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ABSTRACT

Laplace approximations are classic, computationally lightweight means for con-
structing Bayesian neural networks (BNNs). As in other approximate BNNs, one
cannot necessarily expect the induced predictive uncertainty to be calibrated. Here
we develop a formalism to explicitly “train” the uncertainty in a decoupled way
to the prediction itself. To this end we introduce uncertainty units for Laplace-
approximated networks: Hidden units with zero weights that can be added to
any pre-trained, point-estimated network. Since these units are inactive, they
do not affect the predictions. But their presence changes the geometry (in par-
ticular the Hessian) of the loss landscape around the point estimate, thereby af-
fecting the network’s uncertainty estimates under a Laplace approximation. We
show that such units can be trained via an uncertainty-aware objective, making the
Laplace approximation competitive with more expensive alternative uncertainty-
quantification frameworks.

1 INTRODUCTION

The point estimates of neural networks (NNs)—constructed as maximum a posteriori (MAP) es-
timates via (regularized) empirical risk minimization—empirically achieve high predictive perfor-
mance. However, they tend to underestimate the uncertainty of their predictions, leading to an
overconfidence problem (Hein et al., 2019), which could be disastrous in safety-critical applications
such as autonomous driving. Bayesian inference offers a principled path to overcome this issue. The
goal is to turn a “vanilla” NN into a Bayesian neural network (BNN), where the posterior distribu-
tion over the network’s weights are inferred via Bayes’ rule and subsequently taken into account
when making predictions. Since the cost of exact posterior inference in a BNN is often prohibitive,
approximate Bayesian methods are employed instead.

Laplace approximations (LAs) are classic methods for such a purpose (MacKay, 1992b). The key
idea is to obtain an approximate posterior by “surrounding” a MAP estimate of a network with a
Gaussian, based on the loss landscape’s geometry around it. A standard practice in LAs is to tune
a single hyperparameter—the prior precision—which is inflexible (Ritter et al., 2018b; Kristiadi
et al., 2020). Here, we aim at improving the flexibility of uncertainty tuning in LAs. To this end, we
introduce Learnable Uncertainty under Laplace Approximations (LULA) units, which are hidden
units associated with a zeroed weight. They can be added to the hidden layers of any MAP-trained
network. Because they are inactive, such units do not affect the prediction of the underlying network.
However, they can still contribute to the Hessian of the loss with respect to the parameters, and hence
induce additional structures to the posterior covariance under a LA. LULA units can be trained
via an uncertainty-aware objective (Hendrycks et al., 2019; Hein et al., 2019, etc.), such that they
improve the predictive uncertainty-quantification (UQ) performance of the Laplace-approximated
BNN. Figure 1 demonstrates trained LULA units in action: They improve the UQ performance of a
standard LA, while keeping the MAP predictions in both regression and classification tasks.

In summary, we (i) introduce LULA units: inactive hidden units for uncertainty tuning of a LA, (ii)
bring a robust training technique from non-Bayesian literature for training these units, and (iii) show
empirically that LULA-augmented Laplace-approximated BNNs can yield better UQ performance
compared to both previous tuning techniques and contemporary, more expensive baselines.
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Figure 1: Predictive uncertainty of a (a) MAP-trained, (b) Laplace-approximated (LA), and (c)
LULA-augmented Laplace-approximated (LA+LULA) neural network on regression (top) and clas-
sification (bottom) tasks. Black curve represent predictive mean and decision boundary, and shade
represents±3 standard deviation and confidence in regression and classification, respectively. MAP
is overconfident and LA can mitigate this. However, LA can still be overconfident away from the
data. LULA improve LA’s uncertainty further without affecting its predictions.

2 BACKGROUND

2.1 BAYESIAN NEURAL NETWORKS

Let f : Rn × Rd → Rk defined by (x, θ) 7→ f(x; θ) be an L-layer neural network. Here, θ is the
concatenation of all the parameters of f . Suppose that the size of each layer of f is given by the
sequence of (nl ∈ Z>0)Ll=1. Then, for each l = 1, . . . , L, the l-th layer of f is defined by

a(l) := W (l)h(l−1) + b(l), with h(l) :=

{
ϕ(a(l)) if l < L

a(l) if l = L ,
(1)

where W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the weight matrix and bias vector of the layer, and ϕ is a
component-wise activation function. We call the vector h(l) ∈ Rnl the l-th hidden units of f . Note
that by convention, we consider n0 := n and nL := k, while h(0) := x and h(L) := f(x; θ).

From the Bayesian perspective, the ubiquitous training formalism of neural networks amounts to
MAP estimation: The empirical risk and the regularizer are interpretable as the negative log-
likelihood under an i.i.d. dataset D := {xi, yi}mi=1 and the negative log-prior, respectively. That
is, the loss function is interpreted as

L(θ) := −
m∑
i=1

log p(yi | f(xi; θ))− log p(θ) = − log p(θ | D) . (2)

In this view, the de facto weight decay regularizer amounts to a zero-mean isotropic Gaussian prior
p(θ) = N (θ | 0, λ−1I) with a scalar precision hyperparameter λ. Meanwhile, the usual softmax
and quadratic output losses correspond to the Categorical and Gaussian distributions over yi in the
case of classification and regression, respectively.

MAP-trained neural networks have been shown to be overconfident (Hein et al., 2019) and BNNs
can mitigate this issue (Kristiadi et al., 2020). They quantify epistemic uncertainty by inferring
the full posterior distribution of the parameters θ (instead of just a single point estimate in MAP
training). Given that p(θ | D) is the posterior, then the prediction for any test point x ∈ Rn is
obtained via marginalization

p(y | x,D) =

∫
p(y | f(x; θ)) p(θ | D) dθ , (3)

which captures the uncertainty encoded in the posterior.
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2.2 LAPLACE APPROXIMATIONS

In deep learning, since the exact Bayesian posterior is intractable, approximate Bayesian inference
methods are used. An important family of such methods is formed by LAs. Let θMAP be the mini-
mizer of (2), which corresponds to a mode of the posterior distribution. A LA locally approximates
the posterior using a Gaussian

p(θ | D) ≈ N (θ | θMAP, Σ) := N (θ | θMAP, (∇2L|θMAP)
−1) .

Thus, LAs construct an approximate Gaussian posterior around θMAP, whose precision equals the
Hessian of the loss at θMAP—the “curvature” of the loss landscape at θMAP. While the covariance of
a LA is tied to the weight decay of the loss, a common practice in LAs is to tune the prior precision
under some objective, in a post-hoc manner. In other words, the MAP estimation and the covariance
inference are thought as separate, independent processes. For example, given a fixed MAP estimate,
one can maximize the log-likelihood of a LA w.r.t. the prior precision to obtain the covariance. This
hyperparameter tuning can thus be thought as an uncertainty tuning.

A recent example of LAs is the Kronecker-factored Laplace (KFL, Ritter et al., 2018b). The key idea
is to approximate the Hessian matrix with the layer-wise Kronecker factorization scheme proposed
by Heskes (2000); Martens & Grosse (2015). That is, for each layer l = 1, . . . , L, KFL assumes
that the Hessian corresponding to the l-th weight matrix W (l) ∈ Rnl×nl−1 can be written as the
Kronecker product G(l) ⊗ A(l) for some G(l) ∈ Rnl×nl and A(l) ∈ Rnl−1×nl−1 . This assumption
brings the inversion cost of the Hessian down to Θ(n3l +n3l−1), instead of the usual Θ(n3l n

3
l−1) cost.

The approximate Hessian can easily be computed via tools such as BackPACK (Dangel et al., 2020).

Even with a closed-form Laplace-approximated posterior, the predictive distribution (3) in general
does not have an analytic solution since f is nonlinear. Instead, one can employ Monte-Carlo (MC)
integration by sampling from the Gaussian:

p(y | x,D) ≈ 1

S

S∑
s=1

p(y | f(x; θs)) ; θs ∼ N (θ | θMAP, Σ) ,

for S number of samples. In the case of binary classification with f : Rn × Rd → R, one can use
the following well-known approximation, due to MacKay (1992a):

p(y = 1 | x,D) ≈ σ

(
f(x; θMAP)√
1 + π/8 v(x)

)
, (4)

where σ is the logistic-sigmoid function and v(x) is the marginal variance of the network output
f(x), which is often approximated via a linearization of the network around the MAP estimate:

v(x) ≈ (∇θf(x; θ)|θMAP)
>
Σ (∇θf(x; θ)|θMAP) . (5)

(This approximation has also been generalized to multi-class classifications by Gibbs (1997).) In
particular, as v(x) increases, the predictive probability of y = 1 goes to 0.5 and therefore the un-
certainty increases. This relationship has also been shown empirically in multi-class classifications
with MC-integration (Kristiadi et al., 2020).

3 LULA UNITS

The problem with the standard uncertainty tuning in LAs is that the only degree-of-freedom available
for performing the optimization is the scalar prior precision and therefore inflexible.1 We shall
address this by introducing “uncertainty units”, which can be added on top of the hidden units of any
MAP-trained network (Section 3.1) and can be trained via an uncertainty-aware loss (Section 3.2).

3.1 CONSTRUCTION

Let f : Rn × Rd → Rk be a MAP-trained L-layer neural network with parameters θMAP =

{W (l)
MAP, b

(l)
MAP}Ll=1. The premise of our method is simple: At each hidden layer l = 1, . . . , L − 1,

1While one can also use a non-scalar prior precision, it appears to be uncommon in deep learning. In any
case, such a element-wise weight-cost would interact with the training procedure.
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Figure 2: An illustration of the proposed construction. Rectangles represent layers, solid lines
represent connection between layers, given by the original weight matrices W (1)

MAP, . . . ,W
(L)
MAP. The

additional units are represented by the additional block at the bottom of each layer. Dashed lines
correspond to the free parameters Ŵ (1), . . . , Ŵ (L−1), while dotted lines to the zero weights.

suppose we add ml ∈ Z≥0 additional hidden units, under the original activation function, to h(l).
As a consequence, we need to augment each of the weight matrices to accommodate them.

Consider the following construction: for each layer l = 1, . . . , L − 1 of the network, we expand
W (l) and b(l) to obtain the block matrix and vector

W̃ (l) :=

(
W

(l)
MAP 0

Ŵ
(l)
1 Ŵ

(l)
2

)
∈ R(nl+ml)×(nl−1+ml−1) ; b̃(l) :=

(
b
(l)
MAP

b̂(l)

)
∈ Rnl+ml , (6)

respectively, with m0 = 0 since we do not add additional units to the input. For l = L, we define

W̃ (L) := (W
(L)
MAP, 0) ∈ Rk×(nL−1+mL−1); b̃(L) := b

(L)
MAP ∈ Rk ,

so that the output dimensionality is unchanged. For brevity, we denote Ŵ (l) := (Ŵ
(l)
1 , Ŵ

(l)
2 ). Refer

to Figure 2 for an illustration and Algorithm 2 in Appendix B for a step-by-step summary. Taken
together, we denote the resulting augmented network as f̃ and the resulting parameter vector as
θ̃MAP ∈ Rd̃, where d̃ it the resulting number of parameters. Note that we can easily extend this
construction to convolutional nets by expanding the “channel” of a hidden layer.2

Let us inspect the implication of this construction. Here for each l = 1, . . . , L − 1, since they are
zero, the upper-right quadrant of W̃ (l) deactivates the ml−1 additional hidden units in the previous
layer, thus they do not contribute to the original hidden units in the l-th layer. Meanwhile, the sub-
matrix Ŵ (l) and the sub-vector b̂(l) contain parameters for the additional ml hidden units in the
l-th layer. We are free to choose the the values of these parameters since the following proposition
guarantees that they will not change the output of the network (the proof is in Appendix A).

Proposition 1. Let f : Rn × Rd → Rk be a MAP-trained L-layer network parametrized by θMAP.
Suppose f̃ : Rn × Rd̃ → R and θ̃MAP ∈ Rd̃ are obtained via the previous construction. For any
input x ∈ Rn, we have f̃(x; θ̃MAP) = f(x; θMAP).

So far, it looks like all our changes to the network are inconsequential. However, they do affect
the curvature of the landscape of L,3 and thus the uncertainty arising in a LA. Let θ̃ be a random
variable in Rd̃ and θ̃MAP be an instance of it. Suppose we have a Laplace-approximated posterior
p(θ̃ | D) ≈ N (θ̃ | θ̃MAP, Σ̃) over θ̃, where the covariance Σ̃ is the inverse Hessian of the negative
log-posterior w.r.t. the augmented parameters at θ̃MAP. Then, Σ̃ contains additional dimensions (and
thus in general, additional structured, non-zero uncertainty) absent in the original network, which
depend on the values of the free parameters {Ŵ (l), b̂(l)}L−1l=1 .

2E.g. if the hidden units are a 3D array of (channel × height × width), then we expand the first dimension.
3More formally: The principal curvatures of the graph of L, seen as a d-dimensional submanifold of Rd+1.
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The implication of the previous finding can be seen clearly in real-valued networks with diagonal LA
posteriors. The following proposition shows that, under such a network and posterior, the construc-
tion above will affect the output uncertainty of the original network f (the proof is in Appendix A).

Proposition 2. Suppose f : Rn × Rd → R is a real-valued network and f̃ is as constructed
above. Suppose further that diagonal Laplace-approximated posteriors N (θ | θMAP,diag(σ)),
N (θ̃ | θ̃,diag(σ̃)) are employed. Using the linearization (5), for any input x ∈ Rn, the variance
over the output f̃(x; θ̃) is at least that of f(x; θ).

In summary, the construction along with Propositions 1 and 2 imply that the additional hidden units
we have added to the original network are uncertainty units under LAs, i.e. hidden units that only
contribute to the Laplace-approximated uncertainty and not the predictions. This property gives rise
to the name Learnable Uncertainty under Laplace Approximations (LULA) units.

3.2 TRAINING

We have seen that by adding LULA units to a network, we obtain additional free parameters that
only affect uncertainty under a LA. These parameters are thus useful for uncertainty calibration. Our
goal is therefore to train them to induce low uncertainty over the data (inliers) and high uncertainty
on outliers—the so-called out-of-distribution (OOD) data. Specifically, this can be done by mini-
mizing the output variance over inliers while maximizing it over outliers. Note that using variance
makes sense in both the regression and classification cases: In the former, this objective directly
maintains narrow error bars near the data while widen those far-away from them—cf. Figure 1
(c, top). Meanwhile, in classifications, variances over function outputs directly impact predictive
confidences, as we have noted in the discussion of (4)—higher variance implies lower confidence.

Thus, following the contemporary technique from non-Bayesian robust learning literature
(Hendrycks et al., 2019; Hein et al., 2019, etc.), we construct the following loss. Let f : Rn×Rd →
Rk be an L-layer neural network with a MAP-trained parameters θMAP and let f̃ : Rn × Rd̃ → Rk
along with θ̃MAP be obtained by adding LULA units. Denoting the dataset sampled i.i.d. from the
data distribution as Din and that from some outlier distribution as Dout, we define

LLULA(θ̃MAP) :=
1

|Din|
∑
xin∈Din

ν(f̃(xin); θ̃MAP)− 1

|Dout|
∑

xout∈Dout

ν(f̃(xout); θ̃MAP) , (7)

where ν(f̃(x); θ̃MAP) is the total variance over the k components of the network out-
put f̃1(x; θ̃), . . . , f̃k(x; θ̃) under the Laplace-approximated posterior p(θ̃ | D) ≈ N (θ̃ |
θ̃MAP, Σ̃(θ̃MAP)), which can be approximated via an S-samples MC-integral

ν(f̃(x);θ̃MAP) :=

k∑
i=1

varp(θ̃|D) f̃i(x; θ̃)

≈
k∑
i=1

(
1

S

S∑
s=1

f̃i(x; θ̃s)
2

)
−

(
1

S

S∑
s=1

f̃i(x; θ̃s)

)2

; with θ̃s ∼ p(θ̃ | D).

(8)

Here, for clarity, we have shown explicitly the dependency of Σ̃ on θ̃MAP. Note that we can simply
set Din to be the training set of a dataset. Furthermore, throughout this paper, we use the simple
OOD dataset proposed by Hein et al. (2019) which is constructed via permutation, blurring, and
contrast rescaling of the in-distribution datasetDin. As we shall show in Section 5, this artificial, un-
informative OOD dataset is sufficient for obtaining good results across benchmark problems. More
complex dataset as Dout might improve LULA’s performance further but is not strictly necessary.

Since our aim is to solely improve the uncertainty, we must maintain the structure of all weights
and biases in θ̃MAP, in accordance to (6). This can simply be enforced via gradient masking: For all
l = 1, . . . , L− 1, set the gradients of the blocks of W̃ (l) and b̃(l) not corresponding to Ŵ (l) and b̂(l),
respectively, to zero. Furthermore, since the covariance matrix Σ̃(θ̃) of the Laplace-approximated
posterior is a function of θ̃, it needs to be updated at every iteration during the optimization ofLLULA.
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Algorithm 1 Training LULA units.

Input:
MAP-trained network f . Dataset D, OOD dataset Dout. Learning rate α. Number of epochs E.

1: Construct f̃ from f by following Section 3.1.
2: for i = 1, . . . , E do
3: p(θ̃ | D) ≈ N (θ̃ | θ̃MAP, Σ̃(θ̃MAP)) . Obtain a Laplace-approximated posterior of f̃
4: Compute LLULA(θ̃MAP) via (7) using p(θ̃ | D), D, and Dout

5: g = ∇LLULA(θ̃MAP)

6: ĝ = mask gradient(g) . Zero out the derivatives not corresponding to θ̂
7: θ̃MAP = θ̃MAP − αĝ
8: end for
9: p(θ̃ | D) ≈ N (θ̃ | θ̃MAP, Σ̃(θ̃MAP)) . Obtain the final Laplace approximation

10: return f̃ and p(θ̃ | D)

The cost scales in the network’s depth and can thus be expensive. Inspired by recent findings that
last-layer Bayesian methods are competitive to all-layer alternatives (Ober & Rasmussen, 2019), we
thus consider a last-layer LA (Kristiadi et al., 2020) as a proxy: We apply a LA only at the last
hidden layer and assume that the first L− 2 layers are learnable feature extractor. We use a diagonal
last-layer Fisher matrix to approximate the last-layer Hessian. Note that backpropagation through
this matrix does not pose a difficulty since modern deep learning libraries such as PyTorch and
TensorFlow supports “double backprop” (backpropagation through a gradient) efficiently. Finally,
the loss LLULA can be minimized using standard gradient-based optimizers. Refer to Algorithm 1
for a summary.

Last but not least, the intuition of LULA training is as follows. By adding LULA units, we obtain
an augmented version of the network’s loss landscape. The goal of LULA training is then to exploit
the weight-space symmetry (i.e. different parameters but induce the same output) arisen from the
construction as shown by Proposition 1 and pick one of these parameters that is symmetric to the
original parameter but has “better” curvatures. Here, we define a “good curvature” in terms of the
above objective. These curvatures, then, when used in a Laplace approximation, could yield better
uncertainty estimates compared to the standard non-LULA-augmented Laplace approximations.

4 RELATED WORK

While traditionally hyperparameter optimization in a LA requires re-training of the network—under
the evidence framework (MacKay, 1992b) or empirical Bayes (Bernardo & Smith, 2009), tuning
it in a post-hoc manner has increasingly becomes a common practice. Ritter et al. (2018a;b) tune
the prior precision of a LA by maximizing the predictive log-likelihood. Kristiadi et al. (2020)
extend this procedure by also using OOD data to better calibrate the uncertainty. However, they
are limited in terms of flexibility since the prior precision of the LAs constitutes to just a single
parameter. LULA can be seen as an extension of these approaches with greater flexibility and is
complementary to them since LULA is independent to the prior precision.

Confidence calibration via OOD data has achieved state-of-the-art performance in non-Bayesian
outlier detection. Hendrycks et al. (2019); Hein et al. (2019); Meinke & Hein (2020) use OOD
data to regularize the standard maximum-likelihood training. Malinin & Gales (2018; 2019) use
OOD data to train probabilistic models based on the Dirichlet distribution. All these methods are
non-Bayesian and non-post-hoc. Our work is thus orthogonal since we aim at improving a class
of Bayesian models in a post-hoc manner. LULA can be seen as bringing the best of both worlds:
Bayesian uncertainty that is tuned via the state-of-the-art non-Bayesian technique.

5 EXPERIMENTS

In this section, we focus on classification using the standard OOD benchmark problems. Supple-
mentary results on regression are in Section C.2.
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Table 1: Average confidences (MMCs in percent) over ten prediction runs. Lower is better for OOD
data while higher is better for in-distribution data. See Table 2 for the AUR values.

Train - Test MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

MNIST 98.0±0.0 97.4±0.0 98.0±0.0 96.0±0.1 98.0±0.0 96.6±0.0 96.6±0.1
E-MNIST 81.4±0.0 76.7±0.0 79.7±0.0 72.1±0.2 81.3±0.0 73.7±0.2 71.4±0.4
F-MNIST 76.6±0.0 67.8±0.0 74.7±0.0 65.8±0.4 76.5±0.0 67.4±0.4 49.4±1.9
Uniform Noise 99.5±0.0 97.0±0.0 98.8±0.0 86.3±1.4 99.5±0.0 89.8±0.9 33.8±2.5
Asymptotic 100.0±0.0 88.0±0.0 75.9±0.0 45.9±0.9 97.3±0.1 50.4±1.3 46.0±2.6

CIFAR-10 95.2±0.0 79.0±0.0 92.9±0.0 91.0±0.2 93.4±0.1 85.3±0.6 88.8±0.3
SVHN 75.5±0.0 62.7±0.0 65.7±0.0 61.5±0.6 68.4±0.5 52.3±1.1 37.5±1.7
LSUN-CR 61.2±0.0 39.7±0.2 48.0±0.0 48.1±1.0 54.5±0.6 40.9±1.0 23.1±1.5
CIFAR-100 79.3±0.0 56.1±0.0 69.5±0.0 67.3±0.6 73.5±0.2 57.4±0.8 63.2±0.4
Uniform Noise 51.5±0.0 72.4±0.0 33.1±0.0 43.5±0.6 46.5±0.6 43.5±1.1 34.4±1.9
Asymptotic 100.0±0.0 49.3±0.1 41.2±0.0 78.9±2.0 90.4±1.0 61.3±2.0 41.4±2.0

SVHN 97.7±0.0 92.7±0.0 94.4±0.0 95.1±0.1 96.4±0.0 96.6±0.0 91.5±0.5
CIFAR-10 64.3±0.0 40.8±0.0 42.2±0.0 48.6±0.3 54.7±0.3 56.2±0.2 40.2±0.6
LSUN-CR 60.3±0.0 33.4±0.1 36.4±0.0 49.0±0.5 54.0±0.4 55.0±0.4 36.0±1.0
CIFAR-100 66.3±0.0 43.1±0.0 44.7±0.0 49.7±0.3 56.1±0.3 57.7±0.2 42.0±0.5
Uniform Noise 53.6±0.0 25.9±0.0 29.8±0.0 41.5±0.5 46.8±0.3 47.9±0.3 22.9±0.6
Asymptotic 99.7±0.0 73.8±0.1 74.2±0.0 35.8±0.7 49.4±0.6 53.7±0.6 22.4±0.3

CIFAR-100 81.7±0.0 57.1±0.0 65.0±0.0 57.3±0.2 70.3±0.1 66.4±0.1 44.3±0.2
SVHN 69.9±0.0 35.6±0.0 43.6±0.0 40.2±0.8 54.4±0.4 49.7±0.7 23.4±0.5
LSUN-CR 60.4±0.0 29.8±0.2 47.0±0.0 39.4±1.5 51.0±0.5 46.8±0.9 14.3±1.0
CIFAR-10 71.5±0.0 39.2±0.0 47.0±0.0 42.6±0.2 56.8±0.1 52.2±0.2 31.8±0.2
Uniform Noise 86.3±0.0 27.8±0.0 46.8±0.0 56.4±3.9 74.2±0.8 67.6±2.4 34.3±2.0
Asymptotic 99.9±0.0 40.7±0.1 25.5±0.0 21.8±0.9 34.0±1.2 29.3±0.8 12.6±0.2

Table 2: OOD detection performance measured by the AUR metric. Values reported are averages
over ten prediction runs. Higher is better. Underline and bold faces indicate the highest values over
the last four columns and all columns in a given row, respectively.

Train - Test MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

MNIST
E-MNIST 84.8±0.0 86.1±0.0 85.8±0.0 86.3±0.1 84.8±0.0 86.3±0.1 88.3±0.2
F-MNIST 86.8±0.0 94.9±0.0 89.5±0.0 91.3±0.3 86.9±0.0 91.0±0.3 98.0±0.4
Uniform Noise 62.8±0.0 80.0±0.1 76.7±0.0 90.0±1.0 62.9±0.1 89.0±0.7 99.8±0.1
Asymptotic 0.2±0.0 75.0±0.3 67.9±0.0 99.0±0.1 12.5±0.3 98.7±0.2 99.0±0.2

CIFAR-10
SVHN 88.6±0.0 73.7±0.0 90.1±0.0 89.7±0.3 89.3±0.3 89.3±0.4 96.3±0.4
LSUN-CR 94.6±0.0 93.0±0.1 96.4±0.0 95.3±0.3 94.9±0.2 95.2±0.5 99.7±0.1
CIFAR-100 84.1±0.0 79.0±0.1 86.2±0.0 84.8±0.1 84.5±0.0 84.7±0.1 84.2±0.3
Uniform Noise 97.5±0.0 66.1±0.1 99.6±0.0 97.7±0.1 97.7±0.1 95.2±0.5 98.4±0.4
Asymptotic 6.5±0.0 86.3±0.1 98.7±0.0 80.2±1.8 64.7±3.2 84.5±1.5 96.5±0.6

SVHN
CIFAR-10 96.4±0.0 97.3±0.0 97.6±0.0 97.0±0.0 96.8±0.0 96.7±0.0 95.8±0.5
LSUN-CR 97.1±0.0 98.7±0.0 98.6±0.0 96.9±0.1 96.9±0.1 96.9±0.0 96.4±0.3
CIFAR-100 95.9±0.0 96.7±0.0 97.1±0.0 96.7±0.0 96.4±0.0 96.3±0.0 95.3±0.5
Uniform Noise 98.2±0.0 99.6±0.0 99.5±0.0 98.3±0.1 98.2±0.0 98.1±0.0 99.1±0.2
Asymptotic 15.6±0.0 79.6±0.1 72.5±0.0 99.1±0.1 97.8±0.1 97.1±0.1 99.1±0.3

CIFAR-100
SVHN 67.5±0.0 73.3±0.1 72.9±0.0 70.1±1.1 69.0±0.4 69.4±0.6 80.1±0.7
LSUN-CR 76.6±0.0 80.1±0.3 69.2±0.0 70.9±1.9 72.4±0.6 72.4±1.0 94.6±1.3
CIFAR-10 65.6±0.0 69.4±0.1 69.4±0.0 67.1±0.3 66.3±0.1 66.5±0.1 66.3±0.2
Uniform Noise 52.0±0.0 82.7±0.1 68.7±0.0 49.1±4.3 48.2±0.9 49.5±2.5 60.5±3.4
Asymptotic 1.6±0.0 66.8±0.1 92.3±0.0 93.5±1.0 89.9±1.1 91.6±0.7 97.3±0.3

5.1 IMAGE CLASSIFICATIONS

Here, we aim to show that LULA units and the proposed training procedure are (i) a significantly
better method for tuning the uncertainty of a LA than previous methods and (ii) able to make a vanilla
LA better than non-post-hoc (thus more expensive) UQ methods. For the purpose of (i), we compare
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Table 3: Robustness to dataset shifts on the corrupted CIFAR-10 dataset (Hendrycks & Dietterich,
2019), following Ovadia et al. (2019). All values are averages and standard deviations over all
perturbation types and intensities (for total of 95 dataset shifts). For accuracy, higher is better, while
for ECE and NLL, lower is better.

Metrics MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

Acc. 29.4±9.0 30.3±9.1 30.0±9.8 29.3±9.0 29.4±9.0 29.2±8.9 29.1±8.9
ECE 47.3±7.2 22.7±9.1 35.6±8.1 36.9±7.3 42.0±7.2 30.5±7.4 28.9±6.6
NLL 4.067±1.09 2.347±0.53 3.321±0.97 3.410±0.91 3.721±1.00 3.061±0.80 3.028±0.72

LULA-augmented KFL (KFL+LULA) against the vanilla KFL with exact prior precision (KFL),
KFL where the prior precision is found by maximizing validation log-likelihood (KFL+LL; Ritter
et al., 2018b), and KFL with OOD training (KFL+OOD; Kristiadi et al., 2020). Moreover, for the
purpose of (ii), we also compare our method with the following baselines, which have been found to
yield strong results in UQ (Ovadia et al., 2019): Monte-Carlo dropout (MCD; Gal & Ghahramani,
2016) and deep ensemble (DE; Lakshminarayanan et al., 2017).

We use 5- and 8-layer CNNs for MNIST and CIFAR-10, SVHN, CIFAR-100, respectively. These
networks achieve around 99%, 90%, and 50% accuracies for MNIST, CIFAR-10, and CIFAR-100,
respectively. For MC-integration during the predictions, we use 10 posterior samples. We quantify
the results using the standard metrics: the mean-maximum-confidence (MMC) and area-under-ROC
(AUR) metrics (Hendrycks & Gimpel, 2017). All results reported are averages over ten prediction
runs. Finally, we use standard test OOD datasets along with the “asymptotic” dataset introduced by
Kristiadi et al. (2020) where random uniform noise images are scaled with a large number (5000).

For simplicity, we add LULA units and apply only at the last layer of the network. For each in-
distribution dataset, the training of the free parameters of LULA units is performed for a single
epoch using Adam over the respective validation dataset. The number of these units is obtained via a
grid-search over the set {64, 128, 256, 512}, balancing both the in- and out-distribution confidences
(see Appendix B for the details).

OOD Detection The results for MMC and AUR are shown in Table 1 and Table 2, respectively.
First, we would like to direct the reader’s attention to the last four columns of the table. We can see
that in general KFL+LULA performs the best among all LA tuning methods. These results validate
the effectiveness of the additional flexibility given by LULA units and the proposed training proce-
dure. Indeed, without this additional flexibility, OOD training on just the prior precision becomes
less effective, as shown by the results of KFL+OOD. Finally, as we can see in the results on the
Asymptotic OOD dataset, LULA makes KFL significantly better at mitigating overconfidence far
away from the training data. Now, compared to the contemporary baselines (MCD, DE), we can see
that the vanilla KFL yields somewhat worse results. Augmenting the base KFL with LULA makes
it competitive to MCD and DE in general. Keep in mind that both KFL and LULA are post-hoc
methods.

Dataset Shift We use the corrupted CIFAR-10 dataset (Hendrycks & Dietterich, 2019) for mea-
suring the robustness of LULA-augmented LA to dataset shifts, following Ovadia et al. (2019). Note
that dataset shift is a slightly different concept to OOD data: it concerns about small perturbations of
the true data, while OOD data are data that do not come from the true data distribution. Intuitively,
humans perceive that the data under a dataset shift lies near the true data while OOD data are farther
away. We present the results in Table 3. Focusing first on the last four columns in the table, we
see that LULA yields the best results compared other tuning methods for KFL. Furthermore, we
see that KFL+LULA outperforms DE, which has been shown by Ovadia et al. (2019) to give the
state-of-the-art results in terms of robustness to dataset shifts. Finally, while MCD achieve the best
results in this experiment, considering its performance in the previous OOD experiment, we draw a
conclusion that KFL+LULA provides a more consistent performance over different tasks.

Comparison with DPN Finally we compare KFL+LULA with the (non-Bayesian) Dirichlet prior
network (DPN, Malinin & Gales, 2018) in the Rotated-MNIST benchmark (Ovadia et al., 2019)
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Figure 3: LULA compared to DPN on the Rotated-MNIST benchmark.

(Figure 3). We found that LULA makes the performance of KFL competitive to DPN. We stress that
KFL and LULA are post-hoc methods, while DPN requires training from scratch.

5.2 COST ANALYSIS

The cost of constructing a LULA network is negligible even for our deepest network: on both the 5-
and 8-layer CNNs, the wall-clock time required (with a standard consumer GPU) to add additional
LULA units is on average 0.01 seconds (over ten trials). For training, using the last-layer LA as
a proxy of the true LA posterior, it took on average 7.25 seconds and 35 seconds for MNIST and
CIFAR-10, SVHN, CIFAR-100, respectively. This tuning cost is cheap relative to the training time
of the base network, which ranges between several minutes to more than an hour. We refer the reader
to Table 9 (Appendix C) for the detail. All in all, LULA is not only effective, but also cost-efficient.

6 CONCLUSION

We have proposed LULA units: hidden units that can be added to any pre-trained MAP network
for the purpose of exclusively tuning the uncertainty of a Laplace approximation without affecting
its predictive performance. They can be trained via an objective that depends on both inlier and
outlier datasets to minimize (resp. maximize) the network’s output variance, bringing the state-of-
the-art technique from non-Bayesian robust learning literature to the Bayesian world. Even with
very simple outlier dataset for training, we show in extensive experiments that LULA units provide
more effective post-hoc uncertainty tuning for Laplace approximations and make their performance
competitive to more expensive baselines which require re-training of the whole network.
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APPENDIX A PROOFS

Proposition 1. Let f : Rn × Rd → Rk be a MAP-trained L-layer network parametrized by θMAP.
Suppose f̃ : Rn × Rd̃ → R and θ̃MAP ∈ Rd̃ are obtained via the previous construction. For any
input x ∈ Rn, we have f̃(x; θ̃MAP) = f(x; θMAP).

Proof. Let x ∈ Rn be arbitrary. For each layer l = 1, . . . , L we denote the hidden units and pre-
activations of f̃ as h̃(l) and ã(l), respectively. We need to show that the output of f̃ , i.e. the last
pre-activations ã(L), is equal to the last pre-activations a(L) of f .

For the first layer, we have that

ã(1) = W̃ (1)x+ b̃(1) =

(
W (1)

Ŵ (1)

)
x+

(
b(1)

b̂(1)

)
=

(
W (1)x+ b(1)

Ŵ (1)x+ b̂(1)

)
=:

(
a(1)

â(1)

)
.

For every layer l = 1, . . . , L− 1, we denote the hidden units as the block vector

h̃(l) =

(
ϕ(a(l))
ϕ(â(l))

)
=

(
h(l)

ĥ(l)

)
.

Now, for the intermediate layer l = 2, . . . , L− 1, we observe that

ã(l) = W̃ (l)h̃(l−1) + b̃(l) =

(
W (l) 0

Ŵ
(l)
1 Ŵ

(l)
2

)(
h(l−1)

ĥ(l−1)

)
+

(
b(l)

b̂(l)

)
=

(
W (l)h(l−1) + 0 + b(l)

Ŵ
(l)
1 h(l−1) + Ŵ

(l)
2 ĥ(l−1) + b̂(l)

)
=:

(
a(l)

â(l)

)
.

Finally, for the last-layer, we get

ã(L) = W̃ (L)x+ b̃(L) =
(
W (L) 0

)(h(L−1)
ĥ(L−1)

)
+ b(L) = W (L)h(L−1) + 0 + b(L) = a(L) .

This ends the proof.

Proposition 2. Suppose f : Rn × Rd → R is a real-valued network and f̃ is as constructed
above. Suppose further that diagonal Laplace-approximated posteriors N (θ | θMAP,diag(σ)),
N (θ̃ | θ̃,diag(σ̃)) are employed. Using the linearization (5), for any input x ∈ Rn, the variance
over the output f̃(x; θ̃) is at least that of f(x; θ).

Proof. W.l.o.g. we arrange the parameters θ̃ := (θ>, θ̂>)> where θ̂ ∈ Rd̃−d contains the weights
corresponding to the the additional LULA units. If g(x) is the gradient of the output f(x; θ) w.r.t. θ,
then the gradient of f̃(x; θ̃) w.r.t. θ̃, say g̃(x), can be written as the concatenation (g(x)>, ĝ(x)>)>

where ĝ(x) is the corresponding gradient of θ̂. Furthermore, diag(σ̃) has diagonal elements(
σ11, . . . , σdd, σ̂11, . . . , σ̂d̃−d,d̃−d

)>
=: (σ>, σ̂>)> .

Hence we have

ṽ(x) = g̃(x)>diag(σ̃)g̃(x)

= g(x)>diag(σ)g(x)︸ ︷︷ ︸
=v(x)

+ĝ(x)>diag(σ̂)ĝ(x)

≥ v(x) ,

since diag(σ̂) is positive-definite.
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Algorithm 2 Adding LULA units.

Input:

L-layer net with a MAP estimate θMAP = (W
(l)
MAP, b

(l)
MAP)Ll=1. Sequence of non-negative integers

(ml)
L
l=1.

1: for l = 1, . . . , L− 1 do

2: vec Ŵ (l) ∼ p(vec Ŵ (l)) . Draw from a prior

3: b̂(l) ∼ p(̂b(l)) . Draw from a prior

4: W̃
(l)
MAP =

W (l)
MAP 0

Ŵ
(l)
1 Ŵ

(l)
2

 . The zero submatrix 0 is of size nl ×ml−1

5: b̃
(l)
MAP :=

b(l)MAP

b̂(l)


6: end for

7: W̃ (L)
MAP = (W

(L)
MAP, 0) . The zero submatrix is of size k ×mL−1

8: b̃(L)MAP = b
(L)
MAP

9: θ̃MAP = (W̃
(l)
MAP, b̃

(l)
MAP)Ll=1

10: return θ̃MAP

(a) Laplace (b) LULA-Untrained (c) LULA-Trained
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4: Even when their weights are assigned randomly, LULA units improve the vanilla Laplace
in terms of UQ. Fine-tuning the LULA weights improve it even further, in particular in terms of
confidence far from the data—trained, LULA yields less confident prediction in this region.

APPENDIX B IMPLEMENTATION

We summarize the augmentation of a network with LULA units in Algorithm 2. Note that the priors
of the free parameters Ŵ (l), b̂(l) (lines 2 and 3) can be chosen as independent Gaussians—this
reflects the standard procedure for initializing NNs’ parameters.

We train LULA units for a single epoch (since for each dataset, we have a large amount of training
points) with learning rate 0.01. For each dataset, the number of the additional last-layer units mL is
obtained via a grid search over the set {64, 128, 256, 512} =: ML, minimizing the absolute distance
to the optimal MMC, i.e. 1 and 1/k for the in- and out-distribution validation set, respectively:

mL = arg min
m∈ML

|1−MMCin(m)|+ |1/k −MMCout(m)| , (9)

where MMCin and MMCout are the validation in- and out-distribution MMC of the Laplace-
approximated, trained-LULA, respectively.

APPENDIX C ADDITIONAL EXPERIMENT RESULTS

C.1 TOY DATASET

In practice, one can simply set {Ŵ (l), b̂(l)}L−1l=1 randomly given a prior, e.g. the standard Gaussian
(see also Algorithm 2). To validate this practice, we show the vanilla Laplace, untrained LULA,
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Table 4: Predictive performances on UCI regression datasets in term of average test log-likelihood.
The numbers reported are averages over ten runs along the corresponding standard deviations. The
performances of LULA are similar to KFL’s. The differences between their exact values are likely
due to MC-integration.

Dataset MAP MCD DE KFL KFL+LULA

Housing -2.794±0.012 -2.731±0.031 -3.045±0.009 -3.506±0.055 -3.495±0.047
Concrete -3.409±0.036 -4.370±0.001 -3.951±0.062 -4.730±0.205 -4.365±0.094
Energy -2.270±0.128 -2.120±0.104 -2.673±0.015 -2.707±0.030 -2.698±0.014
Kin8nm -0.923±0.000 -0.926±0.000 1.086±0.022 -0.965±0.003 -0.969±0.003
Power -3.154±0.002 -4.185±0.003 -54.804±7.728 -3.273±0.015 -3.277±0.024
Wine -1.190±0.014 -1.185±0.005 -1.038±0.018 -1.624±0.075 -1.630±0.092
Yacht -1.835±0.053 -1.724±0.117 -3.272±0.079 -2.509±0.367 -2.663±0.276

Table 5: UQ performances on UCI datasets. Values are the average (over all data points and ten
trials) predictive standard deviations. Lower is better for test data and vice-versa for outliers. By
definition, MAP does not have (epistemic) uncertainty.

Test set ↓ Outliers ↑

Dataset MCD DE KFL KFL+LULA MCD DE KFL KFL+LULA

Housing 1.40 5.82 1.26 1.37 61.49 145.33 222.76 377.92
Concrete 1.00 8.11 10.44 16.89 4.06 964.63 30898.92 83241.42
Energy 1.32 4.40 1.05 1.08 45.69 126.11 1070.09 5163.53
Kin8nm 0.04 0.10 0.14 0.18 0.24 2.12 0.80 2.12
Power 14.73 19.85 2.85 3.20 273.08 12235.87 4148.98 221287.80
Wine 0.24 0.64 1.15 1.22 0.30 28.57 186.76 21383.17
Yacht 0.54 5.17 2.08 2.78 81.98 187.41 5105.69 13119.99

and fine-tuned LULA’s confidence in Figure 4. Even when set randomly from the standard Gaus-
sian prior, LULA weights provide a significant improvement over the vanilla Laplace. Moreover,
training them yields even better predictive confidence estimates. In particular, far from the data, the
confidence becomes even lower, while still maintaining high confidence in the data regions.

C.2 UCI REGRESSION

To validate the performance of LULA in regressions, we employ a subset of the UCI regression
benchmark datasets. Following previous works, the network architecture used here is a single-
hidden-layer ReLU network with 50 hidden units. The data are standardized to have zero mean and
unit variance. We use 50 LULA units and optimize them for 40 epochs using OOD data sampled
uniformly from [−10, 10]n. For MCD, KFL, and KFL+LULA, each prediction is done via MC-
integration with 100 samples. For the evaluation of each dataset, we use a 60-20-20 train-validation-
test split. We repeat each train-test process 10 times and take the average.

In Table 5 we report the average predictive standard deviation for each dataset. Note that this metric
is the direct generalization of the 1D error bar in Figure 1 (top) to multi dimension. The outliers
are sampled uniformly from [−10, 10]n. Note that since the inlier data are centered around the ori-
gin and have unit variance, they lie approximately in a Euclidean ball with radius 2. Therefore,
these outliers are very far away from them. Thus, naturally, high uncertainty values over these
outliers are desirable. Uncertainties over the test sets are generally low for all methods, although
KFL+LULA has slightly higher uncertainties compared to the base KFL. However, KFL+LULA
yield much higher uncertainties over outliers across all datasets, significantly more than the base-
lines. Moreover, in Table 4, we show that KFL+LULA maintains the predictive performance of the
base KFL. Altogether, they imply that KFL+LULA can detect outliers better than other methods
without costing the predictive performance.

C.3 IMAGE CLASSIFICATION

In Table 6 we present the sensitivity analysis of confidences under a Laplace approximation w.r.t. the
number of additional LULA units. Generally, we found that small number of additional LULA units,
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Table 6: In- and out-distribution validation MMCs for varying numbers of additional LULA units.
“In“ and “out“ values are in percent. “Loss” is the value of the loss in (9). Missing entries signify
that errors occurred, see Section C.3 for details.

MNIST CIFAR-10 CIFAR-100

# units In ↑ Out ↓ Loss ↓ In ↑ Out ↓ Loss ↓ In ↑ Out ↓ Loss ↓

16 97.1 46.3 0.392 91.3 21.6 0.203 54.0 12.8 0.578
32 97.1 19.7 0.127 90.4 17.7 0.173 50.5 8.7 0.572
64 97.0 27.0 0.200 89.3 19.6 0.203 43.8 7.8 0.629

128 96.7 28.9 0.223 83.9 18.2 0.243 31.0 6.5 0.745
256 94.2 18.2 0.140 62.1 18.4 0.463 14.3 6.2 0.909
512 68.4 17.6 0.392 - - - - - -

Table 7: Accuracies (in percent) over image classification test sets. Values are averages over ten
trials.

Dataset MAP MCD DE KFL KFL+LULA

MNIST 99.1±0.0 99.1±0.0 99.1±0.0 99.1±0.0 99.1±0.0
CIFAR-10 90.1±0.0 84.4±0.0 91.2±0.0 89.9±0.1 89.5±0.1
CIFAR-100 53.2±0.0 60.5±0.1 59.6±0.0 52.2±0.2 51.3±0.4

e.g. 32 and 64, is optimal. It is clear that increasing the number of LULA units decreases both the
in- and out-distribution confidences. In the case of larger networks, we found that larger values (e.g.
512 in CIFAR-10) make the Hessian badly conditioned, resulting in numerical instability during
its inversion. One might be able to alleviate this issue by additionally tuning the prior precision
hyperparameter of the Laplace approximation (as in (Ritter et al., 2018b; Kristiadi et al., 2020)),
which corresponds to varying the strength of the diagonal correction of the Hessian. However, we
emphasize that even with small amounts of additional LULA units, we can already improve vanilla
Laplace approximations significantly, as shown in the main text (Section 5.1).

We present the predictive performances of all methods in Table 7. LULA achieves similar accu-
racies to the base MAP and KFL baselines. Differences in their exact values likely due to various
approximations used (e.g. MC-integral). In the case of CIFAR-100, we found that MAP underper-
forms compared to MCD and DE. This might be because of overfitting, since only weight decay is
used for regularization, in contrast to MCD where dropout is used on top of weight decay. Due to
MAP’s underperformance, LULA also underperform. However, we stress that whenever the base
MAP model performs well, by construction LULA will also perform well.

As a supplement we show the performance of KFL+LULA against DPN in OOD detection on
MNIST (Table 8). We found that KFL+LULA performance on OOD detection are competitive
or better than DPN.

C.4 COMPUTATIONAL COST

To supplement the cost analysis in the main text, we show the wall-clock times required for the
construction and training of LULA units in Table 9.

Table 8: LULA compared to DPN on OOD detection in terms of MMC and AUR, both in percent.

MMC AUR ↑

Train - Test DPN KFL+LULA DPN KFL+LULA

MNIST
E-MNIST 74.5±0.0 71.4±0.4 87.7±0.0 88.3±0.2
F-MNIST 58.5±0.0 49.4±1.9 96.8±0.0 98.0±0.4
Smooth Noise 10.5±0.0 22.2±0.6 100.0±0.0 100.0±0.0
Uniform Noise 61.0±0.0 33.8±2.5 98.2±0.0 99.8±0.1
Asymptotic 100.0±0.0 46.0±2.6 0.2±0.0 99.0±0.2
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Table 9: Wall-clock time of adding and training LULA units. All values are in seconds.

Dataset Construction Training

MNIST 0.010±0.000 7.252±0.033
CIFAR-10 0.011±0.003 35.108±0.243
CIFAR-100 0.009±0.000 34.913±0.253

Table 10: Average confidences (MMCs in percent) on 20-layer CNNs over ten prediction runs.
Lower is better for OOD data. Values shown for each in-distribution dataset are ECE—lower is
better. Underline and bold faces indicate the highest values over the last four columns and all
columns in a given row, respectively.

Train - Test MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

CIFAR-10 15.0±0.0 6.8±0.3 4.2±0.0 9.9±0.4 5.8±0.8 6.1±0.6 5.2±0.5
SVHN 70.7±0.0 67.3±0.0 58.3±0.0 65.2±0.6 60.1±1.2 60.5±1.5 57.5±0.9
LSUN-CR 56.2±0.0 56.0±0.2 51.3±0.0 51.3±0.8 45.5±1.4 47.3±1.8 39.8±1.4
CIFAR-100 78.3±0.0 69.9±0.0 66.5±0.0 72.9±0.3 67.6±0.8 68.3±0.8 66.2±0.6
Uniform Noise 84.0±0.0 74.8±0.0 54.8±0.0 74.2±1.5 63.3±2.6 65.2±3.2 59.5±2.3
Asymptotic 99.9±0.0 95.2±0.0 70.6±0.0 87.1±1.4 80.4±2.4 82.1±2.7 73.0±1.6

SVHN 10.5±0.0 2.7±0.2 17.3±0.0 6.3±0.2 5.8±0.4 4.1±0.4 3.4±0.3
CIFAR-10 73.8±0.0 55.2±0.0 43.9±0.0 67.9±0.2 67.4±0.4 64.7±0.5 59.3±0.9
LSUN-CR 64.8±0.0 50.6±0.1 42.0±0.0 61.8±0.3 61.5±0.4 59.7±0.3 45.5±1.5
CIFAR-100 74.8±0.0 56.1±0.0 45.0±0.0 69.4±0.3 68.9±0.4 66.2±0.4 60.7±0.9
Uniform Noise 56.6±0.0 47.2±0.0 36.5±0.0 54.1±0.2 53.8±0.3 52.4±0.3 41.0±1.7
Asymptotic 99.8±0.0 65.5±0.0 44.4±0.0 84.1±0.6 83.5±0.7 79.2±0.5 69.1±1.6

CIFAR-100 38.7±0.0 20.6±0.1 10.8±0.0 21.5±0.3 14.6±0.3 10.4±0.2 4.6±0.2
SVHN 69.3±0.0 53.5±0.0 47.1±0.0 53.5±0.4 46.8±0.4 42.8±0.4 26.7±0.5
LSUN-CR 67.1±0.0 52.6±0.3 46.0±0.0 52.8±0.5 46.3±0.6 42.6±0.7 23.4±1.1
CIFAR-10 73.5±0.0 57.9±0.1 52.2±0.0 59.3±0.2 53.1±0.1 49.0±0.3 40.7±0.3
Uniform Noise 79.9±0.0 52.4±0.1 47.3±0.0 61.2±1.1 52.2±1.3 48.7±1.6 25.3±1.6
Asymptotic 97.4±0.0 48.1±0.1 41.7±0.0 52.8±1.3 45.0±1.7 39.4±1.2 37.8±1.2

C.5 DEEPER NETWORKS

We also asses the performance of LULA in larger network. We use a 20-layer CNN on CIFAR-
10, SVHN, and CIFAR-100. Both the KFL and LULA are applied only at the last-layer of the
network. The results, in terms of MMC, expected calibration error (ECE), and AUR, are presented
in Table 10 and Table 11. We observe that LULA is the best method for uncertainty tuning in LA: It
makes KFL better calibrated in both in- and out-distribution settings. Moreover, the LULA-imbued
KFL is competitive to DE, which has been shown by Ovadia et al. (2019) to be the best Bayesian
method for uncertainty quantification. Note that, KFL+LULA is a post-hoc method and thus can be
applied to any pre-trained network. In contrast, DE requires training multiple networks (usually 5)
from scratch which can be very expensive.

We additionally show the performance of LULA when applied on top of a KFL-approximated
DenseNet-121 (Huang et al., 2017) in Tables 12 and 13. LULA generally outperforms previous
uncertainty tuning methods for LA and is competitive to DE. However, we observe in SVHN that
LULA do not improve KFL significantly. This issue is due to the usage the Smooth Noise dataset,
which has already assigned low confidence in this case, for training LULA. Thus, we re-train LULA
with the Uniform Noise dataset and present the result in Table 14. We show that using this dataset,
we obtain better OOD calibration performance, outperforming DE.
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Table 11: OOD detection performance measured by the AUR metric on 20-layer CNNs. Values
reported are averages over ten prediction runs. Higher is better. Underline and bold faces indicate
the highest values over the last four columns and all columns in a given row, respectively.

Train - Test MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

CIFAR-10
SVHN 91.4±0.0 89.0±0.0 92.8±0.0 90.9±0.2 90.6±0.3 90.8±0.3 90.9±0.2
LSUN-CR 95.6±0.0 93.4±0.1 94.8±0.0 95.5±0.2 96.0±0.3 95.6±0.4 97.0±0.3
CIFAR-100 85.1±0.0 85.5±0.0 87.2±0.0 85.1±0.1 85.1±0.1 85.1±0.1 85.2±0.1
Uniform Noise 86.0±0.0 85.9±0.0 94.7±0.0 87.4±0.7 89.7±0.9 89.2±1.2 90.3±0.8
Asymptotic 12.7±0.0 35.0±0.3 77.9±0.0 56.9±4.4 70.5±5.9 67.2±6.9 81.0±1.7

SVHN
CIFAR-10 93.2±0.0 96.4±0.0 97.2±0.0 93.9±0.0 94.0±0.0 94.2±0.1 93.9±0.2
LSUN-CR 96.4±0.0 97.4±0.0 98.1±0.0 96.1±0.0 96.1±0.1 96.0±0.1 96.7±0.1
CIFAR-100 92.9±0.0 96.1±0.0 96.8±0.0 93.5±0.0 93.5±0.0 93.7±0.1 93.5±0.2
Uniform Noise 98.1±0.0 98.0±0.0 99.0±0.0 97.8±0.0 97.8±0.0 97.7±0.0 98.1±0.1
Asymptotic 6.9±0.0 94.7±0.0 95.4±0.0 59.0±1.5 60.6±1.8 69.3±1.1 83.2±2.0

CIFAR-100
SVHN 69.8±0.0 70.5±0.1 73.3±0.0 71.2±0.5 72.2±0.4 72.5±0.4 83.7±0.5
LSUN-CR 72.1±0.0 71.3±0.3 74.4±0.0 71.9±0.6 72.7±0.6 72.7±0.8 88.3±1.3
CIFAR-10 64.7±0.0 65.7±0.1 67.9±0.0 64.8±0.2 65.0±0.1 65.1±0.2 64.3±0.3
Uniform Noise 58.2±0.0 72.0±0.1 73.1±0.0 63.2±1.0 66.1±1.5 65.2±1.9 85.9±2.2
Asymptotic 13.6±0.0 76.1±0.1 78.6±0.0 72.1±1.4 74.2±2.0 76.6±1.5 67.6±1.8

Table 12: Average confidences (MMCs in percent) on DenseNet-121 over ten prediction runs. Lower
is better for OOD data. Values shown for each in-distribution dataset are ECE—lower is better.
Underline and bold faces indicate the highest values over the last four columns and all columns in a
given row, respectively.

Train - Test MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

CIFAR-10 23.3±0.0 10.2±0.5 8.1±0.0 21.2±0.4 16.3±0.5 15.5±0.4 10.3±0.7
SVHN 87.8±0.0 74.3±0.0 67.6±0.0 85.1±0.2 80.7±0.6 79.8±1.1 30.9±1.5
LSUN-CR 80.0±0.0 70.2±0.2 63.4±0.0 77.0±0.4 72.4±1.2 71.8±0.7 34.0±2.3
CIFAR-100 86.7±0.0 79.6±0.0 74.2±0.0 84.8±0.1 81.6±0.3 81.0±0.2 77.7±0.5
Smooth Noise 76.0±0.1 80.3±0.0 54.2±0.1 70.6±0.4 63.4±1.1 62.5±1.0 24.3±1.3
Uniform Noise 84.1±0.0 82.3±0.0 69.4±0.0 77.8±0.6 70.4±1.5 68.7±1.5 75.8±0.8
Asymptotic 100.0±0.0 100.0±0.0 20.0±0.0 63.8±1.5 44.5±1.4 43.4±1.9 58.4±1.8

SVHN 4.7±0.0 2.7±0.2 3.1±0.0 4.3±0.2 3.9±0.2 3.6±0.2 3.0±0.2
CIFAR-10 69.9±0.0 56.1±0.0 50.5±0.0 69.3±0.1 68.6±0.3 67.8±0.3 67.8±0.2
LSUN-CR 64.1±0.0 52.3±0.2 51.3±0.0 63.8±0.1 63.4±0.2 63.0±0.2 61.4±0.4
CIFAR-100 69.4±0.0 57.3±0.0 51.1±0.0 68.9±0.1 68.2±0.3 67.5±0.2 67.5±0.2
Smooth Noise 30.9±0.1 25.4±0.0 33.6±0.0 30.8±0.1 30.7±0.1 30.6±0.0 27.8±0.5
Uniform Noise 63.6±0.0 55.8±0.0 54.2±0.0 63.4±0.1 63.1±0.2 62.8±0.1 62.8±0.2
Asymptotic 100.0±0.0 98.8±0.0 40.0±0.0 34.1±2.1 26.6±1.1 25.7±1.2 22.7±0.6

CIFAR-100 27.3±0.0 19.1±0.2 6.2±0.0 5.3±0.3 10.0±0.2 4.7±0.3 13.3±0.4
SVHN 76.2±0.0 72.6±0.0 53.3±0.0 48.1±1.5 54.9±1.3 40.0±1.4 15.6±0.8
LSUN-CR 71.1±0.0 67.2±0.2 50.5±0.0 46.9±1.2 53.2±0.9 39.8±1.4 17.4±1.1
CIFAR-10 77.8±0.0 70.2±0.0 59.3±0.0 57.7±0.2 63.1±0.2 51.2±0.1 40.3±0.2
Smooth Noise 93.1±0.1 90.4±0.1 76.9±0.1 61.9±2.2 70.7±1.5 50.3±2.6 14.1±1.4
Uniform Noise 79.8±0.0 56.1±0.1 53.6±0.0 36.5±2.5 43.6±3.3 28.5±2.7 22.4±1.3
Asymptotic 100.0±0.0 96.5±0.0 20.0±0.0 48.6±3.3 61.5±2.4 35.8±3.5 21.1±1.5
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Table 13: OOD detection performance measured by the AUR metric on DenseNet-121. Values
reported are averages over ten prediction runs. Higher is better. Underline and bold faces indicate
the highest values over the last four columns and all columns in a given row, respectively.

Train - Test MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

CIFAR-10
SVHN 88.2±0.0 92.5±0.0 94.1±0.0 89.5±0.2 90.9±0.3 91.2±0.7 99.7±0.0
LSUN-CR 94.0±0.0 94.2±0.1 95.3±0.0 94.3±0.1 94.5±0.3 94.5±0.2 99.5±0.1
CIFAR-100 88.9±0.0 88.5±0.0 90.5±0.0 89.0±0.0 89.1±0.0 89.2±0.0 87.9±0.1
Smooth Noise 96.2±0.0 91.5±0.0 97.6±0.0 96.7±0.1 97.2±0.2 97.2±0.1 100.0±0.0
Uniform Noise 93.6±0.0 91.6±0.0 94.5±0.0 94.8±0.2 95.7±0.3 95.9±0.4 92.0±0.3
Asymptotic 26.1±0.0 18.0±0.1 100.0±0.0 97.9±0.2 99.5±0.1 99.5±0.1 97.2±0.3

SVHN
CIFAR-10 93.6±0.0 96.7±0.0 97.8±0.0 93.7±0.0 93.8±0.1 93.9±0.1 93.2±0.2
LSUN-CR 96.1±0.0 97.6±0.0 97.9±0.0 96.1±0.0 96.1±0.0 96.1±0.0 95.8±0.1
CIFAR-100 93.3±0.0 96.1±0.0 97.4±0.0 93.4±0.0 93.4±0.1 93.6±0.1 92.9±0.2
Smooth Noise 99.4±0.0 99.7±0.0 99.6±0.0 99.4±0.0 99.4±0.0 99.4±0.0 99.6±0.0
Uniform Noise 97.1±0.0 97.5±0.0 98.0±0.0 97.1±0.0 97.0±0.0 97.0±0.0 96.6±0.1
Asymptotic 0.0±0.0 14.4±0.3 99.7±0.0 99.8±0.1 99.9±0.0 100.0±0.0 100.0±0.0

CIFAR-100
SVHN 77.2±0.0 73.2±0.0 83.5±0.0 83.8±1.1 82.4±1.0 85.6±1.1 97.5±0.5
LSUN-CR 81.4±0.0 79.6±0.1 85.7±0.0 84.6±0.8 83.7±0.6 85.7±1.1 96.2±0.8
CIFAR-10 74.8±0.0 75.8±0.0 78.6±0.0 75.3±0.1 75.2±0.2 75.5±0.2 73.9±0.3
Smooth Noise 59.4±0.1 54.6±0.1 62.0±0.1 71.4±1.9 68.1±1.2 76.2±2.4 97.7±1.2
Uniform Noise 78.7±0.0 88.4±0.1 85.1±0.0 93.1±1.5 91.5±2.0 94.8±1.7 93.1±1.2
Asymptotic 4.5±0.0 32.9±0.2 99.9±0.0 84.9±2.6 79.5±1.8 90.0±2.6 93.9±1.1

Table 14: LULA’s OOD detection performance on DenseNet-121 with uniform noises as the train-
ing OOD data. Values are the ECE, MMC, and AUR metrics, averaged over ten prediction runs.
Underline and bold faces indicate the highest values over the last four columns and all columns in a
given row, respectively.

Train - Test MAP MCD DE KFL KFL+LL KFL+OOD KFL+LULA

SVHN (ECE, MMC) 4.7±0.0 2.7±0.2 3.1±0.0 4.3±0.2 3.9±0.2 3.6±0.2 3.6
CIFAR-10 69.9±0.0 56.1±0.0 50.5±0.0 69.3±0.1 68.6±0.3 67.8±0.3 39.1±1.8
LSUN-CR 64.1±0.0 52.3±0.2 51.3±0.0 63.8±0.1 63.4±0.2 63.0±0.2 29.6±2.3
CIFAR-100 69.4±0.0 57.3±0.0 51.1±0.0 68.9±0.1 68.2±0.3 67.5±0.2 42.5±1.7
Smooth Noise 30.9±0.1 25.4±0.0 33.6±0.0 30.8±0.1 30.7±0.1 30.6±0.0 27.5±0.3
Uniform Noise 63.6±0.0 55.8±0.0 54.2±0.0 63.4±0.1 63.1±0.2 62.8±0.1 22.9±0.6
Asymptotic 100.0±0.0 98.8±0.0 40.0±0.0 34.1±2.1 26.6±1.1 25.7±1.2 23.3±0.6

SVHN (AUR)
CIFAR-10 93.6±0.0 96.7±0.0 97.8±0.0 93.7±0.0 93.8±0.1 93.9±0.1 98.7±0.1
LSUN-CR 96.1±0.0 97.6±0.0 97.9±0.0 96.1±0.0 96.1±0.0 96.1±0.0 99.5±0.1
CIFAR-100 93.3±0.0 96.1±0.0 97.4±0.0 93.4±0.0 93.4±0.1 93.6±0.1 98.0±0.1
Smooth Noise 99.4±0.0 99.7±0.0 99.6±0.0 99.4±0.0 99.4±0.0 99.4±0.0 99.6±0.0
Uniform Noise 97.1±0.0 97.5±0.0 98.0±0.0 97.1±0.0 97.0±0.0 97.0±0.0 99.9±0.0
Asymptotic 0.0±0.0 14.4±0.3 99.7±0.0 99.8±0.1 99.9±0.0 100.0±0.0 99.9±0.0
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