Thought calibration: Efficient and confident test-time scaling

Anonymous Authors'

Abstract

Reasoning large language models achieve impres-
sive test-time scaling by thinking for longer, but
this performance gain comes at significant com-
pute cost. Directly limiting test-time budget hurts
overall performance, but not all problems are
equally difficult. We propose thought calibra-
tion to decide dynamically when thinking can
be terminated. To calibrate our decision rule,
we view a language model’s growing body of
thoughts as a nested sequence of reasoning trees,
where the goal is to identify the point at which
novel reasoning plateaus. We realize this frame-
work through lightweight probes that operate on
top of the language model’s hidden representa-
tions, which are informative of both the reason-
ing structure and overall consistency of response.
Based on three reasoning language models and
four datasets, thought calibration preserves model
performance with up to a 60% reduction in think-
ing tokens on in-distribution data, and up to 20%
in out-of-distribution data.

1. Introduction

Test-time scaling presents a new paradigm for improving
language model reasoning by expending large amounts of
compute during inference (Kaplan et al., 2020; Wei et al.,
2022). Though the strategies for eliciting reasoning vary —
from large-scale reinforcement learning (Guo et al., 2025a)
to explicit tree search (Zhang et al., 2024a;b) — a common
effect is that language models improve by sampling sub-
stantially more tokens. This may result in wasted compute
on easy problems (Chen et al., 2024; Sui et al., 2025), but
naively limiting the generation length leads to pronounced
drops in accuracy (Muennighoff et al., 2025). This motivates
early stopping strategies that reduce the inference budget

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

without significantly degrading performance, and control
the extent of impact, if performance must be compromised.

Numerous methods have been proposed for teaching lan-
guage models to be economical with their token bud-
gets (Han et al., 2024; Arora & Zanette, 2025; Sui et al.,
2025), or for identifying opportune stopping points (Yang
et al., 2025; Zhang et al., 2025). While these methods
demonstrate strong empirical performance, they lack strict
statistical guarantees about when they could fail. In an or-
thogonal direction, conformal prediction has been adapted
to equip language models with calibrated confidences about
the quality or consistency of their generations (Mohri &
Hashimoto, 2024; Quach et al., 2024; Rubin-Toles et al.,
2025b;a; Cherian et al., 2024). However, most of these
algorithms operate through post-hoc filtering and require ex-
ternal LLM-based validation for scoring intermediate steps
— rendering them unsuitable for actively terminating genera-
tion.

In this work, we jointly pursue an effective and calibrated
decision rule to determine when a language model can stop
“thinking.” To do so, we introduce the notion of a rea-
soning tree, where at each step of sampling, a language
model either adds a new leaf, walks along the tree, or back-
tracks to a previous step. Notably, identifying when the
thoughts have converged is equivalent to detecting when
this reasoning tree stops growing. Inspired by this concept,
we approach early stopping as multiple hypothesis testing
problem. At each generation step, we test whether the cur-
rent tree is expected to change, based on the predictions
of lightweight probes over the language model’s hidden
representations. Our algorithm is based on the Learn then
Test framework (Angelopoulos et al., 2021), which provides
finite-sample, distribution-free guarantees for controlling
the risk of our decisions.

We evaluate this strategy, thought calibration, based on its
ability to guide efficient reasoning, and whether its decisions
are well-calibrated. Our experiments consider two empirical
settings: we may or may not have access to training and
calibration data from the true test distribution. In the first
setting, we train variants of thought calibration using three
reasoning lanugage models (DeepSeek-R1 distilled Qwen
32B and Llama 70B (Guo et al., 2025a; Yang et al., 2024;
Grattafiori et al., 2024), QwQ 32B (Team, 2025)), evaluated

on a helf-out split of s1K-1.1 (Muennighoff et al., 2025).
Here, we are able to halve the number of thinking tokens
across accuracy levels, with a maximum reduction of 60%.
Then we evaluate Qwen 32B-based thought calibration on
three test datasets: AIME 24, GPQA Diamond (Rein et al.,
2024), MATH-500 (Lightman et al., 2023)). Though these
datasets vary in format and difficult, thought calibration
is still able to reach up to a 20% reduction in thinking
tokens, and in the worst case, is always as efficient as naive
budget constraints. In summary, this work has three main
contributions.

1. We interpret LLM reasoning through the lens of an
abstract reasoning tree, where the problem of early
exiting is equivalent to identifying when this tree stops
growing.

2. This view allows us to calibrate the decision rule for
actively terminating generation.

3. Based on multiple language models and reasoning
benchmarks, we provide empirical evidence that
thought calibration is effective for efficient test-time
scaling.

2. Background
2.1. Test-time scaling

Efficient inference Since current reasoning models are
post-trained through reinforcement learning (Guo et al.,
2025a), a number of works address the overthinking prob-
lem (Sui et al., 2025) as part of the reinforcement learning
process (Han et al., 2024; Arora & Zanette, 2025; Hou
et al., 2025). Other works focus on the inference-time prob-
lem of predicting when a language model should stop gen-
erating (Yang et al., 2025; Zhang et al., 2025; Ma et al.,
2025). This papers falls under the latter category, which on
a whole, is compatible with methods that reduce a language
model’s verbosity during post-training. Finally, another op-
tion is to achieve efficiency in terms of model architecture.
Some works dynamically adapt compute cost (Lei, 2021;
Leviathan et al., 2023), while others employ only a subset of
all modules during sampling (Kim & Cho, 2021; Liu et al.,
2022; Schuster et al., 2022). While these strategies operate
over the Transformer stack, rather than the generation se-
quence length, many high-level ideas are broadly applicable
to early exiting in our situation.

Self-consistency Self-consistency has been widely used
to provide a self-supervised form of confidence during the
sampling process (Wang et al., 2022). These methods aim
to improve the quality of generated samples, often in situ-
ations where multiple samples may be sequentially gener-
ated (Mitchell et al., 2022; Madaan et al., 2023; Shi et al.,

2023; Weng et al., 2023; Guo et al., 2025b). Consistency
can also provide feedback for reasoning-focused reinforce-
ment learning (Wang et al., 2024b). Several recent works
have observed that confidence scores can be probed and cal-
ibrated from internal representations, to prioritize reasoning
trajectories for subsequent runs (Li et al., 2024; Huang et al.,
2025; Xie et al., 2024) or for early exiting, similar to this
work (Zhang et al., 2025). Our key departure is that we cali-
brate the decision rule to terminate generation, rather than
the probabilistic outputs of a probe. This reflects the online
setting, where a probe is used to actively guide generation,
rather than to filter trajectories post-hoc.

2.2. Conformal prediction and risk control

Conformal prediction quantifies the uncertainty in ma-
chine learning models by generating set-valued predic-
tions (Shafer & Vovk, 2008; Angelopoulos & Bates, 2021).
These methods are distribution-free and valid under finite
samples, which makes them particularly attractive in real-
world applications. Specifically, for an input z, a candidate
output space)/, and a predetermined error level €, conformal
prediction tests each potential outcome y €) by evaluating
the null hypothesis: “output y corresponds to input x.” The
final prediction set consists of the outputs y for which this
null hypothesis fails to be rejected, where the test statistic is
known as a nonconformity score. Split conformal prediction
leverages a separate training set to learn this nonconformity
score (Vovk et al., 2005; Papadopoulos, 2008). The true
outcome is included with probability at least 1 — €, with
guarantees that are typically marginal over draws of the test
set and an exchangeable calibration set.

In the context of language modeling, conformal predic-
tion has been adapted to calibrate the factuality (Mohri
& Hashimoto, 2024; Cherian et al., 2024), reasoning con-
sistency (Rubin-Toles et al., 2025b), and quality of genera-
tions (Quach et al., 2024; Qiu & Miikkulainen, 2024). Here,
T may represent an input sequence of text, while y may
be a language model output. Of these works, Rubin-Toles
et al. (2025b) also introduces the idea of reasoning as co-
herency over a graph structure, based on logical deducibility.
However, this and other methods are primarily designed for
post-processing text that has already been generated, and
they rely on external language models as scoring functions.
As aresult, these approaches are not calibrated to be used as
decision rules for iterative testing, and the latency required
to compute nonconformity scores renders them unsuitable
for early exiting.

More recently, the Learn then Test (LTT) framework (An-
gelopoulos et al., 2021) extends the ideas in conformal pre-
diction to control the risk of arbitrary loss functions, with
guarantees over draws of the calibration set. One applica-
tion of LTT is to convert model outputs into a calibrated

decision rule, by viewing hyperparameter selection (e.g. dis-
cretization thresholds) as multiple hypothesis testing. Our
method and several works in early exiting are built atop the
LTT framework. Quach et al. (2024) calibrates a language
model’s sampling of output sets, similar to this work. Their
goal is to generate sufficient outputs y until certain admis-
sibility criteria have been fulfilled, e.g. correctness and
diversity of information. However, the sampling process
in Quach et al. (2024) is interactive, in the sense that each
step requires an external verifier, and text may be added or
removed at any point. As a result, this strategy is unsuitable
for providing online decisions about when to stop. Schuster
et al. (2022) also leverages LTT to calibrate a stopping rule
to exit from a Transformer stack. Their method operates
on individual tokens, similar in spirit to applications like
speculative decoding (Leviathan et al., 2023). Our focus is
on large, coherent thoughts for reasoning, where token-level
uncertainties are less informative.

3. Thought Calibration

Given an input z € X, a reasoning language model gen-
erates a series of thoughts y €), before synthesizing the
final output z € Z. For example, x may represent a math
question; ¥y is a sequence of reasoning steps; and z is the
model’s attempt at solving the question (Figure 1A). Manip-
ulating the budget allocated to generating y directly impacts
the quality of z (Muennighoff et al., 2025), but as the length
of y increases, so too does the cost of inference. Our goal is
to identify the point at which growing y no longer improves
z.

To formalize these ideas, we introduce the notion of an ab-
stract reasoning graph GG, where nodes represent thoughts
and directed edges represent entailment relationships (Mac-
Cartney & Manning, 2014). This graph is rooted at z, the
input question. Nodes can be serialized into textual descrip-
tions, and different paraphrases of the same idea represent a
single node. Where it is clear, we refer to the abstract node
and its textual representation interchangeably.

Definition 3.1. A reasoning trajectory z is a root-to-leaf
walk in the reasoning graph G.

An arbitrary z need not be “complete” or “correct” with
respect to the original question x. We use z* to denote a
walk that starts at « and ends at the right answer, which
we assume to be incontrovertible. G uniquely determines
the set of all root-to-leaf walks {z}, and thus, whether a
language model has any chance of being correct in its final
attempt.

Definition 3.2. A set of thoughts y is a walk, rooted at x, on
the augmented graph G’ in which every node is connected
to each of its ancestors.

At each stage of sampling, a large language model either

adds a leaf to G (novel thought), or takes one step in G’
(backtracking or redundant generation). Let G; be the rea-
soning graph at time ¢t. If a language model terminates
thinking at this point, it is expected to answer correctly if
there exists a path in G, that yields z*. Thus, it would be
ideal we could calibrate the language model such that with
high probability,

PE[L}"¢G]<d)=1-c¢ (M

for some risk tolerance ¢ and error level ¢ € (0,1). In
principle, a language model could enumerate the space of
graphs in a combinatorial search. However, it is far from
guaranteed that this graph can be tractably found. Instead,
we focus on the consistency between reasoning graphs.

Definition 3.3. Thoughts y and v’ are consistent if they can
be represented by the reasoning graph G.

In particular, if a language model repeatedly revisits a step
to arrive at the same conclusion, or traverses the same ideas
in a different order, the resultant graph does not change (Fig-
ure 1C). Let y; := [y ...y®)] and G; be the in-progress
thoughts and reasoning graph after ¢ steps, and let 7" be the
maximum inference budget (token or model limit). Instead
of enforcing that (G; contains z*, it is more reasonable to
guarantee that

PE[1[G: £ Gr] <o) > 1 -« @)

Due to the sequential nature of generation, GG, is always a
(not necessarily strict) subset of G'p.

We now describe how we calibrate the decision rule for
terminating language model generation (Section 3.1), and
then introduces three strategies for practically estimating
the quantities described by Equations 1 and 2 (Section 3.2).

3.1. Calibrating the stopping rule

Suppose we have a calibration dataset D.,;, which contains
exchangeable points {(z;,y;)},. Given a new example
z, let y; denote the language model’s thoughts after ¢ sam-
pling steps, and let yr denote the maximum set of thoughts.
Our goal is to find the smallest ¢ that fulfills Equations 1 or
2, based on the distribution of D, . During the sampling
process, however, we do not know z* or G, so we must es-
timate the quantities inside the expectation using a surrogate
function f. Here, D, serves to calibrate f such that

P(E[R(y) < 6| Deal) 21— 3)

where R is a bounded risk function associated with f. For
example, f may be a linear probe on the hidden representa-
tions of thought steps y(*), and its output may be a binary
prediction. A potential decision rule could take the form of
a threshold \, where if f(y®) >), we terminate thinking.

Input x

Given a rational number, write it as a fraction in lowest
terms and calculate the product of the resulting
numerator and denominator. For how many rational
numbers between 0 and 1 will 20! be the result?

<think>

a and b are coprime

Thoughts y
Reasoning step y*

First, a rational number between 0 and 1 can be
written as a fraction a /b where O <a < b and aand b
are coprime positive integers.

20! has 8 distinct
prime factors.

i Up to max budget
Reasoning step 3 Up get)

The number with a < b is half of the total pairs, so
256/2 =128. Hence 128 such numbers. Therefore, The
answer is 128, corresponding to 128.

</think>

Potential reasoning trajectories:
- b,(l) },(2) y(3)]

)52, 5]

(B) Terminating too early hurts model

Output 2

The prime factors of 20! are 2, 3, 5,7,11,13,17, and 19. These
are 8 distinct primes. For ab = 20! and gcd(a, b) =1, each
prime factor of 20! must be entirely to either a or b. This
results in 248 = 256 coprime pairs (a, b). Each pair (a, b)
and (b, a) are distinct. To find pairs where a < b, we divide
the total number of pairs by 2s. The number of coprime
pairs (a, b) with a < b is 256/2 = 128.

1

z,=[y

(A) Reasoning language models scale at test
time through longer chains of thought, at
significant compute cost.

Reasoning tree GTWhere T=4

2178 =256 @

(

performance due to under exploration.

Reasoning tree GT

20! is a fixed
number, but
how is a

related to b?

P(stop at 2) = 0.2

20! has 8
distinct ...

P(stop at #+1) = 0.85

Thoughts

y= D559, 9] P(stop at #-1) = 0.4

278 = 256

P(stop at#) = 0.8
P (stopat 7) = 0.9

When is E(risk of stopping now) < 8)?
(C) Our goal is to confidently decide when

7, will be consistent with y.., based on when
the reasoning graph stops changing.

Figure 1: Overview of the problem and our goal. Illustrated example based on s1K-1.1 (Muennighoff et al., 2025).

Similar to Schuster et al. (2022) and Quach et al. (2024), we
follow the Learn then Test framework to select a valid set of
As that provide our desired guarantees (Angelopoulos et al.,
2021). On a high level, hyperparameter selection is viewed
as a multiple hypothesis testing problem. Let A be a finite
set of configurations, where each \; € A is associated with
the null hypothesis,

Hj : E[R(y:) > 4]. “

The set of valid Ayuia € A is the set of A; for which we fail
to reject H;. In particular, selecting the earliest stopping
time is equivalent to identifying the smallest A € Ay,jq-

Theorem 3.4 (Adapted from theorem 1 in (Angelopoulos
et al., 2021)). Suppose p; is super-uniform under H; for
all j. Let A be a family-wise error rate (FWER) controlling
algorithm at level €. Then A,uyiq = A(p1, - .., pm) satisfies
Equation 3.

Theorem 3.4 specifies that any FWER-controlling algorithm
A can be used with an appropriate p-value to identify Ay,
While Angelopoulos et al. (2021) proposes several algo-
rithms to search over A, we follow the fixed sequence test-
ing method, since in principle, our risks are expected to be
monotonic (G; C Gr).

Specifically, let A = {\1,..., A\, } be a descending grid
of parameters. Intuitively, larger A correspond to more
permissive thresholds, e.g. allowing a language model to
generate for longer.

1. For each j, we compute a valid p-value p;, e.g. the

binomial tail bound p-value, following (Quach et al.,
2024):

pPT .= P(Binom(n, €) < nR,(\)). 5)

2. If p; < ¢, we reject H; and continue. Otherwise, we
return \;_; as the smallest valid threshold for error
rate €.

This process yields the binarization threshold for f, where
we stop generating when f(y;) > \;_1.

3.2. Estimating empirical risk

On a high level, the surrogate function f should reflect the
consistency of y, with expected future generations. Ideally,
we would be able to access the graphical structure of Gy,
as any repetitions or redundant walks in y; would be im-
mediately evident. However, since autoregressive language
models generate left-to-right, without explicitly conforming
to any higher-level structure, we cannot operate directly over
G. Instead, we introduce three approaches for designing f
in practice.

We first briefly consider the simple case suggested by Equa-
tion 1: if we terminate thinking now, is the language model
able to answer correctly? That is, we could define
Seorreet(y¢) := P(LLM is correct based on y;)
Rcorrecl(yt) =]l{LLM is correct} : (1 - fcorrect(yt))
+ 1{LLM is wrong} - feorrect (¥#)-

(6)

(N

However, there are several drawbacks of this implementa-
tion. By construction, the calibration dataset only contain
questions that can eventually be answered, which is not true
in general. Though the space of graphs is countable, it is
unlikely that a language model can efficiently explore the
entire space. In other words, the language model may re-
alistically never answer correctly. Thus, setting A = 1 is
not guaranteed to be risk controlling. With this definition
of Reormect(Y), calibrating based on correctness also requires
supervised labels. While this is not an issue on standard
benchmarks, it is harder to obtain labels (user feedback) in
practice.

To address these challenges, we introduce two additional
strategies for estimating graph consistency. First, a language
model’s final attempt 2z can be viewed as a distillation of its
overall reasoning structure. Thus, we compare the language
model’s attempt z; after ¢ steps, to the eventual attempt zp
at the maximum reasoning budget. This yields

Seonsistent (Y¢) := P(2; is the same as z7) 8)
Rconsistent(yt) =]l{consistent} : (1 - fconsistent(yt))
+ 1{inconsistent} - feonsistent (¥#) 9)

These values can be determined even for intractable prob-
lems, as long as the extended reasoning produces no new
insights, and does not require labels of correctness.

Finally, any particular z only represents a single walk
through G. Due to stochasticity, two differing attempts
could be sampled from the same graph, which is no longer
changing. Towards this end, we observed that language
models often reiterate redundant information, after having
reached the correct answer or the extent of its abilities. Prob-
ing for novelty should suffice to capture this phenomena. In
practice, however, we found that the following formulation
was easier for our verifier to implement, as checking for
novelty involves long context reasoning over all previous
thoughts, which can be challenging (Wang et al., 2024a).

Sovel teat(yt) == P(y(t)is leaf) - (1 — P(y(t)is novel)) (10)
Riovel teaf(yt) := 1{LLM inconsistent} - fnovel teaf (¥t)
+]l{LLM consistent} (1 = foovel teaf(Yt))- (11

We reuse the labels for consistency due to ease of verifica-
tion compared to novelty.

3.3. Implementation details

To separate a reasoning trajectory y into individual steps
{y(i)}, we use sections delimited by \n\n, which also
contain either wait or but. We observed that individual
tokens representations can vary significantly. Thus, each
step uses the mean last-layer representation of its tokens,
followed by dimensionality reduction via PCA to d = 256.

To estimate each of quantities in Equations (6) to (11), we
train linear probes on these step-level representations. The
final probabilities are averaged over a window of 10 steps
for smoothness, before calibration. For evaluation, we use
a grid of € ranging from 0.05 to 0.5, with precise thresh-
olds selected to roughly match the token range of baselines.
During development, we experimented with more complex
architectures, e.g. Transformer to predict leaves as a se-
quence labeling task (Appendix B.1). However, to avoid
overfitting on our limited training set, we chose to focus on
simple and efficient linear probes. Concurrent work (Zhang
et al., 2025) also finds that model confidence can often be
extracted linearly. In our experiments, we use three rea-
soning models: DeepSeek-R1 distilled Qwen 2.5 32B and
Llama 3.3 70B (Guo et al., 2025a; Grattafiori et al., 2024,
Yang et al., 2024), and QwQ 32B (Team, 2025).

The ground truth labels for these probes are obtained by
prompting a separate language model (Qwen 3 32B). Cor-
rect: We truncate thinking trajectories to desired lengths,
append the <\think> token, and prompt the language
model for the final answer, which is compared to the ground
truth (Muennighoff et al., 2025). Consistent: The same out-
puts can be used to check whether G, is consistent with G,
by comparing intermediate attempts z; to maximum budget
attempt zp. Leaf: We annotate whether each step y(*) is a
leaf in G by asking a separate language model to identify
whether it makes an attempt to answer the original question
x, regardless of correctness. Novel: We provide a separate
language model with all previous thoughts 31 .. (=1
and ask whether the new step y(*) provides additional infor-
mation. All prompts can be found in Appendix A and were
run on 4 A6000 GPUs using vLLM (Kwon et al., 2023) and
Imdeploy (Contributors, 2023).

We evaluate the correctness of all final attempts using the
GPT 4.1 API, between April 15, 2025 and May 15, 2025.
For datasets that have no ambiguity (multiple choice, nu-
meric answers), we trimmed the final attempts to 200 charac-
ters, to prevent the LLM from “cheating” by using additional
thinking budget after the </think> token.

4. Experiments
4.1. Settings

Datasets. Our experiments focus on efficient language
model reasoning across tasks which vary in content, for-
mat, and difficulty. In particular, we leverage the following
datasets.

s1K-1.1 (Muennighoff et al., 2025) is a curated training set
for distilling reasoning abilities through data. This dataset
contains 1000 difficult math and science questions, along
with thought trajectories generated by DeepSeek-R1 (Guo
et al., 2025a). As a proof of concept, we split the s1K-

DeepSeek Distilled Qwen 32B DeepSeek Distilled Llama 70B QwQ 32B Calibration
0.7 . 07 o 07 , x 1.0
/ £ % Full
>
205 0.5 05 / 308 * Crop
= f < * Supervised
5] i / = 0.6
S .
<03 03 03 E: Conﬂsmtent
4 S 0.4 Leaf Novelty
Q\C
0.2
200000 400000 200000 400000 200000 400000 0.5 1.0
Tokens Tokens Tokens 1-€

Figure 2: On in-distribution data (held-out test split on s1K), variants of thought calibration achieve up to a 60% reduction
in thinking tokens while maintaining full performance. Top right point: Complete DeepSeek-R1 thought trajectory
from (Muennighoff et al., 2025). Crop: Fix thinking budget at 512, 1024, 2048, 4096, and 8192 tokens. Supervised: exit
based on predicted likelihood of correctness. Consistent, and Leaf Novelty: exit based on predicted consistency of answer or
graph. Supervised is over confident, since the test set contains unsolvable problems.

AIME 24 GPQA Diamond MATH 500 Calibration
0.7 . 095 .
x 0.65 T 310
, <
5. 06 — 0-90 = # Full
5 0.60 308
= 0.85 < * Crop
205 = 0.6 e Supervised
S 0.55 0.80 i
< : - Consistent
0.4 © 04
0.2
100000 150000 200000 250000 500000 750000 0.5 1.0 0.5 1.0
Tokens Tokens Tokens le6 1-€

Figure 3: We applied thought calibration probes for DeepSeek-distilled Qwen-2.5 32B on standard math and science
benchmarks, which may be out-of-distribution compared to the training and calibration sets, drawn from s1K. We achieve up
to a 20% reduction in thinking tokens. While Consistent generally remains below the predetermined error rates, Supervised

is overconfident (as expected).

1.1 dataset into training, testing, and calibration (500, 50,
450, in dataset order). We use the training set to develop
our probes, which are calibrated on the calibration set and
evaluated on the testing set.

We also consider three common reasoning benchmarks
solely for testing. AIME-24 is the 2024 iteration of the
American Invitational Mathematics Examination.! This
dataset contains math questions whose answers take on in-
tegers between 0 and 999. GPQA Diamond (Rein et al.,
2024) is a PhD-level math and science reasoning benchmark
with multiple choice answers. MATH 500 (Hendrycks
et al., 2021; Lightman et al., 2023) is a curated subset of
the MATH dataset, which competition math questions of
various levels. Note that while s1K-1.1 contains examples
of both mathematical and scientific questions, the format
and subsequent reasoning patterns may vary. For example,
while s1K-1.1 is open-ended, the various choices in GPQA
must be compared. Thus, we view these three datasets as
“out of distribution” from s1K-1.1, which is itself diverse.

Models. We evaluate the three variants of thought cali-
bration: the supervised probe for correctness (Equation 6,
Supervised); the consistency probe (Equation 8, Consis-

'https://maa.org/maa-invitational-competitions/

tent); and the lack of novelty probe (Equation 10, Novel
Leaf). To contextualize our experimental results, we also
consider a naive budget-forcing baseline (Crop). Specif-
ically, we set a fixed token budget for thinking (ranging
from 1024 to the full trajectory). Once the language model
reaches this budget, thinking is immediately terminated and
the model is prompted for a final answer. This reflects both
the practical use case of setting a limit on maximum gen-
eration tokens, and the strategy employed by Muennighoff
et al. (2025). Finally, concurrent work has also observed
that probes for correctness (Zhang et al., 2025) are effective
for early exiting. While this design may not be valid for risk
control in practice (LLMs are not guaranteed to ever answer
correctly), the Supervised baseline is similar to this work.

4.2. In-distribution setting

We start with the case where we have access to samples x
that are drawn from the same distribution as our eventual
application. For example, a model provider may possess
typical examples of user data. Our goals are to lower the
overall test-time budget while maintaining accuracy, and to
control any necessary drops in performance based on our
predetermined error levels. In Figure 2, we observe that
these probes are able to reduce the number of thinking

tokens by over half for all three models, with minimal
impact to overall performance. With respect to calibration,
the Supervised probe is quite poorly calibrated, especially
at lower values of €. All other probes are well calibrated
at € < 0.1, though variance is higher outside of this range.
This may be due to distribution shift, resulting from the
small test split (to maximize training and calibration data
for subsequent evaluations).

4.3. Generalization setting

Next, we consider the case in which the data we have is re-
lated, but not drawn from the same distribution as our even-
tual application. To emulate this setting, we apply the super-
vised and consistent Qwen 32B probes, developed on the
s1K-1.1 dataset, to common reasoning benchmarks (Rein
et al., 2024; Lightman et al., 2023). Overall, we are able to
improve (AIME 24, GPQA) or match (MATH 500) the effi-
ciency of the budget forcing baseline — even achieving slight
gains in performance on AIME 24, perhaps by trimming
distracting thoughts (Figure 4). Notably, even though the
Supervised probe had access to more information (ground
truth answers), the Consistent probe consistently gener-
alizes better, both in terms of efficiency and calibration.
Here, the Consistent probe fulfills the theoretical guarantees,
while the Supervised probe remains over-confident.

4.4. Additional analysis

Figure 4 illustrates that thought calibration probes prioritizes
the termination of problems which cannot be solved, even
at full budget — perhaps hinting that the language model
may have been stuck in a cycle of reasoning, without novel
progress. Compared to the naive cropping strategy, thought
calibration’s input-dependent decision also demonstrate sig-
nificant variance in the amount of tokens across different
problems.

We also examine a specific instance from our s1K-1.1 testing
split in Figure 5 (s1K is a distillation dataset, so this dia-
gram does not leak real test examples). The language model
reaches the correct answer after 38 steps (out of 48 steps).
As the model backtracks, the predicted consistency (with
the expected final answer) drops; and as the model returns to
the answer, confidence increases, higher than before. This
reaffirms that self-consistency is indeed a powerful indica-
tion of correctness, both distilled into a predictive model,
and over the course of sampling.

5. Limitations

There are several limitations of our work. Since our method
is built atop the Learn then Test framework (Angelopou-
los et al., 2021), our theoretical guarantees are only valid
over draws of the calibration set. In practice, this means

that the calibration data must be sufficiently similar to the
actual application. Furthermore, due to our small training
and calibration datasets, we implement our framework pri-
marily through linear probes. In Appendix B.1, we found
that more complex architectures may lead to slightly bet-
ter performance in some cases, and the gap is expected to
be larger if more training data can be gathered. We leave
further investigations regarding the probe architecture to
future work. Finally, this paper only addresses the problem
of exiting early from reasoning. The broader question of
how to calibrate the steering of reasoning models remains
unanswered, and is an interesting area for further research.

385

Strategy: Crop

38
322 Budget=6144 Budget=4096 Budget=2048 Budget=1024
388 B 100 100 100 100 Original Score
389 & e ﬁ i - 0
o] -
) 50 50 - .
391 8 Lo
oo 8 = ﬁ
o
393 A g — — — 0 E— 0 0
304
:()__L 2048 4096 6144 8192 2048 4096 6144 8192 2048 4096 6144 8192 2048 4096 6144 8192
: (; ; Max Original Tokens Max Original Tokens =~ Max Original Tokens ~ Max Original Tokens
570
397 Strategy: Consistent
398 A=0.05 A=0.1 2=0.2 =03
99 o 100 o8 . o0 100 : ° 100 === Original Score
400 & 5 3 o’ g 0
401 8 o & e o o
i ©oso 50 50 o %o
. 5 © @ ©° o %o
4(); 8 . 0 ° °
404 A 0 oo oo 0 0 o o 0 oo o
405
406 2048 4096 6144 8192 2048 4096 6144 8192 2048 4096 6144 8192 2048 4096 6144 8192
407 Max Original Tokens ~ Max Original Tokens ~ Max Original Tokens =~ Max Original Tokens
408

1o Figure 4: Proportion of prompt tokens removed, for different thresholds, stratified by full thought length and whether
11 theoriginal model was able to solve the problem. Top: Naive max token thresholding. Bottom: Consistency calibration,
111 DeepSeek-R1 distilled Qwen 32B, over GPQA Diamond. Cropping reduces token lengths uniformly, regardless of the input
1o characteristics. Thought calibration has a preference for first trimming longer thoughts and cases where the language model
|5 tries but fails to make progress.

414

415 Okay, so I need to solve this problem: We have an increasing sequence: 3, 15, 24, 48, ... which Step 1 (0.104)
416 are positive multiples of 3 that are one less than a perfect square. I need to find the remainder

417 when the 1994th term of this sequence is divided by 1000.

%H 8 Hmm. Let me parse this. The terms are multiples of 3, and each term is one less than a perfect ~ Step 2 (0.067)
419 square [...] n must be either 1 or 2 mod 3. That means terms in the sequence correspond to n

420 where n = 1 or2 mod 3.

421

477 But computing 29922 mod 1000 is equivalent to [...] but since Step 37 (0.342)

2992 = 2000 + 992 = 2000 + 992, but modulo 1000, 2992 = 992 mod 1000, so 9922 — 1
423 mod 1000.

424
425
426
427
428

© Wait: n(k) = (3k)/2 + 1 for even k. For even k = 1994, [..] Then term = 29922 — 1. Then Step 40 (0.479)
j:v(l) mod 1000 is (29922 — 1) mod 1000.

43
432
433
434
435
436
43
438
439

Step 38 (0.717)

Step 39 (0.646)

Step 41 (0.985)

Figure 5: DeepSeek-R1 distilled Llama 70B Consistency probe on s1K-1.1 example from our test split, where color intensity
is proportional to P(consistent). The language model first reaches the correct answer in Step 38, backtracks with lower
confidence, and returns to the answer in Step 41.

References

Angelopoulos, A. N. and Bates, S. A gentle introduction
to conformal prediction and distribution-free uncertainty
quantification. arXiv preprint arXiv:2107.07511, 2021.

Angelopoulos, A. N., Bates, S., Candes, E. J., Jordan,
M. I, and Lei, L. Learn then Test: Calibrating predic-
tive algorithms to achieve risk control. arXiv preprint
arXiv:2110.01052, 2021.

Arora, D. and Zanette, A. Training language models to rea-
son efficiently. arXiv preprint arXiv:2502.04463, 2025.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think that
much for 2+ 3=? on the overthinking of ol-like LLMs.
arXiv preprint arXiv:2412.21187, 2024.

Cherian, J., Gibbs, 1., and Candes, E. Large language model
validity via enhanced conformal prediction methods. Ad-
vances in Neural Information Processing Systems, 37:
114812114842, 2024.

Contributors, L. Lmdeploy: A toolkit for compressing,
deploying, and serving llm. https://github.com/
InternLM/1lmdeploy, 2023.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X., et al. DeepSeek-R1:
Incentivizing reasoning capability in LLMs via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025a.

Guo, J., Wu, Y., Qiu, J., Huang, K., Juan, X., Yang, L., and
Wang, M. Temporal consistency for Ilm reasoning process
error identification. arXiv preprint arXiv:2503.14495,
2025b.

Han, T., Wang, Z., Fang, C., Zhao, S., Ma, S., and Chen,
Z. Token-budget-aware LLM reasoning. arXiv preprint
arXiv:2412.18547, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Hou, B., Zhang, Y., Ji, J., Liu, Y., Qian, K., Andreas, J., and
Chang, S. ThinkPrune: Pruning long chain-of-thought
of LLMs via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Huang, C., Huang, L., Leng, J., Liu, J., and Huang, J. Effi-
cient test-time scaling via self-calibration. arXiv preprint
arXiv:2503.00031, 2025.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kim, G. and Cho, K. Length-adaptive transformer: Train
once with length drop, use anytime with search. In Joint
Conference of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL-
IJCNLP 2021, pp. 6501-6511. Association for Computa-
tional Linguistics (ACL), 2021.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lei, T. When attention meets fast recurrence: Training
language models with reduced compute. In Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational
Linguistics, 2021.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274—
19286. PMLR, 2023.

Li, Y., Yuan, P, Feng, S., Pan, B., Wang, X., Sun, B., Wang,
H., and Li, K. Escape sky-high cost: Early-stopping
self-consistency for multi-step reasoning. In The Twelfth

International Conference on Learning Representations,
2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. In The Tielfth
International Conference on Learning Representations,
2023.

Liu, Z., Xu, Z., Wang, H.-J., Darrell, T., and Shelhamer, E.
Anytime dense prediction with confidence adaptivity. In
International Conference on Learning Representations,
2022.

Ma, W., He, J., Snell, C., Griggs, T., Min, S., and Zaharia,
M. Reasoning models can be effective without thinking.
arXiv preprint arXiv:2504.09858, 2025.

MacCartney, B. and Manning, C. D. Natural logic and natu-
ral language inference. In Computing Meaning: Volume
4, pp. 129-147. Springer, 2014.

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-

feedback. Advances in Neural Information Processing
Systems, 36:46534-46594, 2023.

Mitchell, E., Noh, J., Li, S., Armstrong, W., Agarwal,
A., Liu, P, Finn, C., and Manning, C. D. Enhancing
self-consistency and performance of pre-trained language
models through natural language inference. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 1754-1768, 2022.

Mohri, C. and Hashimoto, T. Language models with confor-
mal factuality guarantees. In Proceedings of the 41st In-
ternational Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candes, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

Papadopoulos, H. Inductive conformal prediction: Theory
and application to neural networks. In Tools in artificial
intelligence. Citeseer, 2008.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Qiu, X. and Miikkulainen, R. Semantic density: Uncertainty
quantification for large language models through confi-
dence measurement in semantic space. In Globerson, A.,
Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak,
J., and Zhang, C. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 37, pp. 134507-134533,
2024.

Quach, V., Fisch, A., Schuster, T., Yala, A., Sohn, J. H.,
Jaakkola, T. S., and Barzilay, R. Conformal language
modeling. In The Twelfth International Conference on
Learning Representations, 2024.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. GPQA: A
graduate-level Google-proof Q&A benchmark. In First
Conference on Language Modeling, 2024.

Rubin-Toles, M., Gambhir, M., Ramji, K., Roth, A., and
Goel, S. Conformal language model reasoning with coher-
ent factuality. In The Thirteenth International Conference
on Learning Representations, 2025a.

10

Rubin-Toles, M., Gambhir, M., Ramji, K., Roth, A., and
Goel, S. Conformal language model reasoning with co-
herent factuality. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=AJpUzd8Clb.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. Advances in Neural Information
Processing Systems, 35:17456-17472, 2022.

Shafer, G. and Vovk, V. A tutorial on conformal prediction.
Journal of Machine Learning Research, 9(3), 2008.

Shi, F., Chen, X., Misra, K., Scales, N., Dohan, D., Chi,
E. H., Schirli, N., and Zhou, D. Large language models
can be easily distracted by irrelevant context. In Infer-

national Conference on Machine Learning, pp. 31210—
31227. PMLR, 2023.

Sui, Y., Chuang, Y.-N., Wang, G., Zhang, J., Zhang, T,
Yuan, J., Liu, H., Wen, A., Zhong, S., Chen, H., et al.
Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419,
2025.

Team, Q. QwQ-32B: Embracing the power of reinforce-
ment learning, March 2025. URL https://qwenlm.
github.io/blog/gwg—32b/.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world, volume 29. Springer, 2005.

Wang, M., Chen, L., Fu, C., Liao, S., Zhang, X., Wu, B., Yu,
H., Xu, N., Zhang, L., Luo, R, et al. Leave no document
behind: Benchmarking long-context LLMs with extended
multi-doc QA. CoRR, 2024a.

Wang, P, Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
IIms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426-9439, 2024b.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E.,Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022.

Weng, Y., Zhu, M., Xia, F, Li, B., He, S., Liu, S., Sun,
B., Liu, K., and Zhao, J. Large language models are

https://openreview.net/forum?id=AJpUZd8Clb
https://openreview.net/forum?id=AJpUZd8Clb
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

better reasoners with self-verification. In Findings of
the Association for Computational Linguistics: EMNLP
2023, pp. 2550-2575, 2023.

Xie, Z., Guo, J., Yu, T., and Li, S. Calibrating reasoning in
language models with internal consistency. arXiv preprint
arXiv:2405.18711, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yang, C., Si, Q., Duan, Y., Zhu, Z., Zhu, C., Lin, Z., Cao, L.,
and Wang, W. Dynamic early exit in reasoning models.
arXiv preprint arXiv:2504.15895, 2025.

Zhang, A., Chen, Y., Pan, J., Zhao, C., Panda, A., Li, J.,
and He, H. Reasoning models know when they’re right:
Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025.

Zhang, D., Huang, X., Zhou, D., Li, Y., and Ouyang, W.
Accessing gpt-4 level mathematical olympiad solutions
via monte carlo tree self-refine with 1lama-3 8b. arXiv
preprint arXiv:2406.07394, 2024a.

Zhang, D., Zhoubian, S., Hu, Z., Yue, Y., Dong, Y., and
Tang, J. Rest-mcts*: Llm self-training via process re-
ward guided tree search. Advances in Neural Information
Processing Systems, 37:64735-64772, 2024b.

11

A. Prompts

The following prompt was used to force the model (DeepSeek-R1 distilled Qwen 32B and Llama 70B, QwQ 32B) to produce
an answer after a fixed number of thinking steps. Following the recommendation of Guo et al. (2025a) and Team (2025), we
do not include a system prompt. We apply the chat template to user prompt before concatenating the “in-progress” thoughts.
Adapted from (Muennighoff et al., 2025).

<bos><User>

{question}

Please reason step by step, and put your final answer within \\boxed{{}}.
<Assistant>

<think>

{thoughts}

</think>

Final Answer:

The following prompt was used to obtain labels for P(correct) (Equation 6) using Qwen 3 32B. This prompt was also used
to evaluate answers using GPT 4.1. Adapted from (Muennighoff et al., 2025).

You are an Al assistant for grading a science problem. The user will provide you with the question itself, the correct answer, and the student’s
attempt. Your job is to judge whether the attempt is correct by comparing it with the correct answer. If the correct answer is a number or choice,
there should be no ambiguity, and you should directly compare the answer and the final result. If the attempt is incomplete, you should mark it as
wrong. If the correct answer involves going through the entire reasoning process, you should judge the result based on whether the reasoning process
is correct, compared to correct answer.

Do NOT try to solve the problem yourself. Only grade the attempt based on the correct answer.

The user will provide the attempt and the correct answer in the following format:

Problem

{problem}

Correct answer

{solution}

Student attempt

{attempt}

Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(consistent) (Equation 8) using Qwen 3 32B.

You are an Al assistant for grading a science problem. The user will provide you with the question itself and two student attempts. Your job is to
judge whether the two students arrive at the same answer. If question asks for a single numerical answer, there should be no ambiguity, and you
should directly compare the two answers. If the question asks for multiple parts, the two attempts are identical if only if all of the parts arrive at
the same conclusion.

Do NOT try to solve the problem yourself. Only grade whether the two attempts are the same.

The user will provide the problem and two attempts in the following format:

Problem

{problem}

Attempt 1

{attempt1}

Attempt 2

{attempt2}

Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(leaf) (Equation 10) using Qwen 3 32B.

You are an Al assistant for parsing LLM outputs. The user will provide you with the question and an intermediate reasoning step. Your job is to
judge whether the given step contains an attempt at a final answer.

Do NOT attempt to solve the problem yourself. It does not matter if the answer is correct. Only comment on whether an attempt has been made.
The user will provide the problem and reasoning steps in the following format:

Problem

{problem}

Reasoning step

{reasoning step}

Explain your reasoning, and end your response on a new line with only "Yes" or "No" indicating whether or the given step makes an attempt at
providing the final answer.

The following prompt was used to obtain labels for P(novel) (Equation 10) using Qwen 3 32B.

12

You are an Al assistant for assessing the quality of logical reasoning. The user will provide you with the question and an incomplete attempt,
consisting of a series of reasoning steps. Your job is to judge whether current step appears to provide additional information, compared to the
previous steps. If the current step is correct and novel, it is useful. If the current step is wrong or redundant, then it is not useful.

Do NOT try to solve the problem yourself. It does not matter if the attempt is not complete. Only comment on whether the current step is useful.
The user will provide the problem and reasoning steps in the following format:

Problem

{problem}

Reasoning

step 1

{reasoning step 1}

step 2

{reasoning step 2}

step k

{reasoning step k}

current step

{current reasoning step}

Explain your reasoning, and end your response on a new line with only "Yes" if the current step provides new information or "No" otherwise (without
quotes).

B. Implementation details
B.1. Design and implementation of model probes

We tried several architectures, before deciding upon linear probes for simplicity and to avoid overfitting. The differences
in performance are not always consistent and the generalization gap is quite large (Table 1). Since our main focus is
on calibration, and it requires significant compute to produce and evaluate scaling curves, we consider more exhaustive
exploration of alternate architectures as future work.

MLP The input is a single representation h(*) corresponding to single reasoning step y(*), and the output is a binary label
€ {0, 1}. We train until AUC fails to improve for 10 epochs on 10% of the training set (randomly sampled). We report the
best calibration set performance of the following hyperparameters. We use the sklearn defaults otherwise (Pedregosa et al.,
2011).

e Layers: 1,2

¢ FFN dimension: 32, 64, 128

Transformer The input is a sequence of representations, (1) ... h(Y) corresponding to thoughts y; = y*) ... y®). The
output is either a binary label € {0, 1} for P(correct) and P(consistent), or a sequence of labels € {0, 1} for P(novel) and
P(leaf). For the former, we treat the embeddings as a set (i.e. if any representation is sufficient to answer correctly, or be
consistent). For the latter, we apply a left-to-right causal attention mask during training, and we use sinusoidal positional
encodings to encode the index of each reasoning step. We report the best calibration set performance of the following
hyperparameters. In contrast to the linear and MLP models, we find that the Transformer performs best if we do not apply
PCA and instead operate over the original model dimension.

e Layers: 1,2

¢ Model dimension: 16, 32, 64

L]

FFN dimension: 64, 128
¢ Number of heads: 4, 8

* Epochs: 5, 10

13

Table 1: Probe architecture performance on s1K-1.1 train and calibration splits. Metric: Binary AUROC.

Linear MLP Transformer
Model Quantity Train Cal Train Cal Train Cal

P(correct) 0936 0.788 0990 0.779 0.994 0.760
P(consistent) 0919 0.788 0.994 0.747 0.991 0.773

DeepSeek-R1
distilled Qwen

25308 P(leaf) 0.868 0.839 0936 0.815 0.933 0.852
’ P(novel) 0.874 0.686 0980 0.692 0.896 0.774
DeepSeek-R1 P(correct) 0937 0.765 0987 0.746 0.991 0.803
dis till)le d Llama P(consistent) 0.921 0.745 0.994 0.743 0.993 0.748
3370B P(leaf) 0.864 0.819 0970 0.802 0.923 0.848
’ P(novel) 0.872 0.686 0981 0.702 0915 0.774
P(correct) 0943 0.848 0986 0.838 0.948 0.848

QwQ 32B P(consistent) 0.950 0.699 0.988 0.704 0.939 0.756
P(leaf) 0.869 0.840 0942 0.822 0913 0.857

P(novel) 0.876 0.677 0952 0.690 0.895 0.792

B.2. LLM experiments

We ran DeepSeek-R1 distilled Qwen 2.5 32B and Llama 70B, and QwQ 32B using Imdeploy (Contributors, 2023) with
recommended defaults for each model. Imdeploy natively supports the saving of last layer representations, so it was used for
almost all experiments. We ran Qwen 3 32B using vLLM (Kwon et al., 2023) due to early support. Due to computational
constraints, we report the mean over a single run.

We downloaded all model weights from t ransformers between April 1, 2025 and May 1, 2025.

C. Additional analysis

Figure 6 illustrates the early exit probabilities for each of the three probes. The supervised (“correct”) probe reaches high
exit probabilities the fastest, but it is also the most overconfident (Figure 2D).

P(correct) P(consistent) P(no novel leaves)
1.0 ,
4 0.03
0.5 /\
0.01 P
KL
0.0 0.00 EEaZ
0 50 100 150 0 50 100 150 0 50 100 150
Reasoning steps Reasoning steps Reasoning steps

Figure 6: Likelihoods of thought calibration probes over s1K-1.1 test set (10 examples). The “No Leaf” variant is the least
monotonic. This could potentially indicate that after reaching the answer, the language model explores new knowledge that
is irrelevant to the task.

14

