
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Thought calibration: Efficient and confident test-time scaling

Anonymous Authors1

Abstract

Reasoning large language models achieve impres-
sive test-time scaling by thinking for longer, but
this performance gain comes at significant com-
pute cost. Directly limiting test-time budget hurts
overall performance, but not all problems are
equally difficult. We propose thought calibra-
tion to decide dynamically when thinking can
be terminated. To calibrate our decision rule,
we view a language model’s growing body of
thoughts as a nested sequence of reasoning trees,
where the goal is to identify the point at which
novel reasoning plateaus. We realize this frame-
work through lightweight probes that operate on
top of the language model’s hidden representa-
tions, which are informative of both the reason-
ing structure and overall consistency of response.
Based on three reasoning language models and
four datasets, thought calibration preserves model
performance with up to a 60% reduction in think-
ing tokens on in-distribution data, and up to 20%
in out-of-distribution data.

1. Introduction
Test-time scaling presents a new paradigm for improving
language model reasoning by expending large amounts of
compute during inference (Kaplan et al., 2020; Wei et al.,
2022). Though the strategies for eliciting reasoning vary –
from large-scale reinforcement learning (Guo et al., 2025a)
to explicit tree search (Zhang et al., 2024a;b) – a common
effect is that language models improve by sampling sub-
stantially more tokens. This may result in wasted compute
on easy problems (Chen et al., 2024; Sui et al., 2025), but
naively limiting the generation length leads to pronounced
drops in accuracy (Muennighoff et al., 2025). This motivates
early stopping strategies that reduce the inference budget

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

without significantly degrading performance, and control
the extent of impact, if performance must be compromised.

Numerous methods have been proposed for teaching lan-
guage models to be economical with their token bud-
gets (Han et al., 2024; Arora & Zanette, 2025; Sui et al.,
2025), or for identifying opportune stopping points (Yang
et al., 2025; Zhang et al., 2025). While these methods
demonstrate strong empirical performance, they lack strict
statistical guarantees about when they could fail. In an or-
thogonal direction, conformal prediction has been adapted
to equip language models with calibrated confidences about
the quality or consistency of their generations (Mohri &
Hashimoto, 2024; Quach et al., 2024; Rubin-Toles et al.,
2025b;a; Cherian et al., 2024). However, most of these
algorithms operate through post-hoc filtering and require ex-
ternal LLM-based validation for scoring intermediate steps
– rendering them unsuitable for actively terminating genera-
tion.

In this work, we jointly pursue an effective and calibrated
decision rule to determine when a language model can stop
“thinking.” To do so, we introduce the notion of a rea-
soning tree, where at each step of sampling, a language
model either adds a new leaf, walks along the tree, or back-
tracks to a previous step. Notably, identifying when the
thoughts have converged is equivalent to detecting when
this reasoning tree stops growing. Inspired by this concept,
we approach early stopping as multiple hypothesis testing
problem. At each generation step, we test whether the cur-
rent tree is expected to change, based on the predictions
of lightweight probes over the language model’s hidden
representations. Our algorithm is based on the Learn then
Test framework (Angelopoulos et al., 2021), which provides
finite-sample, distribution-free guarantees for controlling
the risk of our decisions.

We evaluate this strategy, thought calibration, based on its
ability to guide efficient reasoning, and whether its decisions
are well-calibrated. Our experiments consider two empirical
settings: we may or may not have access to training and
calibration data from the true test distribution. In the first
setting, we train variants of thought calibration using three
reasoning lanugage models (DeepSeek-R1 distilled Qwen
32B and Llama 70B (Guo et al., 2025a; Yang et al., 2024;
Grattafiori et al., 2024), QwQ 32B (Team, 2025)), evaluated
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on a helf-out split of s1K-1.1 (Muennighoff et al., 2025).
Here, we are able to halve the number of thinking tokens
across accuracy levels, with a maximum reduction of 60%.
Then we evaluate Qwen 32B-based thought calibration on
three test datasets: AIME 24, GPQA Diamond (Rein et al.,
2024), MATH-500 (Lightman et al., 2023)). Though these
datasets vary in format and difficult, thought calibration
is still able to reach up to a 20% reduction in thinking
tokens, and in the worst case, is always as efficient as naive
budget constraints. In summary, this work has three main
contributions.

1. We interpret LLM reasoning through the lens of an
abstract reasoning tree, where the problem of early
exiting is equivalent to identifying when this tree stops
growing.

2. This view allows us to calibrate the decision rule for
actively terminating generation.

3. Based on multiple language models and reasoning
benchmarks, we provide empirical evidence that
thought calibration is effective for efficient test-time
scaling.

2. Background
2.1. Test-time scaling

Efficient inference Since current reasoning models are
post-trained through reinforcement learning (Guo et al.,
2025a), a number of works address the overthinking prob-
lem (Sui et al., 2025) as part of the reinforcement learning
process (Han et al., 2024; Arora & Zanette, 2025; Hou
et al., 2025). Other works focus on the inference-time prob-
lem of predicting when a language model should stop gen-
erating (Yang et al., 2025; Zhang et al., 2025; Ma et al.,
2025). This papers falls under the latter category, which on
a whole, is compatible with methods that reduce a language
model’s verbosity during post-training. Finally, another op-
tion is to achieve efficiency in terms of model architecture.
Some works dynamically adapt compute cost (Lei, 2021;
Leviathan et al., 2023), while others employ only a subset of
all modules during sampling (Kim & Cho, 2021; Liu et al.,
2022; Schuster et al., 2022). While these strategies operate
over the Transformer stack, rather than the generation se-
quence length, many high-level ideas are broadly applicable
to early exiting in our situation.

Self-consistency Self-consistency has been widely used
to provide a self-supervised form of confidence during the
sampling process (Wang et al., 2022). These methods aim
to improve the quality of generated samples, often in situ-
ations where multiple samples may be sequentially gener-
ated (Mitchell et al., 2022; Madaan et al., 2023; Shi et al.,

2023; Weng et al., 2023; Guo et al., 2025b). Consistency
can also provide feedback for reasoning-focused reinforce-
ment learning (Wang et al., 2024b). Several recent works
have observed that confidence scores can be probed and cal-
ibrated from internal representations, to prioritize reasoning
trajectories for subsequent runs (Li et al., 2024; Huang et al.,
2025; Xie et al., 2024) or for early exiting, similar to this
work (Zhang et al., 2025). Our key departure is that we cali-
brate the decision rule to terminate generation, rather than
the probabilistic outputs of a probe. This reflects the online
setting, where a probe is used to actively guide generation,
rather than to filter trajectories post-hoc.

2.2. Conformal prediction and risk control

Conformal prediction quantifies the uncertainty in ma-
chine learning models by generating set-valued predic-
tions (Shafer & Vovk, 2008; Angelopoulos & Bates, 2021).
These methods are distribution-free and valid under finite
samples, which makes them particularly attractive in real-
world applications. Specifically, for an input x, a candidate
output space Y , and a predetermined error level ϵ, conformal
prediction tests each potential outcome y ∈ Y by evaluating
the null hypothesis: “output y corresponds to input x.” The
final prediction set consists of the outputs y for which this
null hypothesis fails to be rejected, where the test statistic is
known as a nonconformity score. Split conformal prediction
leverages a separate training set to learn this nonconformity
score (Vovk et al., 2005; Papadopoulos, 2008). The true
outcome is included with probability at least 1 − ϵ, with
guarantees that are typically marginal over draws of the test
set and an exchangeable calibration set.

In the context of language modeling, conformal predic-
tion has been adapted to calibrate the factuality (Mohri
& Hashimoto, 2024; Cherian et al., 2024), reasoning con-
sistency (Rubin-Toles et al., 2025b), and quality of genera-
tions (Quach et al., 2024; Qiu & Miikkulainen, 2024). Here,
x may represent an input sequence of text, while y may
be a language model output. Of these works, Rubin-Toles
et al. (2025b) also introduces the idea of reasoning as co-
herency over a graph structure, based on logical deducibility.
However, this and other methods are primarily designed for
post-processing text that has already been generated, and
they rely on external language models as scoring functions.
As a result, these approaches are not calibrated to be used as
decision rules for iterative testing, and the latency required
to compute nonconformity scores renders them unsuitable
for early exiting.

More recently, the Learn then Test (LTT) framework (An-
gelopoulos et al., 2021) extends the ideas in conformal pre-
diction to control the risk of arbitrary loss functions, with
guarantees over draws of the calibration set. One applica-
tion of LTT is to convert model outputs into a calibrated
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decision rule, by viewing hyperparameter selection (e.g. dis-
cretization thresholds) as multiple hypothesis testing. Our
method and several works in early exiting are built atop the
LTT framework. Quach et al. (2024) calibrates a language
model’s sampling of output sets, similar to this work. Their
goal is to generate sufficient outputs y until certain admis-
sibility criteria have been fulfilled, e.g. correctness and
diversity of information. However, the sampling process
in Quach et al. (2024) is interactive, in the sense that each
step requires an external verifier, and text may be added or
removed at any point. As a result, this strategy is unsuitable
for providing online decisions about when to stop. Schuster
et al. (2022) also leverages LTT to calibrate a stopping rule
to exit from a Transformer stack. Their method operates
on individual tokens, similar in spirit to applications like
speculative decoding (Leviathan et al., 2023). Our focus is
on large, coherent thoughts for reasoning, where token-level
uncertainties are less informative.

3. Thought Calibration
Given an input x ∈ X , a reasoning language model gen-
erates a series of thoughts y ∈ Y , before synthesizing the
final output z ∈ Z . For example, x may represent a math
question; y is a sequence of reasoning steps; and z is the
model’s attempt at solving the question (Figure 1A). Manip-
ulating the budget allocated to generating y directly impacts
the quality of z (Muennighoff et al., 2025), but as the length
of y increases, so too does the cost of inference. Our goal is
to identify the point at which growing y no longer improves
z.

To formalize these ideas, we introduce the notion of an ab-
stract reasoning graph G, where nodes represent thoughts
and directed edges represent entailment relationships (Mac-
Cartney & Manning, 2014). This graph is rooted at x, the
input question. Nodes can be serialized into textual descrip-
tions, and different paraphrases of the same idea represent a
single node. Where it is clear, we refer to the abstract node
and its textual representation interchangeably.
Definition 3.1. A reasoning trajectory z is a root-to-leaf
walk in the reasoning graph G.

An arbitrary z need not be “complete” or “correct” with
respect to the original question x. We use z∗ to denote a
walk that starts at x and ends at the right answer, which
we assume to be incontrovertible. G uniquely determines
the set of all root-to-leaf walks {z}, and thus, whether a
language model has any chance of being correct in its final
attempt.
Definition 3.2. A set of thoughts y is a walk, rooted at x, on
the augmented graph G′ in which every node is connected
to each of its ancestors.

At each stage of sampling, a large language model either

adds a leaf to G (novel thought), or takes one step in G′

(backtracking or redundant generation). Let Gt be the rea-
soning graph at time t. If a language model terminates
thinking at this point, it is expected to answer correctly if
there exists a path in Gt that yields z∗. Thus, it would be
ideal we could calibrate the language model such that with
high probability,

P (E [1[z∗ ̸∈ Gt] ≤ δ]) ≥ 1− ϵ (1)

for some risk tolerance δ and error level ϵ ∈ (0, 1). In
principle, a language model could enumerate the space of
graphs in a combinatorial search. However, it is far from
guaranteed that this graph can be tractably found. Instead,
we focus on the consistency between reasoning graphs.

Definition 3.3. Thoughts y and y′ are consistent if they can
be represented by the reasoning graph G.

In particular, if a language model repeatedly revisits a step
to arrive at the same conclusion, or traverses the same ideas
in a different order, the resultant graph does not change (Fig-
ure 1C). Let yt := [y(i) . . . y(t)] and Gt be the in-progress
thoughts and reasoning graph after t steps, and let T be the
maximum inference budget (token or model limit). Instead
of enforcing that Gt contains z∗, it is more reasonable to
guarantee that

P (E [1[Gt ̸= GT ] ≤ δ]) ≥ 1− ϵ. (2)

Due to the sequential nature of generation, Gt is always a
(not necessarily strict) subset of GT .

We now describe how we calibrate the decision rule for
terminating language model generation (Section 3.1), and
then introduces three strategies for practically estimating
the quantities described by Equations 1 and 2 (Section 3.2).

3.1. Calibrating the stopping rule

Suppose we have a calibration dataset Dcal, which contains
exchangeable points {(xi, yi)}ni=1. Given a new example
x, let yt denote the language model’s thoughts after t sam-
pling steps, and let yT denote the maximum set of thoughts.
Our goal is to find the smallest t that fulfills Equations 1 or
2, based on the distribution of Dcal. During the sampling
process, however, we do not know z∗ or GT , so we must es-
timate the quantities inside the expectation using a surrogate
function f . Here, Dcal serves to calibrate f such that

P (E [R(yt) ≤ δ | Dcal]) ≥ 1− ϵ (3)

where R is a bounded risk function associated with f . For
example, f may be a linear probe on the hidden representa-
tions of thought steps y(i), and its output may be a binary
prediction. A potential decision rule could take the form of
a threshold λ, where if f(y(t)) ≥ λ, we terminate thinking.
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Input x 
Given a rational number, write it as a fraction in lowest 
terms and calculate the product of the resulting 
numerator and denominator. For how many rational 
numbers between 0 and 1 will 20! be the result?

Thoughts y 

First, a rational number between 0 and 1 can be 
written as a fraction a / b where 0 < a < b and a and b 
are coprime positive integers.

Reasoning step y(1)

The number with a < b is half of the total pairs, so 
256/2 =128. Hence 128 such numbers. Therefore, The 
answer is 128, corresponding to 128.

Reasoning step y(T)

…

Output z
The prime factors of 20! are 2, 3, 5, 7, 11, 13, 17, and 19. These 
are 8 distinct primes. For ab = 20! and gcd(a, b) = 1, each 
prime factor of 20! must be entirely to either a or b. This 
results in 2^8 = 256 coprime pairs (a, b). Each pair (a, b) 
and (b, a) are distinct. To find pairs where a < b, we divide 
the total number of pairs by 2s. The number of coprime 
pairs (a, b) with a < b is 256/2 = 128.

x

y(1)

y(2)

Reasoning tree GT where T=4

a and b are coprime

20! has 8 distinct 
prime factors.

2^8 = 256 y(4)

x

y(1)

y(2)

y(t)

…
y(3)

(A) Reasoning language models scale at test 
time through longer chains of thought, at 
significant compute cost.

(B) Terminating too early hurts model 
performance due to under exploration.

20! is a fixed 
number, but 
how is a 
related to b?

The answer is 256.

Potential reasoning trajectories:
z1 = [y(1), y(2), y(3)]
z2 = [y(1), y(2), y(4)]

<think>

</think>

Thoughts
y = [y(1), y(2), y(3), y(4)]

y(3)

y(t-1)

When is E(risk of stopping now) < ẟ)?

256 / 2 = 128

P(stop at t) = 0.8

2^8 = 256

P(stop at t-1) = 0.4 Wait…

P(stop at t+1) = 0.85

Yes, 128.

P(stop at T) = 0.9

(C) Our goal is to confidently decide when 
yt will be consistent with yT , based on when 
the reasoning graph stops changing. 

…

20! has 8 
distinct …

P(stop at 2) = 0.2

Reasoning tree GT

(Up to max budget)

Figure 1: Overview of the problem and our goal. Illustrated example based on s1K-1.1 (Muennighoff et al., 2025).

Similar to Schuster et al. (2022) and Quach et al. (2024), we
follow the Learn then Test framework to select a valid set of
λs that provide our desired guarantees (Angelopoulos et al.,
2021). On a high level, hyperparameter selection is viewed
as a multiple hypothesis testing problem. Let Λ be a finite
set of configurations, where each λj ∈ Λ is associated with
the null hypothesis,

Hj : E[R(yt) > δ]. (4)

The set of valid Λvalid ⊆ Λ is the set of λj for which we fail
to reject Hj . In particular, selecting the earliest stopping
time is equivalent to identifying the smallest λ ∈ Λvalid.
Theorem 3.4 (Adapted from theorem 1 in (Angelopoulos
et al., 2021)). Suppose pj is super-uniform under Hj for
all j. Let A be a family-wise error rate (FWER) controlling
algorithm at level ϵ. Then Λvalid = A(p1, . . . , pm) satisfies
Equation 3.

Theorem 3.4 specifies that any FWER-controlling algorithm
A can be used with an appropriate p-value to identify Λvalid.
While Angelopoulos et al. (2021) proposes several algo-
rithms to search over Λ, we follow the fixed sequence test-
ing method, since in principle, our risks are expected to be
monotonic (Gt ⊆ GT ).

Specifically, let Λ = {λ1, . . . , λm} be a descending grid
of parameters. Intuitively, larger λ correspond to more
permissive thresholds, e.g. allowing a language model to
generate for longer.

1. For each j, we compute a valid p-value pj , e.g. the

binomial tail bound p-value, following (Quach et al.,
2024):

pBT
λ := P(Binom(n, ϵ) ≤ nR̂n(λ)). (5)

2. If pj ≤ ϵ, we reject Hj and continue. Otherwise, we
return λj−1 as the smallest valid threshold for error
rate ϵ.

This process yields the binarization threshold for f , where
we stop generating when f(yt) ≥ λj−1.

3.2. Estimating empirical risk

On a high level, the surrogate function f should reflect the
consistency of yt with expected future generations. Ideally,
we would be able to access the graphical structure of Gt,
as any repetitions or redundant walks in yt would be im-
mediately evident. However, since autoregressive language
models generate left-to-right, without explicitly conforming
to any higher-level structure, we cannot operate directly over
G. Instead, we introduce three approaches for designing f
in practice.

We first briefly consider the simple case suggested by Equa-
tion 1: if we terminate thinking now, is the language model
able to answer correctly? That is, we could define

fcorrect(yt) := P(LLM is correct based on yt) (6)
Rcorrect(yt) := 1{LLM is correct} · (1− fcorrect(yt))

+ 1{LLM is wrong} · fcorrect(yt). (7)
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However, there are several drawbacks of this implementa-
tion. By construction, the calibration dataset only contain
questions that can eventually be answered, which is not true
in general. Though the space of graphs is countable, it is
unlikely that a language model can efficiently explore the
entire space. In other words, the language model may re-
alistically never answer correctly. Thus, setting λ = 1 is
not guaranteed to be risk controlling. With this definition
of Rcorrect(y), calibrating based on correctness also requires
supervised labels. While this is not an issue on standard
benchmarks, it is harder to obtain labels (user feedback) in
practice.

To address these challenges, we introduce two additional
strategies for estimating graph consistency. First, a language
model’s final attempt z can be viewed as a distillation of its
overall reasoning structure. Thus, we compare the language
model’s attempt zt after t steps, to the eventual attempt zT
at the maximum reasoning budget. This yields

fconsistent(yt) := P(zt is the same as zT ) (8)
Rconsistent(yt) := 1{consistent} · (1− fconsistent(yt))

+ 1{inconsistent} · fconsistent(yt) (9)

These values can be determined even for intractable prob-
lems, as long as the extended reasoning produces no new
insights, and does not require labels of correctness.

Finally, any particular z only represents a single walk
through G. Due to stochasticity, two differing attempts
could be sampled from the same graph, which is no longer
changing. Towards this end, we observed that language
models often reiterate redundant information, after having
reached the correct answer or the extent of its abilities. Prob-
ing for novelty should suffice to capture this phenomena. In
practice, however, we found that the following formulation
was easier for our verifier to implement, as checking for
novelty involves long context reasoning over all previous
thoughts, which can be challenging (Wang et al., 2024a).

fnovel leaf(yt) := P(y(t)is leaf) · (1− P(y(t)is novel)) (10)
Rnovel leaf(yt) := 1{LLM inconsistent} · fnovel leaf(yt)

+ 1{LLM consistent} · (1− fnovel leaf(yt)). (11)

We reuse the labels for consistency due to ease of verifica-
tion compared to novelty.

3.3. Implementation details

To separate a reasoning trajectory y into individual steps
{y(i)}, we use sections delimited by \n\n, which also
contain either wait or but. We observed that individual
tokens representations can vary significantly. Thus, each
step uses the mean last-layer representation of its tokens,
followed by dimensionality reduction via PCA to d = 256.

To estimate each of quantities in Equations (6) to (11), we
train linear probes on these step-level representations. The
final probabilities are averaged over a window of 10 steps
for smoothness, before calibration. For evaluation, we use
a grid of ϵ ranging from 0.05 to 0.5, with precise thresh-
olds selected to roughly match the token range of baselines.
During development, we experimented with more complex
architectures, e.g. Transformer to predict leaves as a se-
quence labeling task (Appendix B.1). However, to avoid
overfitting on our limited training set, we chose to focus on
simple and efficient linear probes. Concurrent work (Zhang
et al., 2025) also finds that model confidence can often be
extracted linearly. In our experiments, we use three rea-
soning models: DeepSeek-R1 distilled Qwen 2.5 32B and
Llama 3.3 70B (Guo et al., 2025a; Grattafiori et al., 2024;
Yang et al., 2024), and QwQ 32B (Team, 2025).

The ground truth labels for these probes are obtained by
prompting a separate language model (Qwen 3 32B). Cor-
rect: We truncate thinking trajectories to desired lengths,
append the <\think> token, and prompt the language
model for the final answer, which is compared to the ground
truth (Muennighoff et al., 2025). Consistent: The same out-
puts can be used to check whether Gt is consistent with GT ,
by comparing intermediate attempts zt to maximum budget
attempt zT . Leaf: We annotate whether each step y(i) is a
leaf in G by asking a separate language model to identify
whether it makes an attempt to answer the original question
x, regardless of correctness. Novel: We provide a separate
language model with all previous thoughts y(1) . . . y(i−1)

and ask whether the new step y(i) provides additional infor-
mation. All prompts can be found in Appendix A and were
run on 4 A6000 GPUs using vLLM (Kwon et al., 2023) and
lmdeploy (Contributors, 2023).

We evaluate the correctness of all final attempts using the
GPT 4.1 API, between April 15, 2025 and May 15, 2025.
For datasets that have no ambiguity (multiple choice, nu-
meric answers), we trimmed the final attempts to 200 charac-
ters, to prevent the LLM from “cheating” by using additional
thinking budget after the </think> token.

4. Experiments
4.1. Settings

Datasets. Our experiments focus on efficient language
model reasoning across tasks which vary in content, for-
mat, and difficulty. In particular, we leverage the following
datasets.

s1K-1.1 (Muennighoff et al., 2025) is a curated training set
for distilling reasoning abilities through data. This dataset
contains 1000 difficult math and science questions, along
with thought trajectories generated by DeepSeek-R1 (Guo
et al., 2025a). As a proof of concept, we split the s1K-
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Figure 2: On in-distribution data (held-out test split on s1K), variants of thought calibration achieve up to a 60% reduction
in thinking tokens while maintaining full performance. Top right point: Complete DeepSeek-R1 thought trajectory
from (Muennighoff et al., 2025). Crop: Fix thinking budget at 512, 1024, 2048, 4096, and 8192 tokens. Supervised: exit
based on predicted likelihood of correctness. Consistent, and Leaf Novelty: exit based on predicted consistency of answer or
graph. Supervised is over confident, since the test set contains unsolvable problems.
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Figure 3: We applied thought calibration probes for DeepSeek-distilled Qwen-2.5 32B on standard math and science
benchmarks, which may be out-of-distribution compared to the training and calibration sets, drawn from s1K. We achieve up
to a 20% reduction in thinking tokens. While Consistent generally remains below the predetermined error rates, Supervised
is overconfident (as expected).

1.1 dataset into training, testing, and calibration (500, 50,
450, in dataset order). We use the training set to develop
our probes, which are calibrated on the calibration set and
evaluated on the testing set.

We also consider three common reasoning benchmarks
solely for testing. AIME-24 is the 2024 iteration of the
American Invitational Mathematics Examination.1 This
dataset contains math questions whose answers take on in-
tegers between 0 and 999. GPQA Diamond (Rein et al.,
2024) is a PhD-level math and science reasoning benchmark
with multiple choice answers. MATH 500 (Hendrycks
et al., 2021; Lightman et al., 2023) is a curated subset of
the MATH dataset, which competition math questions of
various levels. Note that while s1K-1.1 contains examples
of both mathematical and scientific questions, the format
and subsequent reasoning patterns may vary. For example,
while s1K-1.1 is open-ended, the various choices in GPQA
must be compared. Thus, we view these three datasets as
“out of distribution” from s1K-1.1, which is itself diverse.

Models. We evaluate the three variants of thought cali-
bration: the supervised probe for correctness (Equation 6,
Supervised); the consistency probe (Equation 8, Consis-

1https://maa.org/maa-invitational-competitions/

tent); and the lack of novelty probe (Equation 10, Novel
Leaf). To contextualize our experimental results, we also
consider a naive budget-forcing baseline (Crop). Specif-
ically, we set a fixed token budget for thinking (ranging
from 1024 to the full trajectory). Once the language model
reaches this budget, thinking is immediately terminated and
the model is prompted for a final answer. This reflects both
the practical use case of setting a limit on maximum gen-
eration tokens, and the strategy employed by Muennighoff
et al. (2025). Finally, concurrent work has also observed
that probes for correctness (Zhang et al., 2025) are effective
for early exiting. While this design may not be valid for risk
control in practice (LLMs are not guaranteed to ever answer
correctly), the Supervised baseline is similar to this work.

4.2. In-distribution setting

We start with the case where we have access to samples x
that are drawn from the same distribution as our eventual
application. For example, a model provider may possess
typical examples of user data. Our goals are to lower the
overall test-time budget while maintaining accuracy, and to
control any necessary drops in performance based on our
predetermined error levels. In Figure 2, we observe that
these probes are able to reduce the number of thinking
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tokens by over half for all three models, with minimal
impact to overall performance. With respect to calibration,
the Supervised probe is quite poorly calibrated, especially
at lower values of ϵ. All other probes are well calibrated
at ϵ < 0.1, though variance is higher outside of this range.
This may be due to distribution shift, resulting from the
small test split (to maximize training and calibration data
for subsequent evaluations).

4.3. Generalization setting

Next, we consider the case in which the data we have is re-
lated, but not drawn from the same distribution as our even-
tual application. To emulate this setting, we apply the super-
vised and consistent Qwen 32B probes, developed on the
s1K-1.1 dataset, to common reasoning benchmarks (Rein
et al., 2024; Lightman et al., 2023). Overall, we are able to
improve (AIME 24, GPQA) or match (MATH 500) the effi-
ciency of the budget forcing baseline – even achieving slight
gains in performance on AIME 24, perhaps by trimming
distracting thoughts (Figure 4). Notably, even though the
Supervised probe had access to more information (ground
truth answers), the Consistent probe consistently gener-
alizes better, both in terms of efficiency and calibration.
Here, the Consistent probe fulfills the theoretical guarantees,
while the Supervised probe remains over-confident.

4.4. Additional analysis

Figure 4 illustrates that thought calibration probes prioritizes
the termination of problems which cannot be solved, even
at full budget – perhaps hinting that the language model
may have been stuck in a cycle of reasoning, without novel
progress. Compared to the naive cropping strategy, thought
calibration’s input-dependent decision also demonstrate sig-
nificant variance in the amount of tokens across different
problems.

We also examine a specific instance from our s1K-1.1 testing
split in Figure 5 (s1K is a distillation dataset, so this dia-
gram does not leak real test examples). The language model
reaches the correct answer after 38 steps (out of 48 steps).
As the model backtracks, the predicted consistency (with
the expected final answer) drops; and as the model returns to
the answer, confidence increases, higher than before. This
reaffirms that self-consistency is indeed a powerful indica-
tion of correctness, both distilled into a predictive model,
and over the course of sampling.

5. Limitations
There are several limitations of our work. Since our method
is built atop the Learn then Test framework (Angelopou-
los et al., 2021), our theoretical guarantees are only valid
over draws of the calibration set. In practice, this means

that the calibration data must be sufficiently similar to the
actual application. Furthermore, due to our small training
and calibration datasets, we implement our framework pri-
marily through linear probes. In Appendix B.1, we found
that more complex architectures may lead to slightly bet-
ter performance in some cases, and the gap is expected to
be larger if more training data can be gathered. We leave
further investigations regarding the probe architecture to
future work. Finally, this paper only addresses the problem
of exiting early from reasoning. The broader question of
how to calibrate the steering of reasoning models remains
unanswered, and is an interesting area for further research.
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Figure 4: Proportion of prompt tokens removed, for different thresholds, stratified by full thought length and whether
the original model was able to solve the problem. Top: Naive max token thresholding. Bottom: Consistency calibration,
DeepSeek-R1 distilled Qwen 32B, over GPQA Diamond. Cropping reduces token lengths uniformly, regardless of the input
characteristics. Thought calibration has a preference for first trimming longer thoughts and cases where the language model
tries but fails to make progress.

Okay, so I need to solve this problem: We have an increasing sequence: 3, 15, 24, 48, ... which
are positive multiples of 3 that are one less than a perfect square. I need to find the remainder
when the 1994th term of this sequence is divided by 1000.

Step 1 (0.104)

Hmm. Let me parse this. The terms are multiples of 3, and each term is one less than a perfect
square [...] n must be either 1 or 2 mod 3. That means terms in the sequence correspond to n
where n ≡ 1 or 2 mod 3.

Step 2 (0.067)

But computing 29922 mod 1000 is equivalent to [...] but since
2992 = 2000 + 992 = 2000 + 992, but modulo 1000, 2992 ≡ 992 mod 1000, so 9922 − 1
mod 1000.

Step 37 (0.342)

Wait, first compute 9922 mod 1000, then subtract 1, then take mod 1000 again. [...]
subtract 1: 64− 1 = 63. Therefore, 9922− 1 mod 1000 = 63. Therefore the remainder is 63.
So answer is 63.

Step 38 (0.717)

But let me confirm because that seems straightforward. Wait: [...] Step 39 (0.646)

Wait: n(k) = (3k)/2 + 1 for even k. For even k = 1994, [...] Then term = 29922− 1. Then
mod 1000 is (29922− 1) mod 1000.

Step 40 (0.479)

But 2992 mod 1000 = 992, so 2992 ≡ −8 mod 1000. Then (−8)2 = 64, then
64− 1 = 63. Therefore mod 1000: 63. [...] Then (−8)2 = 64, then 64− 1 = 63. Therefore
mod 1000: 63. Hence remainder is 63.

Step 41 (0.985)

Figure 5: DeepSeek-R1 distilled Llama 70B Consistency probe on s1K-1.1 example from our test split, where color intensity
is proportional to P(consistent). The language model first reaches the correct answer in Step 38, backtracks with lower
confidence, and returns to the answer in Step 41.
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A. Prompts
The following prompt was used to force the model (DeepSeek-R1 distilled Qwen 32B and Llama 70B, QwQ 32B) to produce
an answer after a fixed number of thinking steps. Following the recommendation of Guo et al. (2025a) and Team (2025), we
do not include a system prompt. We apply the chat template to user prompt before concatenating the “in-progress” thoughts.
Adapted from (Muennighoff et al., 2025).
<bos><User>
{question}
Please reason step by step, and put your final answer within \\boxed{{}}.
<Assistant>
<think>
{thoughts}
</think>
Final Answer:

The following prompt was used to obtain labels for P(correct) (Equation 6) using Qwen 3 32B. This prompt was also used
to evaluate answers using GPT 4.1. Adapted from (Muennighoff et al., 2025).
You are an AI assistant for grading a science problem. The user will provide you with the question itself, the correct answer, and the student’s
attempt. Your job is to judge whether the attempt is correct by comparing it with the correct answer. If the correct answer is a number or choice,
there should be no ambiguity, and you should directly compare the answer and the final result. If the attempt is incomplete, you should mark it as
wrong. If the correct answer involves going through the entire reasoning process, you should judge the result based on whether the reasoning process
is correct, compared to correct answer.
Do NOT try to solve the problem yourself. Only grade the attempt based on the correct answer.
The user will provide the attempt and the correct answer in the following format:
# Problem
{problem}
## Correct answer
{solution}
## Student attempt
{attempt}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(consistent) (Equation 8) using Qwen 3 32B.

You are an AI assistant for grading a science problem. The user will provide you with the question itself and two student attempts. Your job is to
judge whether the two students arrive at the same answer. If question asks for a single numerical answer, there should be no ambiguity, and you
should directly compare the two answers. If the question asks for multiple parts, the two attempts are identical if only if all of the parts arrive at
the same conclusion.
Do NOT try to solve the problem yourself. Only grade whether the two attempts are the same.
The user will provide the problem and two attempts in the following format:
# Problem
{problem}
## Attempt 1
{attempt1}
## Attempt 2
{attempt2}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(leaf) (Equation 10) using Qwen 3 32B.

You are an AI assistant for parsing LLM outputs. The user will provide you with the question and an intermediate reasoning step. Your job is to
judge whether the given step contains an attempt at a final answer.
Do NOT attempt to solve the problem yourself. It does not matter if the answer is correct. Only comment on whether an attempt has been made.
The user will provide the problem and reasoning steps in the following format:
# Problem
{problem}
# Reasoning step
{reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" or "No" indicating whether or the given step makes an attempt at
providing the final answer.

The following prompt was used to obtain labels for P(novel) (Equation 10) using Qwen 3 32B.
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You are an AI assistant for assessing the quality of logical reasoning. The user will provide you with the question and an incomplete attempt,
consisting of a series of reasoning steps. Your job is to judge whether current step appears to provide additional information, compared to the
previous steps. If the current step is correct and novel, it is useful. If the current step is wrong or redundant, then it is not useful.
Do NOT try to solve the problem yourself. It does not matter if the attempt is not complete. Only comment on whether the current step is useful.
The user will provide the problem and reasoning steps in the following format:
# Problem
{problem}
# Reasoning
## step 1
{reasoning step 1}
## step 2
{reasoning step 2}
...
## step k
{reasoning step k}
...
## current step
{current reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" if the current step provides new information or "No" otherwise (without
quotes).

B. Implementation details
B.1. Design and implementation of model probes

We tried several architectures, before deciding upon linear probes for simplicity and to avoid overfitting. The differences
in performance are not always consistent and the generalization gap is quite large (Table 1). Since our main focus is
on calibration, and it requires significant compute to produce and evaluate scaling curves, we consider more exhaustive
exploration of alternate architectures as future work.

MLP The input is a single representation h(t) corresponding to single reasoning step y(t), and the output is a binary label
∈ {0, 1}. We train until AUC fails to improve for 10 epochs on 10% of the training set (randomly sampled). We report the
best calibration set performance of the following hyperparameters. We use the sklearn defaults otherwise (Pedregosa et al.,
2011).

• Layers: 1, 2

• FFN dimension: 32, 64, 128

Transformer The input is a sequence of representations, h(1) . . . h(t) corresponding to thoughts yt = y(1) . . . y(t). The
output is either a binary label ∈ {0, 1} for P(correct) and P(consistent), or a sequence of labels ∈ {0, 1}t for P(novel) and
P(leaf). For the former, we treat the embeddings as a set (i.e. if any representation is sufficient to answer correctly, or be
consistent). For the latter, we apply a left-to-right causal attention mask during training, and we use sinusoidal positional
encodings to encode the index of each reasoning step. We report the best calibration set performance of the following
hyperparameters. In contrast to the linear and MLP models, we find that the Transformer performs best if we do not apply
PCA and instead operate over the original model dimension.

• Layers: 1, 2

• Model dimension: 16, 32, 64

• FFN dimension: 64, 128

• Number of heads: 4, 8

• Epochs: 5, 10
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Table 1: Probe architecture performance on s1K-1.1 train and calibration splits. Metric: Binary AUROC.

Linear MLP Transformer

Model Quantity Train Cal Train Cal Train Cal

DeepSeek-R1
distilled Qwen
2.5 32B

P(correct) 0.936 0.788 0.990 0.779 0.994 0.760
P(consistent) 0.919 0.788 0.994 0.747 0.991 0.773
P(leaf) 0.868 0.839 0.936 0.815 0.933 0.852
P(novel) 0.874 0.686 0.980 0.692 0.896 0.774

DeepSeek-R1
distilled Llama
3.3 70B

P(correct) 0.937 0.765 0.987 0.746 0.991 0.803
P(consistent) 0.921 0.745 0.994 0.743 0.993 0.748
P(leaf) 0.864 0.819 0.970 0.802 0.923 0.848
P(novel) 0.872 0.686 0.981 0.702 0.915 0.774

QwQ 32B

P(correct) 0.943 0.848 0.986 0.838 0.948 0.848
P(consistent) 0.950 0.699 0.988 0.704 0.939 0.756
P(leaf) 0.869 0.840 0.942 0.822 0.913 0.857
P(novel) 0.876 0.677 0.952 0.690 0.895 0.792

B.2. LLM experiments

We ran DeepSeek-R1 distilled Qwen 2.5 32B and Llama 70B, and QwQ 32B using lmdeploy (Contributors, 2023) with
recommended defaults for each model. lmdeploy natively supports the saving of last layer representations, so it was used for
almost all experiments. We ran Qwen 3 32B using vLLM (Kwon et al., 2023) due to early support. Due to computational
constraints, we report the mean over a single run.

We downloaded all model weights from transformers between April 1, 2025 and May 1, 2025.

C. Additional analysis
Figure 6 illustrates the early exit probabilities for each of the three probes. The supervised (“correct”) probe reaches high
exit probabilities the fastest, but it is also the most overconfident (Figure 2D).
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Figure 6: Likelihoods of thought calibration probes over s1K-1.1 test set (10 examples). The “No Leaf” variant is the least
monotonic. This could potentially indicate that after reaching the answer, the language model explores new knowledge that
is irrelevant to the task.
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