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ABSTRACT

Recognizing spoken mathematical expressions is a challenging task that involves
transcribing speech into a strictly structured symbolic representation while ad-
dressing the ambiguity inherent in the pronunciation of equations. Although sig-
nificant progress has been achieved in both automatic speech recognition (ASR)
and language models (LM), the specific problem of translating spoken formulas
into LaTeX has received relatively little attention. This task is particularly impor-
tant in educational and research domains, for example, for lecture transcription.
To address this issue, in this paper, we present a pioneering study on Speech-to-
LaTeX conversion, introducing a novel, diverse human-uttered dataset in English
and Russian comprising 16000 (10000 in English and 6000 in Russian) distinct
spoken equations uttered by three different speakers. Our approaches, which in-
corporate ASR post-correction and multi-modal language models, demonstrate a
notable performance with up to a 25%

1 INTRODUCTION

Recent advancements in Automatic Speech Recognition (ASR) technologies, such as (Baevski et al.,
2020b; Radford et al., 2023), have significantly improved the ability of these models to recognize
spoken language. However, transforming spoken structured information, such as mathematical
expressions, into symbolic formats like LaTeX remains largely unsolved. Current ASR systems,
mostly pre-trained on a large plethora of unlabeled data in a self-supervised setting (SSL), can
recognize some simple math symbols, such as +, −, or π, but cannot represent more complex equa-
tions. This limitation is especially critical given the growing demand for applications in academic,
research, and educational settings, including the automatic transcription of mathematical content in
lectures and the creation of accessible materials for individuals with hearing impairments. In this
context, Speech-to-LaTeX (S2L) systems could serve as a powerful tool, enabling the transcrip-
tion of spoken mathematical expressions into LaTeX for use in scientific documents, educational
resources, and other structured content.

The primary challenge in the Speech-to-LaTeX task is that, unlike conventional ASR, it requires
not only transcribing words but also understanding the hierarchical and nested structures inherent
in mathematical notation. For example, the spoken phrase ”the integral from zero to infinity” must
be accurately transcribed into the LaTeX code \int_0ˆ{\infty}, capturing both the verbal
content and the underlying structure of the mathematical expression. This task involves more than
just recognizing symbols; it requires an understanding of the relationships between components
of mathematical statements, which are often non-linear and multi-dimensional in nature. Existing
ASR systems, even those pre-trained on vast amounts of unlabeled data in a self-supervised setting,
are not designed to handle this complexity due to the lack of specialized training data and models
optimized for mathematical notation.

Transformer-based language models (LMs), such as BERT (Devlin, 2018), T5 (Raffel et al., 2020),
GPT-3 (Radford et al., 2019), and more recently Qwen2-2.5B (Chu et al., 2023b), have demon-
strated impressive capabilities, often surpassing human performance in natural language understand-
ing tasks. Moreover, they can help to solve text-to-LaTeX tasks as shown in MathBridge (Jung et al.,
2024) providing training data with textual pronunciation and LaTeX expressions as a target label.
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Figure 1: (a) ASR post-correction and (b) Multimodal approaches generate a symbolic represen-
tation of LaTeX from spoken math expressions. In ASR post-correction, we feed audio into the
model, extract the textual prediction, and then pass it to the LLM, which generates LaTeX. In the
multimodal approach, we have two audio encoders, connect them to an adapter, add a prompt and
feed it into Llama, obtaining the formula.

However, translating spoken mathematics into LaTeX code is still a relatively unexplored challenge.
Addressing this gap requires not only new datasets but also the development of brand-new ASR
systems fine-tuned to this unique task, potentially incorporating multimodal large language models
and language models that can process both spoken input and handle mathematical content.

In this paper, we introduce the first comprehensive dataset designed specifically for Speech-to-
LaTeX conversion in a bilingual setting. Our dataset comprises around 10k unique spoken equations
in English and 6k in Russian, recorded by three different speakers among 40 data annotators (cover-
age rate is 3), ensuring variability in pronunciation, intonation, and linguistic style. To enhance the
diversity of the dataset, we also include artificially generated audio using text-to-speech (TTS) mod-
els (Shen et al., 2018; Kong et al., 2020; Casanova et al., 2024) to increase the diversity of the data.
This variety helps develop models that can generalize across different speaking patterns, making our
dataset a good starting point for future S2L research.

To tackle the Speech-to-LaTeX challenge, we propose a hybrid approach that combines state-of-
the-art ASR models (Radford et al., 2023; Chen et al., 2022a) with post-processing using fine-tuned
language models and multimodal architectures (Tang et al., 2024; Sun et al., 2024; Chu et al., 2023a)
capable of understanding both spoken language and text. While our Character Error Rate (CER)
ranges from 6% to 45%, this variability is largely due to the inherent ambiguity in interpreting
spoken mathematical expressions. For example, kappa” can be transcribed as either κ or κ and the
phrase ”one over x plus 2” can correspond to several valid LaTeX representations such as 1

x + 2,
1

x+2 , or 1/x+ 2. Despite these ambiguities, our system produces valid LaTeX expressions in most
cases, establishing a strong baseline for future research.

Our contributions are threefold:

• Dataset. We introduce a high-quality open-source S2L dataset of spoken mathematical
expressions in English and Russian, featuring diverse pronunciations and varying levels of
complexity. This dataset provides a solid foundation for future research in multilingual
Speech-to-LaTeX conversion. To the best of our knowledge, there are no existing datasets
at the time of the writing.

• Hybrid ASR and Audio-LLMs Approaches. We introduce several architectures that com-
bine ASR with LMs and multimodal LLMs to effectively translate spoken mathematics into
LaTeX, addressing challenges of speech recognition and mathematical structure represen-
tation.

• Evaluation and Benchmarking. We conduct a comprehensive evaluation of our models
using such metrics as CER, ROUGE-1, chrF and provide an in-depth analysis of the
results, providing detailed analysis and establishing benchmarks for future work in this
field.

2 RELATED WORK

Automatic Speech Recognition Models. Most ASR systems rely on spectrograms or mel-
frequency spectrum input features instead of directly processing raw waveform to decrease the input

2
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Figure 2: The dataset collection pipeline includes real data from MathBridge, LaTeX Formulas
and synthetic data from GPT-4. For MathBridge, we’ve taken 15K samples, cleaned them, and got
3K samples. For GPT-4, we were asked to generate pronunciation-LaTeX pairs for English and
Russian. All this data was labelled with TTS and Real Speakers. For LaTeX Formulas, we took
9.4K samples and asked GPT-4 to create four pronunciations for these formulas - two in English and
two in Russian. This data was labelled with TTS only.

dimension. Connectionist Temporal Classification (CTC) (Graves et al., 2006; Amodei et al.,
2016) loss function allows the models to align input speech sequences with output text without the
need for the precise manual alignment of letters/phonemes with the corresponding audio (and conse-
quently spectrogram) parts, forcing the model to learn the optimal alignment between audio frames
and text sequences effectively. During inference, beam search is often used to maintain multiple
leading hypotheses across different paths. However, CTC decoding operates independently of the
previous context and independently from important semantic information. This problem might be
mitigated by the attention mechanism (Luong et al., 2015; Vaswani et al., 2017). The Listen, Attend
and Spell (LAS) model (Chan et al., 2016) adopts an encoder-decoder structure, where the encoder
captures the input speech, and an attention mechanism allows the decoder to selectively focus on
various segments of the input sequence as needed. The Conformer model (Gulati et al., 2020), on
the other hand, combines convolutional neural networks (CNNs) with Transformer layers, thereby
capturing both local features via convolution and long-range dependencies through self-attention
mechanisms. Wav2Vec 2.0 (Baevski et al., 2020a) employs a self-supervised learning approach
to pre-train the model on unlabeled speech data using contrastive learning, learning high-quality
representations from raw audio waveforms. WavLM extends the capabilities of Wav2Vec 2.0 by
incorporating masked predictive learning and noisy student training, allowing it to handle speech
recognition tasks in noisy environments more robustly. Whisper leverages a transformer-based
architecture optimized in a weak-supervised regime and focuses on robustness and generalization
ability to different languages and audio conditions.

Language Models for Mathematical Understanding. Many LLMs are specifically tuned for math-
ematical problems. For example, Qwen2-Math and Qwen2.5-Math (Yang et al., 2024) demon-
strate remarkable performance in handling complex mathematical tasks in English and Chinese.
It utilizes techniques like Chain-of-Thought (CoT) and Tool-Integrated Reasoning (TIR) to tackle
complex problems. The model undergoes iterative self-improvement during training, leveraging
synthetic data and reinforcement learning with a reward model. It is based on Qwen2-0.5B and
Qwen2-2.5B, which have achieved state-of-the-art results on various natural language understand-
ing tasks and have become a baseline for many language tasks due to the simplicity of fine-tuning.
ProofGPT-v0.1 is a 1.3B or 6.7B parameter language model based on the GPT-NeoX model and
initialized with Pythia (Black et al., 2022; Biderman et al., 2023) weights. ProofGPT is tuned on
the proof-pile dataset that consists of a collection of Arxiv papers. Mathstral-7B-v0.1 LLM is a
Mistral-7B model. On most mathematical reasoning benchmarks, it outperforms DeepSeekMath-
7B (Shao et al., 2024), which uses supervised fine-tuning and direct preferences optimization (DPO).
Bumblebee-7B is based on the Mistral model, tuned on the MetaMathQA dataset. (Yu et al., 2023).
InternLM-7B (Ying et al., 2024) is also a commonly used model.
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Audio-LLMs. Multimodal Language Models (MLLMs) have recently emerged. Their main idea
is to transform the input modalities into embedding and properly combine them for further simul-
taneous usage in the LM subpart of the MLLMs for the next token prediction. Audio-LLMs such
as SALMONNn and Qwen-Audio aim to bridge the gap between audio inputs and text-based lan-
guage understanding. SALMONNn Tang et al. (2024); Sun et al. (2024) concatenates Whisper and
BEATs (Chen et al., 2022b) (music perception model) embeddings, transform it with the Q-former
(Li et al., 2023) and proceed to LLaMA-based LLM (Touvron et al., 2023) with the embeddings
of the text instruction prompt. SALMONNn is trained to perform ASR, audio-based storytelling,
and speech audio co-reasoning tasks. Qwen-Audio is a multi-task language model that extends
Qwen’s capabilities to audio-based inputs. The model was tuned to around 30 tasks, such as ASR,
speaker recognition, and audio captioning, to achieve this quality. For the audio encoder, Qwen-
Audio applies Whisper-Large. Following the multi-task training template proposed by Whisper and
other multi-task models, it utilizes several special tokens (tags) to specify the task, audio and text
languages, timestamps and transcription requirements.

OCR Approaches for LaTeX Transcription. In contrast to speech LaTeX recognition, image
LaTeX (optical character recognition, OCR) recognition is widely studied in academia. Such open-
source methods as Nougat (Blecher et al., 2023), pix2tex, im2latex, Textify, and TexTeller demon-
strate good and robust results. OCR-LaTeX models can use techniques similar to the ASR models,
such as CTC-loss and beam search decoding. OCR-LaTeX methods utilize encoder-decoder archi-
tectures with attention mechanisms to capture spatial and sequential dependencies in the input. For
example, textify utilizes SWIN Visual Transformer (Liu et al., 2021) for the encoder.

Post-Correction Techniques. Post-correction (or post-processing) approaches are used to improve
ASR transcriptions. Post-correction can employed to refine the output of ASR systems, particu-
larly in text-to-LaTeX tasks, where authors fine-tuned T5, BART (Lewis et al., 2019; Liu et al.,
2020), and GPT-3.5 in a supervised manner to transform the plain pronunciation-like text into the
equation code on the proposed MathBridge corpus of LaTeX equations in context. Although this
dataset contains millions of rows, the quality of the examples is low. For instance, equations and
pronunciation are often repeated or do not match (the pronunciation describes something different).
Moreover, there is a lack of long and difficult formulas, especially of good quality. Nonetheless, this
work provides an important baseline for research on LaTeX processing topics.

Datasets. Textual datasets containing mathematical expressions, proofs, and formula transcriptions
play a critical role in training LLMs to handle mathematical reasoning and symbolic manipulation
tasks. The Proof-Pile dataset includes mathematical research papers, formal proof libraries, and
textbooks. It has become a standard dataset for pre-training models to understand complex math-
ematical reasoning and symbolic representations. The Open-Web-Math dataset (Paster et al.,
2023) contains 14.7B tokens of deduplicated mathematical content (including LaTeX formulas) fil-
tered from Common Crawl dataset with attention. These are robust training corpora for training
LLMs for base mathematical understanding and for handling benchmark mathematical tasks. We
considered the open-source OCR-LaTeX dataset OleehyO/latex-formulas, which contains
more than 500000 pairs of images and LaTeX formulas. Im2LaTeX-100K dataset contains around
100000 pairs of formulas from different areas. IBEM dataset consists of digital STEM document
images with bounding boxes around formulas, providing a good dataset for LaTeX detection and
capturing. It is used to train the TexTeller model. The most relevant dataset for the S2L tasks is the
MathBridge dataset for the Text-to-LaTeX problem. This dataset provides textual pronunciation of
mathematical expressions with corresponding LaTeX code and a short left and right context infor-
mation serving. However, the absence of an audio component and the poor quality of samples limits
its applicability for S2L tasks.

Unfortunately, all these datasets do not provide the spoken pronunciation of the formulas, commit-
ting the problem of converting spoken mathematics into LaTeX. That is why we started our research
with the dataset collection.
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3 DATASET COLLECTION

3.1 MOTIVATION AND APPROACH.

The creation of a high-quality dataset for the Speech-to-LaTeX (S2L) task presents a significant
challenge due to the complexity and precision required for annotating spoken mathematical content.
Manual annotation of such data is labour-intensive and requires a deep understanding of mathemat-
ical notation, making the process costly and time-consuming. To address this, we adopted a semi-
synthetic approach, combining human-annotated and artificially generated data to create a robust
and diverse dataset. We started by collecting pairs of LaTeX equations and a possible pronunciation
of formulas. This pronunciation is essential for further voice-over: it is helpful for human annotators
and represents a reference pronunciation, and speakers do not have to be profoundly aware of math-
ematical notation; it is mandatory for artificial annotations as an input to TTS or voice-conversion
(VC) models. Several equations with different reference pronunciations were utilized to increase
sample ambiguity.

3.2 DATA SOURCES AND PREPARATION

We employed a three-step approach to create the dataset, utilizing both real-world data and synthetic
data generated by large language models (LLMs) and text-to-speech (TTS) systems.

GPT-4 Generated Data. Inspired by the recent advancements in multimodal models, we used GPT-
4 to generate pairs of LaTeX equations and their corresponding pronunciations. For each study topic
(e.g., Calculus, Mechanics), we prompted GPT-4 to provide 50–100 examples. The topics for the
English and Russian parts were slightly different. After generation, we used rigorous data cleaning
to remove empty, irrelevant, or duplicate samples. This step produced 7k unique pairs in English
and 6k in Russian, covering a broad spectrum of mathematical topics and complexity levels. One
can find several examples of the topics, possible equations and pronunciations in the Appendix in
Table ??.

MathBridge Dataset Integration. Additionally, we incorporated a subset of the MathBridge
datasets. The primary advantages of this dataset are its considerable size, comprising over 23 million
examples, and the inclusion of additional contextual information for the formulas. However, one
significant drawback lies in the quality of the examples. We employed data cleaning to enhance the
dataset for voicing and model training purposes. Our initial step involved selecting 15,000 examples
from the original dataset, concentrating on the ”spoken English” and ”equation” columns, while
eliminating duplicate entries from the formula column. We then refined this subsample further
by removing instances containing the following types of errors: (i) text instead of a formula; (ii)
formulas that do not compile in LaTeX; (iii) entries marked as ”None” in the pronunciation column
(C: None); (iv) duplicated pronunciation including both text and numbers (e.g., forty-two: 42); (v)
commands describing the formula in the pronunciation column; (vi) mismatched pronunciations
that do not correspond with the formula (for example, the model may confuse the number of zeros
in ”0.005,” describing it as ”zero point zero five”); and (vii) nearly duplicated formulas, such as
cos(α), cos(β), . . . , cos(ω). As a result of our cleaning efforts, we retained 3,000 high-quality
pairs for further inclusion in the S2L dataset.

OCR-LaTeX Dataset Integration. To further enhance the diversity of the dataset, we incorpo-
rated the OleehyO/latex-formulas dataset, which includes a wide range of complex and
non-trivial equations. We extracted 9,400 unique formulas from this dataset and utilized GPT-4 to
generate four distinct pronunciations for each formula: two in English and two in Russian.

3.3 AUDIO ANNOTATIONS AND DATASET COMPOSITION

Human Data Annotation and TTS Audio Generation. The next step was to voice over these
pairs. To make human-annotated audio, we utilized the crowd-sourced platform similar to Amazon
Mechanical Turk, where the equation and the possible pronunciation were displayed to the speaker.
Annotators for Russian and English parts were different and did not intersect.

Also, open-sourced models (Kong et al., 2020; Casanova et al., 2024) and API-access proprietary
models were applied to make artificially annotated audios.
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Figure 3: Distribution of language information in the dataset by data sources (a) and voices (b).

Dataset Composition. English part of S2L dataset consists of approximately 19.4K unique for-
mulas, of which 3k are from the MathBridge set, 7k are generated using GPT-4, and 9.4k are
obtained from OleehyO/latex-formulas (but number of unique pairs is 18.8k). 2 voices
were used to annotate the English part: one was used as reference for the XTTSv2 and one from
Russian TTS model. Overall, we have 57k+ English audios generated by TTS. We have a cover-
age of 3 speakers for humans, meaning three speakers voiced each formula from MathBridge
and GPT-4, so that’s about 30k audio recordings tagged with humans. The Russian part of the S2L
dataset consists of approximately 6k examples generated using GPT-4 and 9.4K examples taken
from OleehyO/latex-formulas, the same as for the English subset. We dubbed these 6k with
6 Russian TTS Rus voices and 18.8K examples from OleehyO/latex-formulas with similar
to the Eng subset XTTSv2 and Russian TTS voices, resulting in 74k TTS-labeled audio record-
ings. Also, the GPT-4 equations were labelled by people with coverage of 3 speakers per formula,
resulting in 18k human-annotated audios.

To ensure the high quality of the dataset, we conducted manual verification of the collected data.
The general overview of the dataset creation process is presented in Figure 2. The distribution of
data sources and voices is shown in Figure 3.

4 EXPERIMENTS

4.1 DATASET SPLITS

We considered several ways to make train-val-test splits for the evaluation. The primary way is to
split our combined dataset into parts corresponding to non-overlapping parts of equations, meaning
formulas from the test were not included in the train set, depriving the model of the opportunity to
remember it. This was made to test LLMs and Audio-LLMs generalization abilities. The second
way is to put all artificial audios into the train, and val sets while keeping human audios in the test set
to check whether the artificial annotation, which can be considered as a pseudo-labelling technique,
serves as well for generalization abilities to real-world data. In most experiments, we consider
only human audio for the test set if not stated otherwise. The train set might combine human and
artificial audio or only artificial ones. The validation set is distributed similarly to the train set. We
combined TTS-generated audio recordings and human speech in the training and validation sets to
create a more diverse dataset that improved the model’s ability to generalize across different input
data types, enhancing overall reliability and performance. We also considered monolingual and
bilingual splits to verify whether cross-language training helps to perform better on the particular
language test set subpart or whether training in a monolingual setting solely outperforms bilingual
training. All pronunciations were striped.

4.2 EVALUATION METRICS

We consider several metrics commonly used in speech recognition, summarization and translation
for the evaluation. The main metric is Character Error Rate (CER), which is defined as the ratio of
the normalized edit distance (Levenshtein distance) between the predicted sequence and the ground
truth: CER = S+D+I

N , where S is the number of substitutions, D is the number of deletions, I
is the number of insertions, and N is the total number of characters in the reference. ROUGE-1
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Table 1: Example of transcription

Model Transcription

Whisper Large-v3 The covariant derivative of a vector a mu equals partial mu with respect
to X nu plus gamma upper rho mu nu times a rho.

WavLM the covarient derivative of a vector a mou equals partial moo with respect
to ex new plus gama upper row moo new times a row

Wav2Vec2 the covariant derivative of a vector a mu equals partial mo with respect
to x-new plus scamma upper row mo new times a row

Qwen-audio The covariant derivative of a vector mu equals partial mu with respect
to x nu plus gamma upper row mu nu times a row

Canary The covariant derivative of a vector amu equals partial amu with respect
to x nu plus gamma upper rho moon nu times a rho.

(Lin, 2004) calculates the unigram recall between the predicted output and the reference text. BLEU
and sacreBLEU (Papineni et al., 2002; Post, 2018) evaluate n-gram precision by comparing the
predicted output against the reference. chrF and chrF++ are character-based F-scores metrics that
compute a balance between precision and recall at the character level. To more fairly evaluate the
general understanding of the S2L models, predicted LaTeX formulas and ground-truth labels are
transformed into lowercase before metric calculation if not stated differently. Its approach is valid,
as capitalization is not indicated directly in most pronunciation and audio voice-overs.

4.3 ASR POST-CORRECTION

The first approach to solving the S2L task is ASR post-correction (or post-processing). The ASR
post-correction process is a method that combines two techniques in sequence: ASR and LLM. The
first step is to use ASR to transcribe audio into text, and then the second step is to apply LLM to
create a LaTeX formula representation of the transcript. Post correction is quite natural for this task,
as it allows the LLM model, which has general mathematical knowledge, to transform the ASR
output text into a specific structured format of the LaTeX. To achieve the same level of quality, a
stand-alone ASR model should be trained on quite a large amount of audio data, which falls into
the problem of supervised labelling of the audio data. Shallow (ASR + LLM hypothesis rescoring
during inference) and deep fusion (simultaneous training of ASR and LLM) of ASR model with
math-aware LM can help to achieve better results, but it has several drawbacks: inference decoding
with large LM first pass rescoring would be highly time and memory consuming; deep fusion is hard
to train, and it increases the complexity of the model. We attempted to train ASR-only Speech-to-
LaTeX, but due to poor linguistic training, the model metrics were unsatisfactory, so this approach
was abandoned.

We considered Qwen2, Qwen2.5, Qwen2.5-Math and ProofGPT for the LLMs options. This
setup was trained and tested in English, Russian and English + Russian cases. Addition-
ally, Flan-T5 Large (Chung et al., 2024) was tested on an English set only. In our experi-
ments, we fine-tuned the entire model when the size was smaller than 7B. For the 7B model,
we considered fine-tuning using LoRA with a rank of 4 and an alpha of 8. However, the
experiments with LoRA were unsuccessful, as the model generated incoherent text for cer-
tain queries. We used Whisper Large-v3, Canary, and Wav2Vec 2.0 for Speech-to-Text tran-
scription. Whisper and Canary provide the most appropriate transcription, while WavLM and
Wav2Vec2.0 can make serious errors. Qwen-Audio also provides relatively good transcrip-
tion (since it is based on Whisper Large-v2). See example of transcription ∇νA

µ = ∂Aµ

∂xν +
Γµ
νρA

ρ \nabla_\nu Aˆ\mu = \frac{\partial Aˆ\mu}{\partial xˆ\nu} +
\Gammaˆ\mu_{\nu\rho} Aˆ\rho in Table 1.
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4.4 MULTIMODAL MODELS

We applied the Qwen-Audio and SALMONN-13B models for Audio-LLM experiments due to their
superior performance across various benchmarks. In this approach, audio encoders generate a hidden
representation of the waveform, which is then passed to an adapter that converts it into a format
compatible with LLM tokens. The resulting audio tokens are concatenated with system prompt
tokens, and the combined sequence is fed into the LLM, which outputs the corresponding LaTeX
formula. The LLM and adapter components of SALMONN are fine-tuned with different system
prompts. The Qwen-Audio model was fine-tuned using LoRA, applied only to the LLM layers.

5 RESULTS AND DISCUSSION

We computed several metrics, described in Section 4.2, with the HuggingFace evaluate library. First,
we introduce more character-centric metrics, such as CER and chrF.

Table 2 compares the performance of various language models on lower-case metrics across En-
glish, Russian, and combined English-Russian datasets. The table provides Character Error Rate
(CER), Rouge-1, sBLEU, and chrF metrics. Among the models evaluated, SALMONN consistently
achieves the best overall performance. In the English dataset, SALMONN leads with the high-
est Rouge-1 (83.88), sBLEU (60.68), and chrF (71.04) scores, though its CER (42.42) is slightly
higher than Qwen2.5-Math-1.5B, which has the lowest CER (39.54) and ranks second in Rouge-1
(81.43) and chrF (68.34). For the Russian dataset, SALMONN again outperforms, with the best
scores across all metrics, including CER (10.45), while Qwen2.5-Math-1.5B closely follows. In the
combined English-Russian dataset, Qwen2.5-0.5B excels with the lowest CER (22.70) and highest
Rouge-1 (86.22), sBLEU (67.14), and chrF (79.87), outperforming ProofGPT. Overall, SALMONN
dominates in English and Russian, while Qwen2.5-0.5B shines in the combined dataset.

Table 3 presents the performance metrics for non-overlapping formulas across the training, valida-
tion, and test sets, comparing two versions of the Qwen models (Qwen2-0.5B and Qwen2.5-0.5B)
for Russian and English languages, as well as a combined English and Russian dataset. The table
reports the Character Error Rate (CER), Rouge-1, sBLEU, and chrF metrics, where CER indicates
error rates (lower is better), and the remaining metrics reflect accuracy (higher is better). For both
Russian and English languages, Qwen2.5-0.5B consistently outperforms Qwen2-0.5B in terms of
Rouge-1, sBLEU, and chrF, particularly on the test set. Interestingly, in the case of the combined
English and Russian datasets, the two models exhibit very close performance, with Qwen2.5-0.5B
showing marginal improvements in accuracy metrics while having a slightly higher CER. Notably,
the test set was voiced using real human speakers, contrasting with the text-to-speech (TTS) voicing
applied to the training and validation sets, as highlighted in the table notes.

We also evaluated the success rate of compiling formulas into LaTeX - whether the formula compiles
into LaTeX without errors or not. The models reached up to 95-99% compilation success rate.

Speech-to-LaTeX models can quickly convert spoken language into mathematical formulas. Unlike
a human who needs to listen, interpret, and manually enter data, these models automate the entire
process, significantly reducing the time it takes to complete a task. It is beneficial in environments
where agility is essential, such as during lectures, conferences, or webinars. It also simplifies the
process for those who dictate formulas, as they no longer have to wait for someone to transcribe
them manually.

Additional metrics for lower-case performance can be found in Appendix in Table ??, and for case-
sensitive in Tables ?? and ??, respectively.

We present the results of the SALMONN-13B generation, which show sufficient quality. There
are also some limitations, which will be mentioned later in the paper. The metrics are generally
relatively good, but sometimes, they do not reflect the actual situation. To assess the quality of
generation, see Table 4

5.1 CROSS-LANGUAGE LEARNING

One of the advantages of fine-tuning multilingual language models is the ability to extract infor-
mation from one language that is not available in another. For example, LaTeX special symbols
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Table 2: Lower-case metrics for different Language Models

Model Language CER ↓ Rouge-1 ↑ sBLEU ↑ chrF ↑
Qwen2.5-0.5B Eng 43.87 77.78 53.33 64.48

Qwen2.5-Math-1.5B Eng 39.54 81.43 57.86 68.34
ProofGPT-1.3B Eng 41.60 78.04 52.31 64.30

SALMONN-13B Eng 42.42 83.88 60.68 71.04
InternLM2-1.8B Eng 49.23 78.12 61.00 64.24

Flan-T5 Eng 64.92 53.47 11.98 28.78
Qwen-Audio Eng 52.66 76.63 57.78 60.96

Qwen2.5-0.5B Rus 13.19 89.71 72.78 86.09
Qwen2.5-Math-1.5B Rus 10.49 90.66 74.25 88.11

ProofGPT-1.3B Rus 16.48 87.82 70.82 84.04
SALMONN-13B Rus 10.45 93.59 76.63 91.63

Qwen2.5-0.5B Eng+Rus 22.70 86.22 67.14 79.87
ProofGPT-1.3B Eng+Rus 23.93 84.85 65.33 78.18

SALMONN-13B Eng+Rus 24.27 89.93 69.62 84.10

Table 3: Metrics (%) results on non-overlapping formulas on train, validation and test sets.

Model Language Test CER ↓ Rouge-1 ↑ sBLEU ↑ chrF ↑
Qwen2-0.5B Rus Human 7.09 94.44 79.59 92.79

Qwen2.5-0.5B Rus Human 7.49 94.58 79.88 92.73

Qwen2-0.5B Eng Human 25.05 86.56 70.39 76.91
Qwen2.5-0.5B Eng Human 23.56 86.92 71.37 77.88
Qwen2-0.5B Eng+Rus Human 30.36 83.52 61.72 72.20

Qwen2.5-0.5B Eng+Rus Human 31.13 83.60 61.73 72.22

\simeq and \hat are not presented in the Russian part of the dataset but in English. Qwen2.5,
trained in English and Russian, can transcribe ”approximately equal” in Russian to \simeq (≃).
Another observation is that the models are mostly English-oriented, so Qwen2.5-Math-1.5B and
Qwen2-0.5B trained in Russian can generate only simple formulas in English. The reverse situation
works worse - Qwen2.5-0.5B, trained in English, cannot perform post-correction in Russian.

The second advantage is the performance. We fine-tune the model with multilanguage data and
show whether this improves performance. To do so, we will use the benchmark Qwen2-0.5B trained
in English+Russian and the results in English to see if they got better. See Table 5.

Analyzing the performance difference of the Qwen2-0.5B model trained on English data versus the
combination of English and Russian data evaluated on the English test set, we can say that the model
trained on both languages achieves better results in Rouge 1 (87.77 vs. 86.56), sBLEU (72.44 vs.
70.39), and chrF (79.01 vs. 76.91), indicating improved accuracy in capturing the structure and
content of formulas. However, the CER increases slightly (26.27 vs. 25.05), suggesting a minor
trade-off in transcription accuracy. It indicates that multilingual training can enhance the model’s
ability to generalize and improve formula representation, though it may slightly affect error rates.
Another result of cross-language learning is presented in Table ??.

5.2 LIMITATIONS

There are many exs where both predicted and Ground Truth LaTeX give the same formula, but
a different code is used, leading to the metrics’ degradation. For instance, when true LaTeX is
\int_{a}ˆ{b} f(x) dx and the model generates \int_aˆb f(x), dx. Also, capital and
non-capital letters are a challenge. LaTeX formula renders different letters and special symbols

9
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Table 4: Examples of Generations for SALMONN.
LaTeX GT Pronunciation

Fµν = ∂µAν − ∂νAµ Fµν = ∂µAν − ∂νAµ

the field strength tensor for
electromagnetism is F mu nu
equals d mu A nu minus d nu A mu

∫
x dx = 1

2x
2 + C ′ ∫

x dx = 1
2x

2 + C ′
the integral of x
dx equals one half
x squared plus C

n(µ, σ2, t) N (µ, σ2

T )
N of mu, sigma
squared over T.

Table 5: Remaining metrics (%) results on non-overlapping formulas on train, validation and test
sets.

Model Train
Language

Test
Language CER ↓ Rouge-1 ↑ sBLEU ↑ chrF ↑

Qwen2-0.5B Eng Eng 25.05 86.56 70.39 76.91
Qwen2-0.5B Eng+Rus Eng 26.27 87.77 72.44 79.01

depending on the case, like ϕ and Φ. An additional pivot point in risks in metrics calculation is the
symbol styles: \mathcal{R} and r can be pronounced similarly and mean the same, but CER
between these codes is much larger than one.

As we already discussed, there are ambiguous examples, such as “2 squared from x plus 1” can be
either 2

x2+1 or 2
x2 + 1. One way to solve this problem is to say “parentheses” when necessary. In

this case, all parts of the formula that need to be raised in degree or perform another operation will
be separated by open and closed parentheses. Some MathBridge samples follow this strategy, but
in most cases, the parentheses are ignored.

Another limitation is the ASR system. Our method primarily depends on the quality of the transcript.
If the model produces an incorrect representation of a sound due to poor sound quality, specific
pronunciation, or some background noise, we will not be able to generate a good formula. We can
tune the ASR models to be more robust and train the LLM to recognize and correct these types of
errors. These limitations will be considered in future research.

6 CONCLUSION

In this paper, we were introduces Speech-to-LaTeX, a novel speech conversion task. For this pur-
pose, we collected 53k pairs of LaTeX equations with a possible pronunciation in English or Rus-
sian. Pronunciations were a reference for the human annotators and an input to the TTS models.
The pairs were collected from 3 sources: (1) 3k from the MathBridge dataset (Eng), (2) 13k pairs
(6k Rus and 7k Eng) were generated and pronunciated using open-source LLM on various physical
and mathematical topics, and (3) 9.4K unique formulas were taken from the OCR-LaTeX dataset
and pronounced four times (2 Eng and 2 Rus) automatically and differently, resulting in 37.6K
pairs. Every pair from (1) and (2) was annotated by three random speakers among 33 annotators.
Every pair from (1)-(3) was annotated with TTS at least twice. Our S2L dataset consists of 180K
unique triplets of pronunciation-LaTeX-audio. We trained and evaluated different Audio-LLMs and
ASR-LLM post-correction models. The SALMONNn and Qwen2.5-Math demonstrated the best
performance regarding CER and ROUGE-1 metrics. The experiments showed good performance
for Speech-to-LaTeX conversion and a benefit of cross-language learning. Overall, we expect this
work to contribute to developing speech recognition research in the natural science domain and be-
come a baseline for the Speech-to-LaTeX problem. Future work might be devoted to the additional
dataset collection, especially annotation of lecture recordings, audio-visual S2L, and experiments
combining text and equations.
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