
Published as a conference paper at ICLR 2023

FUNCTION-CONSISTENT FEATURE DISTILLATION

Dongyang Liu1,2, Meina Kan1,2, Shiguang Shan1,2,3, Xilin CHEN1,2

1 Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS
2 University of Chinese Academy of Sciences 3 Peng Cheng Laboratory
{liudongyang21s, kanmeina, sgshan, xlchen}@ict.ac.cn

ABSTRACT

Feature distillation makes the student mimic the intermediate features of the
teacher. Nearly all existing feature-distillation methods use L2 distance or its
slight variants as the distance metric between teacher and student features. How-
ever, while L2 distance is isotropic w.r.t. all dimensions, the neural network’s op-
eration on different dimensions is usually anisotropic, i.e., perturbations with the
same 2-norm but in different dimensions of intermediate features lead to changes
in the final output with largely different magnitude. Considering this, we argue
that the similarity between teacher and student features should not be measured
merely based on their appearance (i.e., L2 distance), but should, more impor-
tantly, be measured by their difference in function, namely how later layers of the
network will read, decode, and process them. Therefore, we propose Function-
Consistent Feature Distillation (FCFD), which explicitly optimizes the functional
similarity between teacher and student features. The core idea of FCFD is to
make teacher and student features not only numerically similar, but more impor-
tantly produce similar outputs when fed to the later part of the same network.
With FCFD, the student mimics the teacher more faithfully and learns more from
the teacher. Extensive experiments on image classification and object detection
demonstrate the superiority of FCFD to existing methods. Furthermore, we can
combine FCFD with many existing methods to obtain even higher accuracy. Our
codes are available at https://github.com/LiuDongyang6/FCFD.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated great power on a variety of tasks. However,
the high performance of DNN models is often accompanied by large storage and computational
costs, which barricade their deployment on edge devices. A common solution to this problem is
Knowledge Distillation (KD), whose central idea is to transfer the knowledge from a strong teacher
model to a compact student model, in hopes that the additional guidance could raise the performance
of the student (Gou et al., 2021; Wang & Yoon, 2021). According to the type of carrier for knowledge
transfer, existing KD methods can be roughly divided into the following two categories:

1.1 KNOWLEDGE DISTILLATION BASED ON FINAL OUTPUT

Hinton et al. (2015) first clarifies the concept of knowledge distillation. In their method, softened
probability distribution output by the teacher is used as the guidance to the student. Following
works (Ding et al., 2019; Wen et al., 2019) step further to explore the trade-off between soft logits
and hard task label. Zhao et al. (2022) propose to decouple target-class and non-target-class knowl-
edge transfer, and Chen et al. (2022) make the student to reuse the teacher’s classifier. Park et al.
(2019) claims that the relationship among representations of different samples implies important in-
formation, and they used this relationship as the knowledge carrier. Recently, some works introduce
contrastive learning to knowledge distillation. Specifically, Tian et al. (2020) propose to identify
if a pair of teacher and student representations are congruent (same input provided to teacher and
student) or not, and SSKD (Xu et al., 2020) introduce an additional self-supervision task to the
training process. Whereas all the aforementioned methods employ a fixed teacher model during
distillation, Zhang et al. (2018b) propose online knowledge distillation, where both the large and the
small models are randomly initialized and learn mutually from each other during training.

1

https://github.com/LiuDongyang6/FCFD

Published as a conference paper at ICLR 2023

1.2 KNOWLEDGE DISTILLATION BASED ON INTERMEDIATE FEATURES

Comparing with final output, intermediate features contain richer information, and extensive meth-
ods try to use them for distillation. FitNet (Romero et al., 2015) pioneers this line of works, where
at certain positions, intermediate features of the student are transformed to mimic corresponding
teacher features w.r.t. L2 distance. FSP (Yim et al., 2017) and ICKD (Liu et al., 2021) utilize the
Gramian matrix to transfer knowledge, and AT (Zagoruyko & Komodakis, 2017) uses the attention
map. Generally, one student feature only learns from one teacher feature. However, some works
have extended this paradigm: Review (Chen et al., 2021b) makes a student layer not only learn from
the corresponding teacher layer, but also from teacher layers prior to that; AFD (Ji et al., 2021) and
SemCKD (Chen et al., 2021a) make a student layer to learn from all candidate teacher layers, with
attention mechanism proposed to allocate weight to each pair of features. Considering that negative
values are filtered out by ReLU activation, Heo et al. (2019) propose the marginal ReLU activation
and the partial L2 loss function to suppress the transfer of useless information.

1.3 OUR MOTIVATION

Extensive methods have been proposed to enhance feature distillation, from perspectives like distil-
lation position (Chen et al., 2021b; Ji et al., 2021; Chen et al., 2021a), feature transformation (Yue
et al., 2020; Zhang et al., 2020; Lin et al., 2022), etc. However, all these methods use L2 distance or
its slight variants (Heo et al., 2019) as the distance function to optimize. In this paper, we argue that
the simple L2 distance (as well as L1, smooth L1, etc.) has significant weakness that impedes itself
from being an ideal feature distance metric: it measures features’ similarity independently to the
context. In other words, L2 distance merely measures the numerical distance between two features,
which can be considered as the appearance of the feature. This kind of appearance-based distance
treats all dimensions in an isotropic manner, without considering feature similarity in function. The
function of intermediate features is to serve as the input to the network’s later part. Features playing
similar functions express similar semantics and lead to similar results. Since neural network’s op-
eration on different dimensions are usually anisotropic, changing the feature by the same distance
along different dimensions can lead to changes in the final output with completely different mag-
nitude. As a result, with only L2-based feature matching, student features with a large variety of
functional differences to teacher feature are considered equally-good imitations, which inevitably
impedes knowledge transfer. On the other hand, suppose that among these imitations, an additional
function-based supervision could be provided to identify the better ones that lead to less change
in the final output, by enforcing the student to prioritize them, the semantic consistency between
teacher and student features can be better guaranteed.

Figure 1: A toy example illustrating the relationship
between appearance and function. Points on the red
ring in (b) have the same L2 distance to target (4,4), but
they cause largely different deviations in final output.

As a toy example, considering a network
that computes (5x2 − 1)4 + 5(2x + 2)2.
Assume that the network can be divided
into 2 cascaded modules: the first calcu-
lates (m1,m2) = (5x2 − 1, 2x + 2), and
the second calculates out = m1

4 + 5m2
2

(Fig. 1(a)). With x = 1 as input, we have
(m1,m2) = (4, 4) and out = 336. Now
let a student to mimic the intermediate fea-
ture, i.e., (m1,m2). Considering two pos-
sible solutions: (3, 4) and (4, 3), while L2
distance tells they are equally good, the
function perspective points out that (4, 3)
is clearly better because it leads to less de-
viation in final output. Comparing with
m2, changes on m1 has stronger impact on the final output, which means task-relevant informa-
tion changes more rapidly along m1. The student should thus pay more attention to m1 for learning
more task-relevant information. Unfortunately, with only L2-based feature distillation, no such im-
petus is available to push the student to prioritize (4, 3) to (3, 4). As Fig. 1(b) shows, all points on
the red ring have the same L2 distance to the mimicking target, while their function varies greatly.
We reasonably speculate that if an extra matching mechanism, which drives the student to the solu-
tion with highest function consistency, could be provided, knowledge transfer will be more effective

2

Published as a conference paper at ICLR 2023

and student could benefit more from distillation. The aforementioned phenomenon also exists in
practical tasks and networks: with a ResNet32x4 model pre-trained on CIFAR100, after randomly
selecting 512 directions and move intermediate features along these direction by certain L2 distance,
the KL-Divergence between the final output before and after feature manipulation averagely ranges
from 0.59 to 1.29. When always selecting directions causing the greatest difference in output, the
accuracy on the whole validation set drops by 24.42%, while it only drops by 10.69% when al-
ways selecting the directions causing the slightest difference. The results inspire us that even when
the student has well mimicked the teacher’s features w.r.t. L2 distance, there is still large room for
further improvement if such guidance that differentiates functional differences could be provided.

In this paper, we propose Function-Consistent Feature Distillation (FCFD), which explicitly opti-
mizes the functional similarity between intermediate features from teacher and student. We clarify
that the similarity between features is not only determined by the features themselves, but more
importantly defined by how the later layers will read, decode, and process them. Therefore, we
introduce a novel function-based feature-matching mechanism, which takes the information about
later network layers into consideration. The proposed mechanism could tell the good and bad from
features that are considered equally good by L2 distance, thus overcoming the weakness of existing
feature distillation methods. In this way, FCFD enables the student to mimic the teacher more faith-
fully and learn more from the teacher. Overall, our main contributions are summarized as below:

1. We propose a novel knowledge distillation mechanism named FCFD, which emphasizes the
matching between teacher and student intermediate features w.r.t. function.

2. Extensive experiments on image classification and object detection are conducted to investigate
the effectiveness and generalization of FCFD. The results show that FCFD significantly outper-
forms state-of-the-art knowledge distillation methods.

3. FCFD is compatible with many advanced knowledge distillation techniques with orthogonal con-
tributions. When combined with these methods, FCFD can achieve even better performance.

2 METHOD

In this section, we start with a brief review of existing knowledge distillation methods in Sec. 2.1
for easier understanding of FCFD. In Sec. 2.2, we specify the proposed modules that align teacher
and student features w.r.t. function. Finally, we introduce the complete training process in Sec. 2.3.

2.1 PRELIMINARIES

Original KD: Hinton et al. (2015) first clarified the concept of knowledge distillation (KD). In
their work, probability distribution softened by a temperature parameter τ is used to transfer the
knowledge from teacher to student:

p(x) = σ (z(x)/τ) , (1)

where x is input image, τ represents temperature used to soften the output distributions, σ denotes
the softmax function, and z is logit scores output by the penultimate layer of a neural network.
KL-Divergence is then used to make the student learn from the teacher:

Lkd = τ2KL
(
pt(x) || ps(x)

)
, (2)

where t and s denote teacher and student, respectively.

Feature Distillation: Instead of using final probability distributions, feature distillation utilizes the
knowledge in the intermediate features to guide the student. Compared with probability distribution,
the intermediate feature has much larger volume, and theoretically it could provide more supervi-
sion. Considering a pair of teacher and student models, each of which is divided into N sequential
modules (stages) and a final linear classifier. The forward process of the networks is as follows:

pt(x) = Ct ◦MN
t ◦ · · · ◦M2

t ◦M1
t (x); ps(x) = Cs ◦MN

s ◦ · · · ◦M2
s ◦M1

s (x). (3)

M
(·)
t and M

(·)
s denote the modules in teacher and student networks, Ct and Cs are their respective

classifiers. Now consider the intermediate features:

F k
t = Mk

t ◦ · · · ◦M2
t ◦M1

t (x); F k
s = Mk

s ◦ · · · ◦M2
s ◦M1

s (x). (4)

3

Published as a conference paper at ICLR 2023

With a pre-defined list of distillation positions K ⊆ {1, 2, · · · , N}, at each position k ∈ K, the
teacher feature F k

t (hint layer) and the student feature F k
s (guided layer) are matched for distil-

lation. With a bridge module Bk
st, which is a simple combination of one convolution and one

BatchNorm (Ioffe & Szegedy, 2015) layer, as student transformation to match the shape of F k
t ,

the simplest form of feature distillation can be achieved with the following appearance loss:

Lk
app = L2(F k

t , B
k
st(F

k
s)). (5)

2.2 FUNCTION-CONSISTENT FEATURE DISTILLATION

We propose FCFD, where both the numerical value of features and the information about later layers
are combined together for faithful feature mimicking. An illustration of FCFD is shown in Fig. 2.
Due to limited space, here we focus on the methodology on image classification. However, FCFD
is also applicable to object detection, and relevant introduction is deferred to Appendix D.

As analyzed before, the appearance perspective (represented by Lapp) only is not satisfactory for
feature matching. FCFD’s solution to this problem is to investigate the function perspective through
the lens of the network’s later part: we feed both the teacher and the student features to the later
part of the teacher/student network, and explicitly calculate the differences between consequent
results as the function distance between the features. As the later part of the network defines the
semantics of intermediate features, features making similar results after later network processing
express similar semantics and are by definition functionally consistent. Depending on whether using
the later part of the teacher or the student network as the lens, the proposed function-consistency-
matching mechanism could be divided into two parts:

Using teacher’s later part as the lens: given a matching position k, we hope that the transformed
student feature Bk

st(F
k
s) not only looks like F k

t (which is guaranteed by Eq. 5), but also plays similar
function to F k

t . Therefore, we feed both Bk
st(F

k
s) and F k

t to the later part of the teacher network,
and use the similarity in results to reflect feature’s similarity in function:

Lk
func =

N+1∑
l=k+1

dfd

(
M l

t ◦ · · · ◦Mk+1
t

(
F k
t

)
,M l

t ◦ · · · ◦Mk+1
t

(
Bk

st

(
F k
s

)))
. (6)

MN+1
t refers to Ct and MN+1

s refers to Cs. dfd is feature distance metric, which is set to KL-
Divergence when applied to probability distributions (l = N + 1), and set to L2 distance otherwise.
If teacher and student features are really semantically consistent, we would expect that after feeding
them both to the teacher’s later part, the output will be similar. Though L2 distance is used here, it
does not match F k

t and Bk
st(F

k
s) directly, but match them after processed by several later teacher

modules. As a result, while M l
t ◦ · · · ◦Mk+1

t (F k
t) and M l

t ◦ · · · ◦ Mk+1
t (Bk

st(F
k
s)) are matched

w.r.t. appearance in Eq. 6, their underlying effect is to match F k
t and Bk

st(F
k
s) w.r.t. function.

Using student’s later part as the lens: Now that we have used the later part of the teacher model
as the lens, it is natural to consider if the later part of student model can play similar role. We define
Bk

ts, which makes Bk
ts(F

k
t) of equal size to F k

s , and consider to pass Bk
ts(F

k
t) through the student’s

later modules. However, unlike the case for Lfunc where the teacher features are well-trained and
informative enough to guide the student, now the transformed teacher features pass through ran-
domly initialized bridge and student modules, so directly matching student features towards them is
not reasonable. We thus make a different choice: we pass both F k

s and Bk
ts(F

k
t) through the stu-

dent’s later modules completely (akin to the l = N + 1 case in Eq. 6) and obtain the corresponding
final outputs ps and pk

ts. We then match both of them towards pt, which is achieved through Lkd

for ps, and Lk
func′ for pk

ts:

Lk
func′ = KL

Ct ◦MN
t ◦ · · · ◦Mk+1

t (F k
t)︸ ︷︷ ︸

pt

||Cs ◦MN
s ◦ · · · ◦Mk+1

s ◦Bk
ts(F

k
t)︸ ︷︷ ︸

pk
ts

 . (7)

In this way, we encourage F k
s and Bk

ts(F
k
t) to be functionally consistent w.r.t. student’s later part.

Synergy between Appearance and Function Perspectives: Lfunc and Lfunc′ consider the func-
tion perspective for feature matching, which is complementary to the appearance perspective consid-
ered by Lapp: assuming appearance difference is small and constant, minimizing function distance

4

Published as a conference paper at ICLR 2023

ℒ𝑘𝑘𝑘𝑘

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓′2

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1

Path <k=1, 𝛿𝛿=1>

Path <k=2, 𝛿𝛿=0>

Random
Sampler

Path <k=1, 𝛿𝛿=1>

Path <k=2, 𝛿𝛿=0>

Teacher

Student

𝑀𝑀𝑡𝑡
1

𝑀𝑀𝑠𝑠
1

𝑀𝑀𝑡𝑡
2

𝑀𝑀𝑠𝑠
2

𝑀𝑀𝑡𝑡
3

𝑀𝑀𝑠𝑠
3

𝐹𝐹𝑡𝑡1

𝐹𝐹𝑠𝑠1

𝐹𝐹𝑡𝑡2

𝐹𝐹𝑠𝑠2

𝐹𝐹𝑡𝑡3

𝐹𝐹𝑠𝑠3

𝐶𝐶𝑡𝑡

𝐶𝐶𝑠𝑠

𝑝𝑝𝑡𝑡

𝑝𝑝𝑠𝑠

𝑝𝑝𝑡𝑡

𝑝𝑝𝑠𝑠𝑡𝑡1

𝑝𝑝𝑡𝑡𝑠𝑠2

ℒ𝑎𝑎𝑎𝑎𝑎𝑎1 ℒ𝑎𝑎𝑎𝑎𝑎𝑎2 ℒ𝑎𝑎𝑎𝑎𝑎𝑎3

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1

ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1

Figure 2: An overview of FCFD. Top: illustration of the traditional KD loss (Lkd) and appearance-
based feature matching loss (Lapp). Bottom: illustration of our proposed function matching losses
Lfunc and Lfunc′ . Note that the three L1

func terms in the figure sum up to complete L1
func. In each

iteration, we randomly sample two paths (shown with yellow and purple arrows). Together with the
pure teacher path (blue arrow) and pure student path (green arrow), data flow through totally four
paths, and the losses are appended whenever applicable. Bridge modules are omitted for simplicity.

makes the student to pay more attention to sensitive directions for more task-related information.
The mimicking then becomes more faithful, and the student becomes more likely to interpret rather
than blindly memorize. On the other hand, as the mapping from intermediate features to final out-
put could be many-to-one, minimizing appearance distance encourages the student features to be
located in the same local area as the teacher features. In this way, more information can be exploited
as guidance to the student. Ablation studies in Sec. 3.3 validates the aforementioned synergy.

2.3 FULL PIPELINE

Here we introduce the full pipeline of FCFD. See Fig. 2 for illustration. Before training, a list of
candidate matching positions K is defined. According to Sec. 2.2, the complete loss function is:

L = Lkd + Ltask +
∑
k∈K

(
Lk
app + Lk

func + Lk
func′). (8)

However, directly matching all these features causes great resource cost. Therefore, in practice, a
random sampling strategy is adopted for efficiency. Specifically, for any matching position k, each
of Lk

func and Lk
func′ involves an extra forward path. Suppose there are K elements in K, there are

thus 2K total paths. We use pair < k, δ > to denote a specific path, where δ = 1 if the path starts
from the student and turns to the teacher for Lk

func, and δ = 0 when the path starts from the teacher
and turns to the student for Lk

func′ . In each iteration, we sample a list of paths S. Only these chosen
paths will be propagated through, and the relevant losses will be computed:

L = Lkd + Ltask +
∑
k∈K

Lk
app +

∑
<k,δ>∈S

(
δLk

func + (1− δ)Lk
func′

)
. (9)

Each loss term is scaled by corresponding weight hyper-parameter (which is omitted in Eq. 9) before
summing up. In our default implementation, there are always 2 paths in S. Combining with the pure
teacher and student paths, in each iteration there are totally 4 paths involved. Note that some paths
would share common data flows, and in such cases we only need to calculate them once.

5

Published as a conference paper at ICLR 2023

AffineNormalize

Running Statistics

From
O

utput

Affine
Parameters

Shared

Select

𝐵𝐵𝑠𝑠𝑡𝑡2 𝑀𝑀𝑠𝑠
2 𝑀𝑀𝑠𝑠

1(𝑥𝑥)∘ ∘

𝑀𝑀𝑡𝑡
2 𝑀𝑀𝑡𝑡

1(𝑥𝑥)∘

Mean
Var.

Scale
Bias

𝑀𝑀𝑡𝑡
2 𝐵𝐵s𝑡𝑡1 𝑀𝑀s

1∘ ∘
From

Mean
Var.

𝑀𝑀𝑡𝑡
2 𝑀𝑀𝑡𝑡

1∘
From

Mean
Var.

𝐵𝐵𝑠𝑠𝑡𝑡2 𝑀𝑀𝑠𝑠
2 𝑀𝑀𝑠𝑠

1∘ ∘

Figure 3: An illustration of the operations within a
BatchNorm layer in M3

t . Running Statistics are ac-
cumulated separately w.r.t. different input paths, while
affine parameters are shared among all paths.

Note that some BatchNorm layers may re-
ceive inputs calculated through different
paths. For example, the BatchNorm lay-
ers in M3

t may receive inputs processed
by M2

t ◦ M1
t , M2

t ◦ B1
st ◦ M1

s , or B2
st ◦

M2
s ◦ M1

s , respectively. We empirically
find that since they have different distri-
butions, using the default BatchNorm be-
havior to accumulate their running statis-
tics together spoils the inference process.
Therefore, for BatchNorm layers, we ac-
cumulate running statistics separately for
input processed by different sets of mod-
ules. Meanwhile, the affine parameters are
shared among all paths (Fig. 3).

3 EXPERIMENT

In this section, we empirically validate the effectiveness of FCFD. In Sec. 3.1, we compare FCFD
with state-of-the-art methods on image classification and object detection. In Sec. 3.2, we com-
bine FCFD with advanced KD methods with orthogonal contributions to ours, and we show that in
this way, FCFD can achieve further improvement. Ablative experiments are conducted in Sec. 3.3
to dissect the effect of each role in our method. Finally, in Sec. 3.4, we experimentally demonstrate
that FCFD does improve teacher-student feature similarity from the function perspective. Details
about our implementation and experiment settings are provided in Appendix.

3.1 COMPARATIVE EXPERIMENTS

Image Classification on CIFAR100: We first compare FCFD with six existing methods on CI-
FAR100 (Krizhevsky et al., 2009). For methods distilling last layer’s output, we select KD (Hinton
et al., 2015), CRD (Tian et al., 2020), DKD (Zhao et al., 2022) for comparison; for intermediate
feature distillation, we compare with FitNet (Romero et al., 2015), VID (Ahn et al., 2019), and Re-
view (Chen et al., 2021b). Following CRD (Tian et al., 2020), we choose CIFAR-style ResNet (He
et al., 2016), Wide-ResNet (Zagoruyko & Komodakis, 2016), VGG (Simonyan & Zisserman, 2014),
MobileNetV2 (Sandler et al., 2018), ShuffleNetV1 (Zhang et al., 2018a), and ShuffleNetV2 (Ma
et al., 2018) as model architecture. Experiments are divided into two parts: in the first part, teacher
and student have architectures of the same style; in the second part, they have different architectures.

Results are shown in Tab. 1. For teacher and student with similar architecture, FCFD averagely
raises the student’s performance by 3.70% over non-distillation baseline, and performs significantly
better than vanilla KD, with an average improvement by 2.05%. Furthermore, FCFD outperforms
state-of-the-art methods on 4 out of 5 teacher-student pairs, demonstrating the effectiveness of the
proposed method with steady improvement. For teacher and student with different architecture,
the improvement is more obvious. Comparing with non-distillation baseline, the student shows im-
provement by 6.78% on average. FCFD also averagely outperforms original KD by 3.57%. More-
over, FCFD is the best-performing method with all teacher-student pairs. Comparing with the second
best method, Review, FCFD enjoys an average improvement by 0.66%, with the largest improve-
ment by 1.11% (ResNet50-MobileNetV2).

Image Classification on ImageNet: To validate the efficacy of our method on large-scale datasets,
we also compare FCFD with other methods on ImageNet (Deng et al., 2009). We compare with
AT (Zagoruyko & Komodakis, 2017), OFD (Heo et al., 2019), SRRL (Yang et al., 2021), and
four methods already considered in CIFAR100 experiments. ResNet (He et al., 2016) and Mo-
bileNet (Howard et al., 2017) are used as model architecture. The results are shown in Tab. 2. With
the ResNet34-ResNet18 pair, comparing with non-distillation baseline and KD, FCFD achieves im-
provement by 2.5% and 1.6% top-1 accuracy, respectively. Furthermore, FCFD outperforms the
second best method by 0.55% (v.s. DKD) over top-1 accuracy and by 0.2% (v.s. Review) over top-5
accuracy. With the ResNet50-MobileNet pair, the advantage of FCFD is even larger, with top-1 ac-
curacy reaching 73.26%, which is 0.7% above the best existing method (Review). The results show

6

Published as a conference paper at ICLR 2023

Table 1: Top-1 accuracy (%) on CIFAR100. Bold and underline denote the best and the second best
results, respectively. Results of DKD and Review are quoted from their paper, and others are quoted
from the CRD paper. * denotes the method includes Lkd. FCFD results are averaged over three runs.

Teacher and Student of Similar Architectures

Teacher WRN-40-2 WRN-40-2 ResNet56 ResNet32x4 VGG13
Student WRN-16-2 WRN-40-1 ResNet20 ResNet8x4 VGG8
Teacher 75.61 75.61 72.34 79.42 74.64
Student 73.26 71.98 69.06 72.50 70.36
KD* 74.92 73.54 70.66 73.33 72.98
CRD* 75.64 74.38 71.63 75.46 74.29
DKD 76.24 74.81 71.97 76.32 74.68
FitNet 73.58 72.24 69.21 73.50 71.02
VID 74.11 73.30 70.38 73.09 71.23
Review 76.12 75.09 71.89 75.63 74.84
Ours (w/o Lkd) 76.34 75.43 71.68 76.80 74.86
Ours* 76.43 75.46 71.96 76.62 75.22

Teacher and Student of Different Architectures

Teacher ResNet32x4 WRN-40-2 VGG13 ResNet50 ResNet32x4
Student ShuffleV1 ShuffleV1 MobileNetV2 MobileNetV2 ShuffleV2
Teacher 79.42 75.61 74.64 79.34 79.42
Student 70.50 70.50 64.60 64.60 71.82

KD* 74.07 74.83 67.37 67.35 74.45
CRD* 75.11 76.05 69.73 69.11 75.65
DKD 76.45 76.70 69.71 70.35 77.07
FitNet 73.59 73.73 64.14 63.16 73.54
VID 73.38 73.61 65.56 67.57 73.40
Review 77.45 77.14 70.37 69.89 77.78
Ours (w/o Lkd) 78.12 77.81 70.67 71.07 78.20
Ours* 78.12 77.99 70.65 71.00 78.18

Table 2: Accuracy (%) on ImageNet validation set. Setting (a): ResNet-34 as teacher and ResNet18
as student. Setting (b): ResNet-50 as teacher and MobileNet as student. Bold and underline denote
the best and the second best results, respectively. * denotes the method includes Lkd. For both
settings, the first and the second row show the top-1 and the top-5 accuracy, respectively.

setting Teacher Student KD* AT OFD CRD* Review DKD SRRL Ours Ours*

(a) 73.31 69.75 70.66 70.69 70.81 71.17 71.61 71.70 71.73 72.24 72.25
91.42 89.07 89.88 90.01 89.98 90.13 90.51 90.41 90.60 90.74 90.71

(b) 76.16 68.87 68.58 69.56 71.25 71.37 72.56 72.05 72.49 73.37 73.26
92.86 88.76 88.98 89.33 90.34 90.41 91.00 91.05 90.92 91.35 91.24

that the proposed distillation mechanism could steadily produce high-quality models regardless of
dataset volume and task complexity.

Object Detection on MS-COCO: We further validate the effectiveness of FCFD on the MS-
COCO (Lin et al., 2014) object detection task, using Faster-RCNN-FPN with different backbone
models. FGFI (Wang et al., 2019), ICD (Kang et al., 2021), and Review (Chen et al., 2021b) are
adopted for comparison. Results are shown in Tab. 3. FCFD enjoys an average improvement over
non-distillation baseline by 4.03% mAP, and consistently outperforms existing methods.

Considering both image classification and object detection, we find that FCFD has greater advan-
tage when teacher and student models are of different architectures, which may indicate that function
consistency between teacher and student features are harder to be guaranteed without explicit opti-
mization when the two models have different inductive bias.

3.2 COMPATIBILITY WITH EXISTING METHODS

In this section, we combine the proposed FCFD with existing knowledge distillation techniques
with orthogonal contributions. Two recent works are considered: DKD (Zhao et al., 2022) and

7

Published as a conference paper at ICLR 2023

Table 3: Compare FCFD with other knowledge distillation methods on object detection. Models are
trained on MS-COCO train2017 and tested on MS-COCO val2017.

Method mAP AP50 AP75 APl APm Aps

Teacher Faster R-CNN w/ R101-FPN 42.04 62.48 45.88 54.60 45.55 25.22
Student Faster R-CNN w/ R18-FPN 33.26 53.61 35.26 43.16 35.68 18.96

w/ FGFI 35.44 (+2.18) 55.51 38.17 47.34 38.29 19.04
w/ ICD 35.90 (+2.64) 56.02 38.75 46.83 38.78 20.22
w/ Review 36.75 (+3.49) 56.72 34.00 49.58 39.51 19.42
w/ Our Method 37.37 (+4.11) 57.60 40.34 50.33 40.23 19.84

Teacher Faster R-CNN w/ R101-FPN 42.04 62.48 45.88 54.60 45.55 25.22
Student Faster R-CNN w/ R50-FPN 37.93 58.84 41.05 49.10 41.14 22.44

w/ FGFI 39.44 (+1.51) 60.27 43.04 51.97 42.51 22.89
w/ ICD 40.39 (+2.46) 61.14 43.97 52.22 44.16 23.69
w/ Review 40.36 (+2.43) 60.97 44.08 52.87 43.81 23.60
w/ Our Method 40.42 (+2.49) 61.01 43.66 53.77 43.61 24.63

Teacher Faster R-CNN w/ R50-FPN 40.22 61.02 43.81 51.98 43.53 24.16
Student Faster R-CNN w/ MV2-FPN 29.47 48.87 30.90 38.86 30.77 16.33

w/ FGFI 31.16 (+1.69) 50.68 32.92 42.12 32.63 16.73
w/ ICD 32.88 (+3.41) 52.56 34.93 42.65 34.73 18.19
w/ Review 33.71 (+4.24) 53.15 36.13 46.47 35.81 16.77
w/ Our Method 34.97 (+5.50) 55.04 37.51 47.60 37.09 18.82

Table 4: Combine FCFD with DKD (Zhao et al., 2022) and SimKD (Chen et al., 2022). Top-1
accuracy (%) on CIFAR-100 is provided. Result format of the DKD and SimKD: result reported by
original authors (our reimplemented result). - means not reported.

Teacher WRN-40-2 WRN-40-2 ResNet32x4 ResNet32x4 ResNet32x4
Student WRN-16-2 WRN-40-1 ResNet8x4 ShuffleV1 ShuffleV2

Teacher 75.61 75.61 79.42 79.42 79.42
Student 73.26 71.98 72.50 70.50 71.82
FCFD 76.43 75.46 76.62 78.12 78.18

DKD 76.24 (76.16) 74.81 (74.99) 76.32 (76.23) 76.45 (76.60) 77.07 (76.88)
FCFD+DKD 76.37 75.4 76.95 78.20 78.79

SimKD - (75.73) 75.56 (75.32) 78.08 (77.98) 77.18 (77.41) 78.39 (77.74)
FCFD+SimKD 76.32 76.08 78.82 78.29 79.33

SimKD (Chen et al., 2022). We show that when combined with these methods, FCFD could achieve
even better performance than its original version, demonstrating the great potential of FCFD. All
experiments are conducted on CIFAR100. The introduction of DKD and SimKD, as well as the
technical details on how to combine these two methods with FCFD are provided in Appendix C.

Tab. 4 shows the results. When combined with DKD, which can be considered as an enhanced ver-
sion of traditional KL-Divergence loss function, FCFD can at most obtain an improvement by 0.61%
(ResNet32x4-ShuffleV2). One significant advantage of DKD loss is that it induces no additional cost
during both training and inference. Therefore, this combination is very friendly to practical appli-
cation. When combined with SimKD, the improvement is greater, with the magnitude at most 2.2%
(ResNet32x4-ResNet8x4). Note that for SimKD, the last bridge module is still required during in-
ference, and thus it involves extra inference cost. However, considering the introduced performance
improvement, it is still worthwhile in many cases.

The improvement is much larger when the teacher is ResNet32x4 rather than WRN-40-2, one possi-
ble explanation is that the performance of WRN-40-2 itself is relatively low and has barricaded the
progress of the student. As shown in Tab. 4, with either WRN-16-2 or WRN-40-1 as student, the
performance of the student has approached or even surpassed the teacher.

3.3 ABLATION STUDY

In this section, we conduct ablative experiments to analyze the role played by each component
adopted in FCFD. Experiment results are shown in Tab. 5.

8

Published as a conference paper at ICLR 2023

Table 5: Ablative experiments to investigate the effect of each component in FCFD. Experiments
are conducted on CIFAR-100, with ResNet32x4 as teacher. Top-1 accuracy (%) is provided.

Ablation Lkd + Ltask Lapp Lfunc Lfunc′ ResNet8x4 ShuffleV1 ShuffleV2

➀ Baseline ✓ 74.77 74.19 75.42
➁ Appearance only ✓ ✓ 75.89 76.77 76.49
➂ Function only ✓ ✓ ✓ 75.93 76.73 77.35
➃ w/o Lfunc′ ✓ ✓ ✓ 76.32 77.92 78.02
➄ w/o Lfunc ✓ ✓ ✓ 76.62 77.19 77.43
➅ FCFD ✓ ✓ ✓ ✓ 76.62 78.12 78.18

Table 6: Further analysis to investigate student-teacher intermediate feature similarity in terms of
function. Intermediate features extracted by teacher and student models are fed to exit branches, and
the top-1 accuracy (%) of the outputs are reported. Dataset: CIFAR100. Teacher: ResNet32x4

Position After the second module After the third module
Student ResNet8x4 ShuffleV1 ShuffleV2 ResNet8x4 ShuffleV1 ShuffleV2

Teacher 78.68 78.68 78.68 78.37 78.37 78.37
Lkd + Ltask + Lapp 78.00 77.21 77.69 76.14 73.61 73.80

FCFD 78.33 78.20 78.61 77.31 75.45 76.96

Synergistic appearance and function perspectives: Considering ➀➁➂ in Tab. 5, the results show
that matching intermediate representations from appearance and function perspectives are both ef-
fective approaches to improve the student’s performance. After taking ➅ into consideration, we
can find that these two perspectives can be combined together for further improvement. The results
supports our expectation that the two perspectives are synergistic in intermediate feature distillation.

Complementary Lfunc and Lfunc′ : considering ➃➄➅ in Tab. 5, we can draw the conclusion
that both Lfunc and Lfunc′ are indispensable in FCFD. Specifically, in some cases (e.g., ShuffleV1
and ShuffleV2), Lfunc brings in greater improvement, while the opposite is true in other cases (e.g.,
ResNet8x4). Nevertheless, when both of them are adopted, the result is always better than using
either only. Note that since we always sample 2 paths per iteration (i.e., there are two elements in S),
considering both Lfunc and Lfunc′ brings about no extra training cost except the negligible static
storage load to store additional bridges.

3.4 FURTHER ANALYSIS

In this section, we empirically show that FCFD does help enhance teacher-student intermediate
feature similarity in terms of semantics. Specifically, we append exit branches on top of intermediate
positions of the pre-trained teacher model, and we train the branches with the original teacher model
fixed. The training task is the simple hard label classification task. In this way, we create a mapping
that extracts knowledge from teacher features and estimates the hard label. Note that we make the
exit branches strong enough (even larger than the later part of teacher after the given position), so
that the information implied in teacher features could be fully exploited. We then directly feed
student features (after passing the bridge module) to these exit branches, and record the accuracy
of outputs. The results are shown in Tab. 6. Without any exposure of student features during the
training of exit branches, comparing with simple appearance-based features distillation, using FCFD
raises the accuracy of the output. It means that by matching features w.r.t. function, the student better
comprehends the semantics under the teacher’s features, and shares more information that are task
relevant. In this way, the student features become closer to teacher features w.r.t. the semantics they
express. Details about the experiment settings are provided in Appendix A.2.

4 CONCLUSION

In this paper, we propose a novel knowledge distillation method called FCFD. FCFD aims to match
the functional similarity between teacher and student features, in hopes that the student can benefit
more from the distillation process. Extensive experiments demonstrate that FCFD steadily outper-
forms state-of-the-art methods, and can also be combined with some existing methods for further
performance improvement. Furthermore, ablation studies are provided to dissect the inner workings.

9

Published as a conference paper at ICLR 2023

5 ACKNOWLEDGEMENT

This work was partially supported by the National Key R&D Program of China (2021ZD0111901),
the Natural Science Foundation of China (No. 62122074).

REFERENCES

Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Variational
information distillation for knowledge transfer. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9163–9171, 2019.

Defang Chen, Jian-Ping Mei, Yuan Zhang, Can Wang, Zhe Wang, Yan Feng, and Chun Chen. Cross-
layer distillation with semantic calibration. In AAAI Conference on Artificial Intelligence, pp.
7028–7036, 2021a.

Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang, Yan Feng, and Chun Chen. Knowledge
distillation with the reused teacher classifier. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11933–11942, 2022.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5008–5017, 2021b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255, 2009.

Qianggang Ding, Sifan Wu, Hao Sun, Jiadong Guo, and Shu-Tao Xia. Adaptive regularization of
labels. arXiv preprint arXiv:1908.05474, 2019.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision (IJCV), 129(6):1789–1819, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A com-
prehensive overhaul of feature distillation. In IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. Ad-
vances in Neural Information Processing Systems (NIPS), 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning (ICML), pp.
448–456, 2015.

Mingi Ji, Byeongho Heo, and Sungrae Park. Show, attend and distill: Knowledge distillation via
attention-based feature matching. In AAAI Conference on Artificial Intelligence, pp. 7945–7952,
2021.

Zijian Kang, Peizhen Zhang, Xiangyu Zhang, Jian Sun, and Nanning Zheng. Instance-conditional
knowledge distillation for object detection. Advances in Neural Information Processing Systems
(NeurIPS), pp. 16468–16480, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10

Published as a conference paper at ICLR 2023

Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xiaojun Chang, Xiaodan Liang, and Gang
Wang. Knowledge distillation via the target-aware transformer. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10915–10924, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision (ECCV), pp. 740–755, 2014.

Li Liu, Qingle Huang, Sihao Lin, Hongwei Xie, Bing Wang, Xiaojun Chang, and Xiaodan Liang.
Exploring inter-channel correlation for diversity-preserved knowledge distillation. In IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 8271–8280, 2021.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In European Conference on Computer Vision (ECCV), pp.
116–131, 2018.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3967–3976,
2019.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Conference on Learning
Representations (ICLR), 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 4510–4520, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In Inter-
national Conference on Learning Representations (ICLR), 2020.

Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual in-
telligence: A review and new outlooks. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2021.

Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Distilling object detectors with fine-grained
feature imitation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4933–4942, 2019.

Tiancheng Wen, Shenqi Lai, and Xueming Qian. Preparing lessons: Improve knowledge distillation
with better supervision. arXiv preprint arXiv:1911.07471, 2019.

Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy. Knowledge distillation meets self-
supervision. In European Conference on Computer Vision (ECCV), pp. 588–604, 2020.

Jing Yang, Brais Martinez, Adrian Bulat, Georgios Tzimiropoulos, et al. Knowledge distillation
via softmax regression representation learning. International Conference on Learning Represen-
tations (ICLR), 2021.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4133–4141, 2017.

Kaiyu Yue, Jiangfan Deng, and Feng Zhou. Matching guided distillation. In European Conference
on Computer Vision (ECCV), pp. 312–328, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
formance of convolutional neural networks via attention transfer. In International Conference on
Learning Representations (ICLR), 2017.

11

Published as a conference paper at ICLR 2023

Linfeng Zhang, Yukang Shi, Zuoqiang Shi, Kaisheng Ma, and Chenglong Bao. Task-oriented feature
distillation. Advances in Neural Information Processing Systems (NeurIPS), 33:14759–14771,
2020.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6848–6856, 2018a.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 4320–4328,
2018b.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distilla-
tion. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11953–
11962, 2022.

12

Published as a conference paper at ICLR 2023

A EXPERIMENT DETAILS

A.1 BASIC SETTINGS

Here we introduce the basic settings of our experiments. These settings are used for comparative
experiments in Sec. 3.1, and are also used in other experiments unless otherwise specified.

CIFAR100 The CIFAR100 (Krizhevsky et al., 2009) dataset consists of 60K images from 100 cat-
egories with size of 32× 32. In the standard protocol, 50k images are used for training and 10k for
testing. Following CRD (Tian et al., 2020), we train all the models for 240 epochs, and the learning
rate is decayed by a factor of 10 at 150, 180, and 210 epochs, respectively. The initial learning rate
is 0.01 for MobileNetV2, ShuffleNet, ShuffleNetV2, and is 0.05 for other student models. The batch
size is 64, and SGD optimizer with a 0.0005 weight decay and 0.9 momentum is adopted. For all
experiments, the weights for Ltask and Lkd are set to 1. The KL-Divergence term in Lfunc and
Lfunc′ share the same weight that is either 1 or 0.2. Lapp and L2 terms in Lfunc share the same
weight, which is either 0.02 or 5.0. For Lkd, the KL term in Lfunc, and the KL term in Lfunc′ , the
same temperature (Hinton et al., 2015) is used and is either 4 or 8.

ImageNet The ImageNet (Deng et al., 2009) dataset consists of 1.28 million training images and
50k validation images from 1000 categories. Following the mainstream settings, all methods are
trained on the entire training set and evaluated on the single-crop validation set. The input image
resolution is 224×224 for both training and evaluation. Following mainstream settings (Chen et al.,
2021; Tian et al., 2020), we train all the models for 100 epochs. The initial learning rate is 0.1
and is decayed by a factor of 10 at 30, 60, and 90 epochs, respectively. We run experiments on
one Tesla-V100 GPU with batch size 256 and initial learning rate 0.1. Automatic Mixed Precision
(AMP) provided by PyTorch is used for acceleration. An SGD optimizer with 0.0001 weight decay
and 0.9 momentum is adopted. The weights for Ltask, Lkd, Lfunc′ , and the KL-Divergence term in
Lfunc, are set to 1, and the weights for Lapp and the L2 term in Lfunc are set to 0.02 for ResNet18
and 5 for MobileNet. The temperature for Lkd, the KL term in Lfunc, and Lfunc′ , is set to 1.

The design of the bridge module B(·) follows CRD (Tian et al., 2020). Specifically, The bridge
module is composed of exactly one convolution layer and one BatchNorm Layer. When the mim-
icking target is post-ReLU feature, and additional leaky ReLU activation is appended. The kernel
size is 3x3, and is of stride 2 when the target feature is 2 times smaller, and is of stride 1 when the
target is as large as the source feature. When the target is 2 times larger than the source, transposed
convolution with kernel size 4 and stride 2 is used.

A.2 SETTINGS FOR FURTHER ANALYSIS

Here we introduce the details of the experiments conducted in Sec. 3.4. We first select two interme-
diate positions. Specifically, considering that ResNet32x4, ResNet8x4, ShuffleV1, and ShuffleV2
are all composed of four cascaded modules, we select the end of the second and the third module.
For all the experiments, we first take a ResNet32x4 model pre-trained on CIFAR100 (which is the
teacher model for distillation), and add extra exit branches at the aforementioned positions. For each
position, the structure of the exit branch is the same as the later part of a ResNet50x4 model after
this position. More specifically, the structure of the exit branch at the end of the second module is
the same as the combination of the last two modules of ResNet50x4, and the structure of the exit
branch at the end of the third module is the same as the last module of ResNet50x4. In this way, we
guarantee that the exit branch is strong enough and could well capture the task relevant information
implied in teacher features.

The exit branches are then optimized, with teacher features as input, to estimate the hard label. Cross
entropy loss is used as loss function. Similar to settings in Sec. A.1, the training process lasts for 240
epochs. The initial learning rate is 0.05 and is decayed by a factor of 10 at 150, 180, and 210 epochs,
respectively. Batch size is 64. SGD optimizer with a 0.0005 weight decay and 0.9 momentum is
adopted. Note that the ResNet32x4 backbone model is frozen in this process.

After training, we directly feed student features (transformed by the bridge modules) to these exit
branches, and test the performance on CIFAR100 test set. Since the running statistics in the Batch-
Norm layers in the exit branches are accumulated with teacher features as input, we re-calibrate the
running statistics on CIFAR100 training set before testing.

13

Published as a conference paper at ICLR 2023

FCFD ℒ𝑘𝑘𝑘𝑘 + ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 + ℒ𝑡𝑡𝑎𝑎𝑎𝑎

From Student
From Teacher
Overlap

Figure 4: Visualization of the semantic similarity between teacher and student intermediate features.
We use images belonging to the first 10 classes in the CIFAR-100 test set. Teacher: ResNet32x4.
Student: ShuffleV2. Student and Teacher features originally show light blue From Student

From Teacher
Overlap

and light red
From Student
From Teacher
Overlap

. When
the student feature overlaps with the teacher feature, the overlapping region will become dark brown

From Student
From Teacher
Overlap. With FCFD, fewer light blue and light red points can be observed, signifying that more student

features are similar to their corresponding teacher features. Best viewed in color with zoom in.

B VISUALIZATION FOR FEATURE SIMILARITY

We have empirically shown in Sec. 3.4 that FCFD improves the semantic similarity between teacher
and student features. In this section, we provide a visualization to further demonstrate this effect.
We feed the teacher and student intermediate features into the exit branches mentioned in Sec. 3.4
and Sec. A.2. We then collect the corresponding penultimate features and use t-SNE to project these
features into points in R2. The results are shown in Fig. 4. With only appearance-based feature
matching, there are a lot of light-blue (From Student

From Teacher
Overlap

From Student) and light-red (
From Student
From Teacher
Overlap

From Teacher) points.
These points show the light color because they do not overlap with the nearest points showing the
other light color, i.e., the student features lie relatively far from the nearest teacher features and vice
versa. In contrast, with FCFD there are fewer light-color points and more dark-brown (

From Student
From Teacher
OverlapOverlap)

points, which means more student features are similar to their corresponding teacher features. The
results support our claim in Sec. 3.4.

C DETAILS ON COMBINING FCFD WITH EXITING METHODS

In this section, we briefly introduce how we combine DKD (Zhao et al., 2022) and SimKD (Chen
et al., 2022) with FCFD.

C.1 COMBINE WITH DKD

The key idea of DKD (Zhao et al., 2022) is to decompose traditional knowledge distillation into
two parts: Target Class Knowledge Distillation(TCKD), which matches the teacher’s and student’s
binary probabilities of the target class, and Non-Target Class Knowledge Distillation(NCKD), which
optimizes the similarity between the teacher’s and student’s probabilities among non-target classes.
In traditional KD, the weights of TKCD and NCKD terms are coupled with teacher’s confidence on
the target class. In contrast, DKD propose to assign constant weights to these terms.

The DKD loss can be considered as an enhanced version of KL-Divergence. Therefore, to combine
DKD with FCFD, we can simply replace with DKD loss the KL-Divergence loss in Lkd, Lfunc, and
Lfunc′ . In our experiments, we set weight for TCKD to 1, and set weight for NCKD to 2. Other
training settings are aligned with those in Sec. A.1.

14

Published as a conference paper at ICLR 2023

C.2 COMBINE WITH SIMKD

The key idea of SimKD is to make the student reuse the teacher’s classifier layer. In this way, the
forward process of the student is:

ps(simkd)(x) = Ct ◦BN
st ◦MN

s ◦ · · · ◦M2
s ◦M1

s (x) (10)

Note that unlike other methods, for SimKD, the last bridge module, BN
st , is still required during

inference, and thus it involves extra inference cost.

To combine SimKD with FCFD, whenever we originally feed feature to Cs, now as the substitute,
we feed feature to Ct ◦ BN

st . Specifically, the computation of ps(x) and pk
ts(x) now ends up with

Ct ◦ BN
st rather than Cs. All other settings, including target function, training strategy, are not

changed. During inference, the forward path of the student is the same as Eq. 10.

As suggested in Chen et al. (2022), the capacity of the bridge module BN
st has significant impact on

the final accuracy, and there exists an accuracy-latency trade-off. To make experiment results more
informative, when combined with SimKD, we change BN

st to exactly match the architecture used in
the original SimKD paper, and the squeeze factor is set to 2. Note that bridges modules other than
BN

st are not changed for simplicity.

D DETAILS ABOUT OBJECT DETECTION

In Sec. D.1, we introduce the methodology of migrating FCFD to object detection. In Sec. D.2, we
show the implementation details.

D.1 METHOD

On object detection, we do not match features by feed the transformed student (teacher) backbone
features to the later part of the teacher (student) backbone model. The reason are twofold: 1) whereas
the propagation of image classification models is unidirectional, intermediate features calculated by
detector’s backbone model may be revisited long after its first usage due to the existence of FPN (Lin
et al., 2017), region proposal networks (RPN), and ROI heads. Therefore, directly matching inter-
mediate features calculated by detectors’ backbone models w.r.t. function will make the subsequent
propagation process complicated, and could involve great extra overhead; 2) In existing works, the
common practice for conducting feature distillation on detectors is to match the features output by
FPN (Chen et al., 2021; Wang et al., 2019; Yang et al., 2022), rather than by the backbone. When
considering how to functionally align FPN features, the situation becomes clearer and easier. There-
fore, the detection version of FCFD is designed to match FPN features.

Denote the list of teacher features output by FPN as F̃t = {F̃ k
t }Kk=1, and the list of student features

output by FPN as F̃s = {F̃ k
s }Kk=1. Here with slight abuse of notation, we use K to denote the

number of FPN features. Given an input image X and a region proposal r, the ROI head (denoted
as ROIH) selects the corresponding part of feature from F̃, and outputs the probability p(x, r) and
positional offset δ(x, r) corresponding to all candidate classes:

< pt(x, r), δt(x, r) >= ROIHt(r, F̃t) (11)

< ps(x, r), δs(x, r) >= ROIHs(r, F̃s) (12)
subscript t and s denote teacher and student, respectively. Eq. 11 and Eq. 12 show that the function
of F̃ is to serve as the input to the ROI head module. Following the same idea as our method on
classification, we match F̃s and F̃t w.r.t. both appearance and function simultaneously. Appearance
matching is achieved by:

Lk
app = L2(F̃ k

t , B
k
st(F̃

k
s)) (13)

Where Bst is the student-to-teacher bridge module. For function matching, we first use the teacher’s
ROI head (ROIHt) as the lens to measure the functional similarity between teacher and student
features: we feed transformed student features to ROIHt:

< pst(x, r), δst(x, r) >= ROIHt(r, {Bk
st(F̃

k
s)|F̃ k

s ∈ F̃s}) (14)

15

Published as a conference paper at ICLR 2023

and then align the results with those given by the teacher:

Lfunc =
∑
r∈R

(KL(pt(x, r)||pst(x, r)) + L2(δt(x, r), δst(x, r))) (15)

R denotes the set of region proposals fed to ROI heads. We then use the ROI head of the student
(ROIHs) as the lens for function matching: we feed both student features and transformed teacher
features to ROIHs, and optimize both results towards that given by the teacher. For the student
features, the optimization is achieved by Lkd:

Lkd =
∑
r∈R

(KL(pt(x, r)||ps(x, r)) + L2(δt(x, r), δs(x, r))) (16)

and for the transformed teacher features, the optimization is achieved by Lfunc′

< pts(x, r), δts(x, r) >= ROIHs(r, {Bk
ts(F̃

k
t)|F̃ k

t ∈ F̃t}) (17)

Lfunc′ =
∑
r∈R

(KL(pt(x, r)||pts(x, r)) + L2(δt(x, r), δts(x, r))) (18)

Bts denotes the teacher-to-student bridge module.

In conclusion, the complete loss function for our detection-version FCFD is:

L = Ltask +

K∑
k=1

Lk
app + Lfunc + Lfunc′ + Lkd (19)

Ltask here denotes the original loss terms used in object detection. Since the ROI heads generally
contain few parameters and the propagation is fast and efficient, the induced extra overhead for
directly optimizing Eq. 19 is limited and acceptable. Therefore, no random sampling mechanism
like that proposed in Sec. 2.3 is applied for object detection.

D.2 IMPLEMENTATION DETAILS

Our implementation is based on Detectron2 (Wu et al., 2019). The weights for all of our proposed
loss terms are set to 1. Temperature is set to 1 when calculating the KL-Divergence between two
distributions. Automatic Mixed Precision (AMP) provided by PyTorch is used for acceleration.
Batch size is set to 8 and initial learning rate is set to 0.01. For fair comparison with existing
methods, we adopt the 1x training procedure. All experiments are conducted on one Tesla-V100
GPU. Other settings are inherited from Detectron2 and left unchanged.

E MORE EXPERIMENTS ON OBJECT DETECTION

Inheriting strategy, which initializes the student’s non-backbone modules with the teacher’s pre-
trained parameters, was proposed in ICD (Kang et al., 2021) and was shown to boost the student’s
performance clearly. We show in Tab. 7 that FCFD is also compatible with this strategy. Note that
the inheriting strategy is applicable only when the output feature from the teacher’s and the student’s
backbones have the same shape, so we report the results of the ResNet101-ResNet50 pair.

Following Review (Chen et al., 2021) and ICD (Kang et al., 2021), for object detection, we con-
duct experiments on Detectron2 (Wu et al., 2019). Therefore, in Tab. 3 we compare with methods
implemented on the same framework for fairness. Nevertheless, we also notice that some other
works (Yang et al., 2022; Dai et al., 2021) report their performance on MMDetection (Chen et al.,
2019). Here we re-implement our FCFD on MMDetection and compare it with these works to
provide readers with a comprehensive view of FCFD’s performance, see Tab. 8 for results.

F ONLINE KD

We also validate the proposed method in the context of online knowledge distillation (Zhang et al.,
2018). Specifically, both the student and the teacher are randomly initialized before training. During

16

Published as a conference paper at ICLR 2023

Table 7: Results of distillation with inheriting strategy. † denotes the inheriting strategy.
Method mAP AP50 AP75 APl APm Aps

Teacher Faster R-CNN w/ R101-FPN 42.04 62.48 45.88 54.60 45.55 25.22
Student Faster R-CNN w/ R50-FPN 37.93 58.84 41.05 49.10 41.14 22.44

w/ Our Method 40.42 (+2.49) 61.01 43.66 53.77 43.61 24.63
w/ Our Method† 40.96 (+3.03) 61.78 44.79 54.55 44.40 24.19

Table 8: Comparison with existing methods on MMDetection. Results other than ours are quoted
from Yang et al. (2022). † denotes the inheriting strategy.

Method mAP APl APm Aps

Teacher Faster R-CNN w/ R101-FPN 39.8 52.8 43.6 22.5
Student Faster R-CNN w/ R50-FPN 38.4 50.3 42.1 21.5

w/ FGFI (Wang et al., 2019) 39.3 52.2 42.3 22.5
w/ GID (Dai et al., 2021) 40.2 53.2 44.0 22.7
w/ FGD (Yang et al., 2022) 40.4 53.5 44.5 22.8
w/ Our Method 40.8 (+2.4) 53.4 44.9 23.0
w/ FGD† 40.5 53.2 44.7 22.6
w/ Our Method† 40.9 (+2.5) 53.9 44.8 23.4

training, the teacher and the student learn mutually from each other. Apart from the loss function
in Eq. 9, the task loss w.r.t. teacher output and hard label, as well as KD loss that the teacher learns
from the student, are appended.

The training settings are the same as those in Sec. A.1. DML (Zhang et al., 2018) and CRD (Tian
et al., 2020) are used for comparison. For DML, we re-implement the method for results. For CRD,
we directly quote the results provided in the appendix of their paper. As shown in Tab. 9, FCFD
not only performs well on offline knowledge distillation, but also outperforms existing methods
on online knowledge distillation. This shows that the idea of matching intermediate features w.r.t.
function is effective in a wide range of scenarios.

G ABLATION OVER THE DESIGN OF Lfunc AND Lfunc′

In this section, we delve deep into the design choices of Lfunc and Lfunc′ .

Considering Eq. 6, Lfunc can be divided into two parts: the KL-Divergence loss defined on the
final outputs (l = N + 1), and L2 losses defined on earlier layers (l < N + 1). We denoted the
aforementioned KL-Divergence part as Lfunc−KL, and the L2 part as Lfunc−L2.

Considering Eq. 7, for reasons stated in Sec. 2.2, it only involves a KL term. To investigate if feature
matching loss similar to Lfunc−L2 is useful in the case of Lfunc′ , we define the following loss:

Lk
func′−L2 =

N∑
l=k+1

L2

(
M l

s ◦ · · · ◦Mk+1
s

(
Bk

ts

(
F k
t

))
,M l

s ◦ · · · ◦Mk+1
s

(
F k
s

))
. (20)

We conduct experiments to analyze these terms. Results are shown in Tab. 10. First, we find that
Lk
func′−L2 is generally not useful. Moreover, when independently used, Lfunc−L2 brings more

improvement than Lfunc−KL though it is better to combine them both.

H COMPLEXITY ANALYSIS AND EFFICIENT DESIGNS

In this section, we start with the complexity analysis of FCFD. The analysis suggests some directions
to lower the training cost of FCFD, and we thus experimentally explore these directions in the rest
of this section. We hope that the contents in this section could guide engineers to customize their
implementation of FCFD if the training cost is a concern.

17

Published as a conference paper at ICLR 2023

Table 9: Validate the effectiveness of FCFD in the context of online knowledge distillation. Both
teacher and student models are trained from scratch and learn mutually from each other. Top-1 test
accuracy (%) is reported. We use ’t’ and ’s’ to denote teacher and student models, respectively. Bold
denotes the best result.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 ResNet32 resnet8x4 vgg8

Vanilla 75.61 75.61 72.34 74.31 79.42 74.64

tDML 77,96 77.88 74.68 75.47 79.68 75.83
CRD 78.01 77.39 73.86 75.53 79.36 77.23
FCFD 78.95 78.65 75.13 77.4 80.21 76.62

Vanilla 73.26 71.98 69.06 71.14 72.5 70.36

sDML 75.24 73.69 70.99 72.4 74.23 72.55
CRD 75.89 74.12 70.9 73.07 75.34 74.08
FCFD 76.44 75.01 72.01 74.22 76.7 74.65

Table 10: Detailed ablation over the design of Lfunc and Lfunc′ . Teacher: ResNet32x4. Dataset:
CIFAR-100. Top-1 accuracy (%) reported.
Lkd + Ltask + Lapp Lfunc−KL Lfunc−L2 Lfunc′ Lfunc′−L2 ResNet8x4 ShuffleV1 ShuffleV2

✓ ✓ 76.15 77.46 77.85
✓ ✓ 76.43 77.94 77.84
✓ ✓ ✓ 76.32 77.92 78.02
✓ ✓ 76.62 77.19 77.43
✓ ✓ 75.58 76.56 76.30
✓ ✓ ✓ ✓ 76.62 78.12 78.18
✓ ✓ ✓ ✓ ✓ 76.57 77.82 78.14

H.1 COMPLEXITY

Suppose that both teacher and student have N stages. Given a path used for feature matching
< k, δ >, the triggered additional training cost is:

Additional Training Cost =

{
cost(Bk

ts) +
∑N

l=k+1 cost(M
l
s) + cost(Cs), δ = 0

cost(Bk
st) +

∑N
l=k+1 cost(M

l
t) + cost(Ct), δ = 1

(21)

Comparing with existing methods, our FCFD involves the specially cost terms
∑N

l=k+1 cost(M
l
s)

and
∑N

l=k+1 cost(M
l
t). However, FCFD only needs very simple bridge modules and does not in-

corporate complex mechanisms like contrastive learning (Tian et al., 2020; Xu et al., 2020), which
lowers the overall complexity of FCFD.

There are mainly two factors that determine the practical cost of FCFD: the number of paths sampled
in every iteration, |S|, and from which stage we start to do functional matching, namely the least
value of k in < k, δ >, and we denote this as kmin. Given a path < k, δ >, the smaller k is, the
more extra blocks will be passed through, so larger kmin lowers the overall extra cost.

After dividing the networks into 4 stages, there are 4 candidate positions for features matching: F 1,
F 2, F 3, and F 4. In practice, we set kmin = 2, and we also do not functionally match the last
feature, F 4, since the focus of FCFD is to investigate the effectiveness of functional matching over
intermediate features. There are thus four candidate paths: {< k = 2, δ = 0 >,< k = 3, δ = 0 >,<
k = 2, δ = 1 >,< k = 3, δ = 1 >}. In each iteration, as mentioned in Sec. 2.3, we by default
sample two paths from the candidates.

Now we empirically compare the training speed and memory cost of FCFD with existing meth-
ods. We choose the ResNet8x4-ResNet32x4 pair on CIFAR100. Experiments are conducted on the
same machine with irrelevant variables aligned. Results are shown in Tab. 11. DKD (Zhao et al.,
2022) is the least complex method and its complexity is by theory exactly identical to the original
KD (Hinton et al., 2015). Meanwhile, our FCFD is faster than SOTA feature distillation method

18

Published as a conference paper at ICLR 2023

Table 11: Training complexity. Teacher: ResNet32x4. Student: ResNet8x4. Dataset: CIFAR-100.
Method DKD Review CRD FCFD

Seconds / Epoch 33.12 48.40 54.02 43.98
Peak GPU Memory Usage (MB) 459 1231 790 1132

Top-1 Acc (%) 76.32 75.63 75.56 76.62

Table 12: Effect of different number of sampled paths (|S|) for functional feature matching. Teacher:
ResNet32x4. Dataset: CIFAR-100. Top-1 accuracy (%) is reported for all student models, and
training cost is reported for ResNet8x4 for reference.

|S| ShuffleV1 ShuffleV2 ResNet8x4
Top-1 Top-1 Top-1 Seconds / Epoch Peak Memory (MB)

1 77.50 77.69 75.92 36.76 868
2 78.12 78.18 76.62 43.98 1132
4 78.20 78.98 77.07 61.27 1268

Review (Chen et al., 2021) and CRD (Tian et al., 2020). The results show that training complexity
is not a significant shortage of FCFD.

H.2 EFFECT OF NUMBER OF SAMPLED PATHS |S|

We show in Tab. 12 the effect of using a different number of sample paths per iteration. A clear
trend is that more sampled paths improve the accuracy while inducing longer training time and
larger memory costs. We find that with all 4 candidate paths selected in one iteration, the final
accuracy of the student model can be very high. Therefore, for scenarios where model accuracy is
of great importance while computing resources are relatively ample, we recommend directly setting
larger |S|. When resources are limited, |S| could be lowered accordingly.

H.3 EFFECT OF DIFFERENT MATCHING POSITIONS

As mentioned before, it brings more training costs to functionally match shallow features. As a
result, starting function matching since a relatively deep position (i.e., increasing kmin) can lower
the cost of FCFD. We conduct experiments to explore how the performance of the student changes
as we select different positions for functional feature matching, the results are shown in Tab. 13.

The conclusion is that, while functional matching is effective over both shallow and deep features,
it brings larger improvement when applied only to deep features than only to shallow features.
Meanwhile, involving both shallow and deep features with random sampling is of medium speed,
and performs the best. Taking the |S| = 4 case in Tab. 12 into consideration, we can conclude that
the advantage from functionally matching shallow and deep features can be accumulated.

H.4 EFFECT OF USING PARTIAL TERMS IN Lfunc

As shown in Eq. 6, for calculating Lfunc, we make Bk
st(F

k
s) pass through all the later teacher

modules (l ∈ [k+1, N+1]). Another possible approach to lower the training cost of FCFD is to only
propagate Bk

st(F
k
s) through the first several teacher modules. Since in our scenario a transformed

student feature at most passes through 2 teacher modules (classifier Ct excluded), we conduct an
experiment to see how the student performs when Lfunc only involves one-module propagation,
namely:

Lk
func−partial = L2

(
Mk+1

t (F k
t),M

k+1
t

(
Bk

st

(
F k
s

)))
. (22)

The result is shown in Tab. 14. First, replacing Lk
func with Lk

func−partial is an effective strategy
as most of the improvement is preserved after the replacement. However, compared with the func-
tionally match F 3 only strategy in Tab. 13, the partial-propagation strategy achieves lower accuracy

19

Published as a conference paper at ICLR 2023

Table 13: Effect of conducting functional matching at different positions. |S| is 2 for all experiments.
Teacher: ResNet32x4. Dataset: CIFAR-100. Top-1 accuracy (%) is reported for all student models,
and training cost is reported for ResNet8x4 for reference.

Setting ShuflfleV1 ShuffleV2 ResNet8x4
Top-1 Top-1 Top-1 Seconds / Epoch Peak Memory (MB)

Functionally match F 2 only 77.03 77.78 76.46 49.38 1132
Functionally match F 3 only 77.75 77.90 76.60 38.73 891
Functionally match F 2 and F 3 78.12 78.18 76.62 43.98 1132

Table 14: Replacing Lk
func with Lk

func−partial. Teacher: ResNet32x4. Dataset: CIFAR-100. Top-1
accuracy (%) is reported for all student models, and training cost is reported for ResNet8x4.

Setting ShuflfleV1 ShuffleV2 ResNet32x4
Top1 Top1 Top1 Seconds/Epoch Peak Memory (MB)

with Lk
func 78.12 78.18 76.62 43.98 1132

with Lk
func−partial 77.69 77.72 76.52 37.13 980

while the training cost is almost similar. Therefore, in practice, if the computing resources are really
scarce, it is suggested to try raising kmin first before trying Lfunc−partial.

I DIFFERENCES BETWEEN FCFD AND EXISTING WORKS

Some existing works (Bai et al., 2020; Li et al., 2020a;b; Yang et al., 2021) also feed representa-
tions from one network to another network to distill knowledge. In this section, we analyze their
differences from FCFD.

From the perspective of problems to solve, Bai et al. (2020) and Li et al. (2020a) are designed
to solve problems that only exist in special topics and do not generalize to common KD scenarios.
Specifically, Bai et al. (2020) aims to alleviate overfitting in few-shot distillation, so they propose
a block-wise supervision strategy. Li et al. (2020a) focuses on a more special scenario, where a
residual network helps a non-residual network to overcome gradient vanishing. In contrast, FCFD
is motivated by the function consistency problem that widely exists in feature distillation scenarios,
and is applicable and effective in general knowledge distillation cases. From the methodology per-
spective, there are still clear differences: Bai et al. (2020) directly matches the behavior of paired
teacher and student modules, so they feed the same input feature to the two blocks and hope the
output could be similar. In contrast, FCFD takes a feature-matching perspective and hopes paired
features could lead to similar outputs after process by the same module. Our method can deal with
situations where teacher and student features have different shapes, while Bai et al. (2020) cannot.
For Li et al. (2020a), though they do put student features into the teacher network, their aim is to
obtain the residual gradient which is originally inaccessible for a non-residual network. Further-
more, they do not feed teacher features into the student modules, which we show to be effective with
ablation. While SRRL (Yang et al., 2021) does target on the general KD scenario, it focuses on a
narrower problem of penultimate feature matching and can be considered as a special case of FCFD,
where only penultimate features are functionally aligned with Lfunc. The comparative experiment
in Tab. 2 also shows that FCFD clearly outperforms SRRL.

REFERENCES

Haoli Bai, Jiaxiang Wu, Irwin King, and Michael Lyu. Few shot network compression via cross
distillation. In AAAI Conference on Artificial Intelligence, volume 34, pp. 3203–3210, 2020.

Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang, Yan Feng, and Chun Chen. Knowledge
distillation with the reused teacher classifier. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11933–11942, 2022.

20

Published as a conference paper at ICLR 2023

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5008–5017, 2021.

Xing Dai, Zeren Jiang, Zhao Wu, Yiping Bao, Zhicheng Wang, Si Liu, and Erjin Zhou. General
instance distillation for object detection. In IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pp. 7842–7851, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255, 2009.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. Ad-
vances in Neural Information Processing Systems (NIPS), 2015.

Zijian Kang, Peizhen Zhang, Xiangyu Zhang, Jian Sun, and Nanning Zheng. Instance-conditional
knowledge distillation for object detection. Advances in Neural Information Processing Systems
(NeurIPS), pp. 16468–16480, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Guilin Li, Junlei Zhang, Yunhe Wang, Chuanjian Liu, Matthias Tan, Yunfeng Lin, Wei Zhang, Jiashi
Feng, and Tong Zhang. Residual distillation: Towards portable deep neural networks without
shortcuts. Advances in Neural Information Processing Systems (NeurIPS), pp. 8935–8946, 2020a.

Lujun Li, Yikai Wang, Anbang Yao, Yi Qian, Xiao Zhou, and Ke He. Explicit connection distillation.
2020b.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In IEEE conference on computer vision and
pattern recognition (CVPR), pp. 2117–2125, 2017.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In Inter-
national Conference on Learning Representations (ICLR), 2020.

Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Distilling object detectors with fine-grained
feature imitation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4933–4942, 2019.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy. Knowledge distillation meets self-
supervision. In European Conference on Computer Vision (ECCV), pp. 588–604, 2020.

Jing Yang, Brais Martinez, Adrian Bulat, Georgios Tzimiropoulos, et al. Knowledge distillation
via softmax regression representation learning. International Conference on Learning Represen-
tations (ICLR), 2021.

Zhendong Yang, Zhe Li, Xiaohu Jiang, Yuan Gong, Zehuan Yuan, Danpei Zhao, and Chun Yuan.
Focal and global knowledge distillation for detectors. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4643–4652, 2022.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 4320–4328, 2018.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distilla-
tion. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11953–
11962, 2022.

21

https://github.com/facebookresearch/detectron2

	Introduction
	Knowledge Distillation based on Final Output
	Knowledge Distillation based on Intermediate Features
	Our motivation

	Method
	Preliminaries
	Function-Consistent Feature Distillation
	Full Pipeline

	Experiment
	Comparative experiments
	Compatibility with existing methods
	Ablation study
	Further analysis

	Conclusion
	Acknowledgement
	Experiment details
	Basic settings
	Settings for further analysis

	Visualization for Feature Similarity
	Details on combining FCFD with exiting methods
	Combine with DKD
	Combine with SimKD

	Details about Object Detection
	Method
	Implementation details

	More experiments on Object Detection
	Online KD
	Ablation over the design of Lfunc and Lfunc'
	Complexity Analysis and Efficient Designs
	Complexity
	Effect of number of sampled paths |S|
	Effect of different matching positions
	Effect of using partial terms in Lfunc

	Differences between FCFD and existing works

