
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Thought calibration: Efficient and confident test-time scaling

Anonymous Authors1

Abstract

Reasoning large language models achieve impres-
sive test-time scaling by thinking for longer, but
this performance gain comes at significant com-
pute cost. Directly limiting test-time budget hurts
overall performance, but not all problems are
equally difficult. We propose thought calibra-
tion to decide dynamically when thinking can
be terminated. To calibrate our decision rule,
we view a language model’s growing body of
thoughts as a nested sequence of reasoning trees,
where the goal is to identify the point at which
novel reasoning plateaus. We realize this frame-
work through lightweight probes that operate on
top of the language model’s hidden representa-
tions, which are informative of both the reason-
ing structure and overall consistency of response.
Based on three reasoning language models and
four datasets, thought calibration preserves model
performance with up to a 60% reduction in think-
ing tokens on in-distribution data, and up to 20%
in out-of-distribution data.

1. Introduction
Test-time scaling presents a new paradigm for improving
language model reasoning by expending large amounts of
compute during inference (Kaplan et al., 2020; Wei et al.,
2022). Though the strategies for eliciting reasoning vary –
from large-scale reinforcement learning (Guo et al., 2025a)
to explicit tree search (Zhang et al., 2024a;b) – a common
effect is that language models improve by sampling sub-
stantially more tokens. This may result in wasted compute
on easy problems (Chen et al., 2024; Sui et al., 2025), but
naively limiting the generation length leads to pronounced
drops in accuracy (Muennighoff et al., 2025). This motivates
early stopping strategies that reduce the inference budget

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

without significantly degrading performance, and control
the extent of impact, if performance must be compromised.

Numerous methods have been proposed for teaching lan-
guage models to be economical with their token bud-
gets (Han et al., 2024; Arora & Zanette, 2025; Sui et al.,
2025), or for identifying opportune stopping points (Yang
et al., 2025; Zhang et al., 2025). While these methods
demonstrate strong empirical performance, they lack strict
statistical guarantees about when they could fail. In an or-
thogonal direction, conformal prediction has been adapted
to equip language models with calibrated confidences about
the quality or consistency of their generations (Mohri &
Hashimoto, 2024; Quach et al., 2024; Rubin-Toles et al.,
2025b;a; Cherian et al., 2024). However, most of these
algorithms operate through post-hoc filtering and require ex-
ternal LLM-based validation for scoring intermediate steps
– rendering them unsuitable for actively terminating genera-
tion.

In this work, we jointly pursue an effective and calibrated
decision rule to determine when a language model can stop
“thinking.” To do so, we introduce the notion of a rea-
soning tree, where at each step of sampling, a language
model either adds a new leaf, walks along the tree, or back-
tracks to a previous step. Notably, identifying when the
thoughts have converged is equivalent to detecting when
this reasoning tree stops growing. Inspired by this concept,
we approach early stopping as multiple hypothesis testing
problem. At each generation step, we test whether the cur-
rent tree is expected to change, based on the predictions
of lightweight probes over the language model’s hidden
representations. Our algorithm is based on the Learn then
Test framework (Angelopoulos et al., 2021), which provides
finite-sample, distribution-free guarantees for controlling
the risk of our decisions.

We evaluate this strategy, thought calibration, based on its
ability to guide efficient reasoning, and whether its decisions
are well-calibrated. Our experiments consider two empirical
settings: we may or may not have access to training and
calibration data from the true test distribution. In the first
setting, we train variants of thought calibration using three
reasoning lanugage models (DeepSeek-R1 distilled Qwen
32B and Llama 70B (Guo et al., 2025a; Yang et al., 2024;
Grattafiori et al., 2024), QwQ 32B (Team, 2025)), evaluated

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

on a helf-out split of s1K-1.1 (Muennighoff et al., 2025).
Here, we are able to halve the number of thinking tokens
across accuracy levels, with a maximum reduction of 60%.
Then we evaluate Qwen 32B-based thought calibration on
three test datasets: AIME 24, GPQA Diamond (Rein et al.,
2024), MATH-500 (Lightman et al., 2023)). Though these
datasets vary in format and difficult, thought calibration
is still able to reach up to a 20% reduction in thinking
tokens, and in the worst case, is always as efficient as naive
budget constraints. In summary, this work has three main
contributions.

1. We interpret LLM reasoning through the lens of an
abstract reasoning tree, where the problem of early
exiting is equivalent to identifying when this tree stops
growing.

2. This view allows us to calibrate the decision rule for
actively terminating generation.

3. Based on multiple language models and reasoning
benchmarks, we provide empirical evidence that
thought calibration is effective for efficient test-time
scaling.

2. Background
2.1. Test-time scaling

Efficient inference Since current reasoning models are
post-trained through reinforcement learning (Guo et al.,
2025a), a number of works address the overthinking prob-
lem (Sui et al., 2025) as part of the reinforcement learning
process (Han et al., 2024; Arora & Zanette, 2025; Hou
et al., 2025). Other works focus on the inference-time prob-
lem of predicting when a language model should stop gen-
erating (Yang et al., 2025; Zhang et al., 2025; Ma et al.,
2025). This papers falls under the latter category, which on
a whole, is compatible with methods that reduce a language
model’s verbosity during post-training. Finally, another op-
tion is to achieve efficiency in terms of model architecture.
Some works dynamically adapt compute cost (Lei, 2021;
Leviathan et al., 2023), while others employ only a subset of
all modules during sampling (Kim & Cho, 2021; Liu et al.,
2022; Schuster et al., 2022). While these strategies operate
over the Transformer stack, rather than the generation se-
quence length, many high-level ideas are broadly applicable
to early exiting in our situation.

Self-consistency Self-consistency has been widely used
to provide a self-supervised form of confidence during the
sampling process (Wang et al., 2022). These methods aim
to improve the quality of generated samples, often in situ-
ations where multiple samples may be sequentially gener-
ated (Mitchell et al., 2022; Madaan et al., 2023; Shi et al.,

2023; Weng et al., 2023; Guo et al., 2025b). Consistency
can also provide feedback for reasoning-focused reinforce-
ment learning (Wang et al., 2024b). Several recent works
have observed that confidence scores can be probed and cal-
ibrated from internal representations, to prioritize reasoning
trajectories for subsequent runs (Li et al., 2024; Huang et al.,
2025; Xie et al., 2024) or for early exiting, similar to this
work (Zhang et al., 2025). Our key departure is that we cali-
brate the decision rule to terminate generation, rather than
the probabilistic outputs of a probe. This reflects the online
setting, where a probe is used to actively guide generation,
rather than to filter trajectories post-hoc.

2.2. Conformal prediction and risk control

Conformal prediction quantifies the uncertainty in ma-
chine learning models by generating set-valued predic-
tions (Shafer & Vovk, 2008; Angelopoulos & Bates, 2021).
These methods are distribution-free and valid under finite
samples, which makes them particularly attractive in real-
world applications. Specifically, for an input x, a candidate
output space Y , and a predetermined error level ϵ, conformal
prediction tests each potential outcome y ∈ Y by evaluating
the null hypothesis: “output y corresponds to input x.” The
final prediction set consists of the outputs y for which this
null hypothesis fails to be rejected, where the test statistic is
known as a nonconformity score. Split conformal prediction
leverages a separate training set to learn this nonconformity
score (Vovk et al., 2005; Papadopoulos, 2008). The true
outcome is included with probability at least 1 − ϵ, with
guarantees that are typically marginal over draws of the test
set and an exchangeable calibration set.

In the context of language modeling, conformal predic-
tion has been adapted to calibrate the factuality (Mohri
& Hashimoto, 2024; Cherian et al., 2024), reasoning con-
sistency (Rubin-Toles et al., 2025b), and quality of genera-
tions (Quach et al., 2024; Qiu & Miikkulainen, 2024). Here,
x may represent an input sequence of text, while y may
be a language model output. Of these works, Rubin-Toles
et al. (2025b) also introduces the idea of reasoning as co-
herency over a graph structure, based on logical deducibility.
However, this and other methods are primarily designed for
post-processing text that has already been generated, and
they rely on external language models as scoring functions.
As a result, these approaches are not calibrated to be used as
decision rules for iterative testing, and the latency required
to compute nonconformity scores renders them unsuitable
for early exiting.

More recently, the Learn then Test (LTT) framework (An-
gelopoulos et al., 2021) extends the ideas in conformal pre-
diction to control the risk of arbitrary loss functions, with
guarantees over draws of the calibration set. One applica-
tion of LTT is to convert model outputs into a calibrated

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

decision rule, by viewing hyperparameter selection (e.g. dis-
cretization thresholds) as multiple hypothesis testing. Our
method and several works in early exiting are built atop the
LTT framework. Quach et al. (2024) calibrates a language
model’s sampling of output sets, similar to this work. Their
goal is to generate sufficient outputs y until certain admis-
sibility criteria have been fulfilled, e.g. correctness and
diversity of information. However, the sampling process
in Quach et al. (2024) is interactive, in the sense that each
step requires an external verifier, and text may be added or
removed at any point. As a result, this strategy is unsuitable
for providing online decisions about when to stop. Schuster
et al. (2022) also leverages LTT to calibrate a stopping rule
to exit from a Transformer stack. Their method operates
on individual tokens, similar in spirit to applications like
speculative decoding (Leviathan et al., 2023). Our focus is
on large, coherent thoughts for reasoning, where token-level
uncertainties are less informative.

3. Thought Calibration
Given an input x ∈ X , a reasoning language model gen-
erates a series of thoughts y ∈ Y , before synthesizing the
final output z ∈ Z . For example, x may represent a math
question; y is a sequence of reasoning steps; and z is the
model’s attempt at solving the question (Figure 1A). Manip-
ulating the budget allocated to generating y directly impacts
the quality of z (Muennighoff et al., 2025), but as the length
of y increases, so too does the cost of inference. Our goal is
to identify the point at which growing y no longer improves
z.

To formalize these ideas, we introduce the notion of an ab-
stract reasoning graph G, where nodes represent thoughts
and directed edges represent entailment relationships (Mac-
Cartney & Manning, 2014). This graph is rooted at x, the
input question. Nodes can be serialized into textual descrip-
tions, and different paraphrases of the same idea represent a
single node. Where it is clear, we refer to the abstract node
and its textual representation interchangeably.
Definition 3.1. A reasoning trajectory z is a root-to-leaf
walk in the reasoning graph G.

An arbitrary z need not be “complete” or “correct” with
respect to the original question x. We use z∗ to denote a
walk that starts at x and ends at the right answer, which
we assume to be incontrovertible. G uniquely determines
the set of all root-to-leaf walks {z}, and thus, whether a
language model has any chance of being correct in its final
attempt.
Definition 3.2. A set of thoughts y is a walk, rooted at x, on
the augmented graph G′ in which every node is connected
to each of its ancestors.

At each stage of sampling, a large language model either

adds a leaf to G (novel thought), or takes one step in G′

(backtracking or redundant generation). Let Gt be the rea-
soning graph at time t. If a language model terminates
thinking at this point, it is expected to answer correctly if
there exists a path in Gt that yields z∗. Thus, it would be
ideal we could calibrate the language model such that with
high probability,

P (E [1[z∗ ̸∈ Gt] ≤ δ]) ≥ 1− ϵ (1)

for some risk tolerance δ and error level ϵ ∈ (0, 1). In
principle, a language model could enumerate the space of
graphs in a combinatorial search. However, it is far from
guaranteed that this graph can be tractably found. Instead,
we focus on the consistency between reasoning graphs.

Definition 3.3. Thoughts y and y′ are consistent if they can
be represented by the reasoning graph G.

In particular, if a language model repeatedly revisits a step
to arrive at the same conclusion, or traverses the same ideas
in a different order, the resultant graph does not change (Fig-
ure 1C). Let yt := [y(i) . . . y(t)] and Gt be the in-progress
thoughts and reasoning graph after t steps, and let T be the
maximum inference budget (token or model limit). Instead
of enforcing that Gt contains z∗, it is more reasonable to
guarantee that

P (E [1[Gt ̸= GT ] ≤ δ]) ≥ 1− ϵ. (2)

Due to the sequential nature of generation, Gt is always a
(not necessarily strict) subset of GT .

We now describe how we calibrate the decision rule for
terminating language model generation (Section 3.1), and
then introduces three strategies for practically estimating
the quantities described by Equations 1 and 2 (Section 3.2).

3.1. Calibrating the stopping rule

Suppose we have a calibration dataset Dcal, which contains
exchangeable points {(xi, yi)}ni=1. Given a new example
x, let yt denote the language model’s thoughts after t sam-
pling steps, and let yT denote the maximum set of thoughts.
Our goal is to find the smallest t that fulfills Equations 1 or
2, based on the distribution of Dcal. During the sampling
process, however, we do not know z∗ or GT , so we must es-
timate the quantities inside the expectation using a surrogate
function f . Here, Dcal serves to calibrate f such that

P (E [R(yt) ≤ δ | Dcal]) ≥ 1− ϵ (3)

where R is a bounded risk function associated with f . For
example, f may be a linear probe on the hidden representa-
tions of thought steps y(i), and its output may be a binary
prediction. A potential decision rule could take the form of
a threshold λ, where if f(y(t)) ≥ λ, we terminate thinking.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Input x 
Given a rational number, write it as a fraction in lowest 
terms and calculate the product of the resulting 
numerator and denominator. For how many rational 
numbers between 0 and 1 will 20! be the result?

Thoughts y 

First, a rational number between 0 and 1 can be 
written as a fraction a / b where 0 < a < b and a and b 
are coprime positive integers.

Reasoning step y(1)

The number with a < b is half of the total pairs, so 
256/2 =128. Hence 128 such numbers. Therefore, The 
answer is 128, corresponding to 128.

Reasoning step y(T)

…

Output z
The prime factors of 20! are 2, 3, 5, 7, 11, 13, 17, and 19. These 
are 8 distinct primes. For ab = 20! and gcd(a, b) = 1, each 
prime factor of 20! must be entirely to either a or b. This 
results in 2^8 = 256 coprime pairs (a, b). Each pair (a, b) 
and (b, a) are distinct. To find pairs where a < b, we divide 
the total number of pairs by 2s. The number of coprime 
pairs (a, b) with a < b is 256/2 = 128.

x

y(1)

y(2)

Reasoning tree GT where T=4

a and b are coprime

20! has 8 distinct 
prime factors.

2^8 = 256 y(4)

x

y(1)

y(2)

y(t)

…
y(3)

(A) Reasoning language models scale at test 
time through longer chains of thought, at 
significant compute cost.

(B) Terminating too early hurts model 
performance due to under exploration.

20! is a fixed 
number, but 
how is a 
related to b?

The answer is 256.

Potential reasoning trajectories:
z1 = [y(1), y(2), y(3)]
z2 = [y(1), y(2), y(4)]

<think>

</think>

Thoughts
y = [y(1), y(2), y(3), y(4)]

y(3)

y(t-1)

When is E(risk of stopping now) < ẟ)?

256 / 2 = 128

P(stop at t) = 0.8

2^8 = 256

P(stop at t-1) = 0.4 Wait…

P(stop at t+1) = 0.85

Yes, 128.

P(stop at T) = 0.9

(C) Our goal is to confidently decide when 
yt will be consistent with yT , based on when 
the reasoning graph stops changing. 

…

20! has 8 
distinct …

P(stop at 2) = 0.2

Reasoning tree GT

(Up to max budget)

Figure 1: Overview of the problem and our goal. Illustrated example based on s1K-1.1 (Muennighoff et al., 2025).

Similar to Schuster et al. (2022) and Quach et al. (2024), we
follow the Learn then Test framework to select a valid set of
λs that provide our desired guarantees (Angelopoulos et al.,
2021). On a high level, hyperparameter selection is viewed
as a multiple hypothesis testing problem. Let Λ be a finite
set of configurations, where each λj ∈ Λ is associated with
the null hypothesis,

Hj : E[R(yt) > δ]. (4)

The set of valid Λvalid ⊆ Λ is the set of λj for which we fail
to reject Hj . In particular, selecting the earliest stopping
time is equivalent to identifying the smallest λ ∈ Λvalid.
Theorem 3.4 (Adapted from theorem 1 in (Angelopoulos
et al., 2021)). Suppose pj is super-uniform under Hj for
all j. Let A be a family-wise error rate (FWER) controlling
algorithm at level ϵ. Then Λvalid = A(p1, . . . , pm) satisfies
Equation 3.

Theorem 3.4 specifies that any FWER-controlling algorithm
A can be used with an appropriate p-value to identify Λvalid.
While Angelopoulos et al. (2021) proposes several algo-
rithms to search over Λ, we follow the fixed sequence test-
ing method, since in principle, our risks are expected to be
monotonic (Gt ⊆ GT ).

Specifically, let Λ = {λ1, . . . , λm} be a descending grid
of parameters. Intuitively, larger λ correspond to more
permissive thresholds, e.g. allowing a language model to
generate for longer.

1. For each j, we compute a valid p-value pj , e.g. the

binomial tail bound p-value, following (Quach et al.,
2024):

pBT
λ := P(Binom(n, ϵ) ≤ nR̂n(λ)). (5)

2. If pj ≤ ϵ, we reject Hj and continue. Otherwise, we
return λj−1 as the smallest valid threshold for error
rate ϵ.

This process yields the binarization threshold for f , where
we stop generating when f(yt) ≥ λj−1.

3.2. Estimating empirical risk

On a high level, the surrogate function f should reflect the
consistency of yt with expected future generations. Ideally,
we would be able to access the graphical structure of Gt,
as any repetitions or redundant walks in yt would be im-
mediately evident. However, since autoregressive language
models generate left-to-right, without explicitly conforming
to any higher-level structure, we cannot operate directly over
G. Instead, we introduce three approaches for designing f
in practice.

We first briefly consider the simple case suggested by Equa-
tion 1: if we terminate thinking now, is the language model
able to answer correctly? That is, we could define

fcorrect(yt) := P(LLM is correct based on yt) (6)
Rcorrect(yt) := 1{LLM is correct} · (1− fcorrect(yt))

+ 1{LLM is wrong} · fcorrect(yt). (7)

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

However, there are several drawbacks of this implementa-
tion. By construction, the calibration dataset only contain
questions that can eventually be answered, which is not true
in general. Though the space of graphs is countable, it is
unlikely that a language model can efficiently explore the
entire space. In other words, the language model may re-
alistically never answer correctly. Thus, setting λ = 1 is
not guaranteed to be risk controlling. With this definition
of Rcorrect(y), calibrating based on correctness also requires
supervised labels. While this is not an issue on standard
benchmarks, it is harder to obtain labels (user feedback) in
practice.

To address these challenges, we introduce two additional
strategies for estimating graph consistency. First, a language
model’s final attempt z can be viewed as a distillation of its
overall reasoning structure. Thus, we compare the language
model’s attempt zt after t steps, to the eventual attempt zT
at the maximum reasoning budget. This yields

fconsistent(yt) := P(zt is the same as zT ) (8)
Rconsistent(yt) := 1{consistent} · (1− fconsistent(yt))

+ 1{inconsistent} · fconsistent(yt) (9)

These values can be determined even for intractable prob-
lems, as long as the extended reasoning produces no new
insights, and does not require labels of correctness.

Finally, any particular z only represents a single walk
through G. Due to stochasticity, two differing attempts
could be sampled from the same graph, which is no longer
changing. Towards this end, we observed that language
models often reiterate redundant information, after having
reached the correct answer or the extent of its abilities. Prob-
ing for novelty should suffice to capture this phenomena. In
practice, however, we found that the following formulation
was easier for our verifier to implement, as checking for
novelty involves long context reasoning over all previous
thoughts, which can be challenging (Wang et al., 2024a).

fnovel leaf(yt) := P(y(t)is leaf) · (1− P(y(t)is novel)) (10)
Rnovel leaf(yt) := 1{LLM inconsistent} · fnovel leaf(yt)

+ 1{LLM consistent} · (1− fnovel leaf(yt)). (11)

We reuse the labels for consistency due to ease of verifica-
tion compared to novelty.

3.3. Implementation details

To separate a reasoning trajectory y into individual steps
{y(i)}, we use sections delimited by \n\n, which also
contain either wait or but. We observed that individual
tokens representations can vary significantly. Thus, each
step uses the mean last-layer representation of its tokens,
followed by dimensionality reduction via PCA to d = 256.

To estimate each of quantities in Equations (6) to (11), we
train linear probes on these step-level representations. The
final probabilities are averaged over a window of 10 steps
for smoothness, before calibration. For evaluation, we use
a grid of ϵ ranging from 0.05 to 0.5, with precise thresh-
olds selected to roughly match the token range of baselines.
During development, we experimented with more complex
architectures, e.g. Transformer to predict leaves as a se-
quence labeling task (Appendix B.1). However, to avoid
overfitting on our limited training set, we chose to focus on
simple and efficient linear probes. Concurrent work (Zhang
et al., 2025) also finds that model confidence can often be
extracted linearly. In our experiments, we use three rea-
soning models: DeepSeek-R1 distilled Qwen 2.5 32B and
Llama 3.3 70B (Guo et al., 2025a; Grattafiori et al., 2024;
Yang et al., 2024), and QwQ 32B (Team, 2025).

The ground truth labels for these probes are obtained by
prompting a separate language model (Qwen 3 32B). Cor-
rect: We truncate thinking trajectories to desired lengths,
append the <\think> token, and prompt the language
model for the final answer, which is compared to the ground
truth (Muennighoff et al., 2025). Consistent: The same out-
puts can be used to check whether Gt is consistent with GT ,
by comparing intermediate attempts zt to maximum budget
attempt zT . Leaf: We annotate whether each step y(i) is a
leaf in G by asking a separate language model to identify
whether it makes an attempt to answer the original question
x, regardless of correctness. Novel: We provide a separate
language model with all previous thoughts y(1) . . . y(i−1)

and ask whether the new step y(i) provides additional infor-
mation. All prompts can be found in Appendix A and were
run on 4 A6000 GPUs using vLLM (Kwon et al., 2023) and
lmdeploy (Contributors, 2023).

We evaluate the correctness of all final attempts using the
GPT 4.1 API, between April 15, 2025 and May 15, 2025.
For datasets that have no ambiguity (multiple choice, nu-
meric answers), we trimmed the final attempts to 200 charac-
ters, to prevent the LLM from “cheating” by using additional
thinking budget after the </think> token.

4. Experiments
4.1. Settings

Datasets. Our experiments focus on efficient language
model reasoning across tasks which vary in content, for-
mat, and difficulty. In particular, we leverage the following
datasets.

s1K-1.1 (Muennighoff et al., 2025) is a curated training set
for distilling reasoning abilities through data. This dataset
contains 1000 difficult math and science questions, along
with thought trajectories generated by DeepSeek-R1 (Guo
et al., 2025a). As a proof of concept, we split the s1K-

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

200000 400000
Tokens

0.3

0.5

0.7

A
cc

ur
ac

y
DeepSeek Distilled Qwen 32B

200000 400000
Tokens

0.3

0.5

0.7
DeepSeek Distilled Llama 70B

200000 400000
Tokens

0.3

0.5

0.7
QwQ 32B

0.5 1.0
1-

0.2

0.4

0.6

0.8

1.0

%
 o

f F
ul

l A
cc

ur
ac

y

Calibration

Full
Crop
Supervised
Consistent
Leaf Novelty

Figure 2: On in-distribution data (held-out test split on s1K), variants of thought calibration achieve up to a 60% reduction
in thinking tokens while maintaining full performance. Top right point: Complete DeepSeek-R1 thought trajectory
from (Muennighoff et al., 2025). Crop: Fix thinking budget at 512, 1024, 2048, 4096, and 8192 tokens. Supervised: exit
based on predicted likelihood of correctness. Consistent, and Leaf Novelty: exit based on predicted consistency of answer or
graph. Supervised is over confident, since the test set contains unsolvable problems.

100000 150000 200000
Tokens

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

AIME 24

250000 500000 750000
Tokens

0.50

0.55

0.60

0.65

GPQA Diamond

0.5 1.0
Tokens 1e6

0.75

0.80

0.85

0.90

0.95
MATH 500

0.5 1.0
1-

0.2

0.4

0.6

0.8

1.0

%
 o

f F
ul

l A
cc

ur
ac

y

Calibration

Full
Crop
Supervised
Consistent

Figure 3: We applied thought calibration probes for DeepSeek-distilled Qwen-2.5 32B on standard math and science
benchmarks, which may be out-of-distribution compared to the training and calibration sets, drawn from s1K. We achieve up
to a 20% reduction in thinking tokens. While Consistent generally remains below the predetermined error rates, Supervised
is overconfident (as expected).

1.1 dataset into training, testing, and calibration (500, 50,
450, in dataset order). We use the training set to develop
our probes, which are calibrated on the calibration set and
evaluated on the testing set.

We also consider three common reasoning benchmarks
solely for testing. AIME-24 is the 2024 iteration of the
American Invitational Mathematics Examination.1 This
dataset contains math questions whose answers take on in-
tegers between 0 and 999. GPQA Diamond (Rein et al.,
2024) is a PhD-level math and science reasoning benchmark
with multiple choice answers. MATH 500 (Hendrycks
et al., 2021; Lightman et al., 2023) is a curated subset of
the MATH dataset, which competition math questions of
various levels. Note that while s1K-1.1 contains examples
of both mathematical and scientific questions, the format
and subsequent reasoning patterns may vary. For example,
while s1K-1.1 is open-ended, the various choices in GPQA
must be compared. Thus, we view these three datasets as
“out of distribution” from s1K-1.1, which is itself diverse.

Models. We evaluate the three variants of thought cali-
bration: the supervised probe for correctness (Equation 6,
Supervised); the consistency probe (Equation 8, Consis-

1https://maa.org/maa-invitational-competitions/

tent); and the lack of novelty probe (Equation 10, Novel
Leaf). To contextualize our experimental results, we also
consider a naive budget-forcing baseline (Crop). Specif-
ically, we set a fixed token budget for thinking (ranging
from 1024 to the full trajectory). Once the language model
reaches this budget, thinking is immediately terminated and
the model is prompted for a final answer. This reflects both
the practical use case of setting a limit on maximum gen-
eration tokens, and the strategy employed by Muennighoff
et al. (2025). Finally, concurrent work has also observed
that probes for correctness (Zhang et al., 2025) are effective
for early exiting. While this design may not be valid for risk
control in practice (LLMs are not guaranteed to ever answer
correctly), the Supervised baseline is similar to this work.

4.2. In-distribution setting

We start with the case where we have access to samples x
that are drawn from the same distribution as our eventual
application. For example, a model provider may possess
typical examples of user data. Our goals are to lower the
overall test-time budget while maintaining accuracy, and to
control any necessary drops in performance based on our
predetermined error levels. In Figure 2, we observe that
these probes are able to reduce the number of thinking

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

tokens by over half for all three models, with minimal
impact to overall performance. With respect to calibration,
the Supervised probe is quite poorly calibrated, especially
at lower values of ϵ. All other probes are well calibrated
at ϵ < 0.1, though variance is higher outside of this range.
This may be due to distribution shift, resulting from the
small test split (to maximize training and calibration data
for subsequent evaluations).

4.3. Generalization setting

Next, we consider the case in which the data we have is re-
lated, but not drawn from the same distribution as our even-
tual application. To emulate this setting, we apply the super-
vised and consistent Qwen 32B probes, developed on the
s1K-1.1 dataset, to common reasoning benchmarks (Rein
et al., 2024; Lightman et al., 2023). Overall, we are able to
improve (AIME 24, GPQA) or match (MATH 500) the effi-
ciency of the budget forcing baseline – even achieving slight
gains in performance on AIME 24, perhaps by trimming
distracting thoughts (Figure 4). Notably, even though the
Supervised probe had access to more information (ground
truth answers), the Consistent probe consistently gener-
alizes better, both in terms of efficiency and calibration.
Here, the Consistent probe fulfills the theoretical guarantees,
while the Supervised probe remains over-confident.

4.4. Additional analysis

Figure 4 illustrates that thought calibration probes prioritizes
the termination of problems which cannot be solved, even
at full budget – perhaps hinting that the language model
may have been stuck in a cycle of reasoning, without novel
progress. Compared to the naive cropping strategy, thought
calibration’s input-dependent decision also demonstrate sig-
nificant variance in the amount of tokens across different
problems.

We also examine a specific instance from our s1K-1.1 testing
split in Figure 5 (s1K is a distillation dataset, so this dia-
gram does not leak real test examples). The language model
reaches the correct answer after 38 steps (out of 48 steps).
As the model backtracks, the predicted consistency (with
the expected final answer) drops; and as the model returns to
the answer, confidence increases, higher than before. This
reaffirms that self-consistency is indeed a powerful indica-
tion of correctness, both distilled into a predictive model,
and over the course of sampling.

5. Limitations
There are several limitations of our work. Since our method
is built atop the Learn then Test framework (Angelopou-
los et al., 2021), our theoretical guarantees are only valid
over draws of the calibration set. In practice, this means

that the calibration data must be sufficiently similar to the
actual application. Furthermore, due to our small training
and calibration datasets, we implement our framework pri-
marily through linear probes. In Appendix B.1, we found
that more complex architectures may lead to slightly bet-
ter performance in some cases, and the gap is expected to
be larger if more training data can be gathered. We leave
further investigations regarding the probe architecture to
future work. Finally, this paper only addresses the problem
of exiting early from reasoning. The broader question of
how to calibrate the steering of reasoning models remains
unanswered, and is an interesting area for further research.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

2048 4096 6144 8192
Max Original Tokens

0

50

100

Pe
rc

en
t C

ro
pp

ed

Budget=6144

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=4096

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=2048

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=1024

Original Score
0
1

Strategy: Crop

2048 4096 6144 8192
Max Original Tokens

0

50

100

Pe
rc

en
t C

ro
pp

ed

=0.05

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.1

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.2

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.3

Original Score
0
1

Strategy: Consistent

Figure 4: Proportion of prompt tokens removed, for different thresholds, stratified by full thought length and whether
the original model was able to solve the problem. Top: Naive max token thresholding. Bottom: Consistency calibration,
DeepSeek-R1 distilled Qwen 32B, over GPQA Diamond. Cropping reduces token lengths uniformly, regardless of the input
characteristics. Thought calibration has a preference for first trimming longer thoughts and cases where the language model
tries but fails to make progress.

Okay, so I need to solve this problem: We have an increasing sequence: 3, 15, 24, 48, ... which
are positive multiples of 3 that are one less than a perfect square. I need to find the remainder
when the 1994th term of this sequence is divided by 1000.

Step 1 (0.104)

Hmm. Let me parse this. The terms are multiples of 3, and each term is one less than a perfect
square [...] n must be either 1 or 2 mod 3. That means terms in the sequence correspond to n
where n ≡ 1 or 2 mod 3.

Step 2 (0.067)

But computing 29922 mod 1000 is equivalent to [...] but since
2992 = 2000 + 992 = 2000 + 992, but modulo 1000, 2992 ≡ 992 mod 1000, so 9922 − 1
mod 1000.

Step 37 (0.342)

Wait, first compute 9922 mod 1000, then subtract 1, then take mod 1000 again. [...]
subtract 1: 64− 1 = 63. Therefore, 9922− 1 mod 1000 = 63. Therefore the remainder is 63.
So answer is 63.

Step 38 (0.717)

But let me confirm because that seems straightforward. Wait: [...] Step 39 (0.646)

Wait: n(k) = (3k)/2 + 1 for even k. For even k = 1994, [...] Then term = 29922− 1. Then
mod 1000 is (29922− 1) mod 1000.

Step 40 (0.479)

But 2992 mod 1000 = 992, so 2992 ≡ −8 mod 1000. Then (−8)2 = 64, then
64− 1 = 63. Therefore mod 1000: 63. [...] Then (−8)2 = 64, then 64− 1 = 63. Therefore
mod 1000: 63. Hence remainder is 63.

Step 41 (0.985)

Figure 5: DeepSeek-R1 distilled Llama 70B Consistency probe on s1K-1.1 example from our test split, where color intensity
is proportional to P(consistent). The language model first reaches the correct answer in Step 38, backtracks with lower
confidence, and returns to the answer in Step 41.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

References
Angelopoulos, A. N. and Bates, S. A gentle introduction

to conformal prediction and distribution-free uncertainty
quantification. arXiv preprint arXiv:2107.07511, 2021.

Angelopoulos, A. N., Bates, S., Candès, E. J., Jordan,
M. I., and Lei, L. Learn then Test: Calibrating predic-
tive algorithms to achieve risk control. arXiv preprint
arXiv:2110.01052, 2021.

Arora, D. and Zanette, A. Training language models to rea-
son efficiently. arXiv preprint arXiv:2502.04463, 2025.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think that
much for 2+ 3=? on the overthinking of o1-like LLMs.
arXiv preprint arXiv:2412.21187, 2024.

Cherian, J., Gibbs, I., and Candes, E. Large language model
validity via enhanced conformal prediction methods. Ad-
vances in Neural Information Processing Systems, 37:
114812–114842, 2024.

Contributors, L. Lmdeploy: A toolkit for compressing,
deploying, and serving llm. https://github.com/
InternLM/lmdeploy, 2023.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. DeepSeek-R1:
Incentivizing reasoning capability in LLMs via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025a.

Guo, J., Wu, Y., Qiu, J., Huang, K., Juan, X., Yang, L., and
Wang, M. Temporal consistency for llm reasoning process
error identification. arXiv preprint arXiv:2503.14495,
2025b.

Han, T., Wang, Z., Fang, C., Zhao, S., Ma, S., and Chen,
Z. Token-budget-aware LLM reasoning. arXiv preprint
arXiv:2412.18547, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Hou, B., Zhang, Y., Ji, J., Liu, Y., Qian, K., Andreas, J., and
Chang, S. ThinkPrune: Pruning long chain-of-thought
of LLMs via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Huang, C., Huang, L., Leng, J., Liu, J., and Huang, J. Effi-
cient test-time scaling via self-calibration. arXiv preprint
arXiv:2503.00031, 2025.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kim, G. and Cho, K. Length-adaptive transformer: Train
once with length drop, use anytime with search. In Joint
Conference of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL-
IJCNLP 2021, pp. 6501–6511. Association for Computa-
tional Linguistics (ACL), 2021.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lei, T. When attention meets fast recurrence: Training
language models with reduced compute. In Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational
Linguistics, 2021.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Y., Yuan, P., Feng, S., Pan, B., Wang, X., Sun, B., Wang,
H., and Li, K. Escape sky-high cost: Early-stopping
self-consistency for multi-step reasoning. In The Twelfth
International Conference on Learning Representations,
2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2023.

Liu, Z., Xu, Z., Wang, H.-J., Darrell, T., and Shelhamer, E.
Anytime dense prediction with confidence adaptivity. In
International Conference on Learning Representations,
2022.

Ma, W., He, J., Snell, C., Griggs, T., Min, S., and Zaharia,
M. Reasoning models can be effective without thinking.
arXiv preprint arXiv:2504.09858, 2025.

MacCartney, B. and Manning, C. D. Natural logic and natu-
ral language inference. In Computing Meaning: Volume
4, pp. 129–147. Springer, 2014.

9

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36:46534–46594, 2023.

Mitchell, E., Noh, J., Li, S., Armstrong, W., Agarwal,
A., Liu, P., Finn, C., and Manning, C. D. Enhancing
self-consistency and performance of pre-trained language
models through natural language inference. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 1754–1768, 2022.

Mohri, C. and Hashimoto, T. Language models with confor-
mal factuality guarantees. In Proceedings of the 41st In-
ternational Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

Papadopoulos, H. Inductive conformal prediction: Theory
and application to neural networks. In Tools in artificial
intelligence. Citeseer, 2008.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Qiu, X. and Miikkulainen, R. Semantic density: Uncertainty
quantification for large language models through confi-
dence measurement in semantic space. In Globerson, A.,
Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak,
J., and Zhang, C. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 37, pp. 134507–134533,
2024.

Quach, V., Fisch, A., Schuster, T., Yala, A., Sohn, J. H.,
Jaakkola, T. S., and Barzilay, R. Conformal language
modeling. In The Twelfth International Conference on
Learning Representations, 2024.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. GPQA: A
graduate-level Google-proof Q&A benchmark. In First
Conference on Language Modeling, 2024.

Rubin-Toles, M., Gambhir, M., Ramji, K., Roth, A., and
Goel, S. Conformal language model reasoning with coher-
ent factuality. In The Thirteenth International Conference
on Learning Representations, 2025a.

Rubin-Toles, M., Gambhir, M., Ramji, K., Roth, A., and
Goel, S. Conformal language model reasoning with co-
herent factuality. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=AJpUZd8Clb.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. Advances in Neural Information
Processing Systems, 35:17456–17472, 2022.

Shafer, G. and Vovk, V. A tutorial on conformal prediction.
Journal of Machine Learning Research, 9(3), 2008.

Shi, F., Chen, X., Misra, K., Scales, N., Dohan, D., Chi,
E. H., Schärli, N., and Zhou, D. Large language models
can be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pp. 31210–
31227. PMLR, 2023.

Sui, Y., Chuang, Y.-N., Wang, G., Zhang, J., Zhang, T.,
Yuan, J., Liu, H., Wen, A., Zhong, S., Chen, H., et al.
Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419,
2025.

Team, Q. QwQ-32B: Embracing the power of reinforce-
ment learning, March 2025. URL https://qwenlm.
github.io/blog/qwq-32b/.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world, volume 29. Springer, 2005.

Wang, M., Chen, L., Fu, C., Liao, S., Zhang, X., Wu, B., Yu,
H., Xu, N., Zhang, L., Luo, R., et al. Leave no document
behind: Benchmarking long-context LLMs with extended
multi-doc QA. CoRR, 2024a.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426–9439, 2024b.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Weng, Y., Zhu, M., Xia, F., Li, B., He, S., Liu, S., Sun,
B., Liu, K., and Zhao, J. Large language models are

10

https://openreview.net/forum?id=AJpUZd8Clb
https://openreview.net/forum?id=AJpUZd8Clb
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

better reasoners with self-verification. In Findings of
the Association for Computational Linguistics: EMNLP
2023, pp. 2550–2575, 2023.

Xie, Z., Guo, J., Yu, T., and Li, S. Calibrating reasoning in
language models with internal consistency. arXiv preprint
arXiv:2405.18711, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yang, C., Si, Q., Duan, Y., Zhu, Z., Zhu, C., Lin, Z., Cao, L.,
and Wang, W. Dynamic early exit in reasoning models.
arXiv preprint arXiv:2504.15895, 2025.

Zhang, A., Chen, Y., Pan, J., Zhao, C., Panda, A., Li, J.,
and He, H. Reasoning models know when they’re right:
Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025.

Zhang, D., Huang, X., Zhou, D., Li, Y., and Ouyang, W.
Accessing gpt-4 level mathematical olympiad solutions
via monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394, 2024a.

Zhang, D., Zhoubian, S., Hu, Z., Yue, Y., Dong, Y., and
Tang, J. Rest-mcts*: Llm self-training via process re-
ward guided tree search. Advances in Neural Information
Processing Systems, 37:64735–64772, 2024b.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

A. Prompts
The following prompt was used to force the model (DeepSeek-R1 distilled Qwen 32B and Llama 70B, QwQ 32B) to produce
an answer after a fixed number of thinking steps. Following the recommendation of Guo et al. (2025a) and Team (2025), we
do not include a system prompt. We apply the chat template to user prompt before concatenating the “in-progress” thoughts.
Adapted from (Muennighoff et al., 2025).
<bos><User>
{question}
Please reason step by step, and put your final answer within \\boxed{{}}.
<Assistant>
<think>
{thoughts}
</think>
Final Answer:

The following prompt was used to obtain labels for P(correct) (Equation 6) using Qwen 3 32B. This prompt was also used
to evaluate answers using GPT 4.1. Adapted from (Muennighoff et al., 2025).
You are an AI assistant for grading a science problem. The user will provide you with the question itself, the correct answer, and the student’s
attempt. Your job is to judge whether the attempt is correct by comparing it with the correct answer. If the correct answer is a number or choice,
there should be no ambiguity, and you should directly compare the answer and the final result. If the attempt is incomplete, you should mark it as
wrong. If the correct answer involves going through the entire reasoning process, you should judge the result based on whether the reasoning process
is correct, compared to correct answer.
Do NOT try to solve the problem yourself. Only grade the attempt based on the correct answer.
The user will provide the attempt and the correct answer in the following format:
# Problem
{problem}
## Correct answer
{solution}
## Student attempt
{attempt}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(consistent) (Equation 8) using Qwen 3 32B.

You are an AI assistant for grading a science problem. The user will provide you with the question itself and two student attempts. Your job is to
judge whether the two students arrive at the same answer. If question asks for a single numerical answer, there should be no ambiguity, and you
should directly compare the two answers. If the question asks for multiple parts, the two attempts are identical if only if all of the parts arrive at
the same conclusion.
Do NOT try to solve the problem yourself. Only grade whether the two attempts are the same.
The user will provide the problem and two attempts in the following format:
# Problem
{problem}
## Attempt 1
{attempt1}
## Attempt 2
{attempt2}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(leaf) (Equation 10) using Qwen 3 32B.

You are an AI assistant for parsing LLM outputs. The user will provide you with the question and an intermediate reasoning step. Your job is to
judge whether the given step contains an attempt at a final answer.
Do NOT attempt to solve the problem yourself. It does not matter if the answer is correct. Only comment on whether an attempt has been made.
The user will provide the problem and reasoning steps in the following format:
# Problem
{problem}
# Reasoning step
{reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" or "No" indicating whether or the given step makes an attempt at
providing the final answer.

The following prompt was used to obtain labels for P(novel) (Equation 10) using Qwen 3 32B.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

You are an AI assistant for assessing the quality of logical reasoning. The user will provide you with the question and an incomplete attempt,
consisting of a series of reasoning steps. Your job is to judge whether current step appears to provide additional information, compared to the
previous steps. If the current step is correct and novel, it is useful. If the current step is wrong or redundant, then it is not useful.
Do NOT try to solve the problem yourself. It does not matter if the attempt is not complete. Only comment on whether the current step is useful.
The user will provide the problem and reasoning steps in the following format:
# Problem
{problem}
# Reasoning
## step 1
{reasoning step 1}
## step 2
{reasoning step 2}
...
## step k
{reasoning step k}
...
## current step
{current reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" if the current step provides new information or "No" otherwise (without
quotes).

B. Implementation details
B.1. Design and implementation of model probes

We tried several architectures, before deciding upon linear probes for simplicity and to avoid overfitting. The differences
in performance are not always consistent and the generalization gap is quite large (Table 1). Since our main focus is
on calibration, and it requires significant compute to produce and evaluate scaling curves, we consider more exhaustive
exploration of alternate architectures as future work.

MLP The input is a single representation h(t) corresponding to single reasoning step y(t), and the output is a binary label
∈ {0, 1}. We train until AUC fails to improve for 10 epochs on 10% of the training set (randomly sampled). We report the
best calibration set performance of the following hyperparameters. We use the sklearn defaults otherwise (Pedregosa et al.,
2011).

• Layers: 1, 2

• FFN dimension: 32, 64, 128

Transformer The input is a sequence of representations, h(1) . . . h(t) corresponding to thoughts yt = y(1) . . . y(t). The
output is either a binary label ∈ {0, 1} for P(correct) and P(consistent), or a sequence of labels ∈ {0, 1}t for P(novel) and
P(leaf). For the former, we treat the embeddings as a set (i.e. if any representation is sufficient to answer correctly, or be
consistent). For the latter, we apply a left-to-right causal attention mask during training, and we use sinusoidal positional
encodings to encode the index of each reasoning step. We report the best calibration set performance of the following
hyperparameters. In contrast to the linear and MLP models, we find that the Transformer performs best if we do not apply
PCA and instead operate over the original model dimension.

• Layers: 1, 2

• Model dimension: 16, 32, 64

• FFN dimension: 64, 128

• Number of heads: 4, 8

• Epochs: 5, 10

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Table 1: Probe architecture performance on s1K-1.1 train and calibration splits. Metric: Binary AUROC.

Linear MLP Transformer

Model Quantity Train Cal Train Cal Train Cal

DeepSeek-R1
distilled Qwen
2.5 32B

P(correct) 0.936 0.788 0.990 0.779 0.994 0.760
P(consistent) 0.919 0.788 0.994 0.747 0.991 0.773
P(leaf) 0.868 0.839 0.936 0.815 0.933 0.852
P(novel) 0.874 0.686 0.980 0.692 0.896 0.774

DeepSeek-R1
distilled Llama
3.3 70B

P(correct) 0.937 0.765 0.987 0.746 0.991 0.803
P(consistent) 0.921 0.745 0.994 0.743 0.993 0.748
P(leaf) 0.864 0.819 0.970 0.802 0.923 0.848
P(novel) 0.872 0.686 0.981 0.702 0.915 0.774

QwQ 32B

P(correct) 0.943 0.848 0.986 0.838 0.948 0.848
P(consistent) 0.950 0.699 0.988 0.704 0.939 0.756
P(leaf) 0.869 0.840 0.942 0.822 0.913 0.857
P(novel) 0.876 0.677 0.952 0.690 0.895 0.792

B.2. LLM experiments

We ran DeepSeek-R1 distilled Qwen 2.5 32B and Llama 70B, and QwQ 32B using lmdeploy (Contributors, 2023) with
recommended defaults for each model. lmdeploy natively supports the saving of last layer representations, so it was used for
almost all experiments. We ran Qwen 3 32B using vLLM (Kwon et al., 2023) due to early support. Due to computational
constraints, we report the mean over a single run.

We downloaded all model weights from transformers between April 1, 2025 and May 1, 2025.

C. Additional analysis
Figure 6 illustrates the early exit probabilities for each of the three probes. The supervised (“correct”) probe reaches high
exit probabilities the fastest, but it is also the most overconfident (Figure 2D).

0 50 100 150
Reasoning steps

0.0

0.5

1.0
P(correct)

0 50 100 150
Reasoning steps

0.5

1.0
P(consistent)

0 50 100 150
Reasoning steps

0.00

0.01

0.02

0.03

P(no novel leaves)

Figure 6: Likelihoods of thought calibration probes over s1K-1.1 test set (10 examples). The “No Leaf” variant is the least
monotonic. This could potentially indicate that after reaching the answer, the language model explores new knowledge that
is irrelevant to the task.

14


