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Abstract

A central problem in online learning and decision making—from bandits to rein-
forcement learning—is to understand what modeling assumptions lead to sample-
efficient learning guarantees. We consider a general adversarial decision making
framework that encompasses (structured) bandit problems with adversarial rewards
and reinforcement learning problems with adversarial dynamics. Our main re-
sult is to show—via new upper and lower bounds—that the Decision-Estimation
Coefficient, a complexity measure introduced by Foster et al. [17] in the stochas-
tic counterpart to our setting, is necessary and sufficient to obtain low regret for
adversarial decision making. However, compared to the stochastic setting, one
must apply the Decision-Estimation Coefficient to the convex hull of the class of
models (or, hypotheses) under consideration. This establishes that the price of
accommodating adversarial rewards or dynamics is governed by the behavior of the
model class under convexification, and recovers a number of existing results—both
positive and negative. En route to obtaining these guarantees, we provide new
structural results that connect the Decision-Estimation Coefficient to variants of
other well-known complexity measures, including the Information Ratio of Russo
and Van Roy [47] and the Exploration-by-Optimization objective of Lattimore and
György [32].

1 Introduction

To reliably deploy data-driven decision making methods in real-world systems where safety is critical,
such methods should satisfy two desiderata: (i) provable robustness in the face of dynamic or even
adversarial environments, and (ii) ability to effectively take advantage of problem structure as modeled
by the practitioner. In high-dimensional problems, this entails efficiently generalizing across states
and actions while delicately exploring new decisions.

For decision making in static, stochastic environments, recent years have seen extensive investigation
into optimal sample complexity and algorithm design principles, and the foundations are beginning
to take shape. With an emphasis on reinforcement learning, a burgeoning body of research identifies
specific modeling assumptions under which sample-efficient interactive decision making is possible
[12, 54, 20, 39, 5, 27, 14, 36, 13, 56], as well as general structural conditions that aim to unify these
assumptions [45, 19, 51, 53, 15, 21, 17]. For dynamic or adversarial settings, however, comparatively
little is known outside of (i) positive results for special cases such as adversarial bandit problems
[4, 3, 18, 10, 1, 7, 26, 16, 8, 29], and (ii) a handful of negative results suggesting that online
reinforcement learning in agnostic or adversarial settings can actually be statistically intractable
[48, 37]. These developments raise the following questions: (a) what are the underlying phenomena
that govern the statistical complexity of decision making in adversarial settings? (b) what are the
corresponding algorithmic design principles that attain optimal statistical complexity?

Contributions. We consider an adversarial variant of the Decision Making with Structured
Observations (DMSO) framework introduced in Foster et al. [17], where a learner or decision-maker
interacts with a sequence of models (reward distributions in the case of bandits, or MDPs in the case
of reinforcement learning) chosen by an adaptive adversary, and aims to minimize regret against the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



best decision in hindsight. Models are assumed to belong to a known model class, which reflects
the learner’s prior knowledge about the problem. The main question we investigate is: How does the
structure of the model class determine the minimax regret for adversarial decision making? We show:

1. For any model class, one can obtain high-probability regret bounds that scale with a
convexified version of the Decision-Estimation Coefficient (DEC), a complexity measure
introduced by Foster et al. [17].

2. For any algorithm with “reasonable” tail behavior, the optimal regret for adversarial decision
making is lower bounded by (a suitably localized version of) the convexified DEC.

In the process of obtaining these results, we draw new connections to several existing complexity
measures.

1.1 Problem Setting

We adopt an adversarial variant of the DMSO framework of Foster et al. [17] consisting of T rounds,
where at each round t = 1, . . . , T :

1. The learner selects a decision ⇡(t) 2 ⇧, where ⇧ is the decision space.
2. Nature selects a model M (t) 2M, where M is a model class.
3. The learner receives a reward r(t) 2 R ✓ R and observation o(t) 2 O sampled via

(r(t), o(t)) ⇠M (t)(⇡(t)), where O is the observation space. We abbreviate z(t) := (r(t), o(t))
and Z := R⇥O.

Here, each model M = M(·, · | ·) 2 M is a conditional distribution M : ⇧ ! �(R ⇥ O) that
maps the learner’s decision to a distribution over rewards and observations. This setting subsumes
(adversarial) bandit problems, where models correspond to reward functions (or distributions), as
well as adversarial reinforcement learning, where models correspond to Markov decision processes
(MDPs). In both cases, the model class M encodes prior knowledge about the decision making
problem, such as structure of rewards or dynamics (e.g., linearity or convexity). The model class
might be parameterized by linear models, neural networks, or other rich function approximators
depending on the problem domain.

For a model M 2 M, EM,⇡[·] denotes expectation under the process (r, o) ⇠ M(⇡). We define
fM(⇡) := EM,⇡[r] as the mean reward function and ⇡M

:= argmax
⇡2⇧ fM(⇡) as the decision with

greatest reward for M . We let FM = {fM | M 2M} denote the induced class of reward functions.
We measure performance via regret to the best fixed decision in hindsight:1

Reg
DM

:= sup
⇡?2⇧

TX

t=1

E⇡(t)⇠p(t)

h
fM

(t)
(⇡?)� fM

(t)
(⇡(t))

i
. (1)

This formulation—in which models are selected by a potentially adaptive adversary—generalizes
Foster et al. [17], who considered a stochastic setting where M (t) = M? is fixed across all rounds.
Examples include:

• Adversarial bandits. With no observations (O = {?}), the adversarial DMSO framework
is equivalent to the adversarial bandit problem with structured rewards. In this context, ⇡(t)

is typically referred to as an action or arm and ⇧ is referred to as the action space. The most
basic example here is the adversarial finite-armed bandit problem with A actions [4, 3, 18],
where ⇧ = {1, . . . , A} and FM = RA. Other well-studied examples include adversarial
linear bandits [10, 1, 7], bandit convex optimization [26, 16, 8, 29], and nonparametric
bandits [26, 6, 38].2

• Reinforcement learning. The adversarial DMSO framework encompasses finite-horizon,
episodic online reinforcement learning, with each round t corresponding to a single episode:

1The results in this paper immediately extend to the regret sup⇡?2⇧

PT
t=1 r

(t)(⇡?) � r
(t)(⇡(t)) through

standard tail bounds.
2Typically, these examples are formulated with deterministic rewards, which we encompass by restricting

models in M to be deterministic. Our formulation is more general and allows for, e.g., semi-stochastic
adversaries.
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⇡(t) is a policy (a mapping from state to actions) to play in the episode, r(t) is the cumulative
reward in the episode, and the observation o(t) is the episode’s trajectory (sequence of
observed states, actions, and rewards). Online reinforcement learning in the stochastic setting
where M (t) = M? is fixed has received extensive attention [19, 51, 20, 53, 15, 21, 17],
but the adversarial setting we study has received less investigation. Examples include the
adversarial MDP problem where an adversary chooses a sequence of tabular MDPs, which
is known to be intractable [37], and the easier problem in which there is a fixed (known)
MDP but rewards are adversarial [40, 57, 41, 22]. See Appendix D for more details.

We refer to Appendix B for additional measure-theoretic details and background, and to Foster et al.
[17] for further examples and detailed discussion.3

Understanding statistical complexity (i.e., minimax regret) for the DMSO setting at this level of
generality is a challenging problem. Even if one restricts only to bandit-type problems with no
observations, any complexity measure must capture the role of structural assumptions such as
convexity or smoothness in determining the optimal rates. To go beyond bandit problems and
handle the general setting, one must accommodate problems with rich, structured feedback such
as reinforcement learning, where observations (as well as subtle features of the noise distribution)
can reveal information about the underlying model.

1.2 Overview of Results

For a model class M, reference model M 2M, and scale parameter � > 0, the Decision-Estimation
Coefficient [17] is defined via

dec�(M,M) = inf
p2�(⇧)

sup
M2M

E⇡⇠p

⇥
fM(⇡M)� fM(⇡)� � ·D2

H

�
M(⇡),M(⇡)

�⇤
, (2)

where we recall that for probability measures P and Q with a common dominating measure ⌫,
(squared) Hellinger distance is given by

D2
H
(P,Q) =

Z  r
dP
d⌫
�
r

dQ
d⌫

!2

. (3)

We define dec�(M) = sup
M2M dec�(M,M), and let co(M) denote the convex hull of M, which

can be viewed as the set of all mixtures of models in M. Our main results show that the convexified
Decision-Estimation Coefficient,

dec�(co(M)),

leads to upper and lower bounds on the optimal regret for adversarial decision making.
Theorem (informal). For any model class M, Algorithm 1 ensures that with high probability,

Reg
DM

. dec�(co(M)) · T, (4)
where � satisfies the balance dec�(co(M)) / �

T
log|⇧|. Moreover, for any algorithm with “rea-

sonable” tail behavior (Section 2.2), regret must scale with a localized version of the same quantity.

As a consequence, there exists an algorithm for which E[Reg
DM

]  õ(T ) if and only if
dec�(co(M)) / ��⇢ for some ⇢ > 0.

For the stochastic version of our setting, Foster et al. [17] give upper and lower bounds that scale
with dec�(M), without convexifying (under appropriate technical assumptions; cf. Section 2.3).
Hence, our results show that in general, the gap in optimal regret for stochastic and adversarial
decision making (or, “price of adversarial outcomes”) is governed by the behavior of the DEC under
convexification. For example, multi-armed bandits, linear bandits, and convex bandits correspond
to convex model classes (where co(M) = M), which gives a post-hoc explanation for why these
problems are tractable in the adversarial setting. Finite state/action Markov decision processes do
not correspond to a convex model class, and have dec�(co(M)) exponentially large compared to
dec�(M); in this case, our results recover lower bounds of Liu et al. [37].

Beyond these results, we prove that the convexified Decision-Estimation Coefficient is equivalent to:
3We mention in passing that the upper bounds in this paper encompass the more general setting where rewards

are not observed by the learner (i.e., z(t) does not contain the reward), thus subsuming the partial monitoring
problem. Our lower bounds, however, require that rewards are observed. See Appendix A.
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1. a “parameterized” variant of the generalized Information Ratio of Lattimore and György
[32].

2. a novel high-probability variant of the Exploration-by-Optimization objective of Lattimore
and Szepesvári [35], Lattimore and György [32].

Our techniques. On the lower bound side, we strengthen the approach from Foster et al. [17] with
an improved change-of-measure argument (leading to improved results even in the stochastic setting),
and combine this with the simple idea of constructing adversaries based on static mixture models. On
the upper bound side, we extend the powerful Exploration-by-Optimization machinery of Lattimore
and György [32] to the DMSO setting, and give a novel high-probability variant of the technique
which leads to regret bounds for adaptive adversaries. We show that the performance of this method
is controlled by a complexity measure whose value is equivalent to the convexified DEC, as well
as parameterized variant of the Information Ratio (we present results in terms of the former to draw
comparison to the stochastic setting).

Overall, our results heavily draw on the work of Foster et al. [17] and Lattimore and György [32], but
we believe they play a valuable role in bridging these lines of research and formalizing connections.

Organization. Section 2 presents our main results, including upper and lower bounds on regret
and a characterization of learnability. In Section 3, we provide new structural results connecting
the DEC to Exploration-by-Optimization and the Information Ratio. We close with discussion of
future directions (Section 4). Additional comparison to related work is deferred to Appendix A. The
appendix also contains proofs and additional results, including examples (Appendix D) and further
structural results (Appendix E).

2 Main Results

We now present our main results. First, using a new high-probability variant of the Exploration-by-
Optimization technique [35, 32], we provide an upper bound on regret based on the (convexified)
Decision-Estimation Coefficient (Section 2.1). Next, we present a lower bound that scales with a local-
ized version of the same quantity (Section 2.2). Finally, we use these results to give a characterization
for learnability (Section 2.3), and discuss the gap between stochastic and adversarial decision making.

To keep presentation as simple as possible, we make the following assumption.
Assumption 2.1. The decision space ⇧ has |⇧| <1, and we have R = [0, 1].
This assumption only serves to facilitate the use of the minimax theorem, and we expect that our
results can be generalized (e.g., with covering numbers as in Section 3.4 of Foster et al. [17]).

2.1 Upper Bound

In this section we give regret bounds for adversarial decision making based on the (convexified)
Decision-Estimation Coefficient. A-priori, it is not obvious why the DEC should bear any relevance
to the adversarial setting we consider: The algorithms and regret bounds based on the DEC that Foster
et al. [17] introduce for the stochastic setting heavily rely on the ability to estimate a static underlying
model, yet in the adversarial setting, the learner may only interact with each model a single time.
This renders any sort of global estimation (e.g., for dynamics of an MDP) impossible. In spite of this
difficulty, we show that regret bounds can be achieved by building on the Exploration-by-Optimization
technique of Lattimore and Szepesvári [35], Lattimore and György [32], which provides an elegant
approach to estimating rewards that exploits the structure of the model class under consideration.

Exploration-by-Optimization—introduced by Lattimore and Szepesvári [35] and substantially ex-
panded in Lattimore and György [32]—can be thought of as a generalization of the classical
EXP3 algorithm [4] for finite-action bandits, which applies the exponential weights method for
full-information online learning to a sequence of unbiased importance-weighted estimators for re-
wards. While EXP3 is near-optimal for bandits, it is unsuitable for general model classes because the
reward estimators the algorithm uses do not exploit the structure of the decision space. Consequently,
the regret scales linearly with |⇧| rather than with, e.g., dimension, as one might hope for problems
like linear bandits. The idea behind Exploration-by-Optimization is to solve an optimization problem
at each round to search for a (potentially biased) reward estimator and modified sampling distribution
that better exploit the structure of the model class M, leading to information sharing and improved re-
gret. Lattimore and György [32] showed that for a general partial monitoring setting (cf. Appendix A),
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Algorithm 1 High-Probability Exploration-by-Optimization (ExO
+)

1: parameters: Learning rate ⌘ > 0.
2: for t = 1, 2, · · · , T do
3: Define q(t) 2 �(⇧) via exponential weights update:

q(t)(⇡) =
exp

⇣
⌘
P

t�1
i=1

bf (i)(⇡)
⌘

P
⇡02⇧ exp

⇣
⌘
P

t�1
i=1

bf (i)(⇡0)
⌘ . (5)

4: Solve high-probability exploration-by-optimization objective: // See Eq. (8)

(p(t), g(t)) argmin
p2�(⇧),g2G

sup
M2M,⇡?2⇧

�q(t),⌘(p, g ;⇡
?,M). (6)

5: Sample decision ⇡(t) ⇠ p(t) and observe z(t) = (r(t), o(t)).
6: Form reward estimator:

bf (t)(⇡) =
g(t)(⇡;⇡(t), z(t))

p(t)(⇡(t))
. (7)

the expected regret for this method—and for more general family of algorithms based on Bregman
divergences—is bounded by a generalization of the Information Ratio of Russo and Van Roy [46, 47].

Our development builds on that of Lattimore and György [32], but we pursue high-probability
guarantees rather than in-expectation guarantees. This allows us to provide regret bounds that hold
for adaptive adversaries, rather than oblivious adversaries as considered in prior work.4 Beyond
this basic motivation, our interest in high-probability guarantees comes from the lower bound in
the sequel (Section 2.2), which shows that the convexified Decision-Estimation Coefficient lower
bounds regret for algorithms with “reasonable” tail behavior. To develop high-probability regret
bounds and complement this lower bound, we use a novel variant of the Exploration-by-Optimization
objective and a specialized analysis that goes beyond the Bregman divergence framework.

Our algorithm, ExO
+, is displayed in Algorithm 1. At each round t, the algorithm computes a

reference distribution q(t) 2 �(⇧) by applying the standard exponential weights update (with
learning rate ⌘ > 0) to a sequence of reward estimators bf (1), . . . , bf (t�1) from previous rounds
(Line 3). For the main step (Line 4), the algorithm obtains a sampling distribution p(t) 2 �(⇧) and
an estimation function g(t) 2 G := (⇧⇥⇧⇥ Z ! R) by solving a minimax optimization problem
based on a new objective we term high-probability exploration-by-optmization: Defining

�q,⌘(p, g ;⇡
?,M) := E⇡⇠p[f

M(⇡?)� fM(⇡)] (8)

+
1

⌘
· E⇡⇠p,z⇠M(⇡) E⇡0⇠q


exp

✓
⌘

p(⇡)
(g(⇡0;⇡, z)� g(⇡?;⇡, z))

◆
� 1

�
,

we solve
(p(t), g(t)) argmin

p2�(⇧),g2G
sup

M2M,⇡?2⇧
�q(t),⌘(p, g ;⇡

?,M). (9)

Finally (Lines 5 and 6), the algorithm samples ⇡(t) ⇠ p(t), observes z(t) = (r(t), o(t)), and then
forms an importance-weighted reward estimator via bf (t)(⇡) := g(t)(⇡;⇡(t), z(t))/p(t)(⇡(t)).

The interpretation of the high-probability Exploration-by-Optimization objective (8) is as follows:
For a given round t, the model M 2M and decision ⇡? 2 ⇧ should be thought of as a proxy for
the true model M (t) and optimal decision, respectively. By solving the minimax problem in (9), the
min-player aims to—in the face of an unknown, worst-case model—find a sampling distribution
that minimizes instantaneous regret, yet ensures good tail behavior for the importance-weighted
estimator g(·;⇡, z)/p(⇡). Tail behavior is captured by the moment generating function-like term
in (8), which penalizes the learner for over-estimating rewards under the reference distribution q
or under-estimating rewards under ⇡?.

4In general, in-expectation regret bounds do not imply high-probability bounds. For example, in adversarial
bandits, the EXP3 algorithm can experience linear regret with constant probability [34].
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We show that this approach leads to a bound on regret that scales with the convexified DEC.

Theorem 2.1 (Main upper bound). For any choice of ⌘ > 0, Algorithm 1 ensures that for all � > 0,
with probability at least 1� �,

Reg
DM
 dec1/8⌘(co(M)) · T +

2

⌘
· log(|⇧|/�). (10)

In particular, for any � > 0, with appropriate ⌘, the algorithm ensures that with probability at least
1� �,

Reg
DM
 O(1) · inf

�>0
{dec�(co(M)) · T + � · log(|⇧|/�)}. (11)

This regret bound holds for arbitrary, potentially adaptive adversaries. The result should be compared
to the upper bound for the stochastic setting in Foster et al. [17] (e.g., Theorem 3.3), which takes a
similar form, but scales with the weaker quantity sup

M2co(M) dec�(M,M).5 See Appendix A for
comparison to Lattimore and Szepesvári [35], Lattimore and György [32].

Equivalence of Exploration-by-Optimization and Decision-Estimation Coefficient. We now
discuss a deeper connection between Exploration-by-Optimization and the DEC. Define the minimax
value of the high-probability Exploration-by-Optimization objective via

exo⌘(M, q) := inf
p2�(⇧),g2G

sup
M2M,⇡?2⇧

�q,⌘(p, g ;⇡
?,M), (12)

and let exo⌘(M) := sup
q2�(⇧) exo⌘(M, q). This quantity can be interpreted as a complexity

measure for M whose, value reflects the difficulty of exploration. The following structural result
(Corollary 3.1 in Section 3), which is critical to the proof of Theorem 2.1, shows that this complexity
measure is equivalent to the convexified Decision-Estimation Coefficient:

dec(4⌘)�1(co(M))  exo⌘(M)  dec(8⌘)�1(co(M)), 8⌘ > 0. (13)

As we show, the regret of Algorithm 1 is controlled by the value of exo⌘(M), and thus Theo-
rem 2.1 follows. In the process of proving (13), we also establish equivalence of the Exploration-by-
Optimization objective and a parameterized version of the Information Ratio, which is of independent
interest (cf. Section 3). Both results build on, but go beyond the Bregman divergence-based frame-
work in Lattimore and György [32], and exploit a somewhat obscure connection between Hellinger
distance and the moment generating function (MGF) for the logarithmic loss. In particular, we use a
technical lemma (proven in Appendix C), which shows that up to constants, the Hellinger distance
between two probability distributions can be expressed as variational problem based on the associated
MGFs.

Lemma 2.1. Let P and Q be probability distributions over a measurable space (X ,F ). Then

1

2
D2

H
(P,Q)  sup

g:X!R

�
1� EP

⇥
eg
⇤
· EQ

⇥
e�g

⇤ 
 D2

H
(P,Q). (14)

The lower inequality in Lemma 2.1 is proven using a trick similar to one used by Zhang [55] to prove
high-probability bounds for maximum likelihood estimation based on Hellinger distance. To prove
the upper bound in (13), we apply the lower inequality in (14) with the test function g taking the role
of the estimation function in the Exploration-by-Optimization objective.

Further remarks. The main focus of this work is statistical complexity (in particular, minimax
regret), and the runtime and memory requirements of Algorithm 1, which are linear in |⇧|, are not
practical for large decision spaces. Improving the computational efficiency is an interesting question
for future work. We mention in passing that Theorem 2.1 answers a question raised by Foster et al.
[17] of obtaining in the frequentist setting a regret bound matching the Bayesian regret bound in their
Theorem 3.6.

5If a proper estimation algorithm (i.e., an algorithm producing estimators that lie in M) is available, Foster
et al. [17] (Theorem 4.1) gives tighter bounds scaling with dec�(M).
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2.2 Lower Bound

We now complement the regret bound in the prequel with a lower bound based on the convexified
DEC. Our most general result shows that for any algorithm, either the expected regret or its (one-sided)
second moment must scale with a localized version of the convexified DEC.

To state the result, we define the localized model class around a model M via

M"(M) =
�
M 2M : fM(⇡M) � fM(⇡M)� "

 
,

and define dec�,"(M) := sup
M2M dec�(M"(M),M) as the localized Decision-

Estimation Coefficient. We let (x)+ := max{x, 0} and define V (M) :=

sup
M,M 02M sup

⇡2⇧ sup
A2R⌦O

�
M(A|⇡)
M 0(A|⇡)

 
_ e;6 finiteness of V (M) is not necessary, but

removes a log(T ) factor from Theorem 2.2.
Theorem 2.2 (Main lower bound). Let C(T ) := c · log(T ^V (M)) for a sufficiently large numerical
constant c > 0. Set "� := �

4C(T )T . For any algorithm, there exists an oblivious adversary for which

E[Reg
DM

] +
q
E(Reg

DM
)2+ � ⌦(1) · sup

�>

p
2C(T )T

dec�,"� (co(M)) · T �O(T 1/2). (15)

Theorem 2.2 implies that for any algorithm (such as Algorithm 1) with tail behavior beyond what
is granted by control of the first moment, the regret in Theorem 2.1 cannot be substantially improved.
In more detail, consider the notion of a sub-Chebychev algorithm.
Definition 2.1 (Sub-Chebychev Algorithm). A regret minimization algorithm is said to be sub-
Chebychev with parameter R if for all t > 0,

P((Reg
DM

)+ � t)  R2/t2. (16)

For sub-Chebychev algorithms, both the mean and (root) second moment of regret are bounded by
the parameter R (cf. Appendix F.4), which has the following consequence.
Corollary 2.1. Any regret minimization algorithm with sub-Chebychev parameter R > 0 must have

R � e⌦(1) · sup
�>

p
2C(T )T

dec�,"� (co(M)) · T �O(T 1/2). (17)

To interpret this result, suppose for simplicity that dec�(co(M)) and dec�,"� (co(M)) are continuous
with respect to � > 0, and that dec�,"� (co(M)) & ��1, which is satisfied for non-trivial classes.7

In this case, it follows from Theorem 2.1 (cf. Proposition F.2 for details) that by setting � = 1/T 2,
Algorithm 1 is sub-Chebychev with parameter

R = eO
⇣
inf
�>0

{dec�(co(M)) · T + � · log(|⇧|)}
⌘
= eO(dec�u(co(M)) · T ), (18)

where �u satisfies the balance dec�u(co(M)) / �u

T
log|⇧|. On the other hand, the lower bound in

(17) can be shown to scale with

R � e⌦
⇣
dec�`,"�`

(co(M)) · T
⌘
, (19)

where �` satisfies the balance dec�`,"�`
(co(M)) / �`

T
. We conclude that the upper bound from

Theorem 2.1 cannot be improved beyond (i) localization and (ii) dependence on log|⇧|.
As an example, we show in Appendix D.3 that for the multi-armed bandit problem with
⇧ = {1, . . . , A}, the upper bound in (18) yields R = eO(

p
AT logA), while the lower bound in (19)

yields R = ⌦(
p
AT ). See Appendix D for additional examples which further illustrate the scaling

in the upper and lower bounds.
6Recall (Appendix B) that M(·, · | ⇡) is the conditional distribution given ⇡.
7The dominant term dec�,"� (co(M)) · T in (15) scales with T

1/2 for any class that is non-trivial in the
sense that it embeds the two-armed bandit problem, so that the �O(T 1/2) term can be discarded.
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The dependence on log|⇧| cannot be removed from the upper bound or made to appear in the lower
bound in general (cf. Section 3.5 of Foster et al. [17]). As shown in Foster et al. [17], localization is
inconsequential for most model classes commonly studied in the literature. The same is true for the
examples we consider here (Appendix D), where Theorem 2.2 leads to the correct rate up to small
polynomial factors. However, improving the upper bound to achieve localization, which Foster et al.
[17] show is possible in the stochastic setting, is an interesting future direction.

See Appendix A for further discussion and for comparison to a related lower bound in Lattimore [31].

Why convexity? At this point, a natural question is why the convex hull co(M) plays a fundamental
role in the adversarial setting. For the lower bound, the intuition is simple: Given a model class M,
the adversary can pick any mixture distribution µ 2 �(M), then choose the sequence of models
M (1), . . . ,M (T ) by sampling M (t) ⇠ µ independently at each round. This is equivalent to playing a
static mixture model M? = EM⇠µ[M ] 2 co(M), which is what allows us to prove a lower bound
based on the DEC for the set co(M) of all such models. In view of the fact that the lower bound is
obtained through this static (and stochastic) adversary, we believe the more surprising result here
is that good behavior of the convexified DEC is also sufficient for low regret for fully adversarial
decision making.

2.3 Learnability and Comparison to Stochastic Setting

Building on the upper and lower bounds in the prequel, we give a characterization for learnability
(i.e., when non-trivial regret is possible) for adversarial decision making. This extends the learnability
characterization for the stochastic setting in Foster et al. [17], and follows a long tradition in learning
theory [52, 2, 49, 44, 11]. To state the result, we define the minimax regret for model class M as

M(M, T ) = inf
p(1),...,p(T )

sup
M(1),...,M(T )

E[Reg
DM

],

where p(t) : (⇧ ⇥ Z)t�1 ! �(⇧) and M (t) : (⇧ ⇥ Z)t�1 !M are policies for the learner and
adversary, respectively. Our characterization is as follows.
Theorem 2.3. Suppose there exists M0 2M such that fM0 is a constant function, and that |⇧| <1.

1. If there exists ⇢ > 0 such that lim�!1 dec�(co(M)) · �⇢ = 0, then limT!1
M(M,T )

Tp = 0
for p < 1.

2. If lim�!1 dec�(co(M)) · �⇢ > 0 for all ⇢ > 0, then limT!1
M(M,T )

Tp =1 for all p < 1.

The same conclusion holds when ⇧ = ⇧T grows with T , but has log|⇧T | = O(T q) for any q < 1.8

Theorem 2.3 shows that polynomial decay of the convexified DEC is necessary and sufficient for
low regret. We emphasize that this result is complementary to Theorem 2.2, and does not require
localization or any assumption on the tail behavior of the algorithm. This is a consequence of the
coarse, asymptotic nature of the result, which allows us the use of rescaling arguments to remove
these conditions.

Comparison to stochastic setting. Having shown that the convexified Decision-Estimation Coeffi-
cient leads to upper and lower bounds on the optimal regret for the adversarial DMSO setting, we now
contrast with the stochastic setting. There, Foster et al. [17] obtain upper bounds on regret that have the
same form as (11), but scale with the weaker quantity max

M2co(M) dec�(M,M).9 For classes that
are not convex, but where “proper” estimators are available (including finite-state/action MDPs), the
upper bounds in Foster et al. [17] can further be improved to scale with dec�(M). Hence, our results
show that in general, the price of adversarial outcomes can be as large as dec�(co(M))/dec�(M).
Examples (see Appendix D for details and more) include:

• For tabular (finite-state/action) MDPs with horizon H , S states, and A actions, Fos-
ter et al. [17] show that dec�(M)  poly(H,S,A)/�, and use this to obtain regret

8Allowing ⇧ to grow with T is useful when considering infinite decision spaces, because it facilitates
covering arguments.

9Theorem 3.1 of Foster et al. [17] attains Reg
DM

. inf�>0

�
maxM2co(M) dec�(M,M) + � · log|M|

 

with high probability.
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p
poly(H,S,A) · T . Tabular MDPs are not a convex class, and co(M) is equivalent

to the class of so-called latent MDPs, which are known to be intractable [28, 37]. Indeed,
we show (Appendix D) that dec�(co(M)) � ⌦(Amin{S,H}), which implies an exponential
lower bound on regret through Theorem 2.2. This highlights that in general, the gap between
stochastic and adversarial outcomes can be quite large.

• For many common bandit problems, one has co(M) = M, leading to polynomial bounds
on regret in the adversarial setting. For example, the multi-armed bandit problem with A
actions has dec�(co(M))  O(A/�), leading to

p
AT logA regret (via Theorem 2.1), and

the linear bandit problem in d dimensions has dec�(co(M))  O(d/�), leading to regretp
dT log|⇧|.

3 Connections Between Complexity Measures

The Decision-Estimation Coefficient bears a resemblance to the generalized Information Ratio
introduced by Lattimore and György [32], Lattimore [30] which extends the original Information
Ratio of Russo and Van Roy [46, 47]. In what follows, we establish deeper connections between
these complexity measures. All of the results in this section are proven in Appendix E.

Let us call any function D(· k ·) : �(⇧)⇥�(⇧)! R+ a divergence-like function. We restate the
generalized Information Ratio from Lattimore [31]. For a distribution µ 2 �(M⇥⇧) and decision
distribution p 2 �(⇧), let P be the law of the process (M,⇡?) ⇠ µ,⇡ ⇠ p, z ⇠M(⇡), and define
µpr(⇡0) := P(⇡? = ⇡0) and µpo(⇡0;⇡, z) := P(⇡? = ⇡0 | (⇡, z)). The distribution µpr should be
thought of as the prior over ⇡?, and µpo should be thought of as the posterior over ⇡? after observing
(z,⇡); note that the law µpo does not depend on the distribution p. For parameter � > 1, Lattimore
[31] defines the generalized Information Ratio for a class M via10

 �(M) = sup
µ2�(M⇥⇧)

inf
p2�(⇧)

(
(E(M,⇡?)⇠µ E⇡⇠p[fM(⇡?)� fM(⇡)])�

E⇡⇠p Ez|⇡[D(µpo(·;⇡, z) k µpr)]

)
. (20)

Here, we have slightly generalized the original definition in Lattimore [31] by incorporating models
in M rather than placing an arbitrary prior over observations z directly. We also use a general
divergence-like function, while Lattimore [31] uses KL divergence and Lattimore and György [32]
use Bregman divergences.

To understand the connection to the Decision-Estimation Coefficient, it will be helpful to introduce
another variant of the Information Ratio, which we call the parameterized Information Ratio.
Definition 3.1. For a divergence-like function D(· k ·) : �(⇧)⇥�(⇧)! R+, the parameterized
Information Ratio is given by

infD
�
(M) (21)

= sup
µ2�(M⇥⇧)

inf
p2�(⇧)

E⇡⇠p

⇥
E(M,⇡?)⇠µ[f

M(⇡?)� fM(⇡)]� � · E⇡⇠p Ez|⇡[D(µpo(·;⇡, z) k µpr)]
⇤
.

The parameterized Information Ratio is always bounded by the generalized Information Ratio in (20);
in particular, we have infD

�
(M)  ( �(M)/�)

1
��1 8� > 0. All regret bounds based on the gen-

eralized Information Ratio that we are aware of [32, 31] implicitly bound regret by the parameterized
Information Ratio, and then invoke the inequality above to move to the generalized Information Ratio.
In general though, it does not appear that these notions are equivalent. Informally, this is because
the notion in (20) is equivalent to requiring that a single distribution p certify a certain bound on the
value in (21) for all values of the parameter � simultaneously, while the parameterized Information
Ratio allows the distribution p to vary as a function of � > 0 (hence the name); see also Appendix E.

Letting infH
�
(M) denote the parameterized Information Ratio with D = D2

H
(·, ·), we show that this

notion is equivalent to the convexified Decision-Estimation Coefficient.

Theorem 3.1. For all � > 0, infH
�
(M)  dec�(co(M))  infH

�/4(M).

10Lattimore and György [32] give a slightly different but essentially equivalent definition; cf. Appendix E.
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This result is a special case of Theorem E.1 in Appendix E, which shows that a similar equivalence
holds for a class of “well-behaved” f -divergences that includes KL divergence, but not necessarily for
general Bregman divergences. The idea is to use Bayes’ law to move from the Decision-Estimation
Coefficient, which considers distance between distributions over observations, to the Information
Ratio, which considers distance between distributions over decisions.

In light of this characterization, the results in this paper could have equivalently been presented in
terms of the parameterized Information Ratio. We chose to present them in terms of the Decision-
Estimation Coefficient in order to draw parallels to the stochastic setting, where guarantees that
scale with dec�(M) (without convexification) are available. It is unclear whether the Information
Ratio can accurately reflect the complexity for both stochastic and adversarial settings in the same
fashion, because—unlike the DEC—it is invariant under convexification, as the following proposition
shows.11

Proposition 3.1. For any divergence-like function D(· k ·), we have

infD
�
(M) = infD

�
(co(M)), 8� > 0.

For a final structural result, we show that up to constants, the parameterized Information Ratio is
equivalent to the high-probability Exploration-by-Optimization objective.

Theorem 3.2. For all ⌘ > 0,

infH
⌘�1(M)  exo⌘(M)  infH(8⌘)�1(M)

This result is proven through a direct argument (cf. Section 2.1), and the equivalence of the DEC
and Exploration-by-Optimization in (13) is proven by combining with Theorem 3.1. Summarizing
the equivalence:
Corollary 3.1. For all ⌘ > 0,

dec(4⌘)�1(co(M))  infH
⌘�1(M)  exo⌘(M)  infH(8⌘)�1(M)  dec(8⌘)�1(co(M)).

Since this equivalence depends of the value of the parameter � > 0 in the parameterized Information
Ratio, it is not clear whether a similar equivalence can be established using the generalized Informa-
tion Ratio in (20). We note in passing that one can use similar arguments to lower bound the Bregman
divergence-based Exploration-by-Optimization objective in Lattimore and György [32] by the param-
eterized Information Ratio for the Bregman divergence of interest, complementing their upper bound.

4 Discussion

We have shown that the convexified Decision-Estimation Coefficient is necessary and sufficient
to achieve low regret for adversarial interactive decision making, establishing that convexity
governs the price of adversarial outcomes. Our results elucidate the relationship between the DEC,
Exploration-by-Optimization, and the Information Ratio, and we hope they will find broader use.

This work adds to a growing body of research which shows that online reinforcement learning
with agnostic or adversarial outcomes can be statistically intractable [48, 37]. A promising future
direction is to extend our techniques to natural semi-adversarial models in which reinforcement
learning is tractable. Another interesting direction is to address the issue of computational efficiency
for large decision spaces.
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