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Abstract
The effectiveness of neural processes (NPs)
in modelling posterior prediction maps—the
mapping from data to posterior predictive
distributions—has significantly improved since
their inception. This improvement can be at-
tributed to two principal factors: (1) advance-
ments in the architecture of permutation invari-
ant set functions, which are intrinsic to all NPs;
and (2) leveraging symmetries present in the
true posterior predictive map, which are prob-
lem dependent. Transformers are a notable de-
velopment in permutation invariant set functions,
and their utility within NPs has been demon-
strated through the family of models we refer
to as transformer neural processes (TNPs). De-
spite significant interest in TNPs, little attention
has been given to incorporating symmetries. No-
tably, the posterior prediction maps for data that
are stationary—a common assumption in spatio-
temporal modelling—exhibit translation equivari-
ance. In this paper, we introduce of a new family
of translation equivariant TNPs (TE-TNPs) that
incorporate translation equivariance. Through an
extensive range of experiments on synthetic and
real-world spatio-temporal data, we demonstrate
the effectiveness of TE-TNPs relative to their non-
translation-equivariant counterparts and other NP
baselines.

1. Introduction
Transformers have emerged as an immensely effective ar-
chitecture for natural language processing and computer
vision tasks (Vaswani et al., 2017; Dosovitskiy et al., 2020).
They have become the backbone for many state-of-the-art
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models—such ChatGPT (Achiam et al., 2023) and DALL-E
(Betker et al., 2023)—owing to their ability to learn complex
dependencies amongst input data. More generally, trans-
formers can be understood as permutation equivariant set
functions. This abstraction has led to the deployment of
transformers in domains beyond that of sequence modelling,
including particle physics, molecular modelling, climate
science, and Bayesian inference (Lee et al., 2019; Fuchs
et al., 2020; Müller et al., 2021).

NPs (Garnelo et al., 2018a;b) are a broad family of meta-
learning models which learn the mapping from sets of ob-
served datapoints to predictive stochastic processes (Foong
et al., 2020). They are straightforward to train, handle off-
the-grid data and missing observations with ease, and can
be easily adapted for different data modalities. This flex-
ibility makes them an attractive choice for a wide variety
of problem domains, including spatio-temporal modelling,
healthcare, and few-shot learning (Jha et al., 2022). Ex-
changeability in the predictive distribution with respect to
the context set is achieved through the use of permutation
invariant set functions, which, in NPs, map from the sets of
observations to some representation space. Given the utility
of transformers as set functions, it is natural to consider their
use within NPs. This gives rise to TNPs.

The family of TNPs include the attentive NP (ANP) (Kim
et al., 2019), diagonal TNP (TNP-D), autoregressive TNP
(TNP-AR), and non-diagonal TNP (TNP-ND) (Nguyen &
Grover, 2022), and the latent-bottlenecked ANP (LBANP)
(Kim et al., 2019). Despite a significant amount of interest in
TNPs from the research community, there are certain proper-
ties that we may wish our model to possess that have not yet
been addressed. In particular, for spatio-temporal problems
the data is often roughly stationary, in which case it is desir-
able to equip our model with translation equivariance: if the
data are translated in space or time, then the predictions of
our model should be translated correspondingly. Although
translation equivariance has been incorporated into other
families of NP models, such as the convolutional conditional
NP (ConvCNP) (Gordon et al., 2019) and relational CNP
(RCNP) (Huang et al., 2023), it is yet to be incorporated
into the TNP. The key ingredient to achieving this is to
establish effective translation equivariant attention layers
that can be used in place of the standard attention layers
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within the transformer encoder. In this paper, we develop
the TE-TNP. Our contributions are as follows:

1. We develop an effective method for incorporating trans-
lation equivariance into the attention mechanism of
transformers, developing the translation equivariant
multi-head self attention (TE-MHSA) and translation
equivariant multi-head cross attention (TE-MHCA) op-
erations. These operations replace standard MHSA and
MHCA operations within transformer encoders to obtain
a new family of translation equivariant TNPs.

2. We use pseudo-tokens to reduce the quadratic computa-
tional complexity of TE-TNPs, developing translation
equivariant PT-TNPs (TE-PT-TNPs).

3. We demonstrate the efficacy of TE-TNPs relative to
existing NPs—including the ConvCNP and the RCNP—
on a number of synthetic and real-world spatio-temporal
modelling problems.

2. Background
Throughout this section, we will use the following notation.
Let X = RDx , Y = RDy denote the input and output
spaces, and let (x,y) ∈ X ×Y denote an input–output pair.
Let S =

⋃∞
N=0(X × Y)N be a collection of all finite data

sets, which includes the empty set ∅, the data set containing
no data points. We denote a context and target set with
Dc, Dt ∈ S, where |Dc| = Nc, |Dt| = Nt. Let Xc ∈
RNc×Dx , Yc ∈ RNc×Dy be the inputs and corresponding
outputs of Dc, with Xt ∈ RNt×Dx , Yt ∈ RNt×Dy defined
analogously. We denote a single task as ξ = (Dc,Dt) =
((Xc,Yc), (Xt,Yt)). Let P(X ) denote the collection of
stochastic processes on X .

2.1. Neural Processes

NPs (Garnelo et al., 2018a;b) aim to learn the mapping
from context sets Dc to ground truth posterior distributions
over the target outputs, Dc 7→ p(Yt|Xt,Dc), using meta-
learning. This mapping is known as the posterior prediction
map πP : S → P(X ), where P denotes the ground truth
stochastic process over functions mapping from X to Y .
Common to all NP architectures is an encoder and decoder.
The encoder maps from Dc and Xt to some representation,
e(Dc,Xt).1 The decoder takes as input the representation
and target inputs Xt and outputs d(Xt, e(Dc,Xt)), which
are the parameters of the predictive distribution over the tar-
get outputs Yt: p(Yt|Xt,Dc) = p(Yt|d(Xt, e(Dc,Xt))).
An important requirement of the predictive distribution is
permutation invariance with respect to the elements of Dc.

1In many NP architectures, including the original conditional
NP (CNP) and NP, the representation does not depend on the target
inputs Xt.

We shall focus on CNPs (Garnelo et al., 2018a), which
factorise the predictive distribution as p(Yt|Xt,Dc) =∏Nt

n=1 p(yt,n|d(xt,n, e(Dc,xt,n))). CNPs are trained by
maximising the posterior predictive likelihood:

LML=Ep(ξ)

[∑Nt

n=1 log p(yt,n|d(xt,n, e(Dc,xt,n)))
]
. (1)

Here, the expectation is taken with respect to the distribution
of tasks p(ξ). As shown in Foong et al. (2020), the global
maximum is achieved if and only if the model recovers the
ground-truth posterior prediction map. When training a
CNP, we often approximate the expectation with an average
over the finite number of tasks available.

2.2. Transformers

A useful perspective is to understand transformers as a per-
mutation equivariant set function f .2 They take as input a
set of N tokens, Z0 ∈ RN×Dz , output a set of N tokens
of the same cardinality: f : (RDz )N → (RDz )N . If the
input set is permuted, then the output set is permuted ac-
cordingly: f(z1, . . . , zN )n = f(zσ(1), . . . , zσ(N))σ(n) for
all permutations σ ∈ SN of N elements. At the core of
each layer of the transformer architecture is the multi-head
self attention (MHSA) operation (Vaswani et al., 2017). Let
Zℓ ∈ RN×Dz denote the input set to the ℓ-th MHSA op-
eration. The MHSA operation updates the nth token zℓn
as

z̃ℓn=cat
({∑N

m=1 α
ℓ
h(z

ℓ
n, z

ℓ
m)zℓm

T
Wℓ

V,h

}Hℓ

h=1

)
Wℓ

O (2)

where cat denotes the concatenation operation across the
last dimension. Here, Wℓ

V,h ∈ RDz×DV and Wℓ
O ∈

RHℓDV ×Dz are the value and projection weight matrices,
where Hℓ denotes the number of ‘heads’ in layer ℓ. Note
that permutation equivariance is achieved through the per-
mutation invariant summation operator. As this is the only
mechanism through which the tokens interact with each
other, permutation equivariance for the overall model is
ensured. The attention mechanism, αℓ

h, is implemented as

αℓ
h(z

ℓ
n, z

ℓ
m) =

ez
ℓ
n
T
Wℓ

Q,h[W
ℓ
K,h]

T
zℓ
m∑N

m=1 e
zℓ
n
TWℓ

Q,h[Wℓ
K,h]

T
zℓ
m

(3)

where Wℓ
Q,h ∈ RDz×DQK and Wℓ

K,h ∈ RDz×DQK are the
query and key weight matrices. The softmax-normalisation
ensures that

∑N
m=1 α

ℓ
h(z

ℓ
n, z

ℓ
m) = 1 ∀n, h, ℓ. Often, con-

ditional independencies amongst the set of tokens—in

2Note that not all permutation equivariant set functions can be
represented by transformers. For example, the family of informers
(Garnelo & Czarnecki, 2023) cannot be represented by transform-
ers, yet are permutation equivariant set functions. However, trans-
formers are universal approximators of permutation equivariant set
functions (Lee et al., 2019; Wagstaff et al., 2022).

2



Translation Equivariant Transformer Neural Processes

the sense that the set {zℓn}ℓ=L
ℓ=1 do not depend on the set

{zℓm}ℓ=L
ℓ=1 given some other set of tokens for some n, m ∈

{1, . . . , N}—are desirable. Whilst this is typically achieved
through masking, if the same set of tokens are conditioned
on for every n, then it is more computationally efficient to
use multi-head cross attention (MHCA) operations together
with MHSA operations than it is to directly compute Equa-
tion 2. The MHCA operation updates the nth token zℓn using
the set of tokens {ẑℓm}Mm=1 as

z̃ℓn=cat
({∑M

m=1 α
ℓ
h(z

ℓ
n, ẑ

ℓ
m)ẑℓm

T
Wℓ

V,h

}Hℓ

h=1

)
Wℓ

O. (4)

Note that all tokens updated in this manner are conditionally
independent of each other given {ẑℓm}Mm=1. We discuss this
in more detail in Appendix B. MHCA operations are at the
core of the pseudo-token-based transformers such as the
perceiver (Jaegle et al., 2021) and induced set transformer
(IST) (Lee et al., 2019). We describe these differences in
the following section.

MHSA and MHCA operations are used in combination
with layer-normalisation operations and pointwise MLPs to
obtain MHSA and MHCA blocks. Unless stated otherwise,
we shall adopt the order used by Vaswani et al. (2017).

2.3. Pseudo-Token-Based Transformers

Pseudo-token based transformers reduce the quadratic com-
putational complexity of the standard transformer through
the use of pseudo-tokens. Concretely, let U ∈ RM×Dz

denote an initial set of M ≪ N tokens we call pseudo-
tokens. There are two established methods for incorporat-
ing information about the set of observed tokens (Z) into
these pseudo-tokens in a computationally efficient manner:
the perceiver-style approach of Jaegle et al. (2021) and the
IST style approach of Lee et al. (2019). The perceiver-
style approach iterates between applying MHCA(Uℓ,Zℓ)
and MHSA(Uℓ), outputting a set of M pseudo-tokens,
and has a computational complexity of O (MN) at each
layer. The IST-style approach iterates between applying
MHCA(Uℓ,Zℓ) and MHCA(Zℓ,Uℓ), outputting a set of
N tokens and M pseudo-tokens, and also has a computa-
tional complexity of O (MN) at each layer. We provide
illustrations these differences Appendix C.

2.4. Transformer Neural Processes

Given the utility of transformers as set functions, it is natural
to consider their use in the encoder of a NP—we describe
this family of NPs as TNPs. Let Z0

c ∈ RNc×D denote the
initial set-of-token representation of each input-output pair
(xc,n,yc,n) ∈ Dc, and Z0

t,n ∈ RNt×D denote the initial
set-of-token representation of each input xt,n ∈ Xt. The
encoding e(Dc,Xt) of TNPs is is achieved by passing the
union of initial context and target tokens, Z0 = [Z0

c , Z
0
t ],

through a transformer-style architecture, and keeping only
the output tokens corresponding to the target inputs, ZL

t .

The specific transformer-style architecture is unique to each
TNP variant. However, they generally consist of MHSA
operations acting on the context tokens and MHCA oper-
ations acting to update the target tokens, given the con-
text tokens.3 The combination of MHSA and MHCA op-
erations is a permutation invariant function with respect
to the context tokens. We provide an illustration of this
in Figure 1a. Enforcing these conditional independencies
ensures that the final target token zLt,n depends only on
Dc and xt,n, i.e. [e(Dc,Xt)]n = e(Dc,xt,n). This is re-
quired for the factorisation of the predictive distribution
p(Yt|Xt,Dc) =

∏Nt

n=1 p(yt,n|d(xt,n, e(Dc,xt,n))). We
denote pseudo-token TNPs (PT-TNPs) as the family of
TNPs which use pseudo-token based transformers. Cur-
rently, this family is restricted to the LBANP, which uses a
perceiver-style architecture; however, it is straightforward
to use an IST-style architecture instead.

2.5. Translation Equivariance

Here, we provide new theoretical results which show the
importance of translation equivariance as an inductive bias
in NPs. In particular, we first show that if, and only if, the
ground-truth stochastic process is stationary, the correspond-
ing predictive map is translation equivariant (Theorem 2.1).
Second, we show the importance of translation equivariance
in the ability of our models to generalise to settings out-
side of the training distribution (Theorem 2.2), for which
Figure 3 provides some intuition.

Let Tτ denote a translation by τ ∈ RDx . For a data set D ∈
S , TτD ∈ S translates the data set by adding τ to all inputs.
For a function f : X → Z, Tτf translates f by producing
a new function X → Z such that Tτf(x) = f(x− τ ) for
all x ∈ RDx . For a stochastic process µ ∈ P(X ), Tτ (µ)
denotes the pushforward measure of pushing µ through Tτ .
A prediction map π is a mapping π : S → P(X ) from
data sets S to stochastic processes P(X ). Prediction maps
are mathematical models of neural processes. Say that a
prediction map π is translation equivariant if Tτ ◦ π =
π ◦ Tτ for all translations τ ∈ RDx .

The ground-truth stochastic process P is stationary if and
only if the prediction map πP is translation equivariant.
Foong et al. (2020) provide a simple proof of the “only if”-
direction. We provide a rigorous proof in both directions.
Consider D ∈ S. Formally define πP (D) by integrating P
against a density π′

P (D) that depends on D, so dπP (D) =
π′
P (D) dP .4 Assume that π′

P (∅) ∝ 1, so πP (∅) = P . Say

3As discussed in Section 2.2, this is often implemented as a
single MHSA operation with masking operating.

4Intuitively, π′
P (D)(f) = p(D|f)/p(D), so π′

P (D)(f) is the
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Dc Xt

MLP(Xc,Yc) MLP(Xt)

Z0
c Z0

t

MHSA(Z0
c)

...

MHSA(ZL−1
c )

MHCA(Z0
t ,Z

1
c)

...

MHCA(ZL−1
t , ZL

c )

e(Dc,Xt)

(a) TNP.

te-MHSA(Z0
c ,X

0
c)

...

te-MHSA(ZL−1
c ,XL−1

c )

te-MHCA(Z0
t ,Z

1
c ,X

0
t ,X

0
c)

...

te-MHCA(ZL−1
t , ZL

c ,X
L−1
t ,XL−1

c )

e(Dc,Xt)

Z0
c Z0

t

MLP(Yc)

Yc

X0
c = Xc X0

t = Xt

(b) TE-TNP.

Figure 1. Block diagrams illustrating the TNP and TE-TNP encoder architectures.
For both models, we pass individual datapoints through pointwise MLPs to obtain
the initial token representations, Z0

c and Z0
t . These are then passed through multiple

attention layers, with the context tokens interacting with the target tokens through
cross-attention. The output of the encoder depends on Dc and Xt. The TE-TNP
encoder updates the input locations at each layer, in addition to the tokens.

Figure 2. Average log-likelihood (↑) on the test
datasets for the synthetic 1-D regression experi-
ment. ∆ denotes the amount by which the range
from which the context and target inputs and sam-
pled from is shifted at test time. Standard errors are
shown.

that π′
P is translation invariant if, for all D ∈ S and τ ∈ X ,

π′
P (TτD) ◦ Tτ = π′

P (D) P–almost surely.5

Theorem 2.1. (1) The ground-truth stochastic process P is
stationary and π′

P is translation invariant if and only if (2)
πP is translation equivariant.

See Appendix E for the proof. If the ground-truth stochas-
tic process is stationary, it is helpful to build translation
equivariance into the neural process: this greatly reduces
the model space to search over, which can significantly im-
prove data efficiency (Foong et al., 2020). In addition, it is
possible to show that translation equivariant NPs generalise
spatially. We formalise this in the following theorem, which
we present in the one-dimensional setting (Dx = 1) for
notational simplicity, and we provide an illustration of these
ideas in Figure 3.

Definitions for theorem. For a stochastic process f ∼ µ
with µ ∈ P(X ), for every x ∈ RN , denote the distribution
of (f(x1), . . . , f(xN )) by Pxµ. We now define the notion
of the receptive field. For two vectors of inputs x1 ∈ RN1 ,
x2 ∈ RN2 , and R > 0, let x1|x2,R be the subvector of x1

with inputs at most distance R away from any input in x2.
Similarly, for a data set D = (x,y) ∈ S , let D|x2,R ∈ S be
the subset of data points of D with inputs at most distanceR
away from any input in x2. With these definitions, say that a
stochastic process f ∼ µ with µ ∈ P(X ) has receptive field
R > 0 if, for all N1, N2 ∈ N, x1 ∈ RN1 , and x2 ∈ RN2 ,
f(x2) | f(x1)

d
= f(x2) | f(x1|x2,

1
2R

). Intuitively, f only

modelling assumption that specifies how observations are gener-
ated from the ground-truth stochastic process. A simple example
is π′

P (D)(f) ∝
∏

(x,y)∈D N (y | f(x), σ2), which adds indepen-
dent Gaussian noise with variance σ2.

5For example, the usual Gaussian likelihood is translation in-
variant: N (y | (Tτf)(x+ τ ), σ2) = N (y | f(τ ), σ2).

has local dependencies. Moreover, say that a prediction
map π : S → P(X ) has receptive field R > 0 if, for all
D ∈ S, N ∈ N, and x ∈ RN , Pxπ(D) = Pxπ(D|x, 12R).
Intuitively, predictions by the neural process π are only
influenced by context points at most distance 1

2R away.6

Theorem 2.2. Let π1, π2 : S → P(X ) be translation equiv-
ariant prediction maps with receptive field R > 0. Assume
that, for all D ∈ S, π1(D) and π2(D) also have receptive
field R > 0. Let ϵ > 0 and fix N ∈ N. Assume that, for all
x ∈

⋃N
n=1[0, 2R]

n and D ∈ S ∩
⋃∞

n=0 ([0, 2R]× R)n,

KL [Pxπ1(D)||Pxπ2(D))] ≤ ϵ. (5)

Then, for all M > 0, x ∈
⋃N

n=1[0,M ]n, and D ∈ S ∩⋃∞
n=0 ([0,M ]× R)n,

KL [Pxπ1(D)||Pxπ2(D))] ≤ ⌈2M/R⌉ϵ. (6)

See Appendix E for the proof. The notion of receptive field
is natural to CNNs and corresponds to the usual notion of the
receptive field. The notion is also inherent to transformers
that adopt sliding window attention: the size of the win-
dow multiplied by the number of transformer layers gives
the receptive field of the model. Intuitively, this theorem
states that, if (a) the ground-truth stochastic process and
our model are translation equivariant and (b) everything has
receptive field size R > 0, then, whenever our model is
accurate on [0, 2R], it is also accurate on any bigger interval
[0,M ]. Note that this theorem accounts for dependencies
between target points, so it also applies to latent-variable
neural processes (Garnelo et al., 2018b) and Gaussian neural

6For example, if f is a Gaussian process with a kernel com-
pactly supported on [− 1

2
R, 1

2
R], then the mapping D 7→ p(f | D)

is a prediction map which (a) has receptive field R and (b) maps
to stochastic processes with receptive field R.
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xc

xt

R

R

(a) For a model with receptive field R > 0, a context point at xc

influences predictions at target inputs only limitedly far away.
Conversely, a prediction at a target input xt is influenced by
context points only limitedly far away.

xc

xt

training range

R R

TE

(b) If a model is translation equivariant, then all context points and
targets inputs can simultaneously be shifted left or right without
changing the output of the model. Intuitively, this means that
triangles in the figures can just be “shifted left or right”.

Figure 3. Translation equivariance in combination with a limited receptive field (see (a)) can help generalisation performance. Consider a
translation equivariant (TE) model which performs well within a training range (see (b)). Consider a prediction for a target input outside
the training range (right triangle in (b)). If the model has receptive field R > 0 and the training range is bigger than R, then TE can be
used to “shift that prediction back into the training range” (see (b)). Since the model performs well within the training range, the model
also performs well for the target input outside the training range.

processes (Bruinsma et al., 2021; Markou et al., 2022). In
practice, we do not explicitly equip our transformer neural
processes with a fixed receptive field size by using sliding
window attention, although this would certainly be possible.
The main purpose of this theorem is to elucidate the under-
lying principles that enable translation equivariant neural
processes to generalise.

3. Translation Equivariant Transformer
Neural Processes

Let Zℓ ∈ RN×Dz and Z̃ℓ ∈ RN×Dz denote the inputs
and outputs at layer ℓ, respectively. To achieve transla-
tion equivariance, we must ensure that each token zℓn is
translation invariant with respect to the inputs, which can
be achieved through dependency solely on the pairwise dis-
tances xi−xj (see Appendix D). We choose to let our initial
token embeddings z0n depend solely on the corresponding
output yn, and introduce dependency on the pairwise dis-
tances through the attention mechanism. For permutation
and translation equivariant operations, we choose updates of
the form z̃ℓn = ϕ

(
⊕N

m=1ψ
(
zℓn, z

ℓ
m,xn − xm

))
, where ⊕

is a permutation invariant operation. Adopting the MHSA
approach, we instantiate this as

z̃ℓn = cat
({∑N

m=1 α
ℓ
h,n,mzℓm

T
Wℓ

V,h

}Hℓ

h=1

)
Wℓ

O (7)

where αℓ
h,n,m = αℓ

h(z
ℓ
n, z

ℓ
m,xn − xm), the attention mech-

anism, depends on the difference xn − xm as well as the
input tokens zℓn and zℓm. This differs to the standard atten-
tion mechanism in Equation 2, which depends solely on
the input tokens. There exist a number of possible choices
for the attention mechanism. Again, following the MHSA
approach, we implement this as

αℓ
h,n,m =

e
ρℓ
h

(
zℓ
n
T
Wℓ

Q,h[W
ℓ
K,h]

T
zℓ
m,xn−xm

)
∑N

n=1 e
ρℓ
h

(
zℓ
n
TWℓ

Q,h[Wℓ
K,h]

T
zℓ
m,xn−xm

) (8)

where ρℓh : R×RDx → R is a learnable function, which we
parameterise by an MLP.7 We can also choose to update the
input xn used in Equation 8 with a function f ℓn({xm}Nm=1),
which itself needs to satisfy both translation equivariance
and permutation invariance with respect to the set of in-
puts. A general form for functions satisfying translation
equivariance and permutation invariance is

f ℓn({xm}Nm=1)=
∑N

i=1 bni

(
xi+gn

(∑N
j=1 hn(xi−xj)

))
(9)

where bn1, . . . , bnN ∈ R are any set of weights, possi-
bly negative or even dependent on x1, . . . ,xN , that satisfy∑M

i=0 bni = 1. See Appendix D for proof. A convenient
choice is similar to that used by Satorras et al. (2021):

xℓ+1
n = xℓ

n + C
∑Hℓ

h=1

∑N
m=1(x

ℓ
n − xℓ

m)ϕℓh

(
αℓ
h,n,m

)
(10)

where we have reused the computations of the attention-
mechanism. Again, ϕℓh is a learnable function, typically
parameterised by an MLP, and C is a constant which we
choose to be 1/N . For the MHCA layers, we update the
target inputs using the context points only.8

The attention mechanism defined in Equation 8 in com-
bination with Equation 7 defines the TE-MHSA opera-
tion, which together with layer normalisation and pointwise
MLPs described in Section 2.2 forms a TE-MHSA block.
We can define a TE-MHCA operation in an identical manner
to the MHCA operation in place of masking when condi-
tional independencies are required. The TE-TNP shares
an identical architecture to the regular TNP, with MHSA
and MHCA blocks replaced by TE-MHSA and TE-MHCA
blocks, which include both the translation equivariant op-
eration and input location update steps. We illustrate the
TE-TNP and TNP encoders in Figure 1.

7We implement
{
ρℓh

}H

h=1
as a single MLP with H output di-

mensions.
8i.e., xℓ+1

t,n = xℓ
t,n + C

∑
h

∑
m(xℓ

t,n − xℓ
c,n)ϕ

ℓ
h(α

ℓ
h,n,m).
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It is worthwhile highlighting the connections between the
translation equivariant attention mechanism and the use of
relative positional encodings (e.g. RoPE (Su et al., 2024)) in
transformer-based large language models. Indeed, relative
positional encodings are a specific implementation of our
translation equivariant attention mechanism applied to a
discrete, regular input domain that words exist on. Our
work builds upon these methods, enabling relative positional
encodings to be applied to more general, continuous input
domains. In both cases, they serve as a useful inductive bias
that can improve performance.

3.1. Translation Equivariance with Pseudo Tokens

As with PT-TNPs, we can introduce pseudo-tokens U ∈
RM×Dz into the TE-TNP to reduce the computational com-
plexity from O(N2

c +NcNT ) to O(MNc +MNt) (assum-
ing M ≪ Nc, Nt). To do so, we must also introduce cor-
responding pseudo-locations V ∈ RM×Dz . At each layer,
we perform cross-attention between the pseudo-tokens and
context-set tokens as in Equation 7. For the overall archi-
tecture to be translation equivariant, we require the initial
pseudo-locations to be translation equivariant with respect
to the inputs. As before, this is satisfied by functions of the
form shown in Equation 9. We choose to implement this as

vm = v0
m +

∑N
n=1 ψ (um, zn)xn (11)

where
∑N

n=1 ψ (um, zn) = 1 ∀m. We exclude dependency
on the pairwise differences between the observed input loca-
tions as this introduces an O

(
N2
)

complexity. Equation 11
can be thought of as constructing a weighted average of the
inputs, where the weights depend on the initial token values,
which in turn depend on observations. We implement ψ
using the attention mechanism in Equation 3. It should be
noted that there exists scenarios in which this initialisation
results in undesirable behaviour. For example, suppose that
v0
m = 0, ϕ = 1/N . If you observe 100 data points in

[−101,−100] and 100 data points in [100, 101], then the
pseudo-points will be near the origin, far from the data. In
general, we suspect that for any ψ, there exists a pathologi-
cal data set that breaks this initialisation. Nonetheless, we
found this initialisation scheme to be effective in practice
and did not observe pathological behaviour such as this.

In Section F.5, we perform an ablation study to determine
the effectiveness of dynamically updating input-locations
using Equation 11 and Equation 10. We find that for simple
input distributions (e.g. uniformly distributed), dynamically
updating input locations has little effect. However, for more
complex input distributions (e.g. bimodal), dynamically up-
dating input locations significantly improves performance.

4. Experiments
In this section, we evaluate the performance of both transla-
tion equivariant and non-translation-equivariant NP models
on modelling both synthetic and real-world data. We pro-
vide more detailed descriptions of the architectures and
datasets used in Section F. In preliminary experiments, we
found that PT-TNPs using the IST-style architecture outper-
formed PT-TNPs using the perceiver-style architecture. We
therefore only include results using the former.

4.1. Synthetic 1-D Regression

We construct a meta-dataset by sampling from Gaussian
processes (GPs) with periodic, squared-exponential and
Matern 5/2 kernels, all of which define stationary GPs,
with randomly sampled kernel hyperparameters. The num-
ber of context and target points are sampled according to
Nc ∼ U(1, 64) and Nt = 128, and the context and tar-
get inputs are sampled according to xc ∼ U(−2, 2) and
xt ∼ U(−3, 3). The range from which the context and
target inputs are sampled from in the test set is shifted by
amount ∆. As ∆ increases, so too does the importance
of translation equivariance. We compare the performance
of TE-TNP and TE-PT-TNP with their non-translation-
equivariant counterparts, a ConvCNP, and a simple RCNP.
See Section F.1 for a detailed description.

Figure 2 plots the mean test log-likelihood across the test
datasets as ∆ increases from 0 to 1. For ∆ = 0, the input
ranges for the test set and target set are equal and transla-
tion equivariance is not required to generalise. Nonetheless,
we observe that both the TE-TNP and TE-PT-TNP-M32
outperform the TNP and PT-TNP-M32 models, recovering
the performance of the ConvCNP model. As ∆ increases,
the performance of the non-translation-equivariant models
deteriorate as they are unable to generalise to inputs sam-
pled outside the training range. In Figure 4, we provide an
example of this deterioration for the CNP and TNP, com-
paring their predictive posterior distributions to that of the
ConvCNP and TE-TNP for a single test dataset.

4.2. Image Completion

We evaluate the TE-PT-TNP on image completion tasks,
which can be interpreted as spatial regression of pixel val-
ues yn ∈ R3 given a 2-D pixel location xn ∈ R2. We
consider experiments on MNIST (LeCun et al., 1998) and
CIFAR10. For both datasets, we randomly translate the
images by a maximum of W/2 horizontally and H/2 verti-
cally, where W and H denote the width and height of the
original image. The number of context points are sampled
according to Nc ∼ U

(
N
100 ,

N
2

)
and the number of target

points are Nt = N , where N denotes the total number of
pixels in the image. Due to the large number of context
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(a) CNP. (b) TNP. (c) ConvCNP. (d) TE-TNP.

Figure 4. A comparison between the predictive distributions on a single synthetic-1D regression dataset of the CNP, TNP, TE-TNP and
ConvCNP when the data is shifted by amount ∆ = 0 (top) and ∆ = 2 (bottom). Observe that the TE-TNP and ConvCNP models exhibit
translation equivariance, whereas the CNP and TNP models do not. Context points are shown in black, and the ground-truth predictive
mean and ± standard deviation are shown in dashed-purple.

Table 1. Average log-likelihood (↑) on the test datasets for the
image completion experiments. Standard errors are shown.

Model T-MNIST T-CIFAR10

CNP 0.64± 0.00 0.72± 0.00
RCNP 1.04± 0.02 1.19± 0.02

ConvCNP 1.20± 0.02 1.44± 0.02
PT-TNP-M64 1.14± 0.02 1.43± 0.01

PT-TNP-M128 1.14± 0.02 1.46± 0.02

TE-PT-TNP-M64 1.18± 0.03 1.50± 0.02
TE-PT-TNP-M128 1.25± 0.03 1.51± 0.02

points, we do not evaluate the performance of the TE-TNP.
See Section F.2 for full experimental details. We provide
results for the average test log-likelihood for each model in
Table 1. Unlike the previous task, here it is possible to learn
the required translation equivariance from data. The results
of this task demonstrate the utility of equipping our models
with translation equivariance when appropriate, even when
it is not explicitly required to perform well at test time. A
visual comparison between the predictive mean of the Con-
vCNP and TE-PT-TNP is shown in Figure 8. Despite this
task being well suited for the ConvCNP, as the pixels fall on
a grid, the TE-PT-TNPs perform competitively.

4.3. Kolmogorov Flow

We consider a dataset generated by the 2-D Kolmogorov
flow PDE used in (Lippe et al., 2023; Kochkov et al., 2021;
Sun et al., 2023) (see Section F.3). The overall dataset
consists of 921 simulations—we keep 819 for training and
102 for testing. Each simulation consists of a 64× 64× 64
grid of 2-D observations. We sampled individual tasks by
first sampling a 16 × 16 × 16 region of a simulation. We

then sample the number of context points Nc ∼ U(1, 500),
with Nt set to all remaining points. As the inputs are 3-D,
it is difficult to evaluate the performance of the ConvCNP
due to the computational inefficiency of 3-D convolutions.
Similarly, the large number of context points restricts our
attention to PT-TNPs. We compare the performance of the
PT-TNP and the TE-PT-TNP to the RCNP, CNP and a multi-
task GP baseline with an SE kernel.9 Table 2 compares the
average test log-likelihoods. The TE-PT-TNP significantly
outperforms all other models. In Figure 5, we visualise the
vorticities computed using the predicted velocities of the
TE-PT-TNP and multi-task GP models.

4.4. Environmental Data

We consider a real-world environmental dataset, derived
from ERA5 (Copernicus Climate Change Service, 2020),
consisting of surface air temperatures across space and time.
Measurements are collected at a latitudinal and longitudi-
nal resolution of 0.5◦, and temporal resolution of an hour
(xn ∈ R3). We also provide the surface elevation at each
coordinate as inputs. We consider measurements collected
in 2019. Models are trained on measurements within the lati-
tude / longitude range of [42◦, 53◦] / [8◦, 28◦] (roughly cor-
responding to central Europe), and evaluated on three non-
overlapping regions: the training region, western Europe
([42◦, 53◦] / [−4◦, 8◦]), and northern Europe ([53◦, 62◦]
/ [8◦, 28◦]). During training, we sample datasets spanning
30 hours, sub-sampled to one every six hours, and 7.5◦

across each axis. Each dataset consists of a maximum of
N = 1125 datapoints, from which the number of context

9The multi-task GP baseline is susceptible to overfitting when
Nc is small. We therefore remove extreme values from the reported
test log-likelihoods.
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Table 2. Average test log-likelihood (↑) for Kol-
mogorov flow. Standard errors are shown.

Model LL

Multi-task GP 0.48± 0.02
CNP −0.97± 0.01

RCNP 0.16± 0.02
PT-TNP-M64 0.63± 0.003

PT-TNP-M128 0.74± 0.03

TE-PT-TNP-M64 0.92± 0.03
TE-PT-TNP-M128 0.90± 0.03

(e) Context. (f) Ground truth. (g) TE-PT-TNP. (h) Multi-task GP.

Figure 5. A comparison between the vorticity at a single point in time, computed
using the predicted velocities for a single test Kolmogorov flow dataset. Here, the
proportion of datapoints in the context set is 10%.

Table 3. Average log-likelihood (↑) for tasks sampled within the
train range (C. Europe) and test ranges (W. Europe and N. Europe).

Model C. Europe W. Europe N. Europe

GP 0.90± 0.01 1.22± 0.01 1.02± 0.01
CNP 0.36± 0.00 −5.70± 0.05 −1.64± 0.02

RCNP 0.96± 0.01 −0.09± 0.04 0.34± 0.01
PT-TNP 0.73± 0.01 −0.40± 0.01 −0.19± 0.00

TE-PT-TNP 1.35± 0.01 1.27± 0.01 1.44± 0.01

points are sampled according to Nc ∼ U( N
100 ,

N
3 ). As with

the image completion experiments, the large number of dat-
apoints present in each dataset render the TNP and TE-TNP
too computationally intensive to train and evaluate. Simi-
larly, because the inputs are 4-D, the ConvCNP cannot be
implement due to insufficient support for 4-D convolutions.
We therefore restrict our attention to the PT-TNP and TE-PT-
TNP, both with M = 128 pseudo-tokens. We also evaluate
the predictive performance of the CNP, RCNP and GPs with
SE kernels. See Section F.4 for full experimental details.
Table 3 compares the average test log-likelihood for each
method on the different regions. The TE-PT-TNP model
outperforms all baselines in all three regions. As noted by
Foong et al. (2020), this is somewhat unsurprising given
that: (1) the GP is prone to overfitting on small context sizes;
and (2) the degree to which points influence each other is
unlikely to be well explained by a SE kernel.

5. Related Work
Neural processes The combination of transformers and
NPs was first considered by Kim et al. (2019) who devel-
oped the ANP. The ANP is characterised by multiple MHSA
layers operating on the context tokens, followed by a single
multi-head attention (MHA) layer in which the queries are
the target locations, the keys are the context locations, and
the values are the context tokens. The TNP-D architecture
introduced by Nguyen & Grover (2022) built upon the ANP
with multiple MHSA layers operating on the concatenation
of context and target tokens. This repeated transfer of infor-
mation from the context tokens to the target tokens at each

layer improves performance, but is computationally ineffi-
cient in comparison to the efficient-query TNP (EQTNP)
(Feng et al., 2022) which replaces masked MHSA layers
with MHSA and MHCA. Finally, the LBANP (Feng et al.,
2022) introduce the use of pseudo-tokens in a perceiver-
style architecture to reduce the computational complexity
further. To the best of our knowledge, there do not exist
any TNP models which incorporate translation equivariance.
However, there have been other NP variants which seek to
achieve this. The RCNP (Huang et al., 2023) is similar to a
single layer of the TE-TNP. However, as their choice of per-
mutation aggregation function is linear (summation), they
are not equivalent. ConvCNPs (Gordon et al., 2019), and
more generally steerable CNPs (Holderrieth et al., 2021),
incorporate translation equivariance by obtaining context
representations in function space, discretising, and then per-
forming translation equivariant operations using a CNN.
A key computational advantage of the ConvCNP over the
TE-TNP is the use of a CNN, which has computational
complexity linear in the number of input points. However,
the necessity of discretisation and convolutions restricts the
ConvCNP to low-dimensional input domains. Further, the
ConvCNP requires practioners to be much more judicious in
their choice of model architecture, as careful consideration
of discretisation the implied receptive field are required. We
provide a summary of some important difference between
the NP models discussed here in Table 4.

Table 4. A comparison between NP models. Complexity refers
to computational complexity. FE denotes functional embedding:
whether or not e(Dc,xt) depends on the input location xt. Dx-
S denotes Dx scalability, where Dx is the input dimension. TE
denotes translation equivariance.

Model Complexity Dx-S FE TE

CNP O (Nc +Nt) ✓ ✗ ✗
RCNP O (NcNt) ✓ ✓ ✓
ConvCNP O

(
NcD

3
x +NtDx

)
✗ ✗ ✓

TNP O
(
N2

c +NcNt

)
✓ ✓ ✗

PT-TNP O (MNc +MNt) ✓ ✓ ✗

TE-TNP O
(
N2

c +NcNt

)
✓ ✓ ✓

TE-PT-TNP O (MNc +MNt) ✓ ✓ ✓
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(a) Context dataset. (b) Ground truth data. (c) TE-PT-TNP. (d) GP.

Figure 6. A comparison between the predictive means of the TE-PT-TNP model and a GP for a single test dataset sampled from western
Europe. The figures visualise a single slice through time of the (predictive) temperature, with the same colour scale being used throughout.

Equivariant GNNs and transformers When graph neu-
ral networks (GNNs) are applied to nodes in the euclidean
domain, it is often beneficial to incorporate certain forms
of euclidean equivariance. Doing so has been a topic of
significant interest (Bronstein et al., 2021). Satorras et al.
(2021) build E(n)-equivariant GNNs in the form of equiv-
ariant message passing, and bears close similarity to the
approach taken in this paper. However, they tackle a differ-
ent form of equivariance and their method does not closely
resemble the attention-mechanism of transformers. Fuchs
et al. (2020) build SE(3)-equivariant transformers, which
our method shares similarities with. However, we avoid the
complexities of irreducible representations by considering
only translation equivariance. We choose a simpler, less
memory intensive approach for incorporating translation
equivariance that is effective in practice. The LieTrans-
former (Hutchinson et al., 2021) is a generalisation of trans-
lation equivariant transformers to Lie groups. Indeed, for
certain choices of content-based and location-based atten-
tion mechanisms, our method can be recovered from the
LieSelfAttention operation (see Appendix A). Nonetheless,
Hutchinson et al. focus on SE-equivariance in their experi-
ments, and do not consider integration into TNPs.

Data augmentation An alternative strategy to directly
incorporating inductive biases, such as translation equiv-
ariance, into models is to use data augmentation during
training. However, several works have shown that this ap-
proach has worse sample complexity and generalisation
guarantees (Mei et al., 2021; Wang et al., 2022; Holderri-
eth et al., 2021). We found this to be empirically true in
preliminary experiments, hence exclude comparisons in our
experiments.

6. Conclusion
We have introduced the TE-TNP and TE-PT-TNP, expand-
ing the family of TNPs to include their translation equiv-
ariant equivalents through the development of TE-MHSA

and TE-MHCA operations. An extensive range of empiri-
cal results demonstrate that the TE-TNP and TE-PT-TNP
perform on par or better than state-of-the-art NPs, such as
the ConvCNP, whilst being versatile in their applicability.
These models are not without their drawbacks, the two most
significant being: (1) although not affecting the asymptotic
behaviour with respect to the number of datapoints, in prac-
tice the need to pass pairwise computations through MLPs
scales the computational complexity by a large factor; and
(2) the need for the number of pseudo-tokens in PT-TNPs
to scale with the number of datapoints. We seek to address
both of these in future work.
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A. Relationship to LieTransformer
At the core of the LieTransformer is the LieSelfAttention operation. Let group G denote the set of symmetries we wish to
be equivariant to, xn ∈ Rdx denote the spatial coordinate of a point and zn ∈ Rdz the token corresponding to this spatial
coordinate. Each xn corresponds to the coset s(x)H = {s(x)h|h ∈ H}, where the subgroup H = {g ∈ G|gx0 = x0} is
called the stabiliser of origin x0 and s(x) ∈ G is a group element that maps x0 to x. In the case of the group of translations,
s(x) is just the translation that maps from the origin to x. Thus, each spatial coordinate can be mapped to group elements in
G. This can be thought of as lifting the feature map fX : xn → zn defined on X (i.e. Rdx ) to a feature map L[fX ] : g → zn
defined on G (also Rdx in the case of translations).

Let Gf = ∪N
n=1s(xn)H . The LieSelfAttention operations updates the feature values zn at spatial coordinates xn (corre-

sponding to group element gn) as

z̃n =

∫
αf (zn, zm, gn, gm)WV zmdgm (12)

with the attention-weights given by

αf (zn, zm, gn, gm) = softmax
(
ϕ
(
kc (zn, zm) , kl

(
g−1
n gm

)))
. (13)

In the case of the group of translations, this corresponds to

z̃n =

M∑
m=1

αf (zn, zm, gn, gm)WV zm. (14)

Choosing kc(zn, zm) = zTnWQ,hW
T
K,hzm and kl(xn,xm) = xn − xm recovers the TE-MHSA layer with H = 1.

B. Efficient Masked Attention
Often, conditional independencies amongst the set of tokens—in the sense that the set {zℓn}ℓ=L

ℓ=1 do not depend on the
set {zℓm}ℓ=L

ℓ=0 for some n, m ∈ {1, . . . , N}—are desirable. This is typically achieved through masking, such that the
pre-softmax activations are replaced by α̃ℓ

h, where

α̃ℓ
h(z

ℓ
n, z

ℓ
m) =

−∞, m ∈ A(n).

zℓn
T
Wℓ

Q,h

[
Wℓ

K,h

]T
zℓm, otherwise.

(15)

Here, A(n) ⊆ N≤N indexes the set of tokens we wish to make the update for token zℓn independent of. If A(n) = A (i.e.
the same set of tokens are conditioned on for every n) then in practice it is more computationally efficient to use MHCA
operations together with MHSA operations than it is to directly compute Equation 2. An MHCA operation uses the subset
of tokens {zℓm|m ∈ A} to update the complementary set of tokens {zℓn|n ∈ Ac} in a computationally efficient manner.
For N tokens that solely depend on a subset of N1 tokens, the computational complexity is reduced from O

(
N2
)

using
masked-MHSA operations to O (NN1) using MHSA and MHCA operations.

In the context of TNP, the tokens in both the context and target set are conditioned only on tokens in the context set. Thus,
replacing masked-MHSA operations reduces the computational complexity from O

(
(Nc +Nt)

2
)

to O
(
N2

c +NcNt

)
. If

the tokens in the target set are conditioned on context set tokens and themselves, then we can easily modify the standard
MHCA operation to include the individual target tokens.

C. Pseudo-Token-Based Transformers
We illustrate the two types of pseudo-token-based transformers, the IST-style and perceiver-style, in Figure 7a and Figure 7b.

D. General Form for Translation Equivariant and Permutation Invariant Functions
Let f : (RD)N → RD be a continuous function which is (1) permutation equivariant and (2) translation equivariant. That f
is permutation equivariant means that, for all permutations σ ∈ SN of N elements,

f(x1, . . . ,xN ) = f(xσ(1), . . . ,xσ(N)); (16)
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U ∈ RM×D

MHCA(U0, Z)Z ∈ RN×D

MHSA(Ũ0)

MHCA(U1, Z)Z ∈ RN×D

MHSA(Ũ1)

...

MHSA(ŨL−1)

UL ∈ RM×D

(a) Perceiver-style architecture.

Z ∈ RN×D

MHCA(Z0, U1) MHCA(U0, Z0)

MHCA(U1, Z1)MHCA(Z1, U2)

......

MHCA(UL−1, ZL−1)MHCA(ZL−1, UL)

U ∈ RM×D

ZL ∈ RN×D UL ∈ RM×D

(b) IST-style architecture.

Figure 7. Block diagrams the two pseudo-token-based transformer architectures.

and that f is translation equivariant means that, for all translations τ ∈ RD,

f(x1 + τ , . . . ,xN + τ ) = f(x1, . . . ,xN ) + τ . (17)

Let α1, . . . , αN ∈ R be any set of weights, possibly negative, such that
∑N

i=1 αi = 1. Then, using translation equivariance
of f ,

f(x1, . . . ,xN ) =

N∑
i=1

αif(x1, . . . ,xN ) =

N∑
i=1

αif(x1 − xi, . . . ,xN − xi) +

N∑
i=1

αixi. (18)

Since f is also permutation equivariant, it can be written in the following way (Zaheer et al., 2017):

f(x1, . . . ,xN ) = ρ
( N∑

j=1

ϕ(xj)
)

(19)

for some continuous functions ρ and ϕ. Therefore

f(x1, . . . ,xN ) =

N∑
i=1

αiρ
( M∑

j=1

ϕ(xj − xi)
)
+

N∑
i=1

αixi. (20)

Note that this decomposes f into a translation invariant component and translation equivariant component. We emphasise
that this holds for any set of weights α1, . . . , αN . In particular, these weights may depend on x1, . . . ,xN . Finally, we can
rewrite (20) into residual form. Let K ∈ N, 1 ≤ K ≤ N . Then

f(x1, . . . ,xN ) = xK +

N∑
i=1

αiρ
( M∑

j=1

ϕ(xj − xi)
)
+

N∑
i=1

αi(xi − xK). (21)

E. Proofs for Subsection 2.5
In the following, we use the notation and definitions from Section 2.5. Recall that the collection of all data sets S includes
the empty set ∅, which is the data set containing no data points.

13
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Proof of Theorem 2.1. Suppose that the ground-truth stochastic process f ∼ P is stationary: f d
= Tτf for all τ ∈ X . Also

suppose that π′
P is translation invariant. Let D ∈ S and τ ∈ X . Let B be a cylinder set. Then, by the changes-of-variables

formula for pushforward measures (Theorem 14.1; Schilling, 2005),∫
B

π′
P (TτD) dP =

∫
B

π′
P (D) ◦ T−1

τ dP (π′
P is translation invariant) (22)

=

∫
T−1

τ (B)

π′
P (D) dT−1

τ (P ) (change of variables) (23)

=

∫
T−1

τ (B)

π′
P (D) dP. (f is stationary) (24)

We conclude that πP is translation equivariant.

Conversely, if πP is translation equivariant, then, considering the data set containing no data points ∅,

TτπP (∅) = πP (Tτ∅) = πP (∅) for all τ ∈ X . (25)

Since πP (∅) = P , this means that f is stationary. Moreover, let B be a cylinder set. Then∫
B

π′
P (TτD) dP =

∫
T−1

τ (B)

π′
P (D) dP (πP is translation equivariant) (26)

=

∫
T−1

τ (B)

π′
P (D) dT−1

τ (P ) (f is stationary) (27)

=

∫
B

π′
P (D) ◦ T−τ dP. (change of variables) (28)

Since this holds for all cylinder sets, π′
P (TτD) = π′

P (D) ◦ Tτ P–almost surely, so π′
P is translation invariant.

The proof of Theorem 2.2 follows the idea illustrated in Figure 3. Let x1 ⊕ x2 denote the concatenation of two vectors x1

and x2.

Proof of Theorem 2.2. Let M > 0, n ∈ {1, . . . , N}, x ∈ [0,M ]n, and D ∈ S ∩
⋃∞

n=0([0,M ] × R)n. Sort and put the
n inputs x into B =

⌈
M/ 1

2R
⌉

buckets (Bi)
B
i=1 such that xj ∈ [(i − 1) · 1

2R, i ·
1
2R] for all j ∈ Bi. More concisely

written, xBi
∈ [(i − 1) · 1

2R, i ·
1
2R]

|Bi|. Write Ci =
⋃i−1

j=1Bi. Let Di be the sub–data set of D with inputs in
[min(xBi−2

),max(xBi+1
)].

If y1⊕y2 ∼ Px1⊕x2
π(D), then denote the distribution of y1 | y2 by Px1|x2

π(D). Use the chain rule for the KL divergence
to decompose

KL[Pxπ1(D)∥Pxπ2(D)] =

B∑
i=1

EPxCi
π1(D)[KL[PxBi

|xCi
π1(D)∥PxBi

|xCi
π2(D)]]. (29)

We focus on the ith term in the sum. Using that π1(D) and π2(D) have receptive field R, we may drop the dependency on
B1, . . . , Bi−2:

KL[PxBi
|xCi

π1(D)∥PxBi
|xCi

π2(D)] = KL[PxBi
|xBi−1

π1(D)∥PxBi
|xBi−1

π2(D)]. (30)

Therefore,

EPxCi
π1(D)[KL[PxBi

|xCi
π1(D)∥PxBi

|xCi
π2(D)]] = EPxBi−1

π1(D)[KL[PxBi
|xBi−1

π1(D)∥PxBi
|xBi−1

π2(D)]] (31)

≤ KL[PxBi∪Bi−1
π1(D)∥PxBi∪Bi−1

π2(D)]. (32)

Next, we use that π1 and π2 also have receptive field R, allowing us to replace D with Di:

KL[PxBi∪Bi−1
π1(D)∥PxBi∪Bi−1

π2(D)] = KL[PxBi∪Bi−1
π1(Di)∥PxBi∪Bi−1

π2(Di)]. (33)

14
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Finally, we use translation equivariance to shift everything back to the origin. Let τi be min(xBi−2
). By translation

equivariance of π1,

PxBi∪Bi−1
π1(Di) = PxBi∪Bi−1

Tτiπ1(T−τiDi) = PxBi∪Bi−1
−τiπ1(T−τiDi) (34)

where by xBi∪Bi−1
− τi we mean subtraction elementwise. Crucially, note that all elements of xBi∪Bi−1

− τi and all inputs
of T−τiDi lie in [0, 4 · 1

2R]. We have a similar equality for π2. Therefore, putting everything together,

EPxCi
π1(D)[KL[PxBi

|xCi
π1(D)∥PxBi

|xCi
π2(D)]] ≤ KL[PxBi∪Bi−1

−τiπ1(T−τiDi)∥PxBi∪Bi−1
−τiπ2(T−τiDi)], (35)

which is less than ϵ by the assumption of the theorem. The conclusion now follows.

F. Experimental Details and Additional Results
F.1. Synthetic 1-D Regression

For each dataset, we first sample a kernel k ∼ U([kse, kpe, kma−2.5]), where

kse = exp

(
− (x− x′)

2

2ℓ2

)

kpe = exp

(
−2 sin2

(π
ℓ
(x− x′)

)2)

kma−2.5 =
2−1.5

Γ(2.5)

(√
5 (x− x′)

ℓ2

)2.5

K2.5

(√
5 (x− x′)

ℓ2

)
.

(36)

We sample ℓ ∼ U(log 0.25, log 4), the number of context points Nc ∼ U(1, 64), the context inputs xc,n ∼ U(−2, 2), and
target inputs xt,n ∼ U(−3, 3). All tasks use the same number of target points Nt = 128. The observations for each task are
drawn from a GP with kernel

kobs = k + σ2
nδ(x− x′) (37)

where the observation noise σn = 0.2.

For all models, we use an embedding / token size of Dz = 128, and decoder consisting of an MLP with two hidden layers of
dimension Dz . The decoder parameterises the mean and pre-softplus variance of a Gaussian likelihood with heterogeneous
noise. Model specific architectures are as follows:

TNP The initial context tokens are obtained by passing the concatenation [x, y, 1] through an MLP with two hidden layers
of dimension Dz . The initial target tokens are obtained by passing the concatenation [x, 0, 0] through the same MLP. The
final dimension of the input acts as a ‘density’ channel to indicate whether or not an observation is present. The TNP
encoder consists of five layers of self-attention and cross-attention blocks, each with H = 8 attention heads with dimensions
DV = DQK = 16. In each of the attention blocks, we apply a residual connection consisting of layer-normalisation to
the input tokens followed by the attention mechanism. Following this there is another residual connection consisting of a
layer-normalisation followed by a pointwise MLP with two hidden layers of dimension Dz .

PT-TNP For the PT-TNP models we use the same architecture dimensions as the TNP. The initial pseudo-token values are
sampled from a standard normal distribution.

RCNP We implement the simple RCNP from Huang et al. (2023), as the memory requirements of the full RCNP exceed
the limits of our hardware for all but the simplest architectures. The simple RCNP encoder is implemented as

e(x,Dc) = ⊕Nc
n=1ϕ (x− xc,n,yc,n) (38)

where ⊕ denotes a permutation invariant aggregation, for which we use the mean operation.10 We implement the relational
encoder ϕ : R× R → RDz as an MLP with five hidden layers of dimension Dz .

10We found that for large datasets, the summation operation resulted in inputs to the decoder that were very large, resulting in numerical
instabilities.
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CNP The CNP encoder is implemented as

e(x,Dc) = ⊕Nc
n=1ϕ (xc,n,yc,n) (39)

where ⊕ denotes a permutation invariant aggregation, for which we use the mean operation. We implement ϕ : R×R → RDz

as an MLP with five hidden layers of dimension Dz .

ConvCNP For the ConvCNP model, we use a UNet (Ronneberger et al., 2015) architecture for the CNN with 11 layers.
We use C = 128 input / output channels for the downwards layers, between which we apply pooling with size two. For the
upwards layers, we use 2C input channels and C output channels, as the input channels are formed from the output of the
previous layer concatenated with the output of the corresponding downwards layer. Between the upwards layers we apply
linear up-sampling to match the dimensions of the downwards layer. We use a kernel size of nine with a stride of one. The
input domain is discretised with 64 points per units.

TE-TNP The TE-TNP model share a similar architecture with the TNP model, with the attention blocks replaced with their
translation equivariant counterparts. For the translation equivariant attention mechanisms, we implement ρℓ : RH×R → RH

as an MLP with two hidden layers of dimension Dz . We implement ϕℓ : RH → RH as an MLP with two hidden layers of
dimension Dz . The initial context token embeddings are obtained by passing the context observations through an MLP with
two hidden layers of dimension Dz . The initial target token embeddings are sampled from a standard normal.

TE-PT-TNP The TE-PT-TNP models adopt the same architecture choices as the TE-TNP. The initial pseudo-tokens and
pseudo-input-locations are sampled from a standard normal.

Training Details For all models, we optimise the model parameters using AdamW (Loshchilov & Hutter, 2017) with a
learning rate of 5× 10−4 and batch size of 16. Gradient value magnitudes are clipped at 0.5. We train for a maximum of
500 epochs, with each epoch consisting of 16,000 datasets (10,000 iterations per epoch). We evaluate the performance of
each model on test 80,000 datasets.

Table 5. Average log-likelihood (↑) on the test datasets for the synthetic 1-D regression experiment. ∆ denotes the amount by which the
range from which the context and target inputs and sampled from is shifted to the right at test time.

∆

Model 0.0 0.2 0.4 0.6 0.8 1.0

TNP −0.48± 0.00 −0.48± 0.01 −0.49± 0.01 −0.50± 0.01 −0.52± 0.01 −0.57± 0.01
PT-TNP-M8 −0.52± 0.00 −0.52± 0.01 −0.56± 0.01 −0.73± 0.01 −0.76± 0.01 −0.71± 0.01

PT-TNP-M16 −0.49± 0.00 −0.50± 0.01 −0.53± 0.01 −0.57± 0.01 −0.60± 0.01 −0.64± 0.01
PT-TNP-M32 −0.48± 0.00 −0.49± 0.01 −0.52± 0.01 −0.55± 0.01 −0.59± 0.01 −0.63± 0.01

CNP −0.69± 0.01 −0.71± 0.01 −0.77± 0.005 −0.86± 0.01 −0.98± 0.00 −1.08± 0.00
RCNP −0.58± 0.01 −0.58± 0.01 −0.58± 0.01 −0.58± 0.01 −0.58± 0.01 −0.58± 0.01

ConvCNP −0.46± 0.01 −0.46± 0.01 −0.46± 0.01 −0.46± 0.01 −0.46± 0.01 −0.46± 0.01

TE-TNP −0.47± 0.01 −0.47± 0.01 −0.47± 0.01 −0.47± 0.01 −0.47± 0.01 −0.47± 0.01
TE-PT-TNP-M8 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00

TE-PT-TNP-M16 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00 −0.50± 0.00
TE-PT-TNP-M32 −0.46± 0.00 −0.46± 0.00 −0.46± 0.00 −0.46± 0.00 −0.46± 0.00 −0.46± 0.00

F.2. Image Completion

The image completion dataset uses MNIST (LeCun et al., 1998) and CIFAR-10. Each MNIST dataset consists of a 28× 28
black and white image, and each CIFAR-10 dataset consists of a 32× 32 RGB image. To construct each randomly translated
dataset from the original images, we sample a horizontal and vertical translation, h, v ∼ U([−14, 14]) for MNIST and
h, v ∼ U([−16, 16]). The original image canvas is expanded to 56× 56 for MNIST and 64× 64 for CIFAR-10, with the
new pixels given output values of zero, and the translated image is inserted. The training set consists of 60,000 images
for T-MNIST and 50,000 images for T-CIFAR-10 (i.e. a single random translation applied to each image in the original
training sets). The test set consists of 10,000 images for both T-MNIST and T-CIFAR-10. For each dataset, we sample the
Nc ∼ U

(
N
100 ,

N
3

)
and set Nt to the remaining pixels.

16



Translation Equivariant Transformer Neural Processes

Table 6. Time taken to complete the first 200 training epochs.

Model Training time (hours)

TNP 3.249
PT-TNP-M32 3.565

CNP 1.672
RCNP 2.326

ConvCNP 3.466

TE-TNP 7.767
TE-PT-TNP-M32 5.502

For all models, we use an embedding / token size of Dz = 32. This was chosen to be relatively small due to the limitations
of the hardware available (both the TNP and RCNP models have a memory complexity that scales with O (NcNT )). For
both the T-MNIST and T-CIFAR-10, we use a Gaussian likelihood with homogeneous noise. Similar to Foong et al. (2020),
which found that this significantly improve training stability. Model specific architectures are as follows:

PT-TNP Same as Section F.1.

RCNP Same as Section F.1.

CNP Same as Section F.1.

ConvCNP For the ConvCNP model, we use a standard CNN 5 layers. We use C = 64 input / output channels for each
layer. As the input domain is already discretised, discretisation is not needed.

TE-PT-TNP Same as Section F.1.

Training Details For all models, we optimise the model parameters using AdamW (Loshchilov & Hutter, 2017) with a
learning rate of 5× 10−4 and batch size of 16 (8 for the TE-PT-TNP and RCNP). Gradient value magnitudes are clipped at
0.5. We train for a maximum of 500 epochs, with each epoch consisting of 1,000 iterations. We evaluate the performance of
each model on the entire test set.

F.3. Kolmogorov Flow

The 2-D Kologorov flow PDE is defined as

δtu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (40)

where u is the velocity field, ⊗ the tensor product, ν the kinematic viscosity, ρ the fluid density, p the pressure field, and f
the external forcing. We choose a 2-D domain with periodic boundary conditions. We use the data made available by Rozet
& Louppe (2023), in which the PDE is solved on a 256× 256 grid, coarsened to a 64× 64 resolution and integration time
between snapshots of ∆ = 0.2 time units, with 64 snapshots in total for each trajectory. The overall dataset consists of 1,024
independent trajectories of 64 states, of which 819 are used for training and 102 for testing. We sub-sample 16× 16× 16
regions from these 64× 64× 64 trajectories to construct individual tasks. We seek to model the velocity field, u(x, t) ∈ R2.
For each task, we sample Nc ∼ U(1, 500) and set Nt to all remaining points. Input values are normalised to lie in the range
[−3, 3].

For all models, we use an embedding / token size of Dz = 32. We use a decoder consisting of an MLP with two hidden
layers of dimension Dz . The decoder parameterises the mean and pre-softplus variance of a Gaussian likelihood with
heterogeneous noise. Model specific architectures are as follows:

PT-TNP Same as Section F.1.
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RCNP Same as Section F.1.

CNP Same as Section F.1.

TE-PT-TNP Same as Section F.1.

Multi-task GP For the multi-task GP baseline, we model the covariance between the i-th output at x and j-th output at x′

using the multi-task kernel with diagonal observation noise:

k([x, i], [x′, j]) = kse(x,x
′)× ktasks(i, j) + σ2

nδ(x− x′, i− j). (41)

where ktasks is the inter-task covariance, which in this case is a 2× 2 lookup table, and kse is an SE kernel with independent
lengthscales for each input dimension:

kse(x,x
′) = σ2 exp

(
−

Dx∑
i=1

(xi − x′i)
2

2ℓ2i

)
+ σ2

nδ (x− x′) . (42)

The GPs are implemented using GPytorch (Gardner et al., 2018), and optimisation of hyperparameters is performed using
Adam (Kingma & Ba, 2014) for 1,000 iterations with a learning rate of 1× 10−1.

Training Details For all NP models, we optimise the model parameters using AdamW (Loshchilov & Hutter, 2017) with a
learning rate of 5× 10−4 and batch size of 16 (8 for the TE-PT-TNP and RCNP). Gradient value magnitudes are clipped at
0.5. We train for a maximum of 500 epochs, with each epoch consisting of 10,000 iterations. We evaluate the performance
of each model on the entire test set.

F.4. Environmental Data

The environmental dataset consists of surface air temperatures derived from the fifth generation of the European Centre
for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses (ERA5) (Copernicus Climate Change Service,
2020). The data has a latitudinal and longitudinal resolution of 0.5◦, and temporal resolution of an hour. We consider data
collected in 2019, sub-sampled at a temporal resolution of six hours. The training set consists of data within the latitude
/ longitude range of [42◦, 53◦] / [8◦, 28◦] (roughly corresponding to central Europe), and the test sets consists of two
non-overlapping regions: western Europe ([42◦, 53◦] / [−4◦, 8◦]), and northern Europe ([53◦, 62◦] / [8◦, 28◦]). Individual
datasets are obtained by sub-sampling the large regions, with each dataset consists of a [15, 15, 5] grid spanning 7.5◦ across
each axis and 30 hours. We also provide surface elevation as additional inputs, such that Dx = 4. The inputs and outputs
are standardised using the mean and standard deviation values obtained from data within the training region. Each dataset
consists of a maximum of N = 1, 125 datapoints, from which the number of context points are sampled according to
Nc ∼ U( N

100 ,
N
3 ), with the remaining set as target points.

For all models, we use an embedding / token size of Dz = 32. As with the image-completion experiment, we were limited
by the hardware available. We use a decoder consisting of an MLP with two hidden layers of dimension Dz . The decoder
parameterises the mean and pre-softplus variance of a Gaussian likelihood with heterogeneous noise. Model specific
architectures are as follows:

PT-TNP Same as Section F.1.

RCNP Same as Section F.1.

CNP Same as Section F.1.

TE-PT-TNP Same as Section F.1.

GP For the GP baseline, we model the observations using an SE kernel with independent lengthscales for each input
dimension plus observation noise:

k(x,x′) = σ2 exp

(
−

Dx∑
i=1

(xi − x′i)
2

2ℓ2i

)
+ σ2

nδ (x− x′) . (43)
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The GPs are implemented using GPytorch (Gardner et al., 2018), and optimisation of hyperparameters is performed using
Adam (Kingma & Ba, 2014) for 1,000 iterations with a learning rate of 1× 10−1.

Training Details For all NP models, we optimise the model parameters using AdamW (Loshchilov & Hutter, 2017) with a
learning rate of 5× 10−4 and batch size of 16 (8 for the TE-PT-TNP and RCNP). Gradient value magnitudes are clipped at
0.5. We train for a maximum of 500 epochs, with each epoch consisting of 10,000 iterations. We evaluate the performance
of each model on the entire test set.

F.5. The Effectiveness of Dynamically Updating Input Locations

Here, we perform a simple ablation study to determine the effectiveness of dynamically updating input locations using
Equation 11 and Equation 10 in the TE-PT-TNP. We first consider models trained on the synthetic-1D regression dataset in
Section F.1 evaluated on two test sets: one drawn from the same distribution as the train tasks, and another for which the
inputs are sampled according to the hierarchical model:

c ∼ Bernoulli(0.5)

x ∼

{
U(−4,−1) if c = 0,

U(1, 4) if c = 1.

(44)

In both cases, observations are sampled as described in Section F.1. The difficulty in this second task is that the bimodality
of the input distribution wants the pseudo-locations to also be bimodal, however, the initial pseudo-tokens will have a
roughly equal pull in both directions due to symmetry about 0. We therefore posit that it becomes increasingly necessary to
dynamically update the input locations to account for this. We consider the TE-PT-TNP-M32 model described in Section F.1,
and the same TE-PT-TNP-M32 model with ψ(um, zn) in Equation 11 set to ψ(um, zn) = 1/N and no Equation 10. Note
that this model is trained from scratch on the same training dataset. The results are shown in Table 7. We observe that for
the uniformly distributed inputs, there is no significant different in the performance of the two models. However, for the
bimodal inputs the model without input adjustment performs significantly worse.

Table 7. Average log-likelihood (↑) on the two test datasets.

Model Uniform Inputs Bimodal Inputs

TE-PT-TNP-M32 −0.44± 0.01 −0.67± 0.01
TE-PT-TNP-M32 no input adjustment −0.46± 0.01 −0.76± 0.01

19



Translation Equivariant Transformer Neural Processes

(a) Context dataset. (b) Ground truth data. (c) TE-PT-TNP-M64. (d) ConvCNP. (e) PT-TNP-M64.

Figure 8. A comparison between the predictive mean of the TE-PT-TNP-M64 model, ConvCNP model and PT-TNP-M64 model, given
the context datasets on the left.
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(a) Context dataset. (b) Ground truth data. (c) TE-PT-TNP-M128 (d) ConvCNP. (e) PT-TNP-M128.

Figure 9. A comparison between the predictive mean of the TE-PT-TNP-M128 model, ConvCNP model and PT-TNP-M128 model, given
the context datasets on the left.
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