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Abstract—Graph models and graph-based signals are becom-
ing increasingly important in machine learning, natural sciences,
and modern signal processing. In this paper, we address the
problem of quantizing bandlimited graph signals. We introduce
two classes of noise-shaping algorithms for graph signals that
differ in their sampling methodologies. We demonstrate that
these algorithms can be efficiently used to construct quantized
representatives of bandlimited graph-based signals with bounded
amplitude. Moreover, for one of the algorithms, we provide
theoretical guarantees on the relative error between the quantized
representative and the true signal.
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I. State of the art and any preliminary works
Graph signals provide a natural representation of data in

many applications, such as social networks, web information
analysis, sensor networks and machine learning. Graph signal
processing (GSP) is currently an active field of mathematical
research that aims to extend the well-developed tools for
the analysis of conventional signals to signals on graphs by
accounting for the underlying connectivity. A key challenge in
graph signal processing is quantization, which involves finding
efficient ways to represent the values of a graph signal with a
finite number of bits while preserving its information content.
In this context, quantizing a “signal" f consists of replacing
it by a vector q, whose entries are from a finite set (the
alphabet), in such a way that a good approximation of f can
be subsequently reconstructed from q.

Of particular relevance to us are the noise-shaping quan-
tization schemes (see, e.g.,[2]), which share the underlying
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general approach of placing as much of the difference between
the quantized and un-quantized signal in the kernel of the
relevant reconstruction operator. Among them, the famous Σ∆
schemes used for quantization of bandlimited functions and
images shape the quantization noise by exploiting dependen-
cies between neighboring samples [5, 3, 12, 10]. Among other
applications, efficient quantization algorithms have also been
developed for compressive sensing measurements [7, 16, 9],
and –more recently– post-training quantization for neural net-
works [18, 6, 13]. Indeed, all these noise-shaping approaches
have been shown to outperform their naive counterparts, i.e.,
those that rely on simply replacing the samples of the signal
by their nearest neighbors in the alphabet. Nevertheless, noise-
shaping methods have not been proposed for the quantization
of graph-based signals due to the challenges associated with
accounting for the graph structure.

Inspired by the efficiency of the above-indicated quantiza-
tion schemes, in this work, we introduce novel noise-shaping
quantization techniques for graph signals with a bandlimited
spectrum. We propose two types of sampling approaches
for quantization. We illustrate that the error emerging after
quantization, i.e. quantization noise, has high graph frequency
content and, therefore, can be efficiently removed in a suitable
reconstruction process. Additionally, we present a theoretical
analysis for one of our approaches showing that the quan-
tization error depends on the signal bandwidth and exhibits
favorable decay properties with the number of samples.

II. Problem Setting and Notation
We consider an undirected, connected graph G=(V, E ,W )

with no self-loops where V is a set of N vertices, with N as-
sumed to be finite but large, E is a set of edges, and where W is
a weighted adjacency matrix. Let dm :=

∑
n Wmn be the de-

gree of the mth vertex. The corresponding normalized Lapla-
cian matrix is defined as L = D−1/2(D −W )D−1/2, where
D = diag{d1, d2, · · · , dN} is the diagonal degree matrix.
Here, L is a symmetric positive semi-definite matrix and has



an orthogonal set of eigenvectors X = [x1,x2, · · · ,xN ], cor-
responding to the eigenvalues λ(G) = diag{λ1, λ2, · · · , λN}
ordered as λ1 ≤ λ2 ≤ · · · ≤ · · · ≤ λN .

Algorithm 1: Graph Noise Shaping with Permutations
Input: Low-pass graph filter L, graph signal f ,

vertex order {k1, . . . , kN}, number of
optimization loops T ∈ N

Output: Quantized samples q, reconstruction fq

Assign: q ← Algorithm 2
for epoch = 1:T do

for i = 1:N do
ui :=

∑
j ̸=ki

ℓj(fj − qj)

qki
= Qδ

(
fki

+
⟨ℓki

,ui⟩
∥ℓki∥

2

2

)
end

end
Assign fq = Lq

A signal or a function f : V → R defined on vertices of
the graph may be represented as a vector f ∈ RN , where the
nth component of f represents the function value at the nth
vertex in V . Generalizing the classical Fourier transform, the
eigenvectors and the eigenvalues of matrix L provide a spectral
interpretation of the graph. The eigenvalues {λ1, λ2, · · · , λN}
can be treated as graph frequencies. The eigenvectors of the
Laplacian matrix demonstrate increasing oscillatory behavior
as the magnitude of the graphs frequencies decreases [17]. The
Graph Fourier Transform (GFT) of a signal f is defined as
f̂ = XTf with the entries f̂(λi) = ⟨f ,xi⟩.

A graph signal f is called bandlimited when there exists
r ∈ [1, 2, · · · , N ] such that its GFT has support only in the
frequency interval [0, λr], see [15, 17]. If we denote the matrix
restricted to the first r Fourier vectors by Xr = [x1, · · · ,xr],
then for each r-bandlimited function f there exists a vector
α ∈ Rr such that f = Xrα. Without loss of generality, we
consider bandlimited functions normalized to have ∥f∥∞ ≤ 1.

The graph’s geometry and the properties of bandlimited
function subspaces are usually defined in terms of graph
incoherence [17] as follows.

Definition II.1. [4] For the r-dimensional subspace of
graph functions spanned by Xr = [x1, · · · ,xr] ∈ RN×r, let
PXr = XrX

T
r be the orthogonal projection onto Xr. The

incoherence of the graph subspace Xr is defined as

µ(Xr) =
N

r
max

1≤i≤N
∥PXr

ei∥22 . (II.1)

For different classes of random graphs, it has been shown
that with high probability sufficiently large graphs have small
µ [4, 1], which indicates that the graph Laplacian eigenvectors
are well spread.

In this work, we are interested in the quantization of
bandlimited real-valued graph signals, that is, in representing
such graph signals with samples from a certain finite set
A ⊂ R which we call an alphabet. To be more precise,

Algorithm 2: Initialization Strategies
Input: Low-pass graph filter L, graph signal f , order

of vertices {k1, . . . , kN}, weight matrix W ,
maximal hop-distance s

Output: Quantized samples q
if Step-by-Step-Serving=true then

Assign q ← 0
for i = 1:N do

qki = Qδ

(
fki +

⟨ℓki
,ui−1⟩
∥ℓki∥

2

2

)
ui :=

∑i−1
j=1 ℓkj

(fkj
− qkj

) + ℓki
(fki
− qki

)

end
end
if Sigma-Delta-Weights=true then

The set S holds already quantized vertices
Initialization: S ← {i}, where i is a vertex index

satisfying di ≥ dn, for all n ∈ [N ]
Assign qi = Qδ(fi) and ui = fi − qi;
while |S| < N do

for k = 1: s do
Tk ← index set of k-hop neighbours of vi
Pk ← sort the indices in Tk according to

the number of quantized neighbors, i.e.,
for j, l ∈ Pk, j will be ahead of l if
|Nvl ∩ S| < |Nvj ∩ S|.

for each j in Pk do
Mj ← Nvj ∩ S

qj = Qδ

(
fj +

∑
k∈Mj

Wj,kuk∑
k∈Mj

Wj,k

)
uj =

∑
k∈Mj

Wj,kuk∑
k∈Mj

Wj,k
+ fj − qj

S ← S ∪ {j}
end

end
end

end

given an r-bandlimited graph signal f ∈ RN , our goal is
to find a sequence of quantized samples q ∈ AN , that is a
good representative of f in terms of some quality measure.
Motivated by practical application, we aim to find q ∈ AN ,
such that f and q are close to each other under the action
of a low-pass graph filter L := [ℓ1 . . . , ℓN ] ∈ RN×N . A
quality measure will be fixed to the Euclidean distance, i.e.
∥L(f − q)∥2.

Moreover, we focus on representing q ∈ AN in terms of
the classical midtread alphabet defined as

Aδ = Aδ,K := {±kδ : 0 ≤ k ≤ K, k ∈ Z}, (II.2)

where δ > 0 denotes the quantization step size. Additionally,
for alphabet Aδ , we define the associated memoryless scalar
quantizer Qδ : R→ Aδ as Qδ(z) := argminx∈Aδ

|z−x|, that
returns the closest element of the alphabet to its argument. As
quantized samples q ∈ Aδ will be designed to give a small
difference to the original signal f under the low-pass filtering,



we will call fq = Lq a quantized representative of f and will
refer to L(f − q) as the quantization error.

(a) Graph function f (b) Quantized repr. fq

(c) Spectrum of f (d) Spectrum of fq

(e) Quant. noise f − fq (f) Spectrum of f − q

Fig. 1: Performance of the Algorithm. 3 on the bunny graphs of
size N = 2503 for a graph signal f with bandwidth r = 100.

III. Noise-shaping Quantization for Bandlimited
Graph Signals with Replacement

In this section, we present the first type of proposed noise-
shaping quantization methods for band-limited graph signals.
The steps of this graph quantization technique are summarized
in Algorithm 1.

Assume that f ∈ RN is an r-bandlimited graph signal and
L := [ℓ1 . . . , ℓN ] ∈ RN×N is a low-pass graph filter. Ideally,
one would approach the problem of graph signal quantization
by solving for q ∈ Aδ that minimizes the difference between
f and q under the action of the low-pass filter, i.e., by solving

q♯ = arg min
q̂∈AM

δ

∥L(f − q̂)∥2 . (III.1)

Unfortunately, the above problem is an instance of integer least
squares, hence NP-hard in general [8]. Instead, inspired by
recent methods for neural network quantization [11, 18], we
propose iterative methods for choosing the entries of q.

To this end, we fix a random permutation of the graph
vertices Vperm = {k1, . . . , kN}, and for this fixed order we
rewrite the quantization error as a linear combination of the
columns of the filter L(f − q) =

∑N
i=1 ℓki

(fki
− qki

). Then
after some initialization of q ∈ AN

δ , for the running index i,

we update the value of qki
by choosing the new quantized

sample as

qki
= arg min

q̂∈Aδ

∥∥ ∑
j ̸=kj

ℓj(fj − qj) + ℓki
(fki
− q̂)

∥∥
2
. (III.2)

The above qki can be efficiently computed due to the following
closed-form solution for the optimization problem,

qki = Qδ

(
fki +

⟨ℓki
,ui⟩

∥ℓki
∥2
2

)
, (III.3)

where the vector ui :=
∑

j ̸=kj
ℓj(fj − qj) is the state vector

associated with the iteration. We repeat the above-indicated
step for all i = 1, . . . , N to visit all the graph vertices ordered
in Vperm. Note that this quantization process corresponds to
sampling vertices of the graph (or columns of the low-pass
filter) at random without replacement and quantizing with
respect to the drawn order.

After visiting all graph vertices, there is still a chance that
some entries of q can be replaced by other elements of the
alphabet and decrease the quantization error. This is due to
the greedy local nature of the proposed iteration that cannot
be expected to find a global optimum in general. To mitigate
the situation, we propose to revisit vertices following the order
Vperm several times until q does not update. This corresponds
to conducting several loops of the quantization process, the
number of which we will denote by T ∈ N.

In general, the process of updating q in the further loops
reaches a stationary point, which we may think of as a
local minimum. A good initialization for Algorithm 1 can
help us avoid "bad" local minima. Here, we propose two
potential approaches, inspired by different quantization tech-
niques (e.g., [5, 11, 12, 10]).

In the first initialization, marked as Step-by-Step-Serving
in Algorithm 2, for the same fixed vertex order Vperm as
before, we seek a candidate q which gives potentially small
∥L(f − q)∥2 = ∥

∑N
i=1 ℓj(fj − q̂j)∥2, by adding the error

components column by column. Namely, we start by choosing
qk1

which minimizes ∥ℓk1
(fk1

− qk1
)∥2. In step i, we collect

the error made in the previous i − 1 steps using the state
vector ui−1 :=

∑i−1
j=1 ℓkj (fkj − qkj ) and select qki as the

element in Aδ that yields the smallest growth of the error via
qki = argminq̂∈Aδ

∥∥∥∑i−1
j=1 ℓkj (fkj − qkj ) + ℓki(fki − q̂)

∥∥∥
2
.

Here, qki
can be obtained by a closed-form expression similar

to (III.3) with the state ui changed accordingly. Visiting all
N vertices of the graph gives us a reasonable start for the
procedure (III.2).

In the second, alternative initialization approach, we traverse
the graph using Breadth-First-Search. Starting with the vertex i
which has the maximum degree, in step k, we quantize all the
k-hop neighbors of vertex i. The vertices are sorted according
to the number of quantized neighbors. When quantizing the
value of vertex j, we first add to it the weighted sum of all the
state variables from its quantized neighbors. This initialization
technique is described in detail in Algorithm 2 under the
Sigma-Delta-Weights choice. Note that in [10, 12], the authors
also considered Σ∆ quantization beyond 1D signals, and two



Algorithm 3: Graph Noise Shaping via Step-by-Step
Serving with Replacement

Input: Low-pass graph filter L, graph signal f ,
number of iterations M

Output: Quant. samples q ∈ Ãδ

N
, reconstruction fq

Assign q̃ ← 0 ∈ RM , u0 ← 0 ∈ RN

for i= 1:M do
sample uniformly an index 1 ≤ ki ≤ N
assign vi = ki

q̃i = Qδ

(
fki

+
⟨ℓki

,ui−1⟩
∥ℓki∥

2

2

)
ui = ui−1 + ℓki

(fki
− q̃i)

end
Assign: qi =

∑
j∈σ(i) q̃j and fq = N

MLq

weighted Σ∆ approaches were proposed to extend Σ∆ to 2D
images. This proposed initialization approach is closely related
to the methods in [10, 12] in that they all exploit dependencies
between neighboring samples.

We use these two initialization techniques as alternative
ways to select starting values of q in Algorithm 1. Our
numerical experiments in Section V demonstrate that the
two initialization approaches lead to different quantized vec-
tors q ∈ AN

δ . The noise-shaping framework presented in this
section exhibits good numerical performance albeit with no
theoretical guarantees at the moment.

IV. Noise-shaping Quantization with Random
Sampling and Theoretical Guarantees

In this section, we propose an alternative noise-shaping
algorithm for bandlimited graph signals relying on vertex sam-
pling without replacement. This algorithm shows comparable
results with respect to Algorithm 1 in most of the cases, but
in contrast to the latter, it allows for qualitative error analysis.

Consider an r-bandlimited graph signal f ∈ RN and a low-
pass graph filter L := [ℓ1 . . . , ℓN ] ∈ RN×N and denote by
M ∈ N the total number of iterations. To find a quantized
q, in step 1 ≤ i ≤M , we sample a vertex index ki uniformly
at random from the set of indices V = {1, . . . , N}. Then, as
before, we quantize fki

by selecting qki
∈ Aδ to minimize

the accumulated error. Note that since we sample without
replacement, each graph vertex can potentially appear multiple
times. Thus, we introduce an auxiliary vector of quantized
samples q̃ ∈ AM

δ and an index vector v ∈ NM such that

q̃i = arg min
q̂∈Aδ

∥∥∥ i−1∑
j=1

ℓkj (fkj − q̃j) + ℓkj (fki − q̂)
∥∥∥, (IV.1)

and vi = ki. At the end of the iteration process, we obtain
vector q̃ ∈ AM

δ with quantized values, and v ∈ NM with
recorded vertex selections. As M can be different from the
true dimension N of the signal f , in order to obtain the
desired quantized samples q ∈ AN

δ we sum all the entries
of q̃ corresponding to the same vertex and assign them to q

via qi =
∑

j∈σ(i) q̃j where σ(i) := {k : vk = i}. This quan-
tization approach is summarized in Algorithm 3. Importantly,
the vector q is in general not in AN

δ , but it belongs to a slightly
larger set generated by an alphabet Ãδ . Nevertheless, it can
be shown that when M = O(N log(N)), |Ãδ| ≲ |Aδ| log(N).
The next result shows that f can be well approximated from
q ∈ Ãδ

N
.

(a) 2D grid graph (b) Relative error

(c) Swiss roll graph (d) Relative error

(e) Bunny graph (f) Relative error

Fig. 2: Illustration of performance of the proposed quantization
algorithms for bandlimited graph signals on different graphs:
Algorithm 1 with two alternative types of initialization: Step-
by-Step-Serving (SSS) and Sigma-Delta-Weight (SDW), and
Step-by-Step-Serving with Replacement (SSS-R) presented in
Algorithm 3.

Theorem IV.1. Consider a bandlimited graph signal f , where
f = Xrα for some α ∈ Rr, with c ≤ ∥f∥∞ ≤ 1. Assume
the K in the definition (II.2) of the alphabet Aδ,K satisfies
Kδ > 1. In addition, suppose Xr satisfies the incoherence
property (II.1) with some constant µ > 0. Let M > 0 be the
number of iterations in Algorithm 3, and q̃ ∈ Ãδ

N
be the

resulting quantized vector. Defining fq := N
MLq, then with

probability at least 1-δ, the relative quantization error satisfies

∥fq − f∥22
∥f∥22

≤ C µ2 r2 log2( rδ )

M
,

where C is an absolute constant. In addition, q̃ can be
represented with O(N log log N

δ ) bits.



The above-stated results can be obtained following similar
ideas as in [18].

V. Numerical Experiments and Conclusion
Here we illustrate the performance of the introduced noise-

shaping quantization algorithms on three different graphs and
compare their performance in terms of relative signal error.

We consider the grid graph of size N = 30× 30, the Swiss
roll with N = 3000 vertices, and the bunny graph which
consists of N = 2503 vertices, in Fig. 2a-2e. These three
graphs have different incoherence properties: the grid is lower
than the bunny graph and the Swiss roll is highly coherent [17].
For our illustrations of graph function, we use the GSPBOX
toolbox for graph signal processing [14].

For each of the graphs, we construct r-bandlimited signals
fr = Xrα with bandwidth r ∈ [5, 155] and normalize fr

so that ∥fr∥∞ = 1. We quantize each signal using, first,
Algorithm 1 with the two initializations: Step-by-Step-Serving
(SSS) and Sigma-Delta-Weight (SDW) choosing Aδ of size ≈
log log(N)-bits and T = 10, and second, we use Algorithm 3
with the binary alphabet A = {−1, 1} and M = N log(N) to
visit on average all vertices of the graph as in the coupon
collector problem. Since in Algorithm 3 storing each element
of q will need approximately log log(N)-bits, this places all
the three algorithmic settings on (roughly) equal grounds. To
compare the performance of the algorithms, we measure the
relative error ∥fq−f∥22/∥f∥22. The results of the experiments
are depicted in Fig. 2a-2f.

As we can observe, for Algorithm 1 the initialization plays
a key role, and using more graph structure for the initial
guess, as in SDW initialization, is beneficial for the total
performance. Moreover, Algorithm 3 performs better on the
graphs with lower incoherence, which is in line with our
theoretical findings presented in Theorem IV.1 .
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