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ABSTRACT

Generative models based on the adversarial process are sensitive to net architec-
tures and difficult to train. This paper proposes a generative model that imple-
ments cooperative adversarial learning via closed-loop transcription. In the gen-
erative model training, the encoder and decoder are trained simultaneously, and
not only the adversarial process but also a cooperative process is included. In
the adversarial process, the encoder plays as a critic to maximize the distance
between the original and transcribed images, in which the distance is measured
by rate reduction in the feature space; in the cooperative process, the encoder
and the decoder cooperatively minimize the distance to improve the transcription
quality. Cooperative adversarial learning possesses the concepts and properties of
Auto-Encoding and GAN, and it is unique in that the encoder actively controls the
training process as it is trained in both learning processes in two different roles.
Experiments demonstrate that without regularization techniques, our generative
model is robust to net architectures and easy to train, sample-wise reconstruction
performs well in terms of sample features, and disentangled visual attributes are
well modeled in independent principal components.

1 INTRODUCTION

Minimax game provides an unsupervised learning method, which is widely used in generative mod-
els such as generative adversarial nets (GAN) (Goodfellow et al., 2014; Chen et al., 2016; Radford
et al., 2015) and the recently-proposed closed-loop transcription framework (CTRL) (Dai et al.,
2022). Generative modeling based on minimax two-player game faces some problems, like the
instability in training processes, the difficulty in maintaining the balance between the discrimina-
tor and the generator (as in GAN) or between the encoder and the decoder (as in CTRL), and the
sensitiveness to net architectures (He et al., 2016a;b).

Maintaining balance and stability in the adversarial process attracts a lot of attention. The main-
stream is to provide a constrained discriminator (Kurach et al., 2019). Some regularization tech-
niques are provided, such as weight normalization (Salimans & Kingma, 2016), weight clip (Ar-
jovsky et al., 2017), gradient penalty (Gulrajani et al., 2017), spectral normalization (Miyato et al.,
2018), and adversarial lipschitz regularization (Terjék, 2019).

Different from the mainstream regularization methods, this paper considers the feasibility of letting
the discriminator actively adapt to the rhythm of the generator. The reason why maintaining balance
in the generative models via adversarial process is difficult is that the generator and the discriminator
tend to merely play against each other. However, balance will break sooner or later once the dis-
criminator learns faster than the generator. In contrast, generative models based on Auto-Encoding
like variational Auto-Encoding (VAE) (Kingma & Welling, 2013; Lopez et al., 2018) tend to be
stable, not facing instability and collapse problems. The reason is that the encoder and decoder in
the Auto-Encoding framework learn and update themselves cooperatively to improve reconstruction
quality and reduce data dimensions in the same direction. In one word, models work cooperatively
rather than against each other. Inspired by this cooperation idea, this paper attempts to combine
cooperative learning and adversarial learning in the generative model.

In this paper, a generative model via cooperative adversarial learning (CoA-CTRL) is proposed.
CoA-CTRL employs the closed-loop transcription framework (CTRL) proposed by (Dai et al., 2022;
Ma et al., 2022) and naturally combines the learning strategies of the adversarial process and coop-
erative process. Firstly, like the discriminator in GAN, the encoder in CoA-CTRL plays as a critic to
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maximize the feature distance between the real data and the transcribed data. Secondly, consistent
with Auto-Encoding, the encoder and decoder cooperatively minimize the difference between the
real data and transcribed data. The confrontation and cooperation between the two take turns and
intersect, which will actively keep the system in balance.

2 RELATED WORK

Auto-Encoding and its variants. Auto-Encoding is a typical neural network for representation
learning and data dimension reduction (Kramer, 1991; Hinton & Zemel, 1993; Hinton & Salakhut-
dinov, 2006). Auto-Encoding aims to learn the encoder Eθ and the decoder Dη simultaneously, and
this process can be demonstrated by equation (1). Generally, Auto-Encoding tends to learn from L2
pixel-wise distance.

min
θ,η
L(θ, η) = 1

N

N∑
i=1

||xi − Eθ(Dη(xi))||22 (1)

Generative adversarial nets (GAN). Generative adversarial nets (GAN) provides a generative
model based on the adversarial process (Goodfellow et al., 2014; Chen et al., 2016). GAN includes a
discriminator and a generator. The discriminator evaluates the performance of the generated images,
and the generator tends to fool the discriminator. The two networks are trained based on the two-
player minimax game by the value function V (G(η), D(θ)) as equation (2) displays, where G(η)
and D(θ) donate to the generator and discriminator respectively.

min
η

max
θ

V (η, θ) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (2)

MCR2 and CTRL. Recently, Chan et al. (2022) and Yu et al. (2020) proposed a new learning
objective, the so-called principle of maximal coding rate reduction (MCR2), which is to learn the
low-dimension intrinsic structures from high dimension data and obtain discriminative representa-
tion between classes. Encoder f(x, θ) maps high dimension data X to the low dimension features
Z. As is shown in equation (3), MCR2 provides a method called coding rate (R(Z, ϵ)) to measure
the compactness of learned feature Z integrally subject to the distortion ϵ. The rate reduction (∆R)
measures the distance in the feature space. In a special case of two classes 1 , as shown in equation
(6), there will be data features Z and Ẑ. The distance between Z and Ẑ can be measured by coding
rate reduction (∆R(Z, Ẑ)), that is, the difference between the coding rate of (Z∪Ẑ) and the average
sum of them (Rc).

R(Z, ϵ) =
1

2
log det(I + αZZ∗) (3)

X
f(x,θ)

−−−−−−−−−−→ Z
g(z,η)

−−−−−−−−−−→ X̂
f(x,θ)

−−−−−−−−−−→ Ẑ︸ ︷︷ ︸
h(x,θ,η)=f◦g◦f

(4)

h(x, θ, η) = f(g(f(x, θ), η), θ) (5)

∆R(Z, Ẑ) = R(Z ∪ Ẑ)− 1

2
(R(Z) +R(Ẑ))︸ ︷︷ ︸

Rc

(6)

min
η

max
θ
T (θ, η) = ∆R(f(X, θ), h(X, θ, η)) = ∆R(Z(θ), Ẑ(θ, η)) (7)

CTRL (Dai et al., 2022) provides a closed-loop framework based on MCR2, consisting an encoder
(f(x, θ)) and a decoder (g(z, η)). As equation (7) shows, CTRL aims to transcribe data via mini-
maxing coding rate reduction, in which h(x, θ, η) captures a closed-loop map as demonstrated by
equations (4) and (5). The first segment (x → z → x̂) in (4) resembles Auto-Encoding, and
the second segment (z → x̂ → ẑ) resembles GAN. While GAN generates images from Random
Gaussian Distribution noise, in CTRL, as (4) displays, decoder g(z, η) maps from feature Z (which
is encoded from X), and then encoder f(x, θ) maps X̂ to feature Ẑ. The distance between X

1Where X ∈ RD×n refers to data samples, Z ∈ Rd×n refers to features, α = d
nϵ2
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and X̂ is described by the coding rate reduction (∆R) in equation (6). R(Z ∪ Ẑ) refers to the
coding rate of joint space of Z and Ẑ. Rc describes the average sum coding rate of Z and Ẑ. The
encoder maximizes ∆R, and the decoder minimizes it. In this adversarial learning process, CTRL
is consistent with GAN (Goodfellow et al., 2014).

Chan et al. (2022) shows that the gradient of ∆R will disappear when ∆R is large enough, which
leads to low learning efficiency of encoder f(x, θ) and decoder g(z, η). The ∆R (the yellow ball)
in the left part of Figure 1 demonstrates this situation. This is consistent with Arjovsky & Bottou
(2017), which shows that when the distribution of real images and fake images does not intersect in
GAN, the gradient of the generator disappears. Therefore, keeping ∆R at a small value is important.
The ∆R of the right part of Figure 1 is better than the left part for the minimax game.

Figure 1: Two different representations compared based on different rate reductions (Yu et al., 2020;
Chan et al., 2022). R(Z ∪ Ẑ) is demonstrated by a number of ϵ-balls in the joint space of Z and
Ẑ (all the balls). Rc is the sum of a number of subspaces of Z (green ball) and Ẑ (red ball). ∆R
describes their difference (yellow ball). While MCR2 prefers the left representation for large rate
reduction, in the minimax game, the right is better.

3 COOPERATIVE ADVERSARIAL LEARNING

3.1 CLOSED-LOOP TRANSCRIPTION: ONE ENCODER, TWO ROLES

The way closed-loop transcription combines the structures of Auto-Encoding and GAN is ingenious,
as it gives the encoder two different roles. As the left part of Figure 2 and equation (4) demonstrates,
in the segment of x→ z → x̂, the encoder takes the responsibility as the encoder in Auto-Encoding;
while in the segment of z → x̂ → ẑ, the encoder takes the responsibility consistent with the
discriminator in GAN. Different from the former works such as VAE-GAN (Larsen et al., 2016)
and BiGAN (Donahue et al., 2016; Dumoulin et al., 2016) who add a discriminator to estimate the
decoder, closed-loop transcription trains only the encoder and the decoder, and it is the encoder that
estimates the performance of the decoder.

(a) Forward propagation process (b) Backward propagation process

Figure 2: Forward propagation process (a) and backward propagation process (b) of CTRL. In
the backward propagation process, encoder f(x, θ) was back-propagated three times, and therefore
generated three gradient values gθ1,gθ2, and gθ3 respectively.
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3.2 COOPERATIVE ADVERSARIAL LEARNING: TWO ROLES, LEARN TWICE

Detailed analysis of the encoder’s two roles. CTRL’s two-role setting and closed-loop framework
contribute to the complexity of the objective distance function ∆R(Z, Ẑ) as well as the training
process. As shown in equations (4) and (5), in CTRL’s closed-loop map H(x, θ, η), the encoder
f(x, θ) is used twice. We can expand the closed-loop map as shown in equation (8), in which
Ẑ(θ, η) is expanded to Ẑ(θ1, η, θ2). We use θ1 and θ2 to refer to the encoder’s first-time usage
(X → Z) and second-time usage (X̂ → Ẑ). We can also expand the distance function ∆R as
shown in equation (9), in which ∆R(Z, Ẑ) is expanded to ∆R(Z(θ3), Ẑ(θ1, η, θ2)). θ1, θ2, and θ3
all refer to the encoder f(x, θ), but we mark it differently as it appears three times and its meanings
in the distance function ∆R(Z(θ3), Ẑ(θ1, η, θ2)) are different. θ2 and θ3 represent the encoder when
it functions as a discriminator to transcribe data X̂ and X , and θ1 represents the encoder when it
takes the responsibility of an encoder in the segment of X → Z → Ẑ.

H(X, θ, η) = f(g(f(X, θ), η), θ) = Ẑ(θ, η) = Ẑ(θ1, η, θ2) (8)

∆R(Z, Ẑ) = ∆R(Z(θ3), Ẑ(θ1, η, θ2)) (9)

In the backward propagation process, as shown in the right part of Figure 2, encoder f(x, θ) will
be calculated the gradient three times by the objective function ∆R(Z(θ3), Ẑ(θ1, η, θ2)). The three
gradients are gθ1 , gθ2 , and gθ3 , which are shown in equations (10), (11), and (12).

gθ1 = ∇θ1∆R(Z(θ3), Z(θ1, η, θ2)) (10)

gθ2 = ∇θ2∆R(Z(θ3), Z(θ1, η, θ2)) (11)

gθ3 = ∇θ3∆R(Z(θ3), Z(θ1, η, θ2)) (12)

Cooperative adversarial learning based on encoder’s two roles. Although CTRL gives the en-
coder two roles, the original CTRL does not make use of the encoder’s dual identity features in
terms of its learning strategy (see Algorithm 2 in the Appendix). The original CTRL just follows
the simple minimax game in which the encoder functions merely as a discriminator, and its original
role of an encoder is ignored. In this paper, we provide cooperative adversarial learning as shown in
Algorithm 1 which makes use of the encoder’s two roles (encoder and discriminator).

Algorithm 1 demonstrates cooperative adversarial learning. Cooperative adversarial learning com-
prises two processes:

(1) Adversarial process. We only use gradients gθ2 and gθ3 (when the encoder functions as a dis-
criminator) in the adversarial process to maximize ∆R to provide an iteration learning signal. As
shown in Algorithm 1, via the adversarial process, encoder θ updates itself by its role of discrimina-
tor via θ2 (facing input X̂) and θ3 (facing input X) to enlarge ∆R. This process is consistent with
GAN and the original CTRL, and the equation is demonstrated by equation (13).

(2) Cooperative process. We use gθ1 (when the encoder functions as the encoder in Auto-encoding),
gθ2, gθ3, and gη together in the cooperative process to compress and transcribe data following the
learning signal of ∆R. As shown in Algorithm 1, via the cooperative process, we optimize θ1, θ2,
θ3, and η, which are all elements in the closed-loop transcription, to compress data and transcribe
data via the learning signal of ∆R. Equation (14) demonstrates this process.

max
θ

∆R(f(X, θ), H(X, θ, η)) = ∆R(Z(θ), Ẑ(θ, η)) (13)

↕ adversarial
min
θ,η︸︷︷︸

cooperation

∆R(f(X, θ), H(X, θ, η)) = ∆R(Z(θ), Ẑ(θ, η)) (14)
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Algorithm 1 Cooperative Adversarial Learning
Require: α, learning rate. ratio, CoA-ratio. ϵ2, coding rate parameter. bs, batch size.
Require: θ, init parameters of the encoder. η, init parameters of the decoder.

while η has not converged do
Adversarial process to provide iteration learning signal ∆R

Sample X ← x(i)bs

i=1 a batch from the real data
Z = f(x, θ), X̂ = (Z, η), Ẑ = f(X̂, θ)

gθ2 ← ∇θ2∆R(Z(θ3), Ẑ(θ1, η, θ2))

gθ3 ← ∇θ3∆R(Z(θ3), Ẑ(θ1, η, θ2))
gθ ← gθ2 + gθ3
θ ← θ + ratio× α×Adam(gθ)

Cooperative process to compress and transcribe via learning signal ∆R

Z = f(x, θ), X̂ = (Z, η), Ẑ = f(X̂, θ)
gθ1 ← ∇θ1∆R(Z(θ3), Z(θ1, η, θ2))
gθ2 ← ∇θ1∆R(Z(θ3), Z(θ1, η, θ2))
gθ3 ← ∇θ3∆R(Z(θ3), Z(θ1, η, θ2))
gθ ← gθ1 + gθ2 + gθ3
gη ← ∇η∆R(Z(θ3), Z(θ1, η, θ2))
θ ← θ − α×Adam(gθ)
η ← η − α×Adam(gη)

end while

Auto-Encoding optimizes the reconstruction quality based on pixel-wise loss, however, CoA-CTRL
optimizes the reconstruction quality based on the distribution distance (∆R) in the feature space,
and the feature distribution is defined by the encoder itself, which can be seen as a self-consistent
learning strategy in the closed-loop framework. When the encoder tries to find the distribution
distance and maximizes it in equation (13), it provides an iterative learning signal (∆R) for the
reconstruction task in equation (14). The encoder takes the responsibility for two roles and learns
twice. It minimizes what it maximizes, which is a self-consistent learning strategy (Ma et al., 2022).

In this sense, CoA-CTRL is an adaptive learning strategy and naturally unifies an adversarial pro-
cess consistent with GAN and a cooperative process consistent with Auto-Encoding, which will
contribute to its learning quality and stability. In conclusion, cooperative adversarial learning that
follows the value function T (θ, η) is displayed in equation (15):

min
θ,η

max
θ
T (θ, η) = ∆R(f(X, θ), H(X, θ, η)) = ∆R(Z(θ), Ẑ(θ, η)) (15)

3.3 COOPERATIVE ADVERSARIAL RATIO (COA-RATIO): A HYPERPARAMETER TO ADJUST
THE COOPERATIVE PROCESS AND THE ADVERSARIAL PROCESS

Active control of the adversarial process and the cooperative process. As discussed before, the
encoder works and learns in two different roles in the adversarial process and the cooperative process
respectively. Therefore, through the functioning of the encoder in both processes, we can actively
control the adversarial process and the cooperative process. We introduce a hyperparameter cooper-
ative adversarial ratio (CoA-ratio), which is the ratio of the encoder’s learning rate in the adversarial
process to its learning rate in the cooperative process, to adjust the learning rate of the encoder in
two learning processes. In every iteration, before going through equation (13), the learning rate
of the encoder would be multiplied by the CoA-ratio, and before going through equation (14), the
encoder’s learning rate would be restored to the previous value.

Balance achieved through active control. The discriminator and generator in GAN work in the
opposite direction. The learning process of the discriminator is hard to control, and therefore the
balance of the training is hard to keep. Benefited by the encoder learning twice in the cooperative
and adversarial processes and its different learning rates and speeds realized by the CoA-ratio, the
encoder becomes the controller and regulator of the training process. The training process and

5



Under review as a conference paper at ICLR 2023

the loss value ∆R thus can be easily controlled without paying too much attention to constrained
network design.

3.4 ADVANTAGES AND DIFFERENCES

Training stability. Encoder’s learning twice provides a way to actively balance the learning pro-
cesses through its two roles. As equation (15) shows, the encoder not only maximizes ∆R but
also minimizes it, which relieves the need to design special networks or adjust parameters. Com-
pared with former balance techniques, CoA-CTRL does not add constraint techniques or computing
processes. It is simple and computationally efficient. In experiments, classic deep nets ResNet18,
ResNet50, and ResNet101 (He et al., 2016a;b) are used to validate CoA-CTRL’s active balance.

Sample-consistent reconstruction. As mentioned in 3.2, CoA-CTRL naturally unifies the learning
strategies of Auto-Encoding and GAN, which will help the encoder learn better and faster. Other
than that, it will benefit the sample-wise reconstruction. Sample-wise consistent reconstruction
g(f(x)) ≈ x is the ideal solution to ∆R(Z(θ), Z(θ, η)) ≈ 0, and ∆R(Z(θ), Z(θ, η)) is determined
by encoder f(x, θ) and decoder g(z, η). CTRL (Dai et al., 2022) would minimize ∆R(θ, η) merely
through the decoder g(z, η), which would give an approximate optimization choice that results in
poor sample-wise consistency. However, if we optimize ∆R(θ, η) by decoder g(z, η) and encoder
f(x, θ), the optimization process would become simple, and the ideal sample-consistent solution
would be easily obtained. In addition, cooperative adversarial learning via closed-loop transcription
produces good disentangled feature space. Later experiments will demonstrate this advantage.

Simpler. As Auto-Encoding, its variants (Kingma & Welling, 2013), and GAN all gain a lot of atten-
tion in the generative model area, many works have attempted to combine Auto-Encoding and GAN,
like Bigan (Donahue et al., 2016), ALI (Dumoulin et al., 2016), adversarial autoencoders (Makhzani
et al., 2015) and VAE-GAN (Larsen et al., 2016). Different from those attempts, CoA-CTRL imple-
ments the closed-loop transcription (Dai et al., 2022), introduces the cooperative process, and invites
no other discriminator. The encoder learns twice in different roles within one iteration without in-
vesting more computing resources. Stability and balance are controlled actively without regulation
techniques, which contributes to computing resource saving compared to other regulation techniques
like spectral normalization (Miyato et al., 2018). Also, the original CTRL always depends on big
batch sizes, while cooperative adversarial learning could reduce this demand.

4 EXPERIMENTS

4.1 SETTING

In this paper, we intend to justify two main advantages of CoA-CTRL: firstly, CoA-CTRL’s ro-
bustness to different net architectures through our cooperative adversarial learning; secondly, CoA-
CTRL’s sample-consistent reconstruction. To conduct the experiments, we use two types of en-
coders: deep encoders and normal encoders, and both types of encoders will be paired with one
type of decoder. We conduct the experiments with deep encoders on the diverse data set CIFAR-10
(Krizhevsky et al., 2009) and STL-10 (Coates et al., 2011), as well as the facial data set Celeb-A
(Liu et al., 2015), aiming to demonstrate CoA-CTRL’s active balance. We conduct the experiments
with normal encoders on MNIST (LeCun et al., 1998), CIFAR-10, and ImageNet-1k (Russakovsky
et al., 2015), aiming to prove CoA-CTRL’s sample-wise consistency. More details of the experiment
setting could be found in Appendix A.2.

4.2 EMPIRICAL VERIFICATION OF COA-CTRL’S ACTIVE BALANCE

4.2.1 ACTIVE BALANCE TO NET ARCHITECTURES

To verify CoA-CTRL’s active balance, we conduct several comparative tests on CIFAR-10, using
ResNet18, ResNet50, and ResNet101 as the encoder, and the widely used 8-layer resnet (De8)
(Miyato et al., 2018) as the decoder. We intend to prove that even with an unbalanced combination
of the encoder and decoder, CoA-CTRL can perform well in a stable manner. We apply the same
settings on GAN and CTRL, aiming to compare their stability and performances with CoA-CTRL.
Results in Table 1 show that CoA-CTRL works well, while GAN and CTRL fail and collapse in the
training process.

To quantity CoA-CTRL’s performance, we test CoA-CTRL by the widely used Inception score (IS)
(Salimans et al., 2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017). We further com-
pare CoA-CTRL’s IS and FID with other major generative models, which are displayed in Table 2.
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Interested in the parts feature dimension (nz) and batchsize (bs) play in CoA-CTRL’s performance
and stability, we additionally adjust nz and batchsize to see whether CoA-CTRL can maintain bal-
ance. As shown in Table 1, we find that CoA-CTRL works well with different combinations of nz
and batchsize, and it performs better when we increase nz and batchsize at the same time.

We also explore the loss value ∆R in the training process. As shown in Figure 3, CoA-CTRL keeps
low and stable ∆R and high R(Z∪Ẑ), while CTRL shows unstable training loss ∆R. CoA-CTRL’s
stable training loss contributes to its training success and excellent performance.

Table 1: Stability and performance of CoA-CTRL compared with GAN and CTRL on CIFAR-
10. Experiments show that CoA-CTRL gets excellent performances in a stable manner even with
unbalanced settings of a deep encoder and a shallow decoder. Avg. of R and Avg. of ∆R refer
to the average value of R(Z ∪ Ẑ) and ∆R in the training process. ↑ means higher is better, and ↓
means lower is better.

Methods Encoder/ Decoder/ nz bs Result Avg. of Avg. of IS ↑ FID ↓
Discriminator Generator R ∆R

(1) Comparisons of stability and performance

GAN ResNet18 De8 128 128 fail - - - -
GAN ResNet18 De8 128 512 fail - - - -
CTRL ResNet18 De8 128 512 fail 45.57 9.77 - -

CoA-CTRL ResNet18 De8 128 512 succeed 65.03 1.65 7.94 10.49
CoA-CTRL ResNet50 De8 128 512 succeed 64.04 1.84 7.82 11.17
CoA-CTRL ResNet101 De8 128 512 succeed 63.79 1.76 7.12 19.12

(2) Ablation study on nz and batchsize

CoA-CTRL ResNet18 De8 128 512 succeed 65.03 1.65 7.94 10.49
CoA-CTRL ResNet18 De8 128 1024 succeed 63.85 1.25 7.91 10.92
CoA-CTRL ResNet18 De8 256 512 succeed 127.92 6.15 7.38 12.72
CoA-CTRL ResNet18 De8 256 1024 succeed 127.15 2.81 8.21 9.54
CoA-CTRL ResNet18 De8 512 1024 succeed 244.38 11.17 7.60 11.61

(a) CTRL (b) CoA-CTRL

Figure 3: Loss evaluation of CTRL and CoA-CTRL in the training process on CIFAR-10, using
ResNet18. CoA-CTRL keeps ∆R in a stable curve even with an unbalanced setting of a deep
encoder and a shallow decoder.

4.2.2 ASSOCIATION BETWEEN THE LOSS VALUE ∆R AND PERFORMANCE

As shown in Table 1 and Figure 3, CoA-CTRL’s performance seems to be associated with ∆R. As
discussed in section 3.3, we introduce CoA-ratio to adjust the learning rate of the encoder in the ad-
versarial process and the cooperative process, which would influence the loss value ∆R. Therefore,
we set CoA-catio at 1.25,1.5,1.75 and 2.0 respectively to explore the influence of ∆R on CoA-
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Table 2: Comparison of performances of CoA-CTRL and other generative methods on CIFAR-10
and STL-10. Data of other generative models are cited from relevant papers. For CoA-CTRL (1),
the nz is 128, and the bs is 512; for CoA-CTRL (2), the nz is 256, and the bs is 1024.

Methods CIFAR-10 STL-10
IS↑ FID↓ IS↑ FID↓

SNGAN 8.2 21.7 9.1 40.1
WGAN-GP 7.9 29.3 - -

WGAN-ALP 8.3 13.0 - -
SSGAN - 17.1 - -
LOGAN 8.7 17.7 - -
BIGGAN 9.2 14.7 - -
DCVAE 8.2 17.9 8.1 41.9
CTRL 8.1 19.6 8.4 38.6

CoA-CTRL (1) 7.94 10.49 8.68 22.96
CoA-CTRL (2) 8.21 9.54 9.28 18.54

CTRL’s performance. We conduct the experiment on CIFAR-10, using ResNet18 as the encoder,
with nz and batchsize set at 128 and 512. As shown in Table 12 and Figure 6 in the Appendix,
different CoA-ratios are associated with different values of ∆R and R, and the performance score
IS and FID are highly influenced by ∆R, but the good thing is that the change of ∆R is stable. This
paper just points out that CoA-ratio, ∆R, and performance are highly associated. Future works will
explore the mechanisms.

4.2.3 EXCELLENT PERFORMANCE ACHIEVED THROUGH A SIMPLE DECODER

We compare CoA-CTRL’s performance with other generative models on CIFAR-10 and STL-10.
The data in Table 2 is directly cited from those relevant papers except for CoA-CTRL. For CoA-
CTRL, We use ResNet18 as the encoder on both CIFAR-10 and STL-10. Table 2 shows that CoA-
CTRL performs better with a simple decoder and experiment setting, compared with other generative
models, such as GANs with regularization techniques (SNGAN, WGAN-GP, WGAN-ALP) (Miyato
et al., 2018; Gulrajani et al., 2017; Terjék, 2019), self-supervised GAN (Chen et al., 2019), latent
optimisation GAN (LOGAN) (Wu et al., 2019), complex model GAN (BIGGAN) (Brock et al.,
2018), a recent combination of GAN and VAE (DCVAE) (Parmar et al., 2021), and the original
CTRL (Dai et al., 2022). Compared with CTRL, the FID value of CoA-CTRL is decreased by 10.06
on CIFAR-10 and 20.06 on STL-10. The improvements are clear and substantial.

4.3 SAMPLE-WISE CONSISTENCY

CoA-CTRL performs well on sample-wise reconstruction in terms of sample features, which is
demonstrated by our experiments on several mainstream data sets using normal encoders. Figure 4
shows CoA-CTRL’s reconstruction performance on MNIST compared with CTRL. We can see that
CoA-CTRL’s reconstruction is almost the same as the original input, better and more consistent than
CTRL. For CIFAR-10 and ImageNet-1k (Russakovsky et al., 2015), we use networks listed through
Table 5 to Table 9 in the Appendix. We run 20,000 iterations on both data sets. Figure 4 displays
CoA-CTRL’s performance on CIFAR-10 and ImageNet-1k. We can see that CoA-CTRL recon-
structs well in terms of features, color, and classes, which is benefited from cooperative adversarial
learning and a loss function based on the feature space.

4.4 DISENTANGLED FEATURE SPACE

The latent space of GAN has no certain meanings and lacks inverse maps from data to the latent
space. Some following works discussed this issue (Chen et al., 2016; Karras et al., 2019; 2020;
Tov et al., 2021). The latent space in CoA-CTRL has clear and disentangled meanings. CoA-
CTRL possesses the concept of dual consistent maps, x → z, and z → x. Images in Figure 8
in the Appendix are the generated samples of CIFAR-10 along independent principal components.
We select the top 10 components with every row referring to a component from top to bottom.
We can see that different shapes, styles, backgrounds, and other visual attributes are well modeled
in different principal components, and the images vary with the scale value. In addition, we test
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(a) X (b) X̂ by CoA-CTRL (c) X̂ by CTRL

(d) CIFAR-10 X (e) X̂ by CoA-CTRL (f) X̂ by CTRL

(g) ImageNet-1k X (h) ImageNet-1k X̂ by CoA-CTRL

Figure 4: Comparison of sample-wise reconstruction. CoA-CTRL performs well in sample-wise
reconstruction on MNIST, CIFAR-10, and ImageNet-1k.

the classification accuracy on MNIST based on feature representations with one Nearest Neighbor
(1NN) classifier. As Table 13 in the Appendix shows, CoA-CTRL’s performance is competitive
compared with other methods (Springenberg, 2015; Kingma & Welling, 2013; Donahue et al., 2016;
Dumoulin et al., 2016; Makhzani et al., 2015; Parmar et al., 2021; Dai et al., 2022).

5 DISCUSSION AND CONCLUSION

In this paper, we propose cooperative adversarial learning, and based on this new learning method
and closed-loop transcription, we build a promising generative model, which possesses the prop-
erties of active balance, better generative performance, and disentangled latent space. Other than
that, we find it competitive in unsupervised representation. Although cooperative adversarial learn-
ing provides a way to balance deep nets, some questions are still unclear. For example, whether a
deeper encoder would benefit to better performance, and how big a coop-ratio or ∆R is best for the
training process and model performance. These questions deserve further explorations.
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A APPENDIX

A.1 LEARNING STRATEGY OF THE ORIGINAL CTRL

Algorithm 2 Original CTRL’s learning strategy
Require: α, learning rate. ratio, CoA-ratio. ϵ2, coding rate parameter. bs, batch size.
Require: θ, init parameters of encoder. η, init parameters of decoder.

while η has not converged do
Sample X ← x(i)bs

i=1 a batch from the real data
Z = f(x, θ), X̂ = (Z, η), Ẑ = f(X̂, θ)

gθ2 ← ∇θ2∆R(Z(θ3), Ẑ(θ1, η, θ2))

gθ3 ← ∇θ3∆R(Z(θ3), Ẑ(θ1, η, θ2))
gθ ← gθ2 + gθ3
θ ← θ + ratio× α×Adam(gθ)

Z = f(x, θ), X̂ = (Z, η), Ẑ = f(X̂, θ)
gη ← ∇η∆R(Z(θ3), Z(θ1, η, θ2))
η ← η − α×Adam(gη)

end while

A.2 EXPERIMENT SETTING

A.2.1 EXPERIMENTS USING NORMAL ENCODERS

We conduct the experiments using nets in DCGAN (Radford et al., 2015) and some other simple nets
on MNIST, CIFAR-10, and ImageNet-1k, aiming to justify CoA-CTRL’s sample-wise consistency.
The details of the networks can be found through Table 3 to Table 7. The experiments we conduct
are fair comparisons to the original CTRL, and the only difference is the learning strategy. For
experiments with normal encoders, the encoder and the decoder have similar volumes. We set the
hyperparameters β1 and β2 of the optimizer Adam (Kingma & Ba, 2014) at 0.0 and 0.9 for MNIST,
and at 0.5 and 0.9 for CIFAR-10 and ImageNet-1k. We set the learning rate at 0.0001 and apply
linear decay. ϵ2 is set at 0.5. We adjust the CoA-ratio at 1.3 for MNIST and 1.5 for other data sets.
For MNIST, we set batchsize at 256 and run 10,000 iterations. For CIFAR-10, we set the batchsize
at 512 and run 20,000 iterations. For ImageNet-1k, we set the batchsize at 128 and run 20,000
iterations.

A.2.2 EXPERIMENTS USING DEEP ENCODERS

We conduct experiments using deep encoders on CIFAR-10, STL-10, and Celeb-A. The settings
of the experiments using deep encoders are as follows. Adam (Kingma & Ba, 2014) would be
used as the optimizer. The learning rate is set at 0.0001, and the linear decay is applied. For the
classic hyperparameters β1 and β2, we set them at 0.0 and 0.9 respectively. We fix ϵ2 at 0.5 in all
experiments. CoA-ratio is set at 1.5. The value of nz is set at 128. The batchsize is 512. For the
decoder, we adopt the widely used networks in DCGAN (Radford et al., 2015), SNGAN (Miyato
et al., 2018), and CTRL (Dai et al., 2022). The details can be found in Table 5, Table 9, and Table
10. For the encoder, we apply deep nets 18-layer preaction resnet (ResNet18), 50-layer preaction
resnet (ResNet50), and 101-layer preaction resnet (ResNet101) to verify CoA-CTRL’s stability and
robustness to deep nets.

As for ResNet18, ResNet50, and ResNet101 in this paper, we use preaction (He et al., 2016b) and
average pooling to downsample, which will contribute to better feature extraction. For STL-10 and
Celeb-A, we add a downsample at the first ResBlock of ResNet18. Spectral normalization (Miyato
et al., 2018), batch normalization (Ioffe & Szegedy, 2015), or other regulation techniques are not
applied, instead, just a simple and standard convolution layer without constraint is employed.

We run 10,000 iterations on MNIST, 100,000 iterations on CIFAR-10, 150,000 iterations on STL-10
and Celeb-A. We resize the resolution of MNIST to 32 × 32, STL-10 to 48 × 48, and Celeb-A to
64 × 64.
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Table 3: Decoder for MNIST

z ∈ Rdim

4×4,stride=1,pad=0 deconv.BN256 ReLU
4×4,stride=2,pad=1 deconv.BN128 ReLU
4×4,stride=2,pad=1 deconv.BN64 ReLU

4×4,stride=2,pad=1 deconv 1 Tanh

Table 4: Encoder for MNIST

x ∈ R32×32×1

4 × 4, stride=2, pad=1 conv 64 lReLU
4 × 4, stride=2, pad=1 conv. BN 128 lReLU
4 × 4, stride=2, pad=1 conv. BN 256 lReLU

4 × 4, stride=1, pad=0 conv 128

Table 5: Decoder for CIFAR-10

z ∈ Rdim

dense→ 4× 4× 256
ResBlock up 256
ResBlock up 256
ResBlock up 256

BN, ReLU, 3×3 conv, 3 Tanh

Table 6: Encoder for CIFAR-10

x ∈ R32×32×1

ResBlock down 64
ResBlock down 128
ResBlock down 256

4 × 4, stride=1, pad=0 conv 512

Table 7: Decoder for ImageNet

z ∈ Rdim

4×4,stride=1,pad=0 deconv.BN512 ReLU
4×4,stride=2,pad=1 deconv.BN256 ReLU
4×4,stride=2,pad=1 deconv.BN128 ReLU
4×4,stride=2,pad=1 deconv.BN64 ReLU

4×4,stride=2,pad=1 deconv 3 Tanh

Table 8: Encoder for ImageNet

x ∈ R64×64×3

4 × 4, stride=2, pad=1 conv 64 lReLU
4 × 4, stride=2, pad=1 conv. BN 128 lReLU
4 × 4, stride=2, pad=1 conv. BN 256 lReLU

4 × 4, stride=2, pad=1 conv 512 lReLU
4 × 4, stride=1, pad=0 conv 1024

Table 9: Decoder for Celeb-A

x ∈ R64×64×3

ResBlock down 64
ResBlock down 128
ResBlock down 256
ResBlock down 512

4 × 4, stride=1, pad=0 conv 1024

Table 10: Decoder for STL-10

z ∈ Rdim

dense→ 6× 6× 512
ResBlock up 256
ResBlock up 128
ResBlock up 64

BN, ReLU, 3×3 conv, 3 Tanh
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A.2.3 STRUCTURES OF RESBLOCK

(a) Resblock down (b) Resblock up

Figure 5: Structure of resblock down and reblock up.

A.3 COA-CTRL’S ROBUSTNESS TO BATCH-SIZE

Table 11: Comparison between CoA-CTRL and the original CTRL in terms of robustness to batch
size, using normal encoder and decoder as displayed in Table 5 and Table 6. Fail means the model
collapses.

Batch size 64 128 256 512 1024

CTRL Fail Fail Fail succeed succeed
CoA-CTRL succeed succeed succeed succeed succeed

A.4 ABLATION STUDY ON COA-RATIO

Table 12: Ablation study on CoA-ratio on CIFAR-10. Avg. of R and Avg. of ∆R refer to the
average value of R(Z ∪ Ẑ) and ∆R in the training process.

CoA-ratio 1.25 1.5 1.75 2.0

Avg. of R 64.08 65.03 63.45 64.16
Avg. of ∆R 0.62 1.65 3.92 4.07

IS↑ 6.55 7.94 7.02 6.64
FID↓ 22.34 10.49 38.04 38.20
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(a) CoA-ratio:1.25 (b) CoA-ratio:1.5

(c) CoA-ratio:1.75 (d) CoA-ratio:2.0

Figure 6: Loss evaluation of CoA-CTRL in the training process on CIFAR-10, using ResNet18 as
the encoder and De8 as the decoder. Different CoA-ratio of 1.25, 1.5, 1.75, and 2.0 are used.

A.5 COA-CTRL’S SAMPLE-WISE RECONSTRUCTION ON STL-10 AND CELEB-A

(a) STL-10 X (b) STL-10 X̂ by CoA-CTRL

(c) Celeb-A X (d) Celeb-A X̂ by CoA-CTRL

Figure 7: Comparison of sample-wise reconstruction. CoA-CTRL performs good sample-wise re-
construction STL-10 and Celeb-A.
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A.6 DISENTANGLED FEATURE SPACE AND CLASS-WISE ACCURACY

(a) airplane (b) automobile (c) bird

(d) cat (e) deer (f) dog

(g) frog (h) horse (i) ship

(j) truck

Figure 8: Generated samples of ten classes along 10 principal components from the feature subspace
on CIFAR-10. Every row refers to a principal component, and the scale value varies from -1.5 to
1.5.
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Table 13: Class-wise accuracy performance with respect to unsupervised representation on MNIST

Method VAE BIGAN catGAN AAE DC-VAE CTRL CoA-CTRL

Accuracy 97.12% 97.39% 95.7% 95.9% 98.71% 89.12% 95.89%
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