, organization and miscellaneous

Results also suggest that jointly training pre- 484

trained LM (e.g., BERT) on both domains data may 485

not have better performance on target domain com- 486

pared with pretrain-finetune paradigm. We think 487

that the reason may be the semantic discrepancy of 488

the same label from two domains. Different from 489

them, the proposed method captures both similarity 490

and discrepancy between source and target labels 491

through probability distributions. Therefore, our 492

model benefits from the broad knowledge from the 493

source NER model and alleviates the requirement 494

to target domain data. 495

Ablation Study. We consider three settings in 496

the ablation study, the final loss without (1) loss of 497

auxiliary task Laux, (2) GWD for graph matching 498

Dgw and (3) both of them. One should note that the 499

model trained in case (3) is not the same as BERT- 500

tagger, which has label semantic fusion layers. 501

The results suggest that both the graph match- 502

ing mechanism and label semantic fusion are ben- 503

eficial for learning a better NER model. When 504

training only with classification loss, the model 505

shows tiny improvement on fine-tuning. Combined 506

with learned graph structure (i.e., source graph), 507

the label semantic fusion part becomes more ef- 508

fective when auxiliary task is added. Moreover, 509

the model trained with graph matching consistently 510

yields better results, indicating that transferring the 511

graph structure of labels is critical and beneficial 512

for cross-domain NER. 513

Domain Poli. Sci. Mus. Lit. AI Aver.

BERT-tagger ‡ 68.71 64.94 68.30 63.63 58.88 64.89
DAPT ‡ 72.05 68.78 75.71 69.04 62.56 69.63
Multi-Cell LSTM ‡ 70.56 66.42 70.52 66.96 58.28 66.55
Multi-Cell LSTM+DAPT ‡ 71.45 67.68 74.19 68.63 61.64 68.72
LST-NER (Ours) 70.44 66.83 72.08 67.12 60.32 67.36
LST-NER+DAPT 73.25 70.07 76.83 70.76 63.28 70.84

Table 4: Comparison of different methods combined
with DAPT. In each domain, we use all samples for train-
ing. ‡ indicates the results are from Liu et al. (2021).

4.3 Additional Experiments 514

Combined with Domain-Adaptive Pre-Training. 515

Liu et al. (2021) proposed to use integrate the 516

entity- and task-level unlabeled corpus and span- 517

level masking strategy in Domain-Adaptive Pre- 518

Training (DAPT) for the NER domain adaptation. 519

We conduct experiments to combine DAPT with 520

ours model and Multi-Cell LSTM, respectively. 521

The results are shown in Table 4. 522

By pre-training on a massive domain-related 523

corpus, our method further improves the F1-score 524
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by 3.48% on average. Compared with Multi-Cell525

LSTM, our method benefits from rich knowledge526

learned by pre-train LM directly and shows better527

performance when combined with DAPT. There-528

fore, we believe that our method can be incorpo-529

rated with self-training and noisy supervised pre-530

training methods to achieve superior results.531

Figure 3: Comparisons when utilizing different amounts
of data for training in "Restaurant Reviews" domain.

Performance with Different Amounts of Data.532

We evaluate the performance of our model with dif-533

ferent amounts of target domain labeled data on the534

"Restaurant Reviews" domain and make compar-535

isons with two baselines BERT-tagger and Struct-536

Shot. We use the same few-shot sampling strategy537

as in the low-resource setting. From results in Fig538

3, we find that even when in a highly low-resource539

scenario (K = 5, 10), the proposed model shows540

competitive performance with the few-shot NER541

model StructShot. When more data are available,542

our model consistently outperforms both BERT-543

tagger and StructShot. In contrast, StructShot be-544

comes ineffective when data are relatively sufficient545

(K>50). We think the reason may be that Struct-546

Shot is based on nearest neighbor learning, which547

is susceptible to noisy data. The results indicate548

that our method enhances domain adaptation ca-549

pability in a more general scenario compared with550

few-shot NER methods.551

Figure 4: The impact of temperature T and edge thresh-
old δ to the performance in "Restaurant Reviews" do-
main.

Hyperparameter Discussion. We explore the552

impact of edge threshold δ, temperature parameter553

T and weight parameter λ1,λ2 on the performance.554

We show the result in Fig. 4 and Fig. 6 in Appendix 555

A. Temperature T controls the smoothness of the 556

score distribution. The edge threshold δ controls 557

the number of edges for matching. We find that 558

T and δ have a relatively small influence on the 559

f1 score when T > 3 and δ > 1.0, suggesting the 560

stability of the model. 561

(a) Example

(b) Transport plan

Figure 5: (a) An example from the AI domain test set.
Green and Red represent correct and incorrect entity
respectively. (b) The transport plan corresponds to the
example. A higher value represents more attention be-
tween nodes.

Case Study. In the example shown in Fig.5, the 562

model constructs source graph with all target data 563

where all target labels are contained. The transport 564

plan demonstrates how label structures (edges) are 565

learned via graph matching from all target entity 566

types to the named entity in the sentence. Com- 567

pared with BERT-tagger and Multi-Cell LSTM, 568

our method correctly predicts "Rui Hu" as "Re- 569

searcher" and "SBIR" as "Task". 570

5 Conclusion 571

This paper proposes a novel and lightweight trans- 572

fer learning approach for cross-domain NER. Our 573

proposed method learns graph structure via match- 574

ing label graphs from source to target domain. 575

Through extensive experiments, we demonstrated 576

the effectiveness of our approach, reporting better 577

results over a series of transfer learning, multi-task 578

learning, few-shot learning methods. Furthermore, 579

our approach is general, which can be combined 580

with domain-adaptive pre-training and potentially 581

applied to other cross-domain prediction tasks. 582
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