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Frame Interpolation with Consecutive Brownian Bridge Diffusion
Anonymous Authors

Overlaid Inputs GTVFIformer IFR-Net EMA-VFI UPR-Net AMT LDMVFI Ours

Figure 1: Qualitative Comparison of our proposedmethod and recent state-of-the-artmethods. Overlaid Inputs are the average of
two neighboring frames, and the results predict their intermediate frame. Ourmethod generates better and clearer interpolation
results than recent SOTAs, such as clearer dog skins (first row), clearer cloth with folds (second row), and clearer fences with
nets and high-quality shoes (third row). Images within blue boxes are displayed to better compare detailed qualities, and red
circles highlight our better performance. Examples are chosen from SNU-FILM [8] extreme subset which is the hardest one
with large motion changes. More visual results are provided in the supplementary materials.

ABSTRACT
Recent work in Video Frame Interpolation (VFI) tries to formulate
VFI as a diffusion-based conditional image generation problem,
synthesizing the intermediate frame given a random noise and
neighboring frames. Due to the relatively high resolution of videos,
Latent Diffusion Models (LDMs) are employed as the conditional
generation model, where the autoencoder compresses images into
latent representations for diffusion and then reconstructs images
from these latent representations. Such a formulation poses a cru-
cial challenge: VFI expects that the output is deterministically equal
to the ground truth intermediate frame, but LDMs randomly gener-
ate a diverse set of different images when the model runs multiple
times. The reason for the diverse generation is that the cumula-
tive variance (variance accumulated at each step of generation)
of generated latent representations in LDMs is large. This makes
the sampling trajectory random, resulting in diverse rather than
deterministic generations. To address this problem, we propose our
unique solution: Frame Interpolation with Consecutive Brownian
Bridge Diffusion. Specifically, we propose consecutive Brownian
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Bridge diffusion that takes a deterministic initial value as input,
resulting in a much smaller cumulative variance of generated la-
tent representations. Our experiments suggest that our method
can improve together with the improvement of the autoencoder
and achieve state-of-the-art performance in VFI, leaving strong
potential for further enhancement.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Video Frame Interpolation, Diffusion Models, Brownian Bridge

1 INTRODUCTION
Video Frame Interpolation (VFI) aims to generate high frame-per-
second (fps) videos from low fps videos by estimating the inter-
mediate frame given its neighboring frames. High-quality frame
interpolation contributes to other practical applications such as
novel view synthesis [14], video compression [58], and high-fps
cartoon synthesis [47].

Current works in VFI can be divided into two folds in terms
of methodologies: flow-based methods [1, 7, 12, 18, 20, 24, 29, 32,
34, 39, 42, 47, 60] and kernel-based methods [4, 5, 9, 27, 36, 37, 46].
Flow-based methods compute flows in the neighboring frames and
forward warp neighboring images and features [18, 24, 34, 35, 47] or
estimate flows from the intermediate frame to neighboring frames
and backward warp neighboring frames and features [1, 7, 12, 20,
29, 32, 39, 42, 60]. Instead of relying on optical flows, kernel-based

2024-04-13 11:53. Page 1 of 1–10.

https://doi.org/XXXXXXX.XXXXXXX


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM Multimedia ’24, October 28– November 01, 2024, Melbourne, Austrilia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

methods predict convolution kernels for pixels in the neighboring
frames. Recent advances in flow estimation [19, 21–23, 51, 52, 57]
make it more popular to adopt flow-based methods in VFI.

Other than these two folds of methods, MCVD [55] and LD-
MVFI [11] start formulating VFI as a diffusion-based image gen-
eration problem. LDMVFI considers VFI as a conditional genera-
tion task with Latent Diffusion Models (LDMs) [43], where LDMs
contain an autoencoder that compresses images into latent rep-
resentations and reconstructs images from latent representations.
Diffusion models [17] run in the latent space of the autoencoder.
Though diffusion models achieve excellent performance in image
generation, there remain challenges in applying them to VFI.

(1) The formulation of diffusion models results in a large cumula-
tive variance (the variance accumulated during sampling) of
generated latent representations. The sampling process starts
with standard Gaussian noise and adds small Gaussian noise to
the denoised output at each step based on a pre-defined distri-
bution. After the sampling process, images are generated, but
these noises also add up to a large cumulative variance. Though
such a variance is beneficial to diversity (i.e. repeated sampling
results in different outputs), VFI requires that repeated sampling
returns identical results, which is the ground truth intermediate
frame. Therefore, a small cumulative variance is preferred in
VFI. The relation of the cumulative variance and diversity is
supported by the fact that DDIM [48] tends to generate rela-
tively deterministic images than DDPM [17]. DDIM removes
small noises at each sampling step, so the cumulative variance
in DDIM is lower. LDMVFI [11] uses conditional generation as
guidance, but this does not change the nature of large cumu-
lative variance. In Section 3.4, we show that our method has a
much lower cumulative variance than conditional generation.

(2) Videos usually have high resolution, which can be up to 4K [41],
resulting in practical constraints to apply diffusion models [17]
in pixel spaces. It is natural to apply Latent Diffusion Models
(LDMs) [43] to sample latent representations and reconstruct
them back to images. LDMs apply VQModels in VQGAN [13]
to compress images into latent representations and reconstruct
images from latent representations. However, it does not take
advantage of neighboring frames, which can be a good guide
to reconstruction. LDMVFI designs reconstruction models that
leverage neighboring frames, but it tends to reconstruct over-
laid images when there is a relatively large motion between
neighboring frames, possibly due to the cross-attention with
features of neighboring frames, which is shown in Figure 1.

To tackle these challenges, we propose a consecutive Brownian
Bridge diffusion model (in latent space) that transits among three
deterministic endpoints for VFI. This method results in a much
smaller cumulative variance, achieving a better estimation of the
ground truth inputs. We can separate LDM-based VFI methods into
two parts: autoencoder and ground truth estimation (with diffusion).
It is different from the original LDMs [43] because the latent rep-
resentation generated by diffusion does not aim to estimate some
ground truth. It is also different from LDMVFI [11] because LD-
MVFI does not consider the performance of autoencoder separately
from the interpolation method. With such a two-stage separation,
we evaluate them separately for specific directions of improvement.

Moreover, we take advantage of flow estimation and refinement
methods in recent literature [32] to improve the autoencoder. The
feature pyramids from neighboring frames are warped based on
estimated optical flows, aiming to alleviate the issues of reconstruct-
ing overlaid images. In experiments, our method improves by a
large margin when the autoencoder is improved and achieves state-
of-the-art performance. Our contribution can be summarized in
three parts:

• We propose a new consecutive Brownian Bridge diffusion model
for VFI and justify its advantages over traditional diffusion mod-
els: lower cumulative variance and better ground truth estima-
tion capability. Additionally, we provide a cleaner formulation
of Brownian Bridges and also propose the loss weights among
different times in Brownian Bridges.
• We formulate the diffusion-based VFI as two stages: autoencoder
and ground truth estimation. This is a novel interpretation of
LDM-based VFI, which can provide specific directions for im-
provements.
• Through extensive experiments, we validate the effectiveness
of our method. Our method estimates the ground truth better
than traditional diffusion with conditional generation. Moreover,
the performance of our method improves when the autoencoder
improves and achieves state-of-the-art performancewith a simple
yet effective autoencoder, indicating its strong potential in VFI.

2 RELATEDWORKS
2.1 Video Frame Interpolation
Video Frame Interpolation can be roughly divided into two cat-
egories in terms of methodologies: flow-based methods [1, 7, 12,
18, 20, 24, 29, 32, 34, 39, 42, 47, 60] and kernel-based methods [4,
5, 9, 27, 36, 37, 46]. Flow-based methods assume certain motion
types, where a few works assume non-linear types [7, 12] while
others assume linear. Via such assumptions, flow-based methods
estimate flows in two ways. Some estimate flows from the interme-
diate frame to neighboring frames (or the reverse way) and apply
backward warping to neighboring frames and their features [1, 7,
12, 20, 29, 32, 39, 42, 60]. Others compute flows among the neigh-
boring frames and apply forward splatting [18, 24, 34, 35, 47]. In
addition to the basic framework, advanced details such as recur-
rence of inputs with different resolution level [24], cross-frame
attention [60], and 4D-correlations [29] are proposed to improve
performance. Kernel-based methods, introduced by [36], aim to
predict the convolution kernel applied to neighboring frames to
generate the intermediate frame, but it has difficulty in dealing with
large displacement. Following works [5, 9, 27] alleviate such issues
by introducing deformable convolution. LDMVFI [11] recently in-
troduced a method based on Latent Diffusion Models (LDMs) [43],
formulating VFI as a conditional generation task. LDMVFI uses an
autoencoder introduced by LDMs to compress images into latent
representations, efficiently run the diffusion process, and then re-
construct images from latent space. Instead of directly predicting
image pixels during reconstruction, it takes upsampled latent rep-
resentations in the autoencoder as inputs to predict convolution
kernels in kernel-based methods to complete the VFI task.
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2.2 Diffusion Models
The diffusion model is introduced by DDPM [17] to image gen-
eration task and achieves excellent performance in high-fidelity
and high-diversity image generation. The whole diffusion model
can be split into a forward diffusion process and a backward sam-
pling process. The forward diffusion process is defined as a Markov
Chain with steps 𝑡 = 1, ...,𝑇 , and the backward sampling process
aims to estimate the distribution of the reversed Markov chain. The
variance of the reversed Markov chain has a closed-form solution,
and and expected value of the reversed Markov chain is estimated
with a deep neural network. Though achieving strong performance
in image generation tasks, DDPM [17] requires 𝑇 = 1000 itera-
tive steps to generate images, resulting in inefficient generation.
Sampling steps cannot be skipped without largely degrading perfor-
mance because the conditional distribution at step 𝑡 − 2 needs to be
computed with the conditional distribution at time 𝑡 − 1 and 𝑡 due
to its Markov property. To enable efficient and high-quality genera-
tion, DDIM [48] proposes a non-Markov formulation of diffusion
models, where the conditional distribution at time 𝑡 −𝑘 (𝑘 > 0) can
be directly computed with the conditional distribution at time 𝑡 .
Therefore, skipping steps does not largely degrade performance.
Score-based SDEs [3, 49, 63] are also proposed as an alternative
formulation of diffusion models by writing the diffusion process in
terms of Stochastic Differential Equations [38], where the reversed
process has a closed-form continuous time formulation and can
be solved with Eluer’s method with a few steps [49]. In addition,
Probability Flow ODE is proposed as the deterministic process that
shares the same marginal distribution with the reversed SDE [49].
Following score-based SDEs, some works propose efficient methods
to estimate the solution Probability Flow ODE [30, 31]. Instead of
focusing on the nature of the diffusion process, DeepCache [33]
proposes a feature caching and sharing mechanism in the denois-
ing UNet, enabling parallel and skipping computation and further
improving efficiency. To deal with high-resolution images, the La-
tent Diffusion Model [43] proposes an autoencoder with a Vector
Quantization Layer (VQ Layer) that compresses and reconstructs
images, and diffusion models run with compressed images. With
such an autoencoder, high-resolution images can be generated effi-
ciently. Other than accelerating generation, diffusion models are
applied to conditional generation tasks [3, 6, 28, 43, 45, 61, 63] such
as generation based on poses or skeletons, image inpainting, etc.

3 METHODOLOGY
In this section, we will first go through preliminaries on the Dif-
fusion Model (DDPM) [17] and Brownian Bridge Diffusion Model
(BBDM) [28] and introduce the overview of our two-stage formula-
tion: autoencoder and ground truth estimation (with consecutive
Brownian Bridge diffusion). Then, we will discuss the details of our
autoencoder method. Finally, we propose our solution to the frame
interpolation task: consecutive Brownian Bridge diffusion.

3.1 Preliminaries
Diffusion Model. The forward diffusion process of Diffsuion
Model [17] is defined as:

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;
√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I). (1)

When 𝑡 = 1, x𝑡−1 = x0 is a sampled from the data (images). By
iterating Eq. (1), we get the conditional marginal distribution of
x𝑡 [17]:

𝑞(x𝑡 |𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡x0, (1 − 𝛼𝑡 )I), (2)

where 𝛼𝑡 =
𝑡∏

𝑠=1
(1 − 𝛽𝑠 ).

The sampling process can be derived with the Bayes’ theorem [17]:

𝑝𝜃 (x𝑡−1 |x𝑡 ) = 𝑞(x𝑡−1 |x0, x𝑡 ) = N(𝑥𝑡−1; �̃�𝑡 , 𝛽𝑡 ), (3)

where �̃�𝑡 =
√
𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

x0 +
√︁
1 − 𝛽𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
x𝑡 , (4)

and 𝛽𝑡 =
1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡 . (5)

Eq. (4) can be rewritten with Eq. (2) via reparameterization:

�̃�𝑡 =
1

1 − 𝛽𝑡

(
x𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖

)
, where 𝜖 ∼ N(0, I) . (6)

By Eq. (4) and (6), we only need to estimate 𝜖 to estimate 𝑝𝜃 (x𝑡−1 |x𝑡 ).
Therefore, the training objective is:

Ex0,𝜖
[
| |𝜖𝜃 (xt, 𝑡) − 𝜖 | |22

]
. (7)

It suffices to train a neural network 𝜖𝜃 (x𝑡 , 𝑡) predicting 𝜖 .
Brownian Bridge Diffusion Model. Brownian Bridge [44] is
a stochastic process that transits between two fixed endpoints,
which is formulated as 𝑋𝑡 =𝑊𝑡 | (𝑊𝑡1 ,𝑊𝑡2 ), where𝑊𝑡 is a standard
Wiener process with distributionN(0, 𝑡). We can write a Brownian
Bridge as 𝑋𝑡 = 𝑊𝑡 | (𝑊0,𝑊𝑇 ) to define a diffusion process. When
𝑊0 = 𝑎,𝑊𝑇 = 𝑏, it follows a normal distribution:

𝑋𝑡 ∼ N
(
(1 − 𝑡

𝑇
)𝑎 + 𝑡

𝑇
𝑏,

𝑡𝑇 − 𝑡2
𝑇

)
. (8)

BBDM [28] develops an image-to-image translation method based
on the Brownian Bridge process by treating 𝑎 and 𝑏 as two images.
The forward diffusion process is defined as:

𝑞(x𝑡 |x0, y) = N (x𝑡 ; (1 −𝑚𝑡 )x0 +𝑚𝑡y, 𝛿𝑡 ) , (9)

where𝑚𝑡 =
𝑡

𝑇
and 𝛿𝑡 = 2𝑠 (𝑚𝑡 −𝑚2

𝑡 ) . (10)

x0 and y are two images, and 𝑠 is a constant that controls the
maximum variance in the Brownian Bridge. The sampling process
is derived based on Bayes’ theorem [28]:

𝑝𝜃 (x𝑡−1 |x𝑡 , y) = 𝑞(x𝑡−1 |x0, x𝑡 , y)

=
𝑞(x𝑡 |x𝑡−1, y)𝑞(x𝑡−1 |x0, y)

𝑞(x𝑡 |x0, y)
= N(�̃�𝑡 , 𝛿𝑡 I) .

(11)

where �̃�𝑡 = 𝑐𝑥𝑡x𝑡 + 𝑐𝑦𝑡𝑦 + 𝑐𝜖𝑡 (𝑚𝑡 (y − x0) +
√︁
𝛿𝑡𝜖),

𝑐𝑥𝑡 =
𝛿𝑡−1
𝛿𝑡

1 −𝑚𝑡

1 −𝑚𝑡−1
+
𝛿𝑡 |𝑡−1
𝛿𝑡
(1 −𝑚𝑡 ),

𝑐𝑦𝑡 =𝑚𝑡−1 −𝑚𝑡
1 −𝑚𝑡

1 −𝑚𝑡−1

𝛿𝑡−1
𝛿𝑡

,

𝑐𝜖𝑡 = (1 −𝑚𝑡−1)
𝛿𝑡 |𝑡−1
𝛿𝑡

,

𝛿𝑡 |𝑡−1 = 𝛿𝑡 − 𝛿𝑡−1
(1 −𝑚𝑡 )2
(1 −𝑚𝑡−1)2

.
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Figure 2: The illustration of our two-stage method. The encoder is shared for all frames. (a) The autoencoder stage. In this stage,
previous frame 𝐼0, intermediate frame 𝐼𝑛 , and next frame 𝐼1 are encoded by the encoder to y, x, z respectively. Then x is fed to the
decoder, together with the encoder feature of 𝐼0, 𝐼1 at different down-sampling factors. The decoder predicts the intermediate
frame as 𝐼𝑛 . The encoder and decoder are trained in this stage. (b) The ground truth estimation stage. In this stage, y, x, z will be
fed to the consecutive Brownian Bridge diffusion as three endpoints, where we sample two states that move time step 𝑠 from
x in both directions. The UNet predicts the difference between the current state and x. The autoencoder is well-trained and
frozen in this stage. (c) Inference. x̂ is sampled from y, z to estimate x (details in Section 3.4). The decoder receives x̂ and encoder
features of 𝐼0, 𝐼1 at different down-sampling factors to interpolate the intermediate frame.

It suffices to train a deep neural network 𝜖𝜃 to estimate the
term 𝑐𝜖𝑡 (𝑚𝑡 (y − x0) +

√
𝛿𝑡𝜖), and therefore the training objective

is Ex0,y,𝜖 [𝑐𝜖𝑡 | |𝑚𝑡 (y − x0) +
√
𝛿𝑡𝜖 − 𝜖𝜃 (xt, 𝑡) | |22].

3.2 Formulation of Diffusion-based VFI
The goal of video frame interpolation is to estimate the intermediate
frame 𝐼𝑛 given the previous frame 𝐼0 and the next frame 𝐼1. n is
set to 0.5 to interpolate the frame in the middle of 𝐼0 and 𝐼1. In
latent diffusion models [43], there is an autoencoder that encodes
images to latent representations and decodes images from latent
representations. The diffusion model is given a standard Gaussian
noise, denoises it according to the sampling process, and decodes
the denoised latent representation back to an image. Since the initial
noise is random, the decoded images are diverse images when they
are sampled repetitively with the same conditions such as poses.
Instead of diversity, VFI looks for a deterministic ground truth,
which is the intermediate frame. Such a ground truth frame is
encoded to a ground truth latent representation by the encoder, and
only the ground truth latent representation needs to be estimated
since the decoder will decode it back to the frame. Therefore, LDM-
based VFI can be split into two stages: autoencoder and ground
truth estimation. The two stages are defined as:
(1) Autoencoder. The primary function of the autoencoder is sim-

ilar to image compression: compressing images to latent rep-
resentations so that the diffusion model can be efficiently im-
plemented. We denote x, y, z as encoded latent representations
of 𝐼𝑛, 𝐼0, 𝐼1. In this stage, the goal is to compress 𝐼𝑛 to x with
an encoder and then reconstruct 𝐼𝑛 from x with a decoder. x is
provided to the decoder together with neighboring frames 𝐼0, 𝐼1

and their features in the encoder at different down-sampling
factors. The overview of this stage is shown in Figure 2 (a).
However, to interpolate the intermediate frame, x is unknown,
so we need to estimate this ground truth.

(2) Ground truth estimation. In this stage, the goal is to accu-
rately estimate x with a diffusion model. The diffusion model
converts x to y, z with the diffusion process, and we train a
UNet to predict the difference between the current diffusion
state and x, shown in Figure 2 (b). The sampling process of the
diffusion model will convert y, z to x with the UNet output.

The autoencoder is modeled with VQModel [43] in Section 3.3,
and the ground truth estimation is accomplished by our proposed
(latent) consecutive Brownian Bridge diffusion in Section 3.4. Dur-
ing inference, both stages are combined as shown in Figure 2 (c),
where we decode diffusion-generated latent representation x̂. Via
such formulation, we can have a more specific direction to improve
VFI quality. If images decoded from x (Figure 2 (a)) have similar
visual quality to images decoded from x̂ (Figure 2 (c)), then the
diffusion model achieves a strong performance in ground truth
estimation, so it will be good to develop a good autoencoder. On
the other way round, the performance of ground truth estimation
can be potentially improved by redesigning the diffusion model.

3.3 Autoencoder
Diffusion models running in pixel space are extremely inefficient in
video interpolation because videos can be up to 4K in real life [41].
Therefore, we can encode images into a latent space with encoder E
and decode images from the latent space with decoder D. Features
of 𝐼0, 𝐼1 are included because detailed information may be lost when
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Figure 3: Architecture of the autoencoder. The encoder is in green dashed boxes, and the decoder contains all remaining parts.
The output of consecutive Brownian Bridge diffusion will be fed to the VQ layer. The features of 𝐼0, 𝐼1 at 2×, 4×, 8× down-sampling
rate will be sent to the cross-attention module at Up Sample Block in the Decoder.

images are encoded to latent representations [11]. We incorporate
feature pyramids of neighboring frames into the decoder stage as
guidance because neighboring frames contain a large number of
shared details. Given 𝐼𝑛, 𝐼0, 𝐼1, the encoder E will output encoded
latent representation x, y, z for diffusion models and feature pyra-
mids of 𝐼0, 𝐼1 in different down-sampling rates, denoted {𝑓 𝑘𝑦 }, {𝑓 𝑘𝑧 },
where 𝑘 is down-sampling factor. When 𝑘 = 1, {𝑓 𝑘𝑦 } and {𝑓 𝑘𝑧 } rep-
resent original images. The decoder D will take sampled latent
representation x̂ (output of diffusion model that estimates x) and
feature pyramids {𝑓 𝑘𝑦 }, {𝑓 𝑘𝑧 } to reconstruct 𝐼𝑛 . In lines of equations,
these can be expressed as:

x, y, {𝑓 𝑘𝑦 }, z, {𝑓 𝑘𝑧 } = E(𝐼𝑛, 𝐼0, 𝐼1),

𝐼𝑛 = D
(
x, {𝑓 𝑘𝑦 }, {𝑓 𝑘𝑧 }

)
.

(12)

Our encoder shares an identical structure with that in LDMVFI [11],
and we slightly modify the decoder to better fit the VFI task.
Decoding with Warped Features. LDMVFI [11] apply cross-
attention [54] to up-sampled x̂ and 𝑓 𝑘𝑥 , 𝑓

𝑘
𝑦 , but keeping feature

of neighboring frames may preserve their original information (i.e.
motion in previous and next frames). This is problematic since
motion changes may be drastic in different frames. Therefore,
we estimate optical flows from 𝐼𝑛 to 𝐼0, 𝐼1 with a flow estimation
module and apply backward warping to the feature pyramids.
Suppose 𝑥 is generated by our consecutive Brownian Bridge dif-
fusion, and it is up-sampled to ℎ𝑘 where 𝑘 denotes the down-
sampling factor compared to the original image. Then, we ap-
ply 𝐶𝐴

(
ℎ𝑘 ,𝐶𝑎𝑡 (𝑤𝑎𝑟𝑝 (𝑓 𝑘𝑦 ),𝑤𝑎𝑟𝑝 (𝑓 𝑘𝑧 ))

)
for 𝑘 > 1 to fuse the la-

tent representation ℎ𝑘 and feature pyramids 𝑓 𝑘𝑦 and 𝑓 𝑘𝑧 , where
𝐶𝐴(·, ·), 𝐶𝑎𝑡 (·, ·), and 𝑤𝑎𝑟𝑝 (·) denotes cross attention, channel-
wise concatenation, and backward warping with estimated optical
flows respectively. Finally, we apply convolution layers to ℎ1 to

predict soft mask 𝐻 and residual 𝛿 . The interpolation output is
𝐼𝑛 = 𝐻 ∗ 𝑤𝑎𝑟𝑝 (𝐼0) + (1 − 𝐻 ) ∗ 𝑤𝑎𝑟𝑝 (𝐼1) + 𝛿 , where ∗ holds for
Hadamard product, and 𝐼𝑛 is the reconstructed image. The detailed
illustration of the architecture is shown in Figure 3. The VQ layer is
connected with the encoder during training, but it is disconnected
from the encoder and receives the sampled latent representation
from the diffusion model.

3.4 Consecutive Brownian Bridge Diffusion
Brownian Bridge diffusion model (BBDM) [28] is designed for trans-
lation between image pairs, connecting two deterministic points,
which seems to be a good solution to estimate the ground truth
intermediate frame. However, it does not fit the VFI task. In VFI,
images are provided as triplets because we aim to reconstruct inter-
mediate frames giving neighboring frames, resulting in three points
that need to be connected. If we construct a Brownian Bridge be-
tween the intermediate frame and the next frame, then the previous
frame is ignored, and so is the other way round. This is problematic
because we do not know what "intermediate" is if we lose one of its
neighbors. Therefore, we need a process that transits among three
images. Given two neighboring images 𝐼0, 𝐼1, we aim to construct
a Brownian Bridge process with endpoints 𝐼0, 𝐼1 and additionally
condition its middle stage on the intermediate frame 𝐼𝑛 (𝑛 = 0.5 for
2× interpolation). To achieve this, the process starts at 𝑡 = 0 with
value y, passes 𝑡 = 𝑇 with value x, and ends at 𝑡 = 2𝑇 with value
z. To be consistent with the notation in diffusion models, x, y, z
are used to represent latent representations of 𝐼𝑛, 𝐼0, 𝐼1 respectively.
It is therefore defined as 𝑋𝑡 = 𝑊𝑡 |𝑊0 = y,𝑊𝑇 = x,𝑊2𝑇 = z. The
sampling process starts from time 0 and 2𝑇 and goes to time 𝑇 .
Such a process indeed consists of two Brownian Bridges, where
the first one ends at x and the second one starts at x. We can easily
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Algorithm 1 Training
1: repeat
2: sample triplet x, y, z from dataset
3: 𝑠 ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0,𝑇 )
4: 𝑤𝑠 ←𝑚𝑖𝑛{ 1

𝛿𝑡
, 𝛾} ⊲ 𝛾 is a pre-defined constant

5: 𝜖 ← N(0, I)
6: xs1 ← 𝑠

𝑇
x + (1 − 𝑠

𝑇
)y +

√︃
𝑠 (𝑇−𝑠 )

𝑇
𝜖

7: xs2 ← 𝑠
𝑇
x + (1 − 𝑠

𝑇
)z +

√︃
𝑠 (𝑇−𝑠 )

𝑇
𝜖

8: r← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1)
9: if r < 0.5 then take a gradient step on
10: ∇𝜃 | |𝜖𝜃 (x𝑠1 ,𝑇 − 𝑠, y, z) − (x𝑠1 − x) | |22
11: else take a gradient step on
12: ∇𝜃 | |𝜖𝜃 (x𝑠2 ,𝑇 + 𝑠, y, z) − (x𝑠2 − x) | |22
13: end if
14: until convergence

Algorithm 2 Sampling

1: 𝑡1, 𝑡2 ← 𝑇,Δ𝑡 ← 𝑇
sampling steps , x𝑇1 = y, x𝑇2 = z

2: repeat
3: 𝑠1, 𝑠2 ← 𝑡1 − Δ𝑡 , 𝑡2 − Δ𝑡
4: 𝜖 ← N(0, I)
5: xs1 ← 𝑥𝑡1 −

Δ𝑡

𝑡1
𝜖𝜃 (𝑥𝑡1 ,𝑇 − 𝑡1, y, z) +

√︃
𝑠1Δ𝑡

𝑡1
𝜖

6: xs2 ← 𝑥𝑡2 −
Δ𝑡

𝑡2
𝜖𝜃 (𝑥𝑡2 ,𝑇 − 𝑡2, y, z) +

√︃
𝑠2Δ𝑡

𝑡2
𝜖

7: 𝑡1, 𝑡2 ← 𝑠1, 𝑠2
8: until 𝑡1, 𝑡2 = 0

verify that for 0 < 𝑡 < ℎ:

𝑊𝑠 | (𝑊0,𝑊𝑡 ,𝑊ℎ) =
{
𝑊𝑠 | (𝑊0,𝑊𝑡 ) if 𝑠 < 𝑡

𝑊𝑠 | (𝑊𝑡 ,𝑊ℎ) if 𝑠 > 𝑡
. (13)

According to Eq. (13), we can derive the distribution of our consec-
utive Brownian Bridge diffusion (details shown in supplementary
materials):

𝑞(x𝑡 |y, x, z) =
{
N( 𝑠

𝑇
x + (1 − 𝑠

𝑇
)y, 𝑠 (𝑇−𝑠 )

𝑇
I) 𝑠 = 𝑇 − 𝑡 , 𝑡 < 𝑇

N( 𝑠
𝑇
x + (1 − 𝑠

𝑇
)z, 𝑠 (𝑇−𝑠 )

𝑇
I) 𝑠 = 𝑡 −𝑇 , 𝑡 > 𝑇

. (14)

Cleaner Formulation. Eq. (11) is in a discrete setup (i.e. time =
0, 1, ...,𝑇 ), and the sampling process is derived via Bayes’ theorem,
resulting in a complicated formulation. To preserve the maximum
variance, it suffices to have 𝑇 = 2𝑠 in Eq. (8) and discretize T for
training and sampling. Our forward diffusion is defined as Eq. (14).
To sample from time 𝑠 from 𝑡 (𝑠 < 𝑡 ), we rewrite Eq. (11) according
to Eq. (13):

𝑝𝜃 (x𝑠 |x𝑡 , y) = 𝑞(x𝑠 |x, x𝑡 , y)
= 𝑞(x𝑠 |x, x𝑡 )

= N
(
x𝑠 ;

𝑠

𝑡
x𝑡 + (1 −

𝑠

𝑡
)x, 𝑠 (𝑡 − 𝑠)

𝑡
I
)

= N
(
x𝑠 ; x𝑡 −

𝑡 − 𝑠
𝑡
(x𝑡 − x),

𝑠 (𝑡 − 𝑠)
𝑡

I
)
.

(15)

Note that Eq. (11) is slightly different from ours in that it uses x0
to represent x, but we directly use x. Since we have a closed-form
solution of 𝑝𝜃 (x𝑠 |x𝑡 , y) for 0 < 𝑠 < 𝑡 < 𝑇 , our method does not
need DDIM [48] sampling for acceleration.
Training and Sampling. According to Eq. (15), it suffices to have
a neural network 𝜖𝜃 estimating x𝑡 −x0. Moreover, based on Eq. (14),
we can sample 𝑠 from 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0,𝑇 ) and compute 𝑡 = 𝑇 ± 𝑠 for
𝑡 > 𝑇 and 𝑇 < 𝑡 . With one sample of 𝑠 , we can obtain two samples
at each side of our consecutive Brownian bridge diffusion symmet-
ric at T. y, z are added to the denoising UNet as extra conditions.
Therefore, the training objective becomes:

E{y,x,z},𝜖 [| |𝜖𝜃 (x𝑠1 ,𝑇 − 𝑠, y, z) − (x𝑠1 − x) | |22]
+ E{y,x,z},𝜖 [| |𝜖𝜃 (x𝑠2 ,𝑇 + 𝑠, y, z) − (x𝑠2 − x) | |22] .

(16)

where xs1 =
𝑠

𝑇
x + (1 − 𝑠

𝑇
)y +

√︂
𝑠 (𝑇 − 𝑠)

𝑇
𝜖,

xs2 =
𝑠

𝑇
x + (1 − 𝑠

𝑇
)z +

√︂
𝑠 (𝑇 − 𝑠)

𝑇
𝜖,

𝜖 ∼ N(0, I).

(17)

Optimizing Eq. (16) requires two forward calls of the denoising
UNet, so to be more efficient in computation, we randomly select
one of them to optimize during training. Moreover, [15] proposes
𝑚𝑖𝑛 − 𝑆𝑁𝑅 − 𝛾 weighting for different time steps during training
based on the signal-to-noise ratio, defined as𝑚𝑖𝑛{𝑆𝑁𝑅(𝑡), 𝛾}. In
DDPM [17], we have 𝑆𝑁𝑅(𝑡) = 𝛼𝑡

1−𝛼𝑡 because the mean and stan-
dard deviation are scaled by √𝛼𝑡 and

√
1 − 𝛼𝑡 respectively in the

diffusion process. However, in our formulation, consecutive frames
𝐼0, 𝐼1 share almost identical mean, and so as their encoded latent
representations. Therefore, the mean is never scaled down. The
SNR is defined as 1

𝛿𝑡
, where 𝛿𝑡 is the standard deviation of the

diffusion process at time 𝑡 . With the𝑚𝑖𝑛 − 𝑆𝑁𝑅 − 𝛾 weighting, the
weighting of loss is defined as𝑤𝑡 =𝑚𝑖𝑛{ 1

𝛿𝑡
, 𝛾}.

The training algorithm is shown in Algorithm 1. To sample from
neighboring frames, we can sample from either of the two endpoints
y, z with Eq. (14) and (15), shown in Algorithm 2. After sampling,
we replace x in Eq (12) with the sampled latent representations to
decode the interpolated frame.
Cumulative Variance. As we claimed, diffusion model [17] with
conditional generation has a large cumulative variance while ours
is much smaller. The cumulative variance for traditional conditional
generation is larger than 1 +∑𝑡 𝛽𝑡 , which corresponds to 11.036 in
experiments. However, in our method, such a cumulative variance
is smaller than 𝑇 = 2 in our experiments, resulting in a more
deterministic estimation of the ground truth latent representations.
The detailed justification is in the supplementary materials.

4 EXPERIMENTS
4.1 Implementations
Autoencoder. The down-sampling factor is set to be 𝑓 = 16 for
our autoencoder, which follows the setup of LDMVFI [11]1. The
flow estimation and refinement modules are initialized from pre-
trained VFIformer [32] and frozen for better efficiency. The code-
book size and embedding dimension of the VQ Layer are set to
1We follow their implementation and find that they achieve 16× down-sampling factor.

2024-04-13 11:53. Page 6 of 1–10.
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Table 1: Quantitative results (LPIPS/FloLPIPS/FID, the lower the better) on test datasets. †means we evaluate our consecutive
Brownian Bridge diffusion (trained on Vimeo 90K triplets [59] only) with autoencoder provided by LDMVFI [11]. The best
performances are boldfaced, and the second best performances are underlined.

Methods Middlebury UCF-101 DAVIS SNU-FILM

easy medium hard extreme
LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID

ABME’21 [40] 0.027/0.040/11.393 0.058/0.069/37.066 0.151/0.209/16.931 0.022/0.034/6.363 0.042/0.076/15.159 0.092/0.168/34.236 0.182/0.300/63.561
MCVD’22 [55] 0.123/0.138/41.053 0.155/0.169/102.054 0.247/0.293/28.002 0.199/0.230/32.246 0.213/0.243/37.474 0.250/0.292/51.529 0.320/0.385/83.156
VFIformer’22 [32] 0.015/0.024/9.439 0.033/0.040/22.513 0.127/0.184/14.407 0.018/0.029/5.918 0.033/0.053/11.271 0.061/0.100/22.775 0.119/0.185/40.586
IFRNet’22 [26] 0.015/0.030/10.029 0.029/0.034/20.589 0.106/0.156/12.422 0.021/0.031/6.863 0.034/0.050/12.197 0.059/0.093/23.254 0.116/0.182/42.824
AMT’23 [29] 0.015/0.023/7.895 0.032/0.039/21.915 0.109/0.145/13.018 0.022/0.034/6.139 0.035/0.055/11.039 0.060/0.092/20.810 0.112/0.177/40.075
UPR-Net’23 [24] 0.015/0.024/7.935 0.032/0.039/21.970 0.134/0.172/15.002 0.018/0.029/5.669 0.034/0.052/10.983 0.062/0.097/22.127 0.112/0.176/40.098
EMA-VFI’23 [60] 0.015/0.025/8.358 0.032/0.038/21.395 0.132/0.166/15.186 0.019/0.038/5.882 0.033/0.053/11.051 0.060/0.091/20.679 0.114/0.170/39.051
LDMVFI’24 [11] 0.019/0.044/16.167 0.026/0.035/26.301 0.107 0.153/12.554 0.014/0.024/5.752 0.028/0.053/12.485 0.060/0.114/26.520 0.123/0.204/47.042

Ours† 0.012/0.011/14.447 0.030/0.029/15.335 0.097/0.145/12.623 0.011/0.011/5.737 0.028/0.028/12.569 0.051/0.053/25.567 0.099/0.103/46.088
Ours 0.007/0.008/7.964 0.029/0.028/14.022 0.052 /0.086/10.170 0.010/0.010/5.166 0.022/0.023/9.571 0.035/0.035/20.713 0.075/0.075/41.545

16384 and 3 respectively. The number of channels in the compact
latent space (encoder output) is set to 8. A self-attention [54] is
applied at 16× down-sampling latent representation (both encoder
and decoder), and cross attentions [54] with warped features are
applied on 2×, 4×, and 8× down-sampling factors in the decoder.
Following LDMVFI, max-attention [53] is applied in all attention
layers for better efficiency. The model is trained with Adam op-
timizer [25] with a learning rate of 10−5 for 100 epochs with a
batch size of 16. The autoencoder is still slowly converging after
100 epochs, but we stopped training to evaluate it.
Consecutive Brownian Bridge Diffusion.We set 𝑇 = 2 (corre-
sponding to maximum variance 1

2 ) and discretize 1000 steps for
training and 50 steps for sampling. The denoising UNet takes the
concatenation of x𝑡 , y, z as input and is trained with Adam opti-
mizer [25] with 10−4 learning rate for 30 epochs with a batch size
of 64. 𝛾 is set to be 5 in the𝑚𝑖𝑛 − 𝑆𝑁𝑅 − 𝛾 weighting.

4.2 Datasets and Evaluation Metrics
Training Sets. To ensure a fair comparison with most recent
works [1, 7, 12, 18, 20, 24, 32, 34, 42, 47], we train our models in
Vimeo 90K triplets dataset [59], which contains 51,312 triplets. We
apply random flipping, random cropping to 256 × 256, temporal
order reversing, and random rotation with multiples of 90 degrees
as data augmentation.
Test Sets. We select UCF-101 [50], DAVIS [41], SNU-FILM [8], and
Middlebury [2] to evaluate our method. UCF-101 and Middlebury
consist of relatively low-resolution videos (less than 1K), whereas
DAVIS and SNU-FILM consist of relatively high-resolution videos
(up to 4K). SNU-FILM consists of four categories with increasing
levels of difficulties (i.e. larger motion changes): easy, medium, hard,
and extreme.
Evaluation Metrics. Recent works [10, 11, 62] reveal that PSNR
and SSIM [56] are sometimes unreliable because they have rela-
tively low correlation with humans’ visual judgments. However,
deep-learning-based metrics such as FID [16], LPIPS [62], and
FloLPIPS [10] are shown to have a higher correlation with hu-
mans’ visual judgments in [11, 62]. Moreover, in our experiments,
we also find such inconsistencies between PSNR/SSIM and visual
quality, which will be discussed in Section 4.3. Therefore, we select
FID, LPIPS, and FloLPIPS as our main evaluation metrics. LPIPS

and FID measure distances in the space of deep learning features.
FloLPIPS is based on LPIPS but takes the motion in the frames into
consideration. Our methods evaluated with PSNR and SSIM will be
included in the supplementary materials.

4.3 Experimental Results
Quantitative Results. Our method is compared with recent open-
source state-of-the-art VFImethods, includingABME [40],MCVD [55],
VFIformer [32], IFRNet [26], AMT [29], UPR-Net [24], EMA-VFI [60],
and LDMVFI [11]. The evaluation is reported in LPIPS/FloLPIPS/FID
(lower the better), shown in Table 1. We evaluate VFIformer, IFRNet,
AMT, UPR-Net, and EMA-VFI with their trained weights, and other
results are provided in the appendix of LDMVFI [11]. Models with
different versions in the number of parameters are all chosen to be
the largest ones. With the same autoencoder as LDMVFI [11], our
method (denoted as ours†) generally achieves better performance
than LDMVFI, indicating the effectiveness of our consecutive Brow-
nian Bridge diffusion. Moreover, with an improved autoencoder,
our method (denoted as ours) generally achieves state-of-the-art
performance. It is important to note that we achieve much better
FloLPIPS than other SOTAs, indicating our interpolated results
achieve stronger motion consistency. In a few datasets, our method
does not achieve the best performance in FID or LPIPS because our
autoencoder is still converging.
Qualitative Results. In Table 1, our consecutive Brownian Bridge
diffusion with the autoencoder in LDMVFI [11] (denoted as our†)
generally achieves better quantitative results than LDMVFI, show-
ing our method is effective. We include qualitative visualization in
Figure 5 to support this result. Moreover, as mentioned in Section 1,
we find that the autoencoder in [11] usually reconstructs overlaid
images, and therefore we propose a new method of reconstruction.
We provide examples to visualize the reconstruction results with
our autoencoder and LDMVFI’s autoencoder for comparison, shown
in Figure 4. All examples are from SNU-FILM extreme [8], which
contains relatively large motion changes in neighboring frames.

We have provided some visual comparisons of our method and
recent SOTAs in Figure 1. Our method achieves better visual qual-
ity because we have clearer details such as dog skins, cloth with
folds, and fences with nets. However, UPR-Net [24] achieves bet-
ter PSNR/SSIM in all the cropped regions (5 − 10% better) than
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Table 2: Ablation studies of autoencoder and ground truth estimation. + GT means we input ground truth x to the decoder part
of autoencoder. + BB indicates our consecutive Brownian Bridge diffusion trained with autoencoder of LDMVFI. With our
consecutive Brownian Bridge diffusion, the interpolated frame has almost the same performance as the interpolated frame
with ground truth latent representation, indicating the strong ground truth estimation capability. Our autoencoder also has
better performance than LDMVFI [11].

Methods Middlebury UCF-101 DAVIS SNU-FILM

easy medium hard extreme
LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID

LDMVFI’24 [11] 0.019/0.044/16.167 0.026/0.035/26.301 0.107 0.153/12.554 0.014/0.024/5.752 0.028/0.053/12.485 0.060/0.114/26.520 0.123 0.204/47.042
LDMVFI’24 [11] + BB 0.012/0.011/14.447 0.030/0.029/15.335 0.097/0.145/12.623 0.011/0.011/5.737 0.028/0.028/12.569 0.051/0.053/25.567 0.099/0.103/46.088
LDMVFI’24 [11] + GT 0.012/0.011/14.492 0.030/0.029/15.338 0.097/0.145/12.670 0.011/0.011/5.738 0.028/0.028/12.574 0.051/0.053/25.655 0.099/0.103/46.080
Ours 0.007/0.008/7.964 0.029/0.028/14.022 0.052/0.086/10.170 0.010/0.010/5.166 0.022/0.023/9.571 0.035/0.035/20.713 0.075/0.075/41.545
Ours + GT 0.007/0.008/7.965 0.029/0.028/14.022 0.052/0.086/10.170 0.010/0.010/5.166 0.022/0.023/9.570 0.035/0.035/20.712 0.075/0.075/41.544

Ours

LDMVFI

GT

Figure 4: The reconstruction quality of our autoencoder and
LDMVFI’s autoencoder (decoding with ground truth latent
representation x). Images are cropped within green boxes
for detailed comparisons. Red circles highlight the details
that we have better reconstruction quality. LDMVFI usually
outputs overlaid images while ours does not.

ours, which is highly inconsistent with the visual quality. More
qualitative results are provided in the supplementary materials.

4.4 Ablation Studies
As we discussed in Section 3.2, latent-diffusion-based VFI can be
broken down into two stages, so we conduct an ablation study on
the ground truth estimation capability of our consecutive Brownian
Bridge diffusion. We compare the LPIPS/FloLPIPS/FID of decoded
images with diffusion-generated latent representation x̂ and ground
truth x, which is encoded 𝐼𝑛 . The results are shown in Table 2. It
is important to note that, fixing inputs as the ground truth, our
autoencoder achieves a stronger performance than the autoencoder
in LDMVFI [11], indicating the effectiveness of our autoencoder.
Also, fixing the autoencoder, our consecutive Brownian Bridge
diffusion achieves almost identical performance with the ground
truth, indicating its strong capability of ground truth estimation.
However, the conditional generation model in LDMVFI [11] usually
underperforms the autoencoder with ground truth inputs. There-
fore, our method has a stronger ability in both the autoencoder and
ground truth estimation stages. More ablation study is provided in
the supplementary materials.

Ours

LDMVFI

GT

Figure 5: The visual comparison of interpolated results of
LDMVFI [11] vs our method with the same autoencoder in
LDMVFI (LDMVFI vs our† in Table 1). With the same autoen-
coder, our method can still achieve better visual quality than
LDMVFI, demonstrating the superiority of our proposed con-
secutive Brownian Bridge diffusion.

5 CONCLUSION
In this study, we formulate the latent-diffusion-based VFI as a two-
stage problem: autoencoder ground truth estimation. With this for-
mulation, it is easy to figure out which part needs enhancements,
guiding future research. We propose our consecutive Brownian
Bridge diffusion that better estimates the ground truth latent repre-
sentation due to its low cumulative variance. This method improves
when the autoencoder is improved and achieves state-of-the-art
performance with a simple yet effective design of the autoencoder,
demonstrating its strong potential in VFI as a carefully designed
autoencoder could potentially boost the performance by a large
margin. Therefore, we believe our work will provide a unique re-
search direction for diffusion-based frame interpolation.
Limitations and Future Research. Our method uses a bisection-
like method to conduct multi-frame interpolation: we can inter-
polate 𝑡 = 0.5 between 𝑡 = 0, 1 and then interpolate 𝑡 = 0.25, 0.75.
However, our method cannot directly interpolate 𝑡 = 0.1 from
𝑡 = 0, 1. Future research can be conducted to resolve the limitations
mentioned above or to improve autoencoders or diffusion models
for better interpolation quality.
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