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Abstract

Establishing robust policies is essential to counter
attacks or disturbances affecting deep reinforce-
ment learning (DRL) agents. Recent studies ex-
plore state-adversarial robustness and suggest the
potential lack of an optimal robust policy (ORP),
posing challenges in setting strict robustness con-
straints. This work further investigates ORP:
At first, we introduce a consistency assumption
of policy (CAP) stating that optimal actions in
the Markov decision process remain consistent
with minor perturbations, supported by empir-
ical and theoretical evidence. Building upon
CAP, we crucially prove the existence of a deter-
ministic and stationary ORP that aligns with the
Bellman optimal policy. Furthermore, we illus-
trate the necessity of L∞-norm when minimizing
Bellman error to attain ORP. This finding clar-
ifies the vulnerability of prior DRL algorithms
that target the Bellman optimal policy with L1-
norm and motivates us to train a Consistent Ad-
versarial Robust Deep Q-Network (CAR-DQN)
by minimizing a surrogate of Bellman Infinity-
error. The top-tier performance of CAR-DQN
across various benchmarks validates its practi-
cal effectiveness and reinforces the soundness of
our theoretical analysis. Our code is available at
https://github.com/leoranlmia/CAR-DQN.

1. Introduction
Deep reinforcement learning (DRL) has shown remarkable
success in solving intricate problems (Mnih et al., 2015;
Lillicrap et al., 2015; Silver et al., 2016) and holds promise
across diverse practical domains (Ibarz et al., 2021; Kiran
et al., 2021; Yu et al., 2021; Zheng et al., 2018). Neverthe-
less, subtle perturbations in state observations can severely
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degrade well-trained DRL agents (Huang et al., 2017; Be-
hzadan & Munir, 2017a; Lin et al., 2017; Ilahi et al., 2021),
which limits their trustworthy real-world deployment and
emphasizes the crucial need for developing robust DRL
algorithms against adversarial attacks.

Pioneering work by Zhang et al. (2020) introduced the state-
adversarial paradigm in DRL by formulating a modified
Markov decision process (MDP), termed SA-MDP. Here,
the underlying true state remains invariant while the ob-
served state is subjected to disturbances. They also high-
lighted the uncertain existence of an optimal robust pol-
icy (ORP) within SA-MDP, indicating a potential conflict
between robustness and optimal policy. Consequently, ex-
isting methods built upon SA-MDP often seek a trade-off
between robust and optimal policies through various reg-
ularizations (Oikarinen et al., 2021; Liang et al., 2022) or
adversarial training (Zhang et al., 2021; Sun et al., 2021).
While enhancing robustness, these methods lack theoretical
guarantees and completely neglect the study of ORP.

In this paper, we primarily focus on investigating ORP
within SA-MDP. We suppose that only a few exceptional
states lack an ORP, thus it is key for theoretical clarity to
eliminate these states. Therefore, our work starts with a
consistency assumption of policy (CAP), where optimal
actions of all states within the MDP exhibit consistency
despite adversarial disturbance. This implies that, from a
decision-making perspective, adversaries cannot alter the
essence of state observations, which we call the intrinsic
state. Despite seeming implausible, we support the ratio-
nality of CAP through theoretical analysis and empirical
experiments against strong adversarial attacks like FGSM
(Goodfellow et al., 2014) and PGD (Madry et al., 2017),
showcasing that the state set violating CAP is nearly empty.

Building upon CAP, we demonstrate that there always exists
a stationary and deterministic adversarial ORP coinciding
with the Bellman optimal policy, derived from the Bellman
optimality equations. Remarkably, this objective has been
widely employed in previous DRL algorithms (Silver et al.,
2014; Schulman et al., 2015; Wang et al., 2016; Mnih et al.,
2016; Schulman et al., 2017) to maximize the natural returns,
lacking robust capabilities. Hence, our findings incredibly
unveil that the Bellman optimal policy doubles as the ORP,
and improving the robustness of DRL agents need not com-
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promise their performance in natural environments. This
insight holds significant value for establishing DRL agents
with Bellman optimality equations in real-world scenarios
where strong adversarial attacks are relatively rare.

In pursuit of ORP, we delve into understanding why conven-
tional DRL algorithms, which target the Bellman optimal
policy, fail to guarantee adversarial robustness. By analyz-
ing the theoretical properties of ∥Qθ −Q∗∥p and Bellman
error ∥TBQθ−Qθ∥p across diverse Banach spaces, we iden-
tify the substantial impact of the parameter p on adversarial
robustness. Specifically, achieving ORP corresponds to min-
imizing the Bellman Infinity-error, i.e., p = ∞, whereas
conventional algorithms are typically linked to p = 1. To ad-
dress the computational challenges arising from L∞-norm,
we propose the Consistent Adversarial Robust Deep Q-
Network (CAR-DQN), utilizing a surrogate objective of
Bellman Infinity-error for robust policy learning.

To summarize, our paper makes the following contributions:

(1). We propose the rational CAP for SA-MDP, confirm the
existence of deterministic and stationary ORP, and demon-
strate its strict alignment with the Bellman optimal policy,
which is a significant advancement over prior research.
(2). We underscore the necessity of employing the L∞-
norm to minimize Bellman error for theoretical ORP attain-
ment. This stands in contrast to conventional DRL algo-
rithms, which lack robustness due to the use of an L1-norm.
(3). We devise CAR-DQN solely utilizing a surrogate ob-
jective based on the L∞-norm to learn both natural return
and robustness. We conduct comparative evaluations of
CAR-DQN against state-of-the-art approaches across vari-
ous benchmarks, validating its practical effectiveness and
reinforcing our theoretical soundness.

2. Related Work
Adversarial attacks on DRL agents. The seminal work of
Huang et al. (2017) first exposed the vulnerability of DRL
agents to FGSM attacks (Goodfellow et al., 2014) on state
observations in Atari games. Subsequently, Lin et al. (2017);
Kos & Song (2017) introduced limited-steps attacks to de-
ceive DRL policies. Pattanaik et al. (2017) employed a critic
action-value function and gradient descent to degrade DRL
performance. Additionally, Behzadan & Munir (2017a)
proposed black-box attacks on DQN and verified the trans-
ferability of adversarial examples, while Inkawhich et al.
(2019) showed that even a constrained adversary with access
only to action and reward signals could launch highly effec-
tive and damaging attacks. Kiourti et al. (2020); Wang et al.
(2021); Bharti et al. (2022); Guo et al. (2023) investigated
backdoor attacks in reinforcement learning. Besides, Gleave
et al. (2019) have studied the adversarial policy within multi-
agent scenarios, and Zhang et al. (2021); Sun et al. (2021)

developed learned adversaries by training attackers as RL
agents. Lu et al. (2023) suggested an adversarial cheap talk
setting and trained an adversary through meta-learning. Ko-
rkmaz (2023) analyzed adversarial directions in the Arcade
Learning Environment, and found that even state-of-the-art
robust agents (Zhang et al., 2020; Oikarinen et al., 2021)
are susceptible to policy-independent sensitivity directions.

Robust discrete action for DRL agents. Earlier works
like Kos & Song (2017); Behzadan & Munir (2017b) in-
corporated adversarial states into the replay buffer during
training in Atari environments, leading to limited robustness.
Fischer et al. (2019) proposed to separate DQN architecture
into a Q network and a policy network, and robustly trained
the policy network with generated adversarial states and
provably robust bounds. Recently, Zhang et al. (2020) char-
acterized state-adversarial RL as SA-MDP, and revealed
the potential non-existence of ORP. They addressed the
challenge by considering a balance between robustness and
natural returns through a KL-based regularization. Oikari-
nen et al. (2021) controlled robustness certification bounds
to minimize the overlap between perturbed Q values of the
current action and others. Liang et al. (2022) estimated
the worst-case value estimation and combined it with the
classic Temporal Difference (TD)-target, resulting in higher
training efficiency compared to prior methods. The latest
work by Nie et al. (2023) built the DRL architecture upon
SortNet (Zhang et al., 2022), enabling global Lipschitz con-
tinuity, thus reducing the need for training extra attackers or
finding adversaries. He et al. (2023) proposed robust multi-
agent Q-learning to solve the robust equilibrium in discrete
state and action two-player games. Bukharin et al. (2023)
considered a sub-optimal Lipschitz policy in smooth envi-
ronments and extended the robustness regularization (Shen
et al., 2020; Zhang et al., 2020) to multi-agent settings. Prior
methods heuristically constrain local smoothness or invari-
ance to achieve commendable robustness, while compromis-
ing natural performance. In contrast, our approach seeks
optimal robust policies with strict theoretical guarantees,
simultaneously improving natural and robust performance.

3. Preliminaries
Markov decision process (MDP) is defined by a tuple
(S,A, r,P, γ, µ0), where S represents the state space, A
denotes the action space, r : S × A → R is the re-
ward function, P : S × A → ∆(S) stands for the
transition dynamics where ∆(S) is the probability space
over S, γ ∈ [0, 1) represents the discount factor, and
µ0 ∈ ∆(S) is the initial state distribution. In this pa-
per, we consider the setting where the continuous state
space S ⊂ Rd is a compact set and the action space
A is a finite set. Given an MDP, we define the state
value function V π(s) = Eπ,P [

∑∞
t=0 γ

tr(st, at)|s0 = s]
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and the Q (or action-value) function Qπ(s, a) =
Eπ,P [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a] for every policy π.
MDPs exhibit a notable property: there exists a station-
ary, deterministic policy that maximizes both V π(s) and
Qπ(s, a) for all s ∈ S and a ∈ A. Additionally, the opti-
mal Q function Q∗(s, a) = supπ∈Π Qπ(s, a), satisfies the
Bellman optimality equation

Q∗(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

Q∗ (s′, a′)

]
.

State-Adversarial MDP (SA-MDP) allows an adversary
ν to perturb the observed state s into sν ∈ B(s), where
B(s) is the adversary perturbation set. Let π ◦ ν denote the
policy under perturbations, the adversarial value and Q func-
tions are V π◦ν(s) = Eπ◦ν,P [

∑∞
t=0 γ

tr(st, at)|s0 = s] and
Qπ◦ν(s, a) = Eπ◦ν,P [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a],
respectively. There always exists a strongest adversary
ν∗(π) = argminν V

π◦ν for any policy π. An optimal
robust policy (ORP) π∗ should satisfy V π∗◦ν∗(π∗)(s) =
maxπ V

π◦ν∗(π)(s) for all s ∈ S.

4. Optimal Adversarial Robustness
In this section, we delve into the exploration of ORP within
SA-MDP. While Zhang et al. (2020) noted that ORP does
not necessarily exist for a general adversary, we discover
that only a few states lack ORP, and the set of these ab-
normal states has a measure close to zero in complicated
tasks. For theoretical clarity, we first propose a consistency
assumption of policy (CAP) to eliminate these states. Then,
we devise a novel consistent adversarial robust operator Tcar
for computing the adversarial Q function, and under CAP,
we identify its fixed point as exactly Q∗, thereby proving
the existence of a deterministic and stationary ORP.

4.1. Consistency Assumption of Policy

Given a general adversary, we observe the true state s and
the perturbed observation sν have the same optimal action
in practice. Some examples are shown in Figure 1 and
Appendix E. This enlightens Bellman optimal policy is ro-
bust, motivating us to consider how the adversary affects the
optimal action in theory. We assume that the adversary per-
turbation set is a ϵ-neighbourhood Bϵ(s) = {∥s′ − s∥ ≤ ϵ}
for convenience of description and first define the intrinsic
state neighborhood where the optimal action is consistent.
Definition 4.1 (Intrinsic State Neighborhood). Given an
SA-MDP, we define the intrinsic state ϵ-neighbourhood for
any state s as

B∗
ϵ (s) := {s′ ∈ S|s′ ∈ Bϵ(s),

argmax
a

Q∗(s′, a) = argmax
a

Q∗(s, a)}.

Further, we characterize the states where the state neighbor-

+ 𝜖𝜖 × =

action taken: down
original observation 𝑠𝑠

action taken: up
adversarial observation 𝑠𝑠𝜈𝜈

PGD adversary

𝝅𝝅 𝒔𝒔 = 𝒂𝒂𝟑𝟑
𝝅𝝅 𝒔𝒔𝝂𝝂 = 𝒂𝒂𝟐𝟐

optimal action optimal action

Figure 1. An example of state adversary in DQN. While the adver-
sary disrupts the policy performed by DQN, it does not impact the
optimal action dictated by the Bellman optimal policy. This obser-
vation prompts the study of two key issues: whether the Bellman
optimal policy serves as the ORP, and why vanilla DQN trained
with Bellman error fails to ensure robustness.

hood is distinct from the intrinsic one and find their little
in real environments, which lays the groundwork for the
consistency assumption of policy we develop later.
Theorem 4.2 (Rationality of CAP). Given ϵ > 0, let
Snu = {s ∈ S| argmaxa Q

∗(s, a) is not a singleton}, and
Snin = {s ∈ S|Bϵ(s) ̸= B∗

ϵ (s)}. If Q∗(·, a) is continu-
ous almost everywhere in S for all a ∈ A, we have that
Snin ⊆ Snu ∪ S0 +Bϵ, where S0 is a zero measure set.

Actually, Snu is also close to an empty set in most practical
complex environments, and S0 is a set of special and rare
discontinuous points of Q∗ (as shown in our proof). The-
orem 4.2 essentially shows, for complicated tasks, Snin is
a quite small set and the magnitude of µ(Snin) is around
O(ϵd), where µ(A) represents the measure of set A and d is
the dimension of state space. The Corollary in Appendix A.1
illustrates better conclusions with stronger conditions.

Motivated by Theorem 4.2 and the above analysis, we as-
sume that all states have a consistent intrinsic state neigh-
borhood.
Assumption 4.3 (Consistency Assumption of Policy (CAP)).
For all s ∈ S , its adversary ϵ-perturbation set is the same as
the intrinsic state ϵ-neighbourhood, i.e., Bϵ(s) = B∗

ϵ (s).

4.2. Consistent Optimal Robust Policy

To establish the relation between the optimal Q function
before and after the perturbation, we propose a consistent
adversarial robust (CAR) operator.
Definition 4.4 (CAR Operator Tcar). Given an SA-MDP,
the CAR operator is Tcar : Lp (S ×A)→ Lp (S ×A),

(TcarQ) (s, a) = r(s, a)

+ γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))]
.

Although Tcar is not contractive (see Appendix A.2.2), The-
orem 4.5 shows that under CAP, Tcar has a fixed point,
which corresponds to the optimal adversarial Q function.
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Theorem 4.5 (Relation between Q∗ and Qπ∗◦ν∗(π∗)).
(1). If the optimal adversarial Q function Qπ∗◦ν∗(π∗) exists
for all s ∈ S and a ∈ A, then it is the fixed point of Tcar.

(2). If the CAP holds, then Q∗ is the fixed point of Tcar and
it is also the optimal adversarial Q function, i.e., Q∗(s, a) =
Qπ∗◦ν∗(π∗)(s, a), for all s ∈ S and a ∈ A.

Remark 4.6. Note that the min and max operations in Defini-
tion 4.4 are not a normal minimax problem because the min-
imum and maximum objectives are different. It is a bilevel
optimization problem. The min and max can not swapped
under the general setting. However, they can swap when
argmaxas′ν

Q
(
s′ν , as′ν

)
is a singleton for all s′ν ∈ Bϵ(s

′),
which is a mild condition in our training. Further, we val-
idate that Q∗ is also the fixed point of the operator after
swapping.

We have demonstrated the convergence of Tcar in a smooth
environment (see Appendix A.2.3), stating the fixed point
iterations of Tcar at least converge to a sub-optimal solution
close to Q∗. On this basis, it can be derived from Theorem
4.5 that the greedy policy π∗(s) := argmaxa Q

∗(s, a), for
all s ∈ S, is exactly the ORP.

Corollary 4.7 (Existence of ORP). If the CAP holds, there
exists a deterministic and stationary policy π∗ which satis-
fies V π∗◦ν∗(π∗)(s) ≥ V π◦ν∗(π)(s) and Qπ∗◦ν∗(π∗)(s, a) ≥
Qπ◦ν∗(π)(s, a), for all π ∈ Π, s ∈ S and a ∈ A.

The above theorems indicate that under the CAP, the ORP
against the strongest adversary is actually the Bellman opti-
mal policy derived from the Bellman optimality equations.
This also suggests that the objectives in natural and adver-
sarial environments are aligned, which is supported by our
experiment results in Sec. 7.2.

5. Policy Robustness under Bellman p-error
As the Bellman optimal policy is ORP, we further consider
the reasons for the vulnerability of DRL agents: Although
former methods, such as Q-learning, essentially take the
Bellman optimal policy as a goal, why do they exhibit rather
poor robustness? We approach this issue by examining the
stability of policy across diverse Banach spaces.

Let Qθ denote a parameterized Q function. The value-based
RL training theoretically requires minimizing ∥Qθ −Q∗∥B,
where B is a Banach space. In practice, it is hard to make the
distance between Qθ and Q∗ vanish due to some limitations,
such as the characterization capabilities of neural networks
and the convergence of optimization algorithms. Therefore,
we analyze the properties of Qθ when the ∥Qθ −Q∗∥B is a
small positive value on different spaces B.

5.1. Necessity of L∞-norm for Adversarial Robustness

We study the adversarial robustness of the greedy policy de-
rived from Q when 0 < ∥Q−Q∗∥p = δ ≪ 1 for different
Lp spaces. Given a function Q and perturbation budget ϵ,
let SQsub = {s|Q∗(s, argmaxa Q(s, a)) < maxa Q

∗(s, a)}
denote the set of states where the greedy policy according to
Q is suboptimal, and SQadv denote the set of states in whose
ϵ-neighbourhood there exists the adversarial state, i.e.,

SQadv ={s|∃sν ∈ Bϵ(s),

s.t. Q∗(s, argmax
a

Q(sν , a)) < max
a

Q∗(s, a)}.

Theorem 5.1 (Necessity of L∞-norm). There exists an
MDP instance such that the following statements hold.

(1). For any 1 ≤ p <∞ and δ > 0, there exists a function
Q ∈ Lp (S ×A) satisfying ∥Q − Q∗∥p ≤ δ such that

µ
(
SQsub

)
= O(δ) yet µ

(
SQadv

)
= µ (S).

(2). There exists a δ̄ > 0 such that for any 0 < δ ≤ δ̄, and
any function Q ∈ L∞ (S ×A) satisfying ∥Q−Q∗∥∞ ≤ δ,

we have that µ
(
SQsub

)
= O(δ) and µ

(
SQadv

)
= 2ϵ+O (δ).

The first statement indicates that when ∥Q − Q∗∥p is a
small value for 1 ≤ p < ∞, there always exist adversar-
ial examples near almost all states, resulting in quite poor
robustness, while the policy might exhibit excellent perfor-
mance in a natural environment without adversarial attacks.
This observation sheds light on the vulnerability of DRL
agents, aligning with findings across various studies (Huang
et al., 2017; Ilahi et al., 2021). Importantly, the second
statement points out that through minimizing ∥Q − Q∗∥
in the L∞-norm space, we can avoid the vulnerability and
attain a policy with both natural and robust capabilities.
This inspires to optimize ∥Qθ −Q∗∥∞ in DRL algorithms.
Intuitive examples of Theorem 5.1 are shown in Figure 2.

5.2. Stability of Bellman Optimality Equations

Unfortunately, it is infeasible to measure ∥Qθ −Q∗∥ within
a practical DRL procedure due to the unknown nature of Q∗.
Most methods train Qθ via optimizing the Bellman error
∥TBQθ−Qθ∥B′ , where TB is the Bellman optimal operator

(TBQ) (s, a) = r(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

Q (s′, a′)

]
.

Similar to Theorem 5.1, we need to figure out which Banach
space B′ is the best to train DRL agents which can keep the
fewest adversarial states. To analyze this issue, we intro-
duce a concept of functional equations stability drawing on
relevant research about physics-informed neural networks
for partial differential equations (Wang et al., 2022).

Definition 5.2 (Stability of Functional Equations). Given
two Banach spaces B1 and B2, if there exist δ > 0 and C >
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S

Q

O

Q

O S

Figure 2. Examples of adversarial robustness for Q satisfying
∥Q − Q∗∥p ≤ δ. Given a perturbation radius ϵ, the red line
represents the set SQ

adv , in which states have adversarial states. The
left panel depicts the case of p = ∞, where all Q is distributed
in the shadow area with the measure of SQ

adv being a small value
2ϵ + O (δ). The right panel shows that for 1 ≤ p < ∞, there
always exists Q such that SQ

adv = S, indicating poor robustness.

0 such that for all Q ∈ B1∩B2 satisfying ∥T Q−Q∥B1 < δ,
we have that ∥Q−Q∗∥B2

< C∥T Q−Q∥B1
, where Q∗ is

the exact solution of this functional equation, then we say a
nonlinear functional equation T Q = Q is (B1,B2)-stable.
For simplicity, we call that functional T is (B1,B2)-stable.

The above Definition implies that if there exists a
space B′ such that TB is (B′, L∞ (S ×A))-stable, then
∥Qθ −Q∗∥∞ will be controlled when minimizing the Bell-
man error in B′ space, making DRL agents robust according
to Theorem 5.1.(2). The following theorems illustrate the
conditions that affect the stability of TB and guide for se-
lecting a suitable B′.
Theorem 5.3 (Stable Properties of TB in Lp Spaces).
(1). There exists an MDP such that for all 1 ≤ q < p ≤
∞, the Bellman optimality equations TBQ = Q is not
(Lq (S ×A) , Lp (S ×A))-stable.
(2). For any MDP, if the following conditions hold:

CP,p <
1

γ
; p ≤ q ≤ ∞;

p ≥ max

{
1,

log (|A|) + log (µ (S))
log 1

γCP,p

}
,

where CP,p := sup(s,a)∈S×A ∥P(· | s, a)∥L
p

p−1 (S)
, then we

have that the Bellman optimality equations TBQ = Q is
(Lq (S ×A) , Lp (S ×A))-stable.

We note that limp→∞ CP,p = 1 < 1
γ and thus the first

condition holds when p is large enough. The second con-
dition suggests it is available for stability that q is larger
than p, and the last condition reveals that p is relevant to
the size of the state and action spaces. Further, we have
that TB is (L∞ (S ×A) , L∞ (S ×A))-stable and thus we
can optimize DRL agents in space B′ = L∞ (S ×A) for

adversarial robustness. Moreover, B′ cannot be Lq (S ×A)
for all 1 ≤ q <∞ according to Theorem 5.3.(1).

6. Consistent Adversarial Robust DQN
Our theoretical analysis has revealed the feasibility of train-
ing a deep Q-network (DQN) by minimizing the Bellman
error in L∞ space to achieve the ORP. However, the exact
computation of the L∞-norm is intractable because of the
unknown environment and continuous state space. There-
fore, we introduce a surrogate objective based on the L∞-
norm and present the Consistent Adversarial Robust deep
Q-network (CAR-DQN), enhancing both the natural and
robust performance of agents.

6.1. Stability of Deep Q-learning

Define the state-action visitation distribution as

dπµ0
(s, a) = Es0∼µ0

(1− γ)

∞∑
t=0

γt Prπ(st = s, at = a|s0).

Deep Q-learning algorithms, e.g., DQN, leverage the fol-
lowing objective due to interactions with the environment:

L(Qθ;πθ) = E(s,a)∼d
πθ
µ0
|TBQθ(s, a)−Qθ(s, a)| .

The former theoretical analysis of functional equations sta-
bility can be extended to L(Qθ;πθ) by integrating sampling
probability into a seminorm.

Definition 6.1 ((p, dπµ0
)-seminorm). Given a policy π, f :

S × A → R and 1 ≤ p ≤ ∞, if dπµ0
is a probability

density function, we define the (p, dπµ0
)-seminorm as the

following, which satisfies the absolute homogeneity and
triangle inequality:

∥f∥p,dπ
µ0

:= (

∫
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣p dµ(s, a)) 1
p .

We note that (p, dπµ0
)-seminorm will be upgraded to a

norm, if dπµ0
(s, a) > 0 almost everywhere for (s, a) ∈

S ×A. The deep Q-learning objective can be streamlined
as L(Qθ;πθ) = ∥TBQθ −Qθ∥1,dπθ

µ0
based on the defini-

tion. Similar to Theorem 5.3, we prove this objective cannot
ensure robustness, while (∞, dπµ0

)-norm is necessary for
adversarial robustness (see Appendix C.2).

Theorem 6.2. In the practical DQN procedure, the Bellman
optimality equations TBQ = Q is (L∞,dπ

µ0 (S×A), Lp(S×
A))-stable for all 1 ≤ p ≤ ∞, while it is not (Lq,dπ

µ0 (S ×
A), Lp(S ×A))-stable for all 1 ≤ q < p ≤ ∞.

We also investigate the stability when dπµ0
is a probability

mass function in Appendix C.1 and C.3.
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6.2. Consistent Adversarial Robust Objective

Inspired by the theoretical analysis, we propose to train
robust DQNs with Lcar(θ) = ∥TBQθ −Qθ∥∞,d

πθ
µ0

, which
is equal to (see Appendix D)

sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)−Qθ(sν , a)| ,

where πθ is a behavior policy related to Qθ and it is usually
ϵ-greedy policy derived from Qθ. Since interactions with the
environment in an SA-MDP happen based on the true state
s rather than sν , TBQθ(sν , a) cannot be directly estimated.
Thus, we exploit TBQθ(s, a) to substituted it, attaining a
surrogate objective Ltrain

car (θ):

sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(s, a)−Qθ(sν , a)| ,

which can bound Lcar, especially in smooth environments.
Denote Ldiff

car (θ) as the following:

sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)− TBQθ(s, a)| .

Theorem 6.3 (Bounding Lcar with Ltrain
car ). We have that∣∣Ltrain

car (θ)− Ldiff
car (θ)

∣∣ ≤ Lcar(θ) ≤ Ltrain
car (θ)+Ldiff

car (θ).

Further, suppose the environment is (Lr, LP)-smooth and
suppose Qθ and r are uniformly bounded, i.e. ∃MQ,Mr >
0 such that |Qθ(s, a)| ≤MQ, |r(s, a)| ≤Mr ∀s ∈ S, a ∈
A. If M := supθ,(s,a)∈S×A dπθ

µ0
(s, a) <∞, then we have

Ldiff
car (θ) ≤ CTB

ϵ,

where CTB
= LTB

M , LTB
= Lr + γCQLP and CQ =

max
{
MQ,

Mr

1−γ

}
. The definition of (Lr, LP)-smooth envi-

ronment is shown in Appendix A.2.3.

Theorem 6.3 suggests that Ltrain
car (θ) is a proper surrogate

objective from the optimization perspective. It also provides
an insight into potential instability during robust training:
If Ltrain

car (θ) is minimized to a small value yet less than
Ldiff
car (θ), Lcar(θ) may tend to increase or overfit.

In implementation, to fully utilize each sample in the batch,
we derive the soft version Lsoft

car (θ) of the CAR objective
(derivation seen in Appendix D):∑
i∈|B|

αi max
sν∈Bϵ(si)

∣∣∣ri + γmax
a′

Qθ̄(s
′
i, a

′)−Qθ(sν , ai)
∣∣∣ ,

where αi =
e

1
λ maxsν |ri+γ maxa′ Qθ̄(s

′
i,a

′)−Qθ(sν ,ai)|∑
i∈|B| e

1
λ maxsν |ri+γ maxa′ Qθ̄(s

′
i,a

′)−Qθ(sν ,ai)| .

B represents a batch of transition pairs sampled from the
replay buffer. θ̄ is the parameter of target network and λ is
the coefficient to control the level of softness.
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Figure 3. Episode rewards of CAR-DQN agents with and without
10-step PGD attacks on 4 Atari games and 5 random seeds. As
evidenced by the overlap of the two curves, CAR-DQN achieves
the consistency between Bellman optimal policy and ORP.

7. Experiments
In this section, we conduct extensive comparison and abla-
tion experiments to validate the rationality of our theoretical
analysis and the effectiveness of CAR-DQN.

7.1. Implementation details

Environments. Following recent works (Zhang et al.,
2020; Oikarinen et al., 2021; Liang et al., 2022), we con-
duct experiments on four Atari video games (Brockman
et al., 2016), including Pong, Freeway, BankHeist, and
RoadRunner. These environments are characterized by high-
dimensional pixel inputs and discrete action spaces. We
pre-process the input images into 84× 84 grayscale images
and normalize the pixel values to the range [0, 1]. In each
environment, agents execute an action every 4 frames, skip-
ping the other frames without frame stacking. All rewards
are clipped to the range [−1, 1].

Baselines. We compare CAR-DQN with several state-of-
the-art robust training methods. SA-DQN (Zhang et al.,
2020) incorporates a KL-based regularization and solves
the inner maximization problem using PGD (Madry et al.,
2017) and CROWN-IBP (Zhang et al., 2019), respectively.
RADIAL-DQN (Oikarinen et al., 2021) applies adversar-
ial regularizations based on robustness verification bounds
computed by IBP (Gowal et al., 2018). We utilize the of-
ficial code of SA-DQN and RADIAL-DQN and replicate
WocaR-DQN, as its official implementation uses a different
environment wrapper compared to SA-DQN and RADIAL.

Evaluations. We evaluate the robustness of agents using
three metrics on Atari games: (1) episode return under a
10-steps untargeted PGD attack (Madry et al., 2017), (2)
episode return under MinBest (Huang et al., 2017), both
of which minimize the probability of selecting the learned
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Table 1. Average episode rewards ± standard error of the mean over 50 episodes on baselines and CAR-DQN. The best results of the
algorithm with the same type of solver are highlighted in bold. CAR-DQN (PGD) outperforms SA-DQN (PGD) in all metrics and achieves
remarkably better robustness (110% higher reward) on RoadRunner. CAR-DQN (cov) outperforms baselines in a majority of cases.

Model
Pong BankHeist

Natural
Reward

PGD MinBest ACR Natural
Reward

PGD MinBest ACR
ϵ = 1/255 ϵ = 1/255

Standard DQN 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 0 1317.2± 4.2 22.2± 1.9 0.0± 0.0 0

PGD SA-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 0 1248.8± 1.4 965.8± 35.9 1118.0± 6.3 0
CAR-DQN (Ours) 21.0± 0.0 21.0± 0.0 21.0± 0.0 0 1307.0± 6.1 1243.2± 7.4 1242.6± 8.4 0

Convex
Relaxation

SA-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 1.000 1236.0± 1.4 1232.2± 2.5 1232.2± 2.5 0.991
RADIAL-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 0.898 1341.8± 3.8 1341.8± 3.8 1341.8± 3.8 0.982
WocaR-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 0.979 1315.0± 6.1 1312.0± 6.1 1312.0± 6.1 0.987

CAR-DQN (Ours) 21.0± 0.0 21.0± 0.0 21.0± 0.0 0.986 1349.6± 3.0 1347.6± 3.6 1347.4± 3.6 0.974

Model
Freeway RoadRunner

Natural
Reward

PGD MinBest ACR Natural
Reward

PGD MinBest ACR
ϵ = 1/255 ϵ = 1/255

Standard DQN 33.9± 0.0 0.0± 0.0 0.0± 0.0 0 41492± 903 0± 0 0± 0 0

PGD SA-DQN 33.6± 0.1 23.4± 0.2 21.1± 0.2 0.250 33380± 611 20482± 1087 24632± 812 0
CAR-DQN (Ours) 34.0± 0.0 33.7± 0.1 33.7± 0.1 0 49700± 1015 43286± 801 48908± 1107 0

Convex
Relaxation

SA-DQN 30.0± 0.0 30.0± 0.0 30.0± 0.0 1.000 46372± 882 44960± 1152 45226± 1102 0.819
RADIAL-DQN 33.1± 0.1 33.3± 0.1 33.3± 0.1 0.998 46224± 1133 45990± 1112 46082± 1128 0.994
WocaR-DQN 30.8± 0.1 31.0± 0.0 31.0± 0.0 0.992 43686± 1608 45636± 706 45636± 706 0.956

CAR-DQN (Ours) 33.2± 0.1 33.2± 0.1 33.2± 0.1 0.981 49398± 1106 49456± 992 47526± 1132 0.760

best action, and (3) Action Certification Rate (ACR) (Zhang
et al., 2020). ACR uses relaxation bounds to estimate the
percentage of frames where the learned best action is guar-
anteed to remain unchanged during rollouts under attacks.

CAR-DQN. We implement CAR-DQN based on Double
Dueling DQN (Van Hasselt et al., 2016; Wang et al., 2016)
and train all baselines and CAR-DQN for 4.5 million steps,
based on the same standard model released by Zhang et al.
(2020), which has been trained for 6 million steps. We in-
crease the attack ϵ from 0 to 1/255 in the first 4 million
steps using the same smoothed schedule as in Zhang et al.
(2020); Oikarinen et al. (2021); Liang et al. (2022), and then
continue training with a fixed ϵ for the remaining 0.5 million
steps. We use Huber loss to replace the absolute value func-
tion and separately apply classic gradient-based methods
(PGD) and cheap convex relaxation (IBP) to resolve the
inner optimization in Lsoft

car (θ). For CAR-DQN with PGD
solver, hyper-parameters are the same as SA-DQN (Zhang
et al., 2020). For CAR-DQN with IBP solver, we update
the target network every 2000 steps, and set learning rate as
1.25× 10−4, batch size as 32, exploration ϵexp-end as 0.01,
soft coefficient λ = 1.0 and discount factor as 0.99. We use
a replay buffer with a capacity of 2× 105 and Adam opti-
mizer (Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.999.

7.2. Comparison Results

Evaluation on benchmarks. Table 1 presents the natural
and robust performance, with all agents trained and attacked
using a perturbation radius of ϵ = 1/255. More results
and discussion are provided in Appendix H and G. Notably,

CAR-DQN agents exhibit superior performance compared
to baselines in the most challenging RoadRunner environ-
ment, achieving significant improvements in both natural
and robust rewards. In the other three games, CAR-DQN
can well match the performance of the baselines. Our pro-
posed loss function coupled with the PGD solver, achieves
a remarkable return of around 45000 on the RoadRunner
environment, outperforming the SA-DQN with the PGD
approach. It also attains 60% higher robust rewards under
the MinBest attack on the Freeway game. In these two
solvers, we observe that PGD exhibits relatively weaker
robust performance compared to the convex relaxation, es-
pecially failing to ensure the ACR computed with relaxation
bounds. This discrepancy can be attributed to that the PGD
solver offers a lower bound surrogate function of the loss,
while the IBP solver gives an upper bound.

Consistency in natural and PGD attack returns. Fig-
ure 3 records the natural and PGD attack returns of CAR-
DQN agents during training, showcasing a strong alignment
between natural performance and robustness across all en-
vironments. This alignment validates our theory that the
ORP is consistent with the Bellman optimal policy, and
confirms the rationality of the proposed CAP. In addition,
Figure 4 illustrates the natural episode return and robustness
during training for different algorithms. It is worth noting
that CAR-DQN agents can fast and stably converge to peak
robustness and natural performance across all environments,
while other algorithms exhibit unstable trends. For instance,
the natural reward curves of SA-DQN and WocaR-DQN on
BankHeist and RADIAL-DQN on RoadRunner distinctly
tend to decrease, and the robust curves of SA-DQN and

7



Towards Optimal Adversarial Robust Q-learning with Bellman Infinity-error

RoadRunner BankHeist Freeway Pong

R
ob

us
t

0 1 2 3 4
Step/M

0

10000

20000

30000

40000

50000

R
et

ur
n

CAR (robust)
SA (robust)
RADIAL (robust)
WocaR (robust)

0 1 2 3 4
Step/M

0

200

400

600

800

1000

1200

1400

R
et

ur
n

CAR (robust)
SA (robust)
RADIAL (robust)
WocaR (robust)

0 1 2 3 4
Step/M

0

5

10

15

20

25

30

R
et

ur
n

CAR (robust)
SA (robust)
RADIAL (robust)
WocaR (robust)

0 1 2 3 4
Step/M

20

10

0

10

20

R
et

ur
n

CAR (robust)
SA (robust)
RADIAL (robust)
WocaR (robust)

N
at

ur
al

0 1 2 3 4
Step/M

0

10000

20000

30000

40000

50000

R
et

ur
n

CAR (natural)
SA (natural)
RADIAL (natural)
WocaR (natural)

0 1 2 3 4
Step/M

400

600

800

1000

1200

1400

R
et

ur
n

CAR (natural)
SA (natural)
RADIAL (natural)
WocaR (natural)

0 1 2 3 4
Step/M

26

27

28

29

30

31

32

33

R
et

ur
n

CAR (natural)
SA (natural)
RADIAL (natural)
WocaR (natural)

0 1 2 3 4
Step/M

10

5

0

5

10

15

20

R
et

ur
n

CAR (natural)
SA (natural)
RADIAL (natural)
WocaR (natural)

Figure 4. Episode rewards of baselines and CAR-DQN with and without PGD attacks on 4 Atari games. Shaded regions are computed
over 5 random seeds. CAR-DQN demonstrates superior natural and robust performance in all environments.

Table 2. Performance of DQN with different Bellman p-error.

Environment Norm Natural PGD MinBest ACR

Pong
L1 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 0
L2 21.0± 0.0 −21.0± 0.0 −20.8± 0.1 0
L∞ 21.0± 0.0 21.0± 0.0 21.0± 0.0 0.985

Freeway
L1 33.9± 0.1 0.0± 0.0 0.0± 0.0 0
L2 21.8± 0.3 21.7± 0.3 22.1± 0.3 0
L∞ 33.3± 0.1 33.2± 0.1 33.2± 0.1 0.981

BankHeist
L1 1325.5± 5.7 27.0± 2.0 0.0± 0.0 0
L2 1314.5± 4.0 18.5± 1.5 22.5± 2.6 0
L∞ 1356.0± 1.7 1356.5± 1.1 1356.5± 1.1 0.969

RoadRunner
L1 43795± 1066 0± 0 0± 0 0
L2 30620± 990 0± 0 0± 0 0
L∞ 49500± 2106 48230± 1648 48050± 1642 0.947

WocaR-DQN on BankHeist tend to decline. This discrep-
ancy primarily stems from their robustness objectives, which
diverge from the standard training loss and consequently
result in learning sub-optimal actions. In contrast, the pro-
posed consistent objective ensures that CAR-DQN always
learns optimal actions in both natural and robust directions.

Training efficiency. Training SA-DQN, RADIAL-DQN,
WocaR-DQN, and CAR-DQN costs approximately 27, 12,
20, and 14 hours, respectively. All these models are trained
for 4.5 million frames on identical hardware. Addition-
ally, our proposed loss does not incur additional memory
consumption compared to vanilla training.

7.3. Ablation Studies

Necessity of infinity-norm. To verify the necessity of the
(∞, dπµ0

)-norm for adversarial robustness, we train DQN
agents using the Bellman error under (1, dπµ0

)-norm and
(2, dπµ0

)-norm, respectively. We then compare their per-
formance with our CAR-DQN, which approximates the
Bellman error under (∞, dπµ0

)-norm. As shown in Table 2,
all agents perform well without attacks in the four games.
However, the performance of (1, dπµ0

)-norm and (2, dπµ0
)-

norm agents highly degrades under strong attacks, receiving
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Figure 5. Natural, PGD attack, and MinBest attack rewards of
CAR-DQN with different soft coefficients on RoadRunner game.

episode rewards close to the lowest in each game. These
empirical results are highly consistent with Theorem 5.1.

Effects of soft coefficient. We validate the effectiveness
of the soft CAR-DQN loss by adjusting the soft coefficient
λ. We train CAR-DQN agents on the RoadRunner environ-
ment with λ values ranging from 0 to∞. When λ = 0 we
utilize the sample with the largest adversarial TD-error from
a batch, while λ = ∞ corresponds to averaging over all
samples in a batch. It is worth noting that a small λ may lead
to numerical instability. As depicted in Figure 5, the agents
exhibit similar capabilities when 0.5 ≤ λ ≤ 10, indicating
that the learned policies are not sensitive to the soft coeffi-
cient within this range. Table 3 displays the performance
of CAR-DQN agents with λ = 0, 1,∞ across four Atari
environments. In the RoadRunner, the case λ = 0 yields
poor performance, achieving returns around 25000 due to
inadequate utilization of the samples. Interestingly, utiliz-
ing only the sample with the largest adversarial TD error
from a batch achieves good robustness on the other three
simpler games. The case λ =∞ results in worse robustness
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Table 3. Ablation studies for soft coefficients on 4 Atari games.

Environment λ Natural PGD MinBest ACR

Pong
0 21.0± 0.0 21.0± 0.0 21.0± 0.0 0.972
1 21.0± 0.0 21.0± 0.0 21.0± 0.0 0.985
∞ 20.6± 0.1 20.7± 0.1 20.7± 0.1 0.980

Freeway
0 31.6± 0.2 31.5± 0.1 31.5± 0.1 0.966
1 33.3± 0.1 33.2± 0.1 33.2± 0.1 0.981
∞ 31.5± 0.1 30.9± 0.3 31.2± 0.2 0.967

BankHeist
0 1307.5± 11.0 1288.5± 14.0 1284.0± 13.8 0.980
1 1356.0± 1.7 1356.5± 1.1 1356.5± 1.1 0.969
∞ 1326.0± 4.8 1316.0± 6.8 1314.0± 6.6 0.979

RoadRunner
0 25160± 802 24540± 760 26785± 617 0.007
1 49500± 2106 48230± 1648 48050± 1642 0.947
∞ 40890± 2075 36760± 1874 36740± 2098 0.940

compared to other cases with differentiated weights. This
suggests that each sample in a batch plays a distinct role
in robust training, and we can enhance robust performance
by specifying weightings. These results further validate the
efficacy of our CAR-DQN loss.

8. Conclusion
In this paper, we prove the alignment of the optimal robust
policy with the Bellman optimal policy under the consis-
tency assumption of policy. We show that measuring Bell-
man error in differed Lp spaces yields varied performance,
underscoring the necessity of Bellman infinity-error for ro-
bustness. We validate these findings through experiments
with CAR-DQN, which optimizes a surrogate objective of
Bellman infinity-error. We believe this work contributes sig-
nificantly to unveiling the nature of robustness in Q-learning.
Since our work focuses on value-based DRL with discrete
action space, we will extend future research into the policy-
based DRL and continuous action space setting.
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A. Theorems and Proofs of Optimal Adversarial Robustness
A.1. Reasonablity of the Consistency Assumption

Theorem A.1. For any MDP M, let Snu denote the state set where the optimal action is not unique, i.e. Snu =
{s ∈ S| argmaxa Q

∗(s, a) is not a singleton}. If Q∗(·, a) is continuous almost everywhere in S for all a ∈ A, we have the
following conclusions:

• For almost everywhere s ∈ S \ Snu, there exists ϵ > 0 such that Bϵ(s) = B∗
ϵ (s).

• Given ϵ > 0, let Snin denote the set of states where the intrinsic state ϵ-neighourhood is not the same
as the ϵ-neighourhood, i.e. Snin = {s ∈ S|Bϵ(s) ̸= B∗

ϵ (s)}. Then, we have Snin ⊆ Snu ∪ S0 + Bϵ =
{s1 + s2|s1 ∈ Snu ∪ S0, ∥s2∥ ≤ ϵ}, where S0 is a zero measure set.

Proof. (1) Let S ′ = {s ∈ S|∃a ∈ A, s.t. Q∗(s, a) is not continuous at s}. Then µ(S ′) = 0 because Q∗(·, a) is continuous
almost everywhere in S for all a ∈ A and A is a finite discrete set. And Q∗(s, a) is continuous in (S \ Snu) \ S ′. Because
argmaxa Q

∗(s, a) is a singleton for s ∈ (S \ Snu) \ S ′, define argmaxa Q
∗(s, a) = {a∗s} for any s ∈ (S \ Snu) \ S ′

. Then Q∗(s, a∗s) > Q∗(s, a) for a fixed a ∈ A \ {a∗s}. According to continuity of Q∗(·, a) for all a ∈ A, there exists
ϵa > 0, such that Q∗(s′, a∗s) > Q∗(s′, a) for all s′ ∈ Bϵa(s). Because A is a finite discrete set, let ϵ = mina∈A\a∗

s
{ϵa},

then Q∗(s′, a∗s′) > Q∗(s′, a) for all s′ ∈ Bϵ(s) and for all a ∈ A \ {a∗s′}, i.e. Bϵ(s) = B∗
ϵ (s).

(2)Let Sn = {s ∈ S|∀ϵ1 > 0,∃s′ ∈ Bϵ1(s), s.t. argmaxa Q
∗(s′, a) ̸= argmaxa Q

∗(s, a)} and S0 = Sn ∩ S ′. Then S0

is the set of discontinuous points that cause the optimal action to change. And µ(S0) = µ(Sn ∩ S ′) = 0 because µ(S ′) = 0.

For any s ∈ Snin = {s ∈ S|Bϵ(s) ̸= B∗
ϵ (s)}, we have the following two cases.

Case 1. ∃s′ ∈ Bϵ(s) s.t. s′ ∈ Snu, then s ∈ Snu +Bϵ, i.e.

s ∈ Snu ∪ S0 +Bϵ. (1)

Case 2. ∀s′ ∈ Bϵ(s), s
′ /∈ Snu, which means that argmaxa Q

∗(s′, a) is a singleton for all s′ ∈ Bϵ(s). Define
argmaxa Q

∗(s′, a) = {a∗s′} for any s′ ∈ Bϵ(s).

Because s ∈ Snin, there exist a s′ ∈ Bϵ(s) such that a∗s′ ̸= a∗s . Let s1 be the point that closest to s satisfing a∗s1 ̸= a∗s , then
s1 ∈ Bϵ(s). We have

s1 ∈ Sn. (2)

Otherwise s1 /∈ Sn means that ∃ϵ1 > 0,∀s′ ∈ Bϵ1(s1), a
∗
s′ = a∗s1 , then s1 is not the point that closest to s satisfing

a∗s1 ̸= a∗s , which is a contradiction. We also have
s1 ∈ S ′. (3)

Otherwise s1 /∈ S ′ means that ∀a ∈ A, Q∗(·, a) is continuous in s1. First, we have

Q∗(s1, a
∗
s1) > Q∗(s1, a),∀a ∈ A \ {a∗s1}. (4)

Then ∃ϵ2 > 0, ∀s ∈ Bϵ2(s1), s.t.
Q∗(s, a∗s1) > Q∗(s, a),∀a ∈ A \ {a∗s1}. (5)

because of the continuity of point s1. This contradicts the definition of s1.

According to (2) and (3), we have s1 ∈ S ′ ∩ Sn i.e. s1 ∈ S0. Then s ∈ S0 +Bϵ(s), i.e.

s ∈ Snu ∪ S0 +Bϵ. (6)

Thus
Snin ⊆ Snu ∪ S0 +Bϵ. (7)
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Remark A.2. In practical and complex tasks, we can view Snu as an empty set.
Remark A.3. Except for the smooth environment, many tasks can be modeled as environments with sparse rewards. Further,
the value function and action-value function in these environments are almost everywhere continuous.
Remark A.4. According to the construction in the above proof, we know that S0 is a set of special discontinuous points and
its elements are rare in practical complex environments.

Further, we can get the following corollary in the setting of continuous functions and there are better conclusions.

Corollary A.5. For any MDP M, let Snu denote the state set where the optimal action is not unique, i.e. Snu =
{s ∈ S| argmaxa Q

∗(s, a) is not a singleton}. If Q∗(·, a) is continuous in S for all a ∈ A, we have the following conclu-
sions:

• For s ∈ S \ Snu, there exists ϵ > 0 such that Bϵ(s) = B∗
ϵ (s).

• Given ϵ > 0, let Snin denote the set of states where the intrinsic state ϵ-neighourhood is not the same
as the ϵ-neighourhood, i.e. Snin = {s ∈ S|Bϵ(s) ̸= B∗

ϵ (s)}. Then, we have Snin ⊆ Snu + Bϵ =
{s1 + s2|s1 ∈ Snu, ∥s2∥ ≤ ϵ}. Especially, when Snu is a finite set, we have µ (Snin) ≤ |Snu|µ (Bϵ) = Cd |Snu| ϵd,
where Cd is a constant with respect to dimension d and norm.

Proof. Corollary A.5 can be derived from Theorem A.1 because we have the following conclusion in continuous case.

S0 ⊆ {s ∈ S|∃a ∈ A, s.t. Q∗(s, a) is not continuous at s} = ∅ (8)

Remark A.6. Certain natural environments show smooth reward function and transition dynamics, especially in continuous
control tasks where the transition dynamics come from some physical laws. Further, the value function and action-value
function in these environments is continuous.

A.2. ORP and CAR Operator

Define the consistent adversarial robust operator for adversarial action-value function:

(TcarQ) (s, a) = r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))]
. (9)

A.2.1. EQUIVALENCE WITH OPTIMAL ADVERSARIAL VALUE FUNCTION

Lemma A.7 (Bellman equations for fixed π and ν in SA-MDP, Zhang et al. (2020)). Given π : S → ∆(A) and ν : S → S ,
we have

V π◦ν(s) = Ea∼π(·|ν(s))Q
π◦ν(s, a) (10)

= Ea∼π(·|ν(s))
[
r(s, a) + γEs′∼P(·|s,a)V

π◦ν(s′)
]
, (11)

Qπ◦ν(s, a) = r(s, a) + γEs′∼P(·|s,a)V
π◦ν(s′) (12)

= r(s, a) + γEs′∼P(·|s,a),a′∼π(·|ν(s′))Q
π◦ν(s′, a′). (13)

Lemma A.8 (Bellman equation for strongest adversary ν∗ in SA-MDP, Zhang et al. (2020)).

V π◦ν∗(π)(s) = min
ν(s)∈Bϵ(s)

Ea∼π(·|ν(s))Q
π◦ν∗(π)(s, a). (14)

Definition A.9. Define the linear functional Lπ◦ν : Lp (S ×A)→ Lp (S ×A) for fixed π and ν:

(Lπ◦νQ) (s, a) := Es′∼P(·|s,a),a′∼π(·|ν(s′))Q(s′, a′). (15)

Then, by lemma A.7, we have that
Qπ◦ν = r + γLπ◦νQπ◦ν . (16)
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Lemma A.10. T : X → X is a linear functional where X are normed vector space. If there exists m > 0 such that

∥T x∥ ≥ m∥x∥ ∀x ∈ X , (17)

then T has a bounded inverse operator T −1.

Proof. If T x1 = T x2, then T (x1 − x2) = 0. While 0 = ∥T (x1 − x2)∥ ≥ m∥x1 − x2∥, thus x1 = x2. Then T is a
bijection and thus the inverse operator of T exists.

For any y ∈ X , T −1y ∈ X . We have that

∥y∥ = ∥T
(
T −1y

)
∥ ≥ m∥T −1y∥. (18)

Thus, we attain that

∥T −1y∥ ≤ 1

m
∥y∥, ∀y ∈ X , (19)

which shows that T −1 is bounded.

Lemma A.11. I − γLπ◦ν is invertible and thus we have that

Qπ◦ν = (I − γLπ◦ν)
−1

r. (20)

Proof. Firstly, for all (s, a) ∈ S ×A, we have

(Lπ◦νQ) (s, a) = Es′∼P(·|s,a),a′∼π(·|ν(s′))Q(s′, a′) (21)
≤ Es′∼P(·|s,a),a′∼π(·|ν(s′)) ∥Q∥L∞(S×A) (22)

= ∥Q∥L∞(S×A) (23)

Thus, we have that
∥Lπ◦νQ∥L∞(S×A) ≤ ∥Q∥L∞(S×A) . (24)

For any Q ∈ Lp (S ×A), we have

∥(I − γLπ◦ν)Q∥L∞(S×A) = ∥Q− γLπ◦νQ∥L∞(S×A) (25)

≥ ∥Q∥L∞(S×A) − γ ∥Lπ◦νQ∥L∞(S×A) (26)

≥ ∥Q∥L∞(S×A) − γ ∥Q∥L∞(S×A) (27)

= (1− γ) ∥Q∥L∞(S×A) , (28)

where the first inequality comes from the triangle inequality and the second inequality comes from (24). Then, according to
lemma A.10, we attain that I − γLπ◦ν is invertible.

Lemma A.12. If Q > 0 for all (s, a) ∈ S ×A, then we have that (I − γLπ◦ν)
−1

Q > 0 for all (s, a) ∈ S ×A.

Proof. At first, we have

(I − γLπ◦ν)

( ∞∑
t=0

γt (Lπ◦ν)
t

)
(29)

=

∞∑
t=0

γt (Lπ◦ν)
t −

∞∑
t=1

γt (Lπ◦ν)
t (30)

= I. (31)

Thus, we get that

(I − γLπ◦ν)
−1

=

∞∑
t=0

γt (Lπ◦ν)
t
. (32)

14



Towards Optimal Adversarial Robust Q-learning with Bellman Infinity-error

If Q(s, a) > 0 for all (s, a) ∈ S ×A, then for all (s, a) ∈ S ×A, we have

(Lπ◦νQ) (s, a) = Es′∼P(·|s,a),a′∼π(·|ν(s′))Q(s′, a′) ≥ 0. (33)

Further, we have that
(
(Lπ◦ν)

k
Q
)
(s, a) > 0 for all k ∈ N and (s, a) ∈ S ×A. Thus, we have

(I − γLπ◦ν)
−1

Q(s, a) (34)

=

∞∑
t=0

γt
(
(Lπ◦ν)

t
Q
)
(s, a) (35)

> 0. (36)

Theorem A.13. If the optimal adversarial action-value function under the strongest adversary Q0(s, a) :=
maxπ minν Q

π◦ν(s, a) exists for all s ∈ S and a ∈ A, then it is the fixed point of CAR operator.

Proof. Denote V0(s) = maxπ minν V
π◦ν(s). For all s ∈ S and a ∈ A, we have

Q0(s, a) = max
π

min
ν

Qπ◦ν(s, a) (37)

= r(s, a) + γmax
π

min
ν

Es′∼P(·|s,a)V
π◦ν(s′) (38)

= r(s, a) + γEs′∼P(·|s,a)V0(s
′) (39)

= r(s, a) + γEs′∼P(·|s,a) min
ν(s)∈Bϵ(s)

max
π

Ea∼π(·|ν(s))Q0(s, a) (40)

= r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
Q0

(
s′, argmax

as′ν

Q0

(
s′ν , as′ν

))]
(41)

= (TcarQ) (s, a), (42)

where the fourth equation comes from lemma (A.8). This completes the proof.

Theorem A.14. If the consistency assumption holds, then Q∗ is the fixed point of the CAR operator. Further, Q∗ is the
optimal adversarial action-value function under the strongest adversary, i.e. Q∗(s, a) = maxπ minν Q

π◦ν(s, a), for all
s ∈ S and a ∈ A.

Proof.

(TcarQ∗) (s, a) = r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈B∗
ϵ (s

′)
Q∗

(
s′, argmax

as′ν

Q∗ (s′ν , as′ν)
)]

(43)

= r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈B∗
ϵ (s

′)
max
a′

Q∗ (s′, a′)

]
(44)

= r(s, a) + γEs′∼P(·|s,a)

[
max
a′

Q∗ (s′, a′)
]

(45)

= Q∗(s, a), (46)

where the second equality utilizes the definition of B∗
ϵ (s

′). Thus, Q∗ is a fixed point of the CAR operator.

Define π and ν as the following:

π(s) := argmax
a

Q∗(s, a), (47)

ν(s) := argmin
sν∈Bϵ(s)

Q∗

(
s, argmax

asν

Q∗ (sν , asν )

)
. (48)
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Then, we have

(TcarQ∗) (s, a) = r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
Q∗

(
s′, argmax

as′ν

Q∗ (s′ν , as′ν)
)]

(49)

= r(s, a) + γEs′∼P(·|s,a)

[
Q∗

(
s′, argmax

aν(s′)

Q∗ (ν(s′), aν(s′))
)]

(50)

= r(s, a) + γEs′∼P(·|s,a) [Q
∗ (s′, π (ν(s′)))] (51)

= r(s, a) + γ (Lπ◦νQ∗) (s, a). (52)

Thus, we have
Q∗ = (I − γLπ◦ν)

−1
r = Qπ◦ν , (53)

where equations comes from lemma A.11. Further, according to the consistency assumption, we attain Qπ◦ν(s, a) =
Qπ◦ν∗(π). This shows that Q∗ is the action-value adversarial function of policy π under the strongest adversary ν = ν∗(π).

According to the consistency assumption and the definition of B∗
ϵ , we have that

π(ν(s)) = π(s), ∀s ∈ S. (54)

Then, for any stationary policy π′, we have that[(
Lπ◦ν − Lπ′◦ν∗(π′)

)
Qπ◦ν

]
(s, a) (55)

= Es′∼P(·|s,a)
[
Qπ◦ν (s′, π (ν(s′)))− Ea′∼π′(·|ν∗(s′;π′))Q

π◦ν(s′, a′)
]

(56)

= Es′∼P(·|s,a)
[
Qπ◦ν (s′, π (s′))− Ea′∼π′(·|ν∗(s′;π′))Q

π◦ν(s′, a′)
]

(57)
= Es′∼P(·|s,a),a′∼π′(·|ν∗(s′;π′)) [Q

π◦ν (s′, π (s′))−Qπ◦ν(s′, a′)] (58)
≥ 0, (59)

where the second equality comes from (54) and the last inequality comes from (47).

Further, we have that

Q∗ −Qπ′◦ν∗(π′) = Qπ◦ν −Qπ′◦ν∗(π′) (60)

= Qπ◦ν −
(
I − γLπ′◦ν∗(π′)

)−1

r (61)

= Qπ◦ν −
(
I − γLπ′◦ν∗(π′)

)−1

(I − γLπ◦ν)Qπ◦ν (62)

=
(
I − γLπ′◦ν∗(π′)

)−1 ((
I − γLπ′◦ν∗(π′)

)
− (I − γLπ◦ν)

)
Qπ◦ν (63)

= γ
(
I − γLπ′◦ν∗(π′)

)−1 (
Lπ◦ν − Lπ′◦ν∗(π′)

)
Qπ◦ν (64)

≥ 0, (65)

where the last inequality comes from (59) and lemma A.12. Thus, we have that Qπ◦ν = Q∗ ≥ Qπ′◦ν∗(π′) for all policy π′

which shows that π is the optimal robust policy under strongest adversary.

Corollary A.15. If the consistency assumption holds, there exists a deterministic and stationary policy π∗ which satisfies
V π∗◦ν∗(π∗)(s) ≥ V π◦ν∗(π)(s) and Qπ∗◦ν∗(π∗)(s, a) ≥ Qπ◦ν∗(π)(s, a) for all π ∈ Π, s ∈ S and a ∈ A.

Proof. According to theorem A.14, we have that Q∗(s, a) = maxπ minν Q
π◦ν(s, a), for all s ∈ S and a ∈ A. Define π∗

and ν∗ as the following:

π∗(s) := argmax
a

Q∗(s, a), (66)

ν∗(s) := argmin
sν∈Bϵ(s)

Q∗

(
s, argmax

asν

Q∗ (sν , asν )

)
. (67)
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Then, we have that

(TcarQ∗) (s, a) = r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
Q∗

(
s′, argmax

as′ν

Q∗ (s′ν , as′ν)
)]

(68)

= r(s, a) + γEs′∼P(·|s,a)

[
Q∗

(
s′, argmax

aν(s′)

Q∗ (ν∗(s′), aν(s′))
)]

(69)

= r(s, a) + γEs′∼P(·|s,a) [Q
∗ (s′, π∗ (ν∗(s′)))] (70)

= r(s, a) + γ
(
Lπ∗◦ν∗

Q∗
)
(s, a). (71)

Thus, we have
Q∗ = (I − γLπ◦ν)

−1
r = Qπ∗◦ν∗

, (72)

where equations comes from lemma A.11. Further, according to the consistency assumption, we attain Qπ∗◦ν∗
(s, a) =

Qπ∗◦ν∗(π∗). This shows that Q∗ is the action-value adversarial function of policy π∗ under the strongest adversary
ν∗ = ν∗(π∗). Thus, we have that

Qπ∗◦ν∗(π∗)(s, a) ≥ Qπ◦ν∗(π)(s, a), ∀s ∈ S, a ∈ A. (73)

For any policy π and s ∈ S, we have that

V π∗◦ν∗(π∗)(s) = Ea∼π∗(·|ν∗(s;π∗))Q
π∗◦ν∗(π∗)(s, a) (74)

= max
a

Qπ∗◦ν∗(π∗)(s, a) (75)

≥ Ea∼π(·|ν∗(s;π))Q
π∗◦ν∗

(s, a) (76)

≥ Ea∼π(·|ν∗(s;π))Q
π◦ν∗(π)(s, a) (77)

= V π◦ν∗(π)(s), (78)

where the first and last equations come from lemma A.7 and the last inequality comes from (73).

A.2.2. NOT A CONTRACTION

Theorem A.16. Tcar is not a contraction.

Proof. Let S = [−1, 1], A = {a1, a2}, 0 < ϵ ≪ 1 and dynamic transition P(·|s, a) be a determined function. Let
n > max{ δγ , 2δ}, δ > 0 and

Q1(s, a1) = 2n · 1{s∈[−1,0)} +

[
2n− 2n− 2δ

1
8ϵ

s

]
· 1{s∈[0, 18 ϵ)} + 2δ · 1{s∈[ 18 ϵ, 38 ϵ)}

+

[
2δ +

n− 2δ
1
8ϵ

(
s− 3ϵ

8

)]
· 1{s∈[ 38 ϵ, 12 ϵ)} + n · 1{s∈[ 12 ϵ,1]},

(79)

Q1(s, a2) = n · 1{s∈[−1,0)} +

[
n− n− δ

1
8ϵ

s

]
· 1{s∈[0, 18 ϵ)} + δ · 1{s∈[ 18 ϵ, 38 ϵ)}

+

[
δ +

2n− δ
1
8ϵ

(
s− 3ϵ

8

)]
· 1{s∈[ 38 ϵ, 12 ϵ)} + 2n · 1{s∈[ 12 ϵ,1]},

(80)

Q2(s, a1) = 2n · 1{s∈[−1,0)} +

[
2n− 2n− δ

1
8ϵ

s

]
· 1{s∈[0, 18 ϵ)} + δ · 1{s∈[ 18 ϵ, 38 ϵ)}

+

[
δ +

n− δ
1
8ϵ

(
s− 3ϵ

8

)]
· 1{s∈[ 38 ϵ, 12 ϵ)} + n · 1{s∈[ 12 ϵ,1]},

(81)

17



Towards Optimal Adversarial Robust Q-learning with Bellman Infinity-error

Q2(s, a2) = n · 1{s∈[−1,0)} +

[
n− n− 2δ

1
8ϵ

s

]
· 1{s∈[0, 18 ϵ)} + 2δ · 1{s∈[ 18 ϵ, 38 ϵ)}

+

[
2δ +

2n− 2δ
1
8ϵ

(
s− 3ϵ

8

)]
· 1{s∈[ 38 ϵ, 12 ϵ)} + 2n · 1{s∈[ 12 ϵ,1]}.

(82)

Then
∥Q1 −Q2∥L∞(S×A) = δ. (83)

We have

TcarQ1(s, a)− TcarQ2(s, a) = γEs′∼P(·|s,a)

[
min

s1ν∈Bϵ(s′)
Q1

(
s′, argmax

as1ν

Q1

(
s1ν , as1ν

))
−

min
s2ν∈Bϵ(s′)

Q2

(
s′, argmax

as2ν

Q2

(
s2ν , as2ν

))]
.

(84)

Let P(s′ = − ϵ
2 |s, a) = 1 and s′ = − ϵ

2 , then

min
s1ν∈Bϵ(s′)

Q1

(
s′, argmax

as1ν

Q1

(
s1ν , as1ν

))
= Q1(s

′, a1), (85)

min
s1ν∈Bϵ(s′)

Q2

(
s′, argmax

as2ν

Q2

(
s2ν , as2ν

))
= Q2(s

′, a2). (86)

Thus
TcarQ1(s, a)− TcarQ2(s, a) = γ [Q1(s

′, a1)−Q2(s
′, a2)] = γn > δ, (87)

which means that

∥TcarQ1 − TcarQ2∥L∞(S×A) > ∥Q1 −Q2∥L∞(S×A). (88)

Therefore, Tcar is not a contraction.

A.2.3. CONVERGENCE

In this section, we prove a conclusion for convergence of the fixed point iterations of the CAR operator under the (Lr, LP)-
smooth environment assumption.

Definition A.17 (Bukharin et al. (2023)). Let S ⊆ Rd. We say the environment is (Lr, LP)-smooth, if the reward function
r : S ×A → R, and the transition dynamics P : S ×A → ∆(S) satisfy

|r(s, a)− r (s′, a)| ≤ Lr ∥s− s′∥ and ∥P(· | s, a)− P (· | s′, a)∥L1(S) ≤ LP ∥s− s′∥ ,

for (s, s′, a) ∈ S × S ×A. ∥ · ∥ denotes a metric on Rd.

The definition is motivated by observations that certain natural environments show smooth reward function and transition
dynamics, especially in continuous control tasks where the transition dynamics come from some physical laws.

The following lemma shows that T k
carQ is uniformly bounded.

Lemma A.18. Suppose Q and r are uniformly bounded, i.e. ∃ MQ,Mr > 0 such that |Q(s, a)| ≤ MQ, |r(s, a)| ≤
Mr ∀s ∈ S, a ∈ A. Then TcarQ(·, a) is uniformly bounded, i.e.

|TcarQ(s, a)| ≤ CQ, ∀s ∈ S, a ∈ A, (89)

where CQ = max
{
MQ,

Mr

1−γ

}
. Further, for any k ∈ N, T k

carQ(·, a) has the same uniform bound as TcarQ(·, a), i.e.∣∣T k
carQ(s, a)

∣∣ ≤ CQ, ∀s ∈ S, a ∈ A. (90)
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Proof.

|TcarQ(s, a)| =

∣∣∣∣∣r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))]∣∣∣∣∣ (91)

≤ |r(s, a)|+ γEs′∼P(·|s,a)

∣∣∣∣∣ min
s′ν∈Bϵ(s′)

Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))∣∣∣∣∣ (92)

≤Mr + γMQ (93)

≤ max

{
MQ,

Mr

1− γ

}
, ∀s ∈ S, a ∈ A. (94)

Let CQ = max
{
MQ,

Mr

1−γ

}
. Suppose the inequality (90) holds for k = n. Then, for k = n+ 1, we have

∣∣T n+1
car Q(s, a)

∣∣ = ∣∣∣∣∣r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
T n
carQ

(
s′, argmax

as′ν

T n
carQ

(
s′ν , as′ν

))]∣∣∣∣∣ (95)

≤ |r(s, a)|+ γEs′∼P(·|s,a)

∣∣∣∣∣ min
s′ν∈Bϵ(s′)

T n
carQ

(
s′, argmax

as′ν

T n
carQ

(
s′ν , as′ν

))∣∣∣∣∣ (96)

≤Mr + γCQ (97)
≤ (1− γ)CQ + γCQ (98)
= CQ. (99)

By induction, we have
∣∣T k

carQ(s, a)
∣∣ ≤ CQ, ∀s ∈ S, a ∈ A, k ∈ N.

The following lemma shows that T k
carQ is uniformly Lipschitz continuous in the (Lr, LP)-smooth environment.

Lemma A.19. Suppose the environment is (Lr, LP)-smooth and suppose Q and r are uniformly bounded, i.e. ∃MQ,Mr > 0
such that |Q(s, a)| ≤MQ, |r(s, a)| ≤Mr ∀s ∈ S, a ∈ A. Then TcarQ(·, a) is Lipschitz continuous, i.e.

|TcarQ(s, a)− TcarQ(s′, a)| ≤ LTcar∥s− s′∥, (100)

where LTcar
= Lr + γCQLP and CQ = max

{
MQ,

Mr

1−γ

}
. Further, for any k ∈ N, T k

carQ(·, a) is Lipschitz continuous

and has the same Lipschitz constant as TcarQ(·, a), i.e.∣∣T k
carQ(s, a)− T k

carQ(s′, a)
∣∣ ≤ LTcar

∥s− s′∥. (101)

Proof. For all s1, s2 ∈ S, we have

TcarQ(s1, a)− TcarQ(s2, a) (102)

= r(s1, a) + γEs′∼P(·|s1,a)

[
min

s′ν∈Bϵ(s′)
Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))]
(103)

− r(s2, a)− γEs′∼P(·|s2,a)

[
min

s′ν∈Bϵ(s′)
Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))]
(104)

= (r(s1, a)− r(s2, a)) (105)

+ γ

∫
s′
(P(s′|s1, a)− P(s′|s2, a)) min

s′ν∈Bϵ(s′)
Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))
ds′. (106)
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Then, we have

|TcarQ(s1, a)− TcarQ(s2, a)| (107)
≤ |(r(s1, a)− r(s2, a))| (108)

+

∣∣∣∣∣γ
∫
s′
(P(s′|s1, a)− P(s′|s2, a)) min

s′ν∈Bϵ(s′)
Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))
ds′

∣∣∣∣∣ (109)

≤ Lr∥s1 − s2∥ (110)

+ γ

∫
s′
|P(s′|s1, a)− P(s′|s2, a)|

∣∣∣∣∣ min
s′ν∈Bϵ(s′)

Q

(
s′, argmax

as′ν

Q
(
s′ν , as′ν

))∣∣∣∣∣ ds′ (111)

≤ Lr∥s1 − s2∥+ γCQ

∫
s′
|P(s′|s1, a)− P(s′|s2, a)| ds′ (112)

≤ Lr∥s1 − s2∥+ γCQLP∥s1 − s2∥ (113)
= (Lr + γCQLP) ∥s1 − s2∥. (114)

The second inequality comes from the Lipschitz property of r. The third inequality comes from the uniform boundedness of
Q and the last inequality utilizes the Lipschitz property of P.

Note that T k
car and Tcar have the same uniform boundedness CQ. Then, due to lemma A.18, we can extend the above proof

to T k
car.

Remark A.20. Note that if replace the operator Tcar in the Lemma A.18 and Lemma A.19 with Bellman optimality operator
TB , these lemmas still hold.

The following lemma shows that the fixed point iteration has a property close to contraction.

Lemma A.21. Suppose Q and r are uniformly bounded, i.e. ∃ MQ,Mr > 0 such that |Q(s, a)| ≤ MQ, |r(s, a)| ≤
Mr ∀s ∈ S, a ∈ A. Let Q∗ denote the Bellman optimality Q-function. If the consistency assumption holds, we have

∥TcarQ− TcarQ∗∥∞ ≤ γ

(
∥Q−Q∗∥∞ + 2max

s
max

sν∈B∗
ϵ (s)

max
a
|Q (s, a)−Q (sν , a)|

)
. (115)

Further, if Q(·, a) is L-Lipschitz continuous with respect to s ∈ S, i.e

|Q(s, a)−Q(s′, a)| ≤ L∥s− s′∥, ∀s, s′ ∈ S, a ∈ A, (116)

we have
∥TcarQ− TcarQ∗∥∞ ≤ γ∥Q−Q∗∥∞ + 2γLϵ. (117)

Proof. Denote a∗s′ν ,Q = argmaxa Q (s′ν , a) and s′,∗ν = argmins′ν∈B∗
ϵ (s

′) Q
(
s′, a∗s′ν ,Q

)
. If TcarQ > TcarQ∗, we have

(TcarQ) (s, a)− (TcarQ∗) (s, a) (118)

= γEs′∼P(·|s,a)

[
min

s′ν∈B∗
ϵ (s

′)
Q
(
s′, a∗s′ν ,Q

)
− min

s′ν∈B∗
ϵ (s

′)
Q∗
(
s′, a∗s′ν ,Q∗

)]
(119)

= γEs′∼P(·|s,a)

[
Q
(
s′, a∗

s′,∗ν ,Q

)
−Q∗ (s′, a∗s′,Q∗

)]
(120)

= γEs′∼P(·|s,a)

[
Q
(
s′, a∗

s′,∗ν ,Q

)
−Q∗

(
s′, a∗

s′,∗ν ,Q

)
+Q∗

(
s′, a∗

s′,∗ν ,Q

)
−Q∗ (s′, a∗s′,Q∗

)]
(121)

≤ γEs′∼P(·|s,a)

[
Q
(
s′, a∗

s′,∗ν ,Q

)
−Q∗

(
s′, a∗

s′,∗ν ,Q

)]
(122)

≤ γEs′∼P(·|s,a)

[
max
a′

(Q (s′, a′)−Q∗ (s′, a′))
]

(123)

≤ γ∥Q−Q∗∥∞, (124)
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where the second equality utilize the definition of B∗
ϵ (s

′) and the first inequality comes from the optimality of a∗s′,Q∗ . If
TcarQ < TcarQ∗, we have

(TcarQ∗) (s, a)− (TcarQ) (s, a) (125)

= γEs′∼P(·|s,a)

[
min

s′ν∈B∗
ϵ (s

′)
Q∗
(
s′, a∗s′ν ,Q∗

)
− min

s′ν∈B∗
ϵ (s

′)
Q
(
s′, a∗s′ν ,Q

)]
(126)

= γEs′∼P(·|s,a)

[
Q∗ (s′, a∗s′,Q∗

)
−Q

(
s′, a∗

s′,∗ν ,Q

)]
(127)

= γEs′∼P(·|s,a)
[
Q∗ (s′, a∗s′,Q∗

)
−Q

(
s′, a∗s′,Q∗

)]
(128)

+ γEs′∼P(·|s,a)
[
Q
(
s′, a∗s′,Q∗

)
−Q

(
s′,∗ν , a∗s′,Q∗

)]
(129)

+ γEs′∼P(·|s,a)

[
Q
(
s′,∗ν , a∗s′,Q∗

)
−Q

(
s′, a∗

s′,∗ν ,Q

)]
. (130)

We will separately analyze the items 128, 129 and 130. Firstly, we can bound the item 128 with ∥Q−Q∗∥∞.

Es′∼P(·|s,a)
[
Q∗ (s′, a∗s′,Q∗

)
−Q

(
s′, a∗s′,Q∗

)]
(131)

≤ Es′∼P(·|s,a)

[
max
a′

(Q (s′, a′)−Q∗ (s′, a′))
]

(132)

≤ ∥Q−Q∗∥∞. (133)

For the item 129, we have

Es′∼P(·|s,a)
[
Q
(
s′, a∗s′,Q∗

)
−Q

(
s′,∗ν , a∗s′,Q∗

)]
(134)

≤ Es′∼P(·|s,a)

[
max
a′

(Q (s′, a′)−Q (s′,∗ν , a′))
]

(135)

≤ Es′∼P(·|s,a)

[
max

s′ν∈B∗
ϵ (s

′)
max
a′
|Q (s′, a′)−Q (s′ν , a

′)|
]

(136)

≤ max
s

max
sν∈B∗

ϵ (s)
max

a
|Q (s, a)−Q (sν , a)| . (137)

Due to a∗
s′,∗ν ,Q

= argmaxa Q (s′,∗ν , a), we have Q (s′,∗ν , a) ≤ Q
(
s′,∗ν , a∗

s′,∗ν ,Q

)
, ∀a. Then, for the item 130, we have

Es′∼P(·|s,a)

[
Q
(
s′,∗ν , a∗s′,Q∗

)
−Q

(
s′, a∗

s′,∗ν ,Q

)]
(138)

≤ Es′∼P(·|s,a)

[
Q
(
s′,∗ν , a∗

s′,∗ν ,Q

)
−Q

(
s′, a∗

s′,∗ν ,Q

)]
(139)

≤ Es′∼P(·|s,a)

[
max
a′
|Q (s′, a′)−Q (s′,∗ν , a′)|

]
(140)

≤ Es′∼P(·|s,a)

[
max

s′ν∈B∗
ϵ (s

′)
max
a′
|Q (s′, a′)−Q (s′ν , a

′)|
]

(141)

≤ max
s

max
sν∈B∗

ϵ (s)
max

a
|Q (s, a)−Q (sν , a)| . (142)

Thus, we have

(TcarQ∗) (s, a)− (TcarQ) (s, a) (143)

≤ γ

(
∥Q−Q∗∥∞ + 2max

s
max

sν∈B∗
ϵ (s)

max
a
|Q (s, a)−Q (sν , a)|

)
. (144)

In a summary, we get

∥TcarQ− TcarQ∗∥∞ ≤ γ

(
∥Q−Q∗∥∞ + 2max

s
max

sν∈B∗
ϵ (s)

max
a
|Q (s, a)−Q (sν , a)|

)
. (145)
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Further, when Q(·, a) is L-Lipschitz continuous, i.e

|Q(s, a)−Q(s′, a)| ≤ L∥s− s′∥, ∀s, s′ ∈ S, a ∈ A, (146)

we have

max
s

max
sν∈B∗

ϵ (s)
max

a
|Q (s, a)−Q (sν , a)| (147)

≤ max
s

max
sν∈B∗

ϵ (s)
L∥s− sν∥ (148)

≤ Lϵ. (149)

Then, we have

∥TcarQ− TcarQ∗∥∞ ≤ γ (∥Q−Q∗∥∞ + 2Lϵ) . (150)

Remark A.22. We can relax the Lipschitz condition to local lipschitz continuous in the B∗
ϵ (s).

We prove that the fixed point iterations of Tcar at least converge to a sub-optimal solution close to Q∗ in the (Lr, LP)-smooth
environment.

Theorem A.23. Suppose the environment is (Lr, LP)-smooth and suppose Q0 and r are uniformly bounded, i.e.
∃ MQ0

,Mr > 0 such that |Q0(s, a)| ≤ MQ0
, |r(s, a)| ≤ Mr ∀s ∈ S, a ∈ A. Let Q∗ denote the Bellman optimal-

ity Q-function and Qk+1 = TcarQk = T k+1
car Q0 for all k ∈ N. If the consistency assumption holds, we have

∥Qk+1 −Q∗∥∞ ≤ γk+1∥Q0 −Q∗∥∞ + γk+1DQ0
+

2γϵ

1− γ
LTcar , (151)

where DQ0
= 2maxs maxsν∈B∗

ϵ (s)
maxa |Q0 (s, a)−Q0 (sν , a)|, LTcar

= Lr+γCQ0
LP and CQ0

= max
{
MQ0

, Mr

1−γ

}
.

Proof. For any k ∈ N, we have

∥Qk+1 −Q∗∥∞ (152)

= ∥T k+1
car Q0 − T k+1

car Q∗∥∞ (153)

≤ γ∥T k
carQ0 − T k

carQ
∗∥∞ + 2γLTcar

ϵ (154)

≤ γ
(
γ∥T k−1

car Q0 − T k−1
car Q∗∥∞ + 2γLTcarϵ

)
+ 2γLTcarϵ (155)

= γ2∥T k−1
car Q0 − T k−1

car Q∗∥∞ + 2ϵLTcar

2∑
l=1

γl (156)

≤ · · · (157)

≤ γk∥TcarQ0 − TcarQ∗∥∞ + 2ϵLTcar

k∑
l=1

γl (158)

≤ γk+1∥Q0 −Q∗∥∞ + 2γk+1 max
s

max
sν∈B∗

ϵ (s)
max

a
|Q0 (s, a)−Q0 (sν , a)|+ 2ϵLTcar

k∑
l=1

γl (159)

≤ γk+1∥Q0 −Q∗∥∞ + 2γk+1 max
s

max
sν∈B∗

ϵ (s)
max

a
|Q0 (s, a)−Q0 (sν , a)|+

2γϵ

1− γ
LTcar

. (160)

The first and second inequalities come from Lemma A.19 and Lemma A.21. The penultimate inequality comes from Lemma
A.21.
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B. Theorems and Proofs of Policy Robustness under Bellman p-error
Banach Space is a complete normed space (X, ∥ · ∥), consisting of a vector space X together with a norm ∥ · ∥ : X →
R+. In this paper, we consider the setting where the continuous state space S ⊂ Rd is a compact set and the action
space A is a finite set. We discuss in the Banach space (Lp (S ×A) , ∥ · ∥p) , 1 ≤ p ≤ ∞. Define Lp (S ×A) =

{f |∥f∥p <∞}, where ∥f∥p =
(∫

S
∑

a∈A |f(s, a)|
p
dµ(s)

) 1
p for 1 ≤ p < ∞, µ is the measure over S and ∥f∥∞ =

inf {M ∈ R≥0| |f(s, a)| ≤M for almost every (s, a)}. For simplicity, we refer to this Banach space as Lp (S ×A).

B.1. L∞ is Necessary for Adversarial Robustness

Theorem B.1. There exists an MDP instance M such that the following statements hold. Given a function Q and
adversary perturbation size ϵ, let SQsub denote the set of states where the greedy policy according to Q is suboptimal, i.e.
SQsub = {s|Q∗(s, argmaxa Q(s, a)) < maxa Q

∗(s, a)} and let SQadv denote the set of states in whose ϵ-neighbourhood
there exists the adversarial state, i.e. SQadv = {s|∃sν ∈ Bϵ(s), s.t. Q∗(s, argmaxa Q(sν , a)) < maxa Q

∗(s, a)}, where
Q∗ is the Bellman optimal Q-function.

• For any 1 ≤ p <∞ and δ > 0, there exists a function Q ∈ Lp (S ×A) satisfying ∥Q−Q∗∥Lp(S×A) ≤ δ such that

µ
(
SQsub

)
= O(δ) yet µ

(
SQadv

)
= µ (S).

• There exists a δ̄ > 0 such that for any 0 < δ ≤ δ̄, for any function Q ∈ L∞ (S ×A) satisfying ∥Q−Q∗∥L∞(S×A) ≤ δ,

we have that µ
(
SQsub

)
= O(δ) and µ

(
SQadv

)
= 2ϵ+O (δ).

Proof. Given a MDP instanceM such that S = [−1, 1], A = {a1, a2} and

P(s′|s, a1) =

{
1{s′=s−ϵ1}, s ∈ [−1 + ϵ1, 1]

1{s′=−1}, s ∈ [−1,−1 + ϵ1)
(161)

P(s′|s, a2) =

{
1{s′=s+ϵ1}, s ∈ [−1, 1− ϵ1]

1{s′=1}, s ∈ (1− ϵ1, 1]
(162)

r(s, a1) = −ks,
r(s, a2) = ks.

(163)

where P is the transition dynamic, r is the reward function, k > 0, 0 < ϵ1 ≪ 1 and 1{·} is the indicator function. Let γ be
the discount factor.

First, we prove that equation (164) is the optimal policy.

π∗(s) = argmax
a

Q∗(s, a) =


{a2}, s > 0

{a1}, s < 0

{a1, a2}, s = 0

(164)

Define sπt is state rollouted by policy π in time step t.

Let s0 > 0, then

• If sπ
∗

t = 1 , while sπt ∈ [−1, 1], then sπ
∗

t ≥ |sπt | hold for any policy π.

• If sπ
∗

t < 1 . First we have
0 < sπ

∗

t = s0 + tϵ1 < 1, (165)

−1 < s0 − tϵ1. (166)

Then for any policy π, we have the following equation by definition of transition,

sπt = s0 +

t∑
i=1

xiϵ1, (167)
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where xi ∈ {−1, 1}, i = 1, ..., t. Then
sπ

∗

t ≥ |sπt | (168)

Then for any policy π ,s0 > 0 and t ≥ 0, we have
sπ

∗

t ≥ |sπt | (169)

and
π(a2|sπt )r(sπt , a2) + π(a1|sπt )r(sπt , a1)
≤ max{π(a2|sπt )(ksπt ) + π(a1|sπt )(−ksπt ), π(a2|sπt )(−ksπt ) + π(a1|sπt )(ksπt )}
= |ksπt (π(a2|sπt )− π(a1|sπt ))|
≤ |ksπt |
≤ ksπ

∗

t

= r(sπ
∗

t , a2)

(170)

Let s0 be the initial state, τ = (s0, ...) be the trajectory of policy π. Define J(π, s0) = Eτ

∑
t γ

tr(st, at) is expected
reward in initial state s0 about policy π. Then

J(π∗, s0)− J(π, s0) = Esπ
∗

t ,at∼π∗(·|sπ∗
t )

∑
t

γtr(sπ
∗

t , at)− Esπt ,at∼π(·|sπt )
∑
t

γtr(sπt , at) (171)

=
∑
t

γtr(sπ
∗

t , a2)−
∑
t

γtEsπt ,at∼π(·|sπt )r(s
π
t , at) (172)

=
∑
t

γtr(sπ
∗

t , a2)−
∑
t

γtEsπt
[π(a2|sπt )r(sπt , a2) + π(a1|sπt )r(sπt , a1)] (173)

=
∑
t

γtEsπt

[
r(sπ

∗

t , a2)− [π(a2|sπt )r(sπt , a2) + π(a1|sπt )r(sπt , a1)]
]

(174)

≥ 0. (175)

For (172), the policy π∗ and dynamic transition P are deterministic. For (175), We use property (170).

Then for s > 0, we get that the optimal policy is π(·|s) = a2. By symmetry, we can also get that the optimal policy is
π(·|s) = a1 for s < 0 and a1,a2 are also optimal action for s = 0. Thus we have proved equation (164) is the optimal
policy.

First,we have the following equation according to (164)

Q∗(0, a2) = Q∗(0, a1). (176)

For s > 0, we have

Q∗(s, a2) = ks+ γk(s+ ϵ1) + γ2k(s+ 2ϵ1) + ...+ γtsk(s+ tsϵ1) +

∞∑
n=1

γts+nk × 1

= ks+ k

[
ts∑
t=1

γt (s+ tϵ1) +

∞∑
t=ts+1

γt

]
.

(177)

where s+ tsϵ1 ∈ (1− ϵ1, 1], i.e. ts = ⌊ 1−s
ϵ1
⌋.

For s ≥ ϵ1, we have

Q∗(s, a1) = −ks+ γk(s− ϵ1) + γ2ks+ · · ·+ γts+2k(s+ tsϵ1) +

∞∑
n=1

γts+2+nk × 1

= −ks+ k

[
ts+2∑
t=1

γt (s+ (t− 2)ϵ1) +

∞∑
t=ts+3

γt

]
.

(178)
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For 0 < s < ϵ1, we have

Q∗(s, a1) = −ks+ γ(−k)(s− ϵ1) + γ2(−k)(s− 2ϵ1) + · · ·+ γqs(−k)(s− qsϵ1) +

∞∑
n=1

γqs+n(−k)(−1)

= −ks+ k

[
qs∑
t=1

γt (tϵ1 − s) +

∞∑
t=qs+1

γt

]
.

(179)

where s− qsϵ1 ∈ [−1,−1 + ϵ1) ,i.e. qs = ⌊ 1+s
ϵ1
⌋ > ts.

According to (177), (178), (179) and qs > ts, we have

Q∗(s, a2)−Q∗(s, a1) > 2ks, s > 0 (180)

By symmetry, we can also get
Q∗(s, a1)−Q∗(s, a2) > −2ks, s < 0 (181)

(1)First, we have

0 < Q∗(s, a) <

∞∑
t=0

γt =
1

1− γ
(182)

For any 1 ≤ p <∞ , let n > max
{

1
ϵ ,
(

1
1−γ

)p
, δp, δp−1

}
, n ∈ N and

Q(s, a2) =

{
Q∗(s, a2)− n

1
p , s ∈ [ kn ,

k
n + δp

n2 ], k = 0, 1, . . . , n− 1
Q∗(s, a2), others

(183)

Q(s, a1) =

{
Q∗(s, a1)− n

1
p , s ∈ [−k+1

n ,−k+1
n + δp

n2 ], k = 0, 1, . . . , n− 1
Q∗(s, a1), others

(184)

Then

∥Q(s, a1)−Q∗(s, a1)∥Lp(S) = ∥Q(s, a2)−Q∗(s, a2)∥Lp(S) =

[
n ∗ δp

n2
∗
(
n

1
p

)p] 1
p

≤ δ. (185)

And

∥Q(s, a)∥Lp(S) = ∥Q(s, a)−Q∗(s, a) +Q∗(s, a)∥Lp(S) (186)
≤ ∥Q(s, a)−Q∗(s, a)∥Lp(S) + ∥Q∗(s, a)∥Lp(S) (187)
<∞. (188)

which means Q ∈ Lp (S ×A).

We have the following two inequalities because n >
(

1
1−γ

)p
and (182),

Q∗(s, a2)− n
1
p < Q∗(s, a1), (189)

Q∗(s, a1)− n
1
p < Q∗(s, a2). (190)

Then

SQsub =
n−1⋃
k=−n

[
k

n
,
k

n
+

δp

n2

]
(191)
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and

µ
(
SQsub

)
= 2n ∗ δp

n2
< 2δ = O (δ) (192)

because n > δp−1.

According to (191), the distance between any two adjacent intervals of SQsub is less than ϵ. For any s ∈ S, ∃k ∈
{−n,−n+ 1, ..., n− 1} s.t. s ∈ [ kn ,

k+1
n ]. Because n > 1

ϵ (i.e. 1
n < ϵ), then d(s, k

n ) < ϵ i.e. d(s,SQsub) < ϵ, where d(·, ·)
is Euclid distance. According to the definition of SQadv , we have SQadv = S and

µ
(
SQadv

)
= µ (S) . (193)

(2)Let δ̄ ∈ (0, k], for any 0 < δ ≤ δ̄, for any state-action value function Q ∈ L∞ (S ×A) satisfying ∥Q−Q∗∥L∞(S×A) ≤ δ,
we can get the following two inequalities by (180) and (181).

Q(s, a2) ≥ Q∗(s, a2)− δ > Q∗(s, a1) + δ ≥ Q(s, a1), s ∈ (
δ

k
, 1], (194)

Q(s, a1) ≥ Q∗(s, a1)− δ > Q∗(s, a2) + δ ≥ Q(s, a2), s ∈ [−1,− δ

k
). (195)

Then

µ
(
SQsub

)
≤ 2δ

k
= O (δ) , (196)

µ
(
SQadv

)
≤ 2δ

k
+ 2ϵ = 2ϵ+O (δ) . (197)

B.2. Stability of Bellman Optimality Equations

We propose the following concept of stability drawing on relevant research in the field of partial differential equations (Wang
et al., 2022).

Definition B.2. Given two Banach spaces B1 and B2, if there exist δ > 0 and C > 0 such that for all Q ∈ B1∩B2 satisfying
∥T Q−Q∥B1 < δ, we have that ∥Q−Q∗∥B2 < C∥T Q−Q∥B1 , where Q∗ is the exact solution of this functional equation.
Then, we say that a nonlinear functional equation T Q = Q is (B1,B2)-stable.

Remark B.3. This definition indicates that if T Q = Q is (B1,B2)-stable, then ∥Q − Q∗∥B2
= O (∥T Q−Q∥B1

), as
∥T Q−Q∥B1

−→ 0, ∀Q ∈ B1 ∩ B2.

Lemma B.4. For any functions f, g : X → R, we have

max
x∈X

f(x)−max
x∈X

g(x) ≤ max
x∈X

(f(x)− g(x)) . (198)

Proof.
max
x∈X

f(x)−max
x∈X

g(x) = f(x∗
f )−max

x∈X
g(x) ≤ f(x∗

f )− g(x∗
f ) ≤ max

x∈X
(f(x)− g(x)) , (199)

where x∗
f is the maximizer of function f , i.e. x∗

f = argmaxx∈X f(x).

Lemma B.5. For any functions f, g : X → R, we have∣∣∣∣max
x∈X

(f + g) (x)−max
x∈X

f(x)

∣∣∣∣ ≤ max
x∈X
|g(x)| . (200)
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Proof. If maxx∈X (f + g) (x) ≥ maxx∈X f(x), we have

max
x∈X

(f + g) (x)−max
x∈X

f(x) (201)

≤ max
x∈X

f(x) + max
x∈X

g(x)−max
x∈X

f(x) (202)

= max
x∈X

g(x) (203)

≤ max
x∈X
|g(x)| . (204)

If maxx∈X (f + g) (x) < maxx∈X f(x), we have

max
x∈X

f(x)−max
x∈X

(f + g) (x) ≤ max
x∈X

(−g(x)) ≤ max
x∈X
|g(x)| , (205)

where the first inequality comes from Lemma B.4.

Theorem B.6. For any MDPM, let CP,p := sup(s,a)∈S×A ∥P(· | s, a)∥L
p

p−1 (S)
. Assume p and q satisfy the following

conditions:

CP,p <
1

γ
; p ≥ max

{
1,

log (|A|) + log (µ (S))
log 1

γCP,p

}
; p ≤ q ≤ ∞. (206)

Then, Bellman optimality equation TBQ = Q is (Lq (S ×A) , Lp (S ×A))-stable.

Proof. For any 1 ≤ p ≤ q ≤ ∞ and Q ∈ Lp (S ×A) ∩ Lq (S ×A), denote that

L0Q(s, a) := γEs′∼P(·|s,a)

[
max
a′∈A

Q (s′, a′)

]
, (207)

LQ := TBQ−Q = r + L0Q−Q. (208)

Let Q∗ denote the Bellman optimality Q-function. Note that TBQ∗ = Q∗ and LQ∗ = 0. Define

w = wQ := Q−Q∗, (209)
f = fQ := LQ = LQ− LQ∗. (210)

Based on the above notations, we have

f = LQ− LQ∗ (211)
= L0Q−Q− L0Q

∗ +Q∗ (212)
= (L0Q− L0Q

∗)− (Q−Q∗) (213)
= −w + L0 (Q

∗ + w)− L0Q
∗. (214)

Then, we have

|w(s, a)| = |−f + L0 (Q
∗ + w)− L0Q

∗|
∣∣∣∣
(s,a)

(215)

≤ |f |+ |L0 (Q
∗ + w)− L0Q

∗|
∣∣∣∣
(s,a)

. (216)

Thus, we obtain

∥w∥Lp(S×A) ≤ ∥|f |+ |L0 (Q
∗ + w)− L0Q

∗|∥Lp(S×A) (217)

≤ ∥f∥Lp(S×A) + ∥L0 (Q
∗ + w)− L0Q

∗∥Lp(S×A) , (218)
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where the last inequality comes from the Minkowski’s inequality. In the following, we analyze the relation between
∥L0 (Q

∗ + w)− L0Q
∗∥Lp(S×A) and ∥w∥Lp(S×A).

|L0 (Q
∗ + w)− L0Q

∗|
∣∣∣∣
(s,a)

(219)

=

∣∣∣∣γEs′∼P(·|s,a)

[
max
a′∈A

(Q∗ (s′, a′) + w (s′, a′))−max
a′∈A

Q∗ (s′, a′)

]∣∣∣∣ (220)

≤ γEs′∼P(·|s,a)

∣∣∣∣max
a′∈A

(Q∗ (s′, a′) + w (s′, a′))−max
a′∈A

Q∗ (s′, a′)

∣∣∣∣ (221)

≤ γEs′∼P(·|s,a)

[
max
a′∈A

|w (s′, a′)|
]

(222)

= γ

∫
s′
max
a′∈A

|w (s′, a′)|P(s′ | s, a)ds′ (223)

≤ γ

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

(∫
s′
(P(s′ | s, a))

p
p−1 ds′

)1− 1
p

(224)

= γ ∥P(· | s, a)∥
L

p
p−1 (S)

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

. (225)

where the second inequality comes from Lemma B.5 and the last inequality comes from the Holder’s inequality. Let
CP,p := sup(s,a)∈S×A ∥P(· | s, a)∥L

p
p−1 (S)

. Then, we have

∥L0 (Q
∗ + w)− L0Q

∗∥Lp(S×A) (226)

≤

(∫
S×A

(
γ ∥P(· | s, a)∥

L
p

p−1 (S)

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

)p

dµ(s, a)

) 1
p

(227)

≤
(∫

S×A
1dµ(s, a)

) 1
p

γCP,p

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

(228)

= (µ (S ×A))
1
p γCP,p

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

(229)

= γCP,p (|A|µ (S))
1
p

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

(230)

≤ γCP,p (|A|µ (S))
1
p ∥w∥Lp(S×A) , (231)

where the last inequality comes from ∥w∥l∞(A) ≤ ∥w∥lp(A). Thus, when CP,p < 1
γ and p ≥ log(|A|)+log(µ(S))

log 1
γCP,p

and q ≥ p,

we have

∥w∥Lp(S×A) ≤
1

1− γCP,p (|A|µ (S))
1
p

∥f∥Lp(S×A) ≤
(|A|µ (S))

1
p−

1
q

1− γCP,p (|A|µ (S))
1
p

∥f∥Lq(S×A) , (232)

where the last inequality comes from ∥f∥Lp(S×A) ≤ µ (S ×A)
1
p−

1
q ∥f∥Lq(S×A).

Remark B.7. Note that we have proved a stronger conclusion than stability because the equation (232) holds for all Q rather
than for Q satisfying ∥T Q−Q∥B1 −→ 0.
Remark B.8. When P(· | s, a) is a probability mass function, then we have that CP,p ≤ 1 < 1

γ holds for all 1 < p ≤ ∞.
Generally, note that limp→∞ CP,p = 1 and as a consequence, when p is large enough, CP,p < 1

γ holds.

B.3. Instability of Bellman Optimality Equations

Theorem B.9. There exists a MDPM such that Bellman optimality equation TBQ = Q is not (Lp (S ×A) , L∞ (S ×A))-
stable, for 1 ≤ p <∞.
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Generally, we have the following theorem.

Theorem B.10. There exists an MDP M such that Bellman optimality equation TBQ = Q is not
(Lq (S ×A) , Lp (S ×A))-stable, for all 1 ≤ q < p ≤ ∞.

Proof. In order to show a Bellman optimality equation TBQ = Q is not (Lq (S ×A) , Lp (S ×A))-stable, it is suffi-
cient and necessary to prove ∀n ∈ N,∀δ > 0,∃Q(s, a), such that ∥TBQ − Q∥Lq(S×A) < δ, but ∥Q − Q∗∥Lp(S×A) ≥
n∥TBQ−Q∥Lq(S×A).

Define an MDPM where S = [−1, 1],A = {a1, a2},

P(s′|s, a1) =

{
1{s′=s−0.1}, s ∈ [−0.9, 1]
1{s′=s}, else

, P(s′|s, a2) =

{
1{s′=s+0.1}, s ∈ [−1, 0.9]
1{s′=s}, else

,

r(s, ai) = kis, k2 ≥ k1 > 0. The transition function is essentially a deterministic transition dynamic and for convenience,
we denote that

p(s, a1) =

{
s− 0.1, s ∈ [−0.9, 1]
s, else

, p(s, a2) =

{
s+ 0.1, s ∈ [−1, 0.9]
s, else

.

Let Q∗(s, a) = Qπ∗
(s, a) be the optimal Q-function, where π∗ is the optimal policy.

We have Q∗(s, a2) ≥ Q∗(s, a1), ∀s ≥ 0. To prove this, we define π̄(s) ≡ a2,∀s ≥ 0, and thus

Qπ̄(s, a2) =

∞∑
i=0

γir(si, a2), (233)

where s0 = s ≥ 0, si = p(si−1, a2) ≥ 0, i ≥ 1. Consider Q-function of any policy π

Qπ(s, α0) =

∞∑
i=0

γir(s̃i, π(s̃i)), (234)

where π(s̃0) = α0 ∈ A, s̃0 = s ≥ 0, s̃i+1 = p(s̃i, π(s̃i)) and r(s̃i, π(s̃i)) = π(a1|s̃i)r(s̃i, a1) + π(a2|s̃i)r(s̃i, a2).

We first notice that all si and s̃i lie on the grid points S ∩ {s + 0.1z : z ∈ Z}, actually, −⌊ 1+s
0.1 ⌋ ≤ z ≤ ⌊ 1−s

0.1 ⌋. In the
following, we prove si ≥ s̃i, ∀i. We consider the recursion method and suppose si ≥ s̃i. Then, we have the following two
cases. If si ≤ 0.9, we obtain

si+1 = si + 0.1 ≥ s̃i + 0.1 ≥ s̃i+1.

If si > 0.9, it follows from z ≤ ⌊ 1−s
0.1 ⌋ that

si+1 = si = s+ 0.1⌊1− s

0.1
⌋ ≥ s̃i+1.

Thus, we have si+1 ≥ s̃i+1, ∀i. Note that s0 = s̃0 = s, and by recursion, it can be obtained that si ≥ s̃i holds for all i.

Noticing that the reward r(s, a) is an increasing function in terms of s and satisfies r(s, a2) ≥ r(s, a1),∀s ≥ 0, we have

r(si, a2) ≥ r(si, αi) ≥ r(s̃i, αi), ∀αi ∈ A, i = 0, 1, 2, . . . ,

where the second inequality is due to si ≥ s̃i. As a consequence,

r(si, a2) ≥ r(s̃i, π(s̃i)), ∀i = 0, 1, 2, . . . . (235)

Combining (233), (234), and (235), we obtain that Qπ̄(s, a2) ≥ Qπ(s, α0). Further, with α0 = a2, we derive π̄(s) = π∗(s)
on s > 0. With α0 = a1, we derive Q∗(s, a2) = Qπ̄(s, a2) ≥ Q∗(s, a1), ∀s ≥ 0.
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We then prove that given 1 ≤ q < p, ∀n ∈ N, δ > 0, there exists Q(s, a) with ∥TBQ − Q∥Lq(S×A) ≤ δ, such that
∥Q−Q∗∥Lp(S×A) ≥ n∥TBQ−Q∥Lq(S×A). Let Q(s, a1) = Q∗(s, a1),

Q(s, a2) = Q∗(s, a2) + h · 1( 1
4 ϵ,

3
4 ϵ)

+
4h

ϵ
s · 1(0, 14 ϵ]

+

(
−4h

ϵ
s+ 4h

)
· 1[ 34 ϵ,ϵ)

,

where h > 0, ϵ = min

{(
δ
3h

)q
,
(
3n · 2

1
p

)− pq
p−q

}
and 1A(s) =

{
1, s ∈ A

0, else
denotes the indicator function. It can be seen

from the definition that

Q∗(s, a2) ≤ Q∗(s, a2) + h · 1( 1
4 ϵ,

3
4 ϵ)
≤ Q(s, a2) ≤ Q∗(s, a2) + h · 1(0,ϵ). (236)

We consider the following cases.

• When s ∈ (−0.1,−0.1 + ϵ), a = a2,

TBQ(s, a2) = r(s, a2) + γmax
ai

Q(s+ 0.1, ai) = r(s, a2) + γQ(s+ 0.1, a2),

Together with (236), we have

Q(s, a2) = Q∗(s, a2) = r(s, a2) + γQ∗(s+ 0.1, a2)

≤TBQ(s, a2) ≤ r(s, a2) + γ[Q∗(s+ 0.1, a2) + h]

=Q∗(s, a2) + hγ = Q(s, a2) + hγ,

thus |TBQ(s, a2)−Q(s, a2)| ≤ hγ.

• When s ∈ (0, ϵ), a = a2,

TBQ(s, a2) = r(s, a2) + γmax
ai

Q(s+ 0.1, ai) = r(s, a2) + γQ(s+ 0.1, a2)

= r(s, a2) + γQ∗(s+ 0.1, a2) = Q∗(s, a2),

Again from (236), there is

|TBQ(s, a2)−Q(s, a2)| = |Q∗(s, a2)−Q(s, a2)| ≤ h.

• When s ∈ (0.1, 0.1 + ϵ), a = a1,

TBQ(s, a1) = r(s, a1) + γmax
ai

Q(s− 0.1, ai) = r(s, a1) + γQ(s− 0.1, a2),

Utilizing (236), we have

Q(s, a1) = Q∗(s, a1) = r(s, a1) + γQ∗(s− 0.1, a2)

≤TBQ(s, a1) ≤ r(s, a1) + γ[Q∗(s− 0.1, a2) + h]

=Q∗(s, a1) + hγ = Q(s, a1) + hγ,

thus |TBQ(s, a1)−Q(s, a1)| ≤ hγ.

• Otherwise,
TBQ(s, ai) = r(s, ai) + γQ (p(s, ai), π

∗(p(s, ai))) = Q∗(s, ai),

also note that Q(s, ·) = Q∗(s, ·) for s /∈ (0, ϵ), thus

|TBQ(s, a)−Q(s, a)| = |Q∗(s, a)−Q(s, a)| = 0.

From the analysis above, we have

∥TBQ−Q∥Lq(S×A) ≤ (2hγ + h)ϵ
1
q ≤ 3hϵ

1
q ≤ δ, (237)

and

∥Q−Q∗∥Lp(S×A) ≥ ∥(Q−Q∗)1( 1
4 ϵ,

3
4 ϵ)
∥Lp(S×A) ≥ h

( ϵ
2

) 1
p ≥ n∥TBQ−Q∥Lq(S×A). (238)

Inequality (237) and (238) come from ϵ = min

{(
δ
3h

)q
,
(
3n · 2

1
p

)− pq
p−q

}
, which prove the desired property.
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C. Theorems and Proofs of Stability Analysis of DQN
In practical DQN training, we use the following loss:

L(θ) = 1

|B|
∑

(s,a,r,s′)∈B

∣∣∣r + γmax
a′

Q(s′, a′; θ̄)−Q(s, a; θ)
∣∣∣ , (239)

where B represents a batch of transition pairs sampled from the replay buffer and θ̄ is the parameter of target network.

L(θ) is a approximation of the following objective:

L(Q;π) = Es∼dπ
µ0

(·)Ea∼π(·|s) |TBQ(s, a)−Q(s, a)| (240)

= E(s,a)∼dπ
µ0

(·,·) |TBQ(s, a)−Q(s, a)| , (241)

where dπµ0
(s) = Es0∼µ0 [(1− γ)

∑∞
t=0 γ

t Prπ(st = s|s0)] is the state visitation distribution and dπµ0
(s, a) =

Es0∼µ0 [(1− γ)
∑∞

t=0 γ
t Prπ(st = s, at = a|s0)] is the state-action visitation distribution.

C.1. Definition and Properties of Lp,dπ
µ0

Definition C.1. Given a policy π, for any function f : S ×A → R and 1 ≤ p ≤ ∞, we define the seminorm Lp,dπ
µ0 .

• If dπµ0
is a probability density function, we define

∥f∥
L

p,dπµ0 (S×A)
:=
∥∥dπµ0

f
∥∥
Lp(S×A)

=

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣p dµ(s, a)) 1
p

.
(242)

• If dπµ0
is a probability mass function, we define

∥f∥
L

p,dπµ0 (S×A)
:=

 ∑
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣p 1
p

. (243)

Remark C.2. Note that L(Q;π) = ∥TBQ−Q∥
L

1,dπµ0 (S×A)
.

Theorem C.3. For any dπµ0
(s, a) and 1 ≤ p ≤ ∞, Lp,dπ

µ0 is a seminorm.

Proof. Firstly, we show that Lp,dπ
µ0 satisfies the absolute homogeneity. For any function f and λ ∈ R, we have

∥λf∥
L

p,dπµ0 (S×A)
=
∥∥dπµ0

λf
∥∥
Lp(S×A)

= |λ|
∥∥dπµ0

f
∥∥
Lp(S×A)

= |λ| ∥f∥
L

p,dπµ0 (S×A)
. (244)

Next, we show that the triangle inequality holds. For any functions f and g, we have

∥f + g∥
L

p,dπµ0 (S×A)
=
∥∥dπµ0

(f + g)
∥∥
Lp(S×A)

(245)

≤
∥∥dπµ0

f
∥∥
Lp(S×A)

+
∥∥dπµ0

g
∥∥
Lp(S×A)

(246)

= ∥f∥
L

p,dπµ0 (S×A)
+ ∥g∥

L
p,dπµ0 (S×A)

, (247)

where the inequality comes from the triangle inequality of Lp (S ×A).

Theorem C.4. If dπµ0
(s, a) > 0 for almost everywhere (s, a) ∈ S×A, then Lp,dπ

µ0 (S ×A) :=
{
f
∣∣∣∥f∥

L
p,dπµ0 (S×A)

≤ ∞
}

is a Banach space, for 1 ≤ p ≤ ∞.
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Proof. Firstly, we show the Lp,dπ
µ0 is positive definite. If ∥f∥

L
p,dπµ0 (S×A)

= 0, we have that dπµ0
(s, a)f(s, a) = 0, for

almost everywhere (s, a) ∈ S × A. Due to the nonnegativity of dπµ0
(s, a), we have f(s, a) = 0, for almost everywhere

(s, a) ∈ S ×A.

We show the completeness of Lp,dπ
µ0 (S ×A) in the following. For any Cauchy sequence {fi} ⊂ Lp,dπ

µ0 (S ×A),
{
dπµ0

fi
}

is a Cauchy sequence in Lp (S ×A). Then, due to the completeness of Lp (S ×A), there exists g ∈ Lp (S ×A) such that

lim
i→∞

∥∥dπµ0
fi
∥∥
Lp(S×A)

= ∥g∥Lp(S×A) .

Let f = g
dπ
µ0

for almost everywhere (s, a) ∈ S ×A, we have ∥f∥
L

p,dπµ0 (S×A)
= ∥g∥Lp(S×A) ≤ ∞ and

lim
i→∞

∥fi∥Lp,dπµ0 (S×A)
= ∥f∥

L
p,dπµ0 (S×A)

.

Thus, Lp,dπ
µ0 (S ×A) is a Banach space.

We analyze the properties of Lp,dπ
µ0 (S ×A) in the following lemma.

Lemma C.5. Given a policy π, for any function f : S ×A → R, then we have the following properties.

• If Mdπ
µ0

:= sup(s,a)∈S×A dπµ0
(s, a) <∞, then

∥f∥
L

p,dπµ0 (S×A)
≤Mdπ

µ0
∥f∥Lp(S×A) , ∀1 ≤ p ≤ ∞.

• If Cdπ
µ0

:= inf(s,a)∈S×A dπµ0
(s, a) > 0, then we have

Cdπ
µ0
∥f∥Lp(S×A) ≤ ∥f∥Lp,dπµ0 (S×A)

, ∀1 ≤ p ≤ ∞.

• ∥f∥
L

1,dπµ0 (S×A)
≤
∥∥dπµ0

∥∥
L

p
p−1 (S×A)

∥f∥Lp(S×A) , ∀1 ≤ p ≤ ∞.

• If dπµ0
(s, a) ̸= 0 for almost everywhere (s, a) ∈ S ×A, then we have

∥f∥L1(S×A) ≤ Cdπ
µ0

,p ∥f∥Lp,dπµ0 (S×A)
, ∀1 < p <∞,

where Cdπ
µ0

,p =
(∫

(s,a)∈S×A

∣∣dπµ0
(s, a)

∣∣− p
p−1 dµ(s, a)

) p−1
p

.

• If dπµ0
(s, a) ̸= 0 for almost everywhere (s, a) ∈ S ×A, then we have

∥f∥Lp(S×A) ≤ Cdπ
µ0

,p ∥f∥
L

p2,dπµ0 (S×A)
, ∀1 < p <∞,

where Cdπ
µ0

,p =

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)

∣∣− p2

p−1 dµ(s, a)

) p−1

p2

.

Proof. (1) If Mdπ
µ0

:= sup(s,a)∈S×A dπµ0
(s, a) <∞, we have

∥f∥
L

p,dπµ0 (S×A)
=

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣p dµ(s, a)) 1
p

(248)

≤Mdπ
µ0

(∫
(s,a)∈S×A

|f(s, a)|p dµ(s, a)

) 1
p

(249)

= Mdπ
µ0
∥f∥Lp(S×A) . (250)
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(2) If Cdπ
µ0

:= inf(s,a)∈S×A dπµ0
(s, a) > 0, we have

∥f∥
L

p,dπµ0 (S×A)
=

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣p dµ(s, a)) 1
p

(251)

≥ Cdπ
µ0
∥f∥Lp(S×A) . (252)

(3)

∥f∥
L

1,dπµ0 (S×A)
=

∫
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣ dµ(s, a) (253)

≤ ∥f∥Lp(S×A)

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)

∣∣ p
p−1 dµ(s, a)

)1− 1
p

(254)

=
∥∥dπµ0

∥∥
L

p
p−1 (S×A)

∥f∥Lp(S×A) , (255)

where the first inequality comes from the Holder’s inequality.

(4) For 1 < p <∞, we have

∥f∥p
L

p,dπµ0 (S×A)
=

∫
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣p dµ(s, a) (256)

≥ ∥f∥pL1(S×A)

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)

∣∣− p
p−1 dµ(s, a)

)−(p−1)

, (257)

where the inequality comes from reverse Holder’s inequality.

(5) Further, we have

∥f∥p
2

L
p2,dπµ0 (S×A)

=

∫
(s,a)∈S×A

∣∣dπµ0
(s, a)f(s, a)

∣∣p2

dµ(s, a) (258)

≥ ∥f∥p
2

Lp(S×A)

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)

∣∣− p2

p−1 dµ(s, a)

)−(p−1)

, (259)

where the inequality comes from reverse Holder’s inequality.

Remark C.6. Note that in a practical Q-learning scheme, we take the ϵ-greedy policy for exploration and as a result, for any
state-action pair (s, a), we can visit it with positive probability, i.e. dπµ0

(s, a) > 0. Furthermore, the condition, dπµ0
(s, a) ̸= 0

for almost everywhere (s, a) ∈ S ×A, always holds.

C.2. Stability of DQN: the Good

Theorem C.7. For any MDP M and fixed policy π, assume Cdπ
µ0

:= inf(s,a)∈S×A dπµ0
(s, a) > 0 and let CP,p :=

sup(s,a)∈S×A ∥P(· | s, a)∥L
p

p−1 (S)
. Assume p and q satisfy the following conditions:

CP,p <
1

γ
; p ≥ max

{
1,

log (|A|) + log (µ (S))
log 1

γCP,p

}
; p ≤ q ≤ ∞. (260)

Then, Bellman optimality equation TBQ = Q is
(
Lq,dπ

µ0 (S ×A) , Lp (S ×A)
)

-stable.

Proof. For any 1 ≤ p ≤ q ≤ ∞ and Q ∈ Lp (S ×A) ∩ Lq (S ×A), denote that

L0Q(s, a) := γEs′∼P(·|s,a)

[
max
a′∈A

Q (s′, a′)

]
, (261)

LQ := TBQ−Q = r + L0Q−Q. (262)
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Let Q∗ denote the Bellman optimality Q-function. Note that TBQ∗ = Q∗ and LQ∗ = 0. Define

w = wQ := Q−Q∗, (263)
f = fQ := LQ = LQ− LQ∗. (264)

Based on the above notations, we have

f = LQ− LQ∗ (265)
= −w + L0 (Q

∗ + w)− L0Q
∗. (266)

According to the inequality (232), we have that when CP,p < 1
γ and p ≥ log(|A|)+log(µ(S))

log 1
γCP,p

and q ≥ p, we have

∥w∥Lp(S×A) ≤
(|A|µ (S))

1
p−

1
q

1− γCP,p (|A|µ (S))
1
p

∥f∥Lq(S×A) . (267)

According to Lemma C.5, when Cdπ
µ0

:= inf(s,a)∈S×A dπµ0
(s, a) > 0, we have

∥w∥Lp(S×A) ≤
(|A|µ (S))

1
p−

1
q

Cdπ
µ0

(
1− γCP,p (|A|µ (S))

1
p

) ∥f∥
L

q,dπµ0 (S×A)
. (268)

Remark C.8. Note that in a practical Q-learning scheme, we take the ϵ-greedy policy for exploration and as a result, for any
state-action pair (s, a), we can visit it with positive probability, and thus the condition Cdπ

µ0
> 0 is fulfilled.

We also demonstrate a theorem with better bound yet stronger condition.

Theorem C.9. For any MDPM and fixed policy π, assume Cdπ
µ0

:= inf(s,a)∈S×A dπµ0
(s, a) > 0. Assume p, q and γ

satisfy the following conditions:

Cdπ
µ0

,P,p :=

∥∥dπµ0

∥∥
Lp2 (S×A)

CP,p

Cdπ
µ0

<
1

γ
; p ≥ log (|A|) + log (µ (S))

log 1
γCdπµ0

,P,p

− 1; q ≥ p2. (269)

Then, Bellman optimality equation TBQ = Q is
(
Lq,dπ

µ0 (S ×A) , Lp (S ×A)
)

-stable.

Proof. For any 1 ≤ p ≤ q ≤ ∞ and Q ∈ Lp (S ×A) ∩ Lq (S ×A), denote that

L0Q(s, a) := γEs′∼P(·|s,a)

[
max
a′∈A

Q (s′, a′)

]
, (270)

LQ := TBQ−Q = r + L0Q−Q. (271)

Let Q∗ denote the Bellman optimality Q-function. Note that TBQ∗ = Q∗ and LQ∗ = 0. Define

w = wQ := Q−Q∗, (272)
f = fQ := LQ = LQ− LQ∗. (273)

Based on the above notations, we have

f = LQ− LQ∗ (274)
= −w + L0 (Q

∗ + w)− L0Q
∗. (275)

34



Towards Optimal Adversarial Robust Q-learning with Bellman Infinity-error

Then, we have

|w(s, a)| = |−f + L0 (Q
∗ + w)− L0Q

∗|
∣∣∣∣
(s,a)

(276)

≤ |f |+ |L0 (Q
∗ + w)− L0Q

∗|
∣∣∣∣
(s,a)

. (277)

Thus, we obtain

∥w∥
L

p2,dπµ0 (S×A)
≤
∥∥dπµ0

|f |+ dπµ0
|L0 (Q

∗ + w)− L0Q
∗|
∥∥
Lp2 (S×A)

(278)

≤ ∥f∥
L

p2,dπµ0 (S×A)
+ ∥L0 (Q

∗ + w)− L0Q
∗∥

L
p2,dπµ0 (S×A)

, (279)

where the last inequality comes from the Minkowski’s inequality. Owing to Lemma C.5, we have

∥w∥
L

p2,dπµ0 (S×A)
≥ 1

Cdπ
µ0

,p
∥w∥Lp(S×A) , (280)

where Cdπ
µ0

,p =

(∫
(s,a)∈S×A

∣∣dπµ0
(s, a)

∣∣− p2

p−1 dµ(s, a)

) p−1

p2

. In the following, we analyze the relation between

∥L0 (Q
∗ + w)− L0Q

∗∥
L

p2,dπµ0 (S×A)
and ∥w∥Lp(S×A).

|L0 (Q
∗ + w)− L0Q

∗|
∣∣∣∣
(s,a)

(281)

=

∣∣∣∣γEs′∼P(·|s,a)

[
max
a′∈A

(Q∗ (s′, a′) + w (s′, a′))−max
a′∈A

Q∗ (s′, a′)

]∣∣∣∣ (282)

≤ γEs′∼P(·|s,a)

∣∣∣∣max
a′∈A

(Q∗ (s′, a′) + w (s′, a′))−max
a′∈A

Q∗ (s′, a′)

∣∣∣∣ (283)

≤ γEs′∼P(·|s,a)

[
max
a′∈A

|w (s′, a′)|
]

(284)

= γ

∫
s′
max
a′∈A

|w (s′, a′)|P(s′ | s, a)ds′ (285)

≤ γ

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

(∫
s′
(P(s′ | s, a))

p
p−1 ds′

)1− 1
p

(286)

= γ ∥P(· | s, a)∥
L

p
p−1 (S)

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

, (287)

where the second inequality comes from Lemma B.5 and the third inequality comes from the Holder’s inequality. let
CP,p := sup(s,a)∈S×A ∥P(· | s, a)∥L

p
p−1 (S)

and then, we have

∥L0 (Q
∗ + w)− L0Q

∗∥
L

p2,dπµ0 (S×A)
(288)

≤

∫
S×A

(
γ ∥P(· | s, a)∥

L
p

p−1 (S)

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

dπµ0
(s, a)

)p2

dµ(s, a)


1
p2

(289)

=

(∫
S×A

(
dπµ0

(s, a)
)p2

dµ(s, a)

) 1
p2

γCP,p

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

(290)

≤ γ
∥∥dπµ0

∥∥
Lp2 (S×A)

CP,p

∥∥∥∥max
a∈A
|w (s, a)|

∥∥∥∥
Lp(S)

(291)

≤ γ
∥∥dπµ0

∥∥
Lp2 (S×A)

CP,p ∥w∥Lp(S×A) , (292)
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where the last inequality comes from ∥w∥l∞(A) ≤ ∥w∥lp(A). Then, we have that(
1

Cdπ
µ0

,p
− γ

∥∥dπµ0

∥∥
Lp2 (S×A)

CP,p

)
∥w∥Lp(S×A) ≤ ∥f∥Lp2,dπµ0 (S×A)

. (293)

When Cdπ
µ0

:= inf(s,a)∈S×A dπµ0
(s, a) > 0, we have

Cdπ
µ0

,p ≤
(|A|µ (S))

p−1

p2

Cdπ
µ0

(294)

Thus, when the following conditions hold

Cdπ
µ0

,P,p :=

∥∥dπµ0

∥∥
Lp2 (S×A)

CP,p

Cdπ
µ0

<
1

γ
; p ≥ log (|A|) + log (µ (S))

log 1
γCdπµ0

,P,p

− 1; q ≥ p2,

we have

∥w∥Lp(S×A) ≤
(|A|µ (S))

p−1

p2

Cdπ
µ0
− γ

∥∥dπµ0

∥∥
Lp2 (S×A)

CP,p (|A|µ (S))
p−1

p2

∥f∥
L

p2,dπµ0 (S×A)
(295)

≤ (|A|µ (S))
1
p−

1
q

Cdπ
µ0
− γ

∥∥dπµ0

∥∥
Lp2 (S×A)

CP,p (|A|µ (S))
p−1

p2

∥f∥
L

q,dπµ0 (S×A)
, (296)

where the last inequality comes from ∥f∥
L

p2,dπµ0 (S×A)
≤ µ (S ×A)

1
p2

− 1
q ∥f∥

L
q,dπµ0 (S×A)

.

Remark C.10. The conditions are not satisfactory. The result implicitly adds the constrain for γ because limp→∞ Cdπ
µ0

,P,p =
1

Cdπµ0

, which indicates γ may be very small, i.e. γ < Cdπ
µ0

.

In the following theorem, we describe the instablility of DQN.
Theorem C.11. There exists a MDPM such that for all π satisfying Mdπ

µ0
:= sup(s,a)∈S×A dπµ0

(s, a) < ∞, Bellman

optimality equation TBQ = Q is not
(
Lq,dπ

µ0 (S ×A) , Lp (S ×A)
)

-stable, for all 1 ≤ q < p ≤ ∞.

Proof. According to the proof of Theorem B.10, for 1 ≤ q < p ≤ ∞, there exists a MDPM satisfying the following
statement. For all δ > 0 and n ∈ N, there exists a Q ∈ Lp (S ×A) ∩ Lq (S ×A) satisfying ∥TBQ−Q∥Lq(S×A) ≤

δ
Mdπµ0

such that ∥Q−Q∗∥Lp(S×A) > n ∥TBQ−Q∥Lq(S×A).

According to Lemma C.5, if Mdπ
µ0

:= sup(s,a)∈S×A dπµ0
(s, a) <∞, we have

∥Q∥
L

q,dπµ0 (S×A)
≤Mdπ

µ0
∥Q∥Lq(S×A) <∞. (297)

Thus, we have Q ∈ Lq,dπ
µ0 (S ×A) ∩ Lp (S ×A). For the same reason, we have

∥TBQ−Q∥
L

q,dπµ0 (S×A)
≤Mdπ

µ0
∥TBQ−Q∥Lq(S×A) ≤ δ. (298)

Hence, we get that For all δ > 0 and n ∈ N, there exists a Q ∈ Lq,dπ
µ0 (S ×A) ∩ Lp (S ×A) satisfying

∥TBQ−Q∥
L

q,dπµ0 (S×A)
≤ δ such that ∥Q−Q∗∥Lp(S×A) > n ∥TBQ−Q∥Lq(S×A).

Remark C.12. If Mdπ
µ0

= ∞, dπµ0
degenerates to the discrete probability distribution. Then, Lp,dπ

µ0 can be considered
as a norm defined on a finite dimension space. In this setting, we also have Cdπ

µ0
= 0 and Bellman optimality equation

TBQ = Q is not
(
Lq,dπ

µ0 (S ×A) , Lp (S ×A)
)

-stable, for any p and q.

According to the above theorems and remarks, we have the following corollary in the DQN procedure.
Corollary C.13. In practical DQN procedure, the Bellman optimality equations TBQ = Q is (L∞,dπ

µ0 (S×A), Lp(S×A))-
stable for all 1 ≤ p ≤ ∞, while it is not (Lq,dπ

µ0 (S ×A), Lp(S ×A))-stable for all 1 ≤ q < p ≤ ∞.
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C.3. Stability of DQN: the Bad

Theorem C.14. There exists an MDPM such that for all π satisfying dπµ0
is a discrete probability distribution, Bellman

optimality equation TBQ = Q is not
(
Lq,dπ

µ0 (S ×A) , Lp (S ×A)
)

-stable, for any p and q.

Proof. We only need to show there exists an MDP such that ∀n ∈ N,∀δ > 0,∃Q(s, a), such that ∥TBQ−Q∥Lq,dπµ0 (S×A)
<

δ, but ∥Q−Q∗∥Lp(S×A) ≥ n.

Consider an MDPM where S = [−1, 1],A = {a1, a2},

P(s′|s, a1) =

{
1{s′=s−0.1}, s ∈ [−0.9, 1]
1{s′=s}, else

, P(s′|s, a2) =

{
1{s′=s+0.1}, s ∈ [−1, 0.9]
1{s′=s}, else

,

r(s, ai) = kis, k2 ≥ k1 > 0. The transition function is essentially a deterministic transition dynamic and for convenience,
we denote that

p(s, a1) =

{
s− 0.1, s ∈ [−0.9, 1]
s, else

, p(s, a2) =

{
s+ 0.1, s ∈ [−1, 0.9]
s, else

.

Let Q∗(s, a) = Qπ∗
(s, a) be the optimal Q-function, where π∗ is the optimal policy.

Define B0 = {s ∈ S : ∃a ∈ A, s.t. dπµ0
(s, a) ̸= 0}, which contains all the states that can be explored. Let B =

{B0 ∪ {B0 + 0.1} ∪ {B0 − 0.1}} ∩ S, then ∀s ∈ B, p(s, a) ∈ B. Since dπµ0
is a discrete probability distribution,

µ(B) = µ(B0) = 0.

Let D = [−1, 1] \ B, and Q(s, a) = Q∗(s, a) + h · 1D, where h = n

2
1
p

. We have that Q(s, a) = Q∗(s, a),∀s /∈ D. We

then have for any s ∈ B that

TBQ(s, a) = r(s, a) + γ ·max
a′∈A

Q(p(s, a), a′)

= r(s, a) + γ ·max
a′∈A

Q∗(p(s, a), a′)

= Q∗(s, a)

= Q(s, a).

For any s /∈ B, dπµ0
(s, a) = 0 for all a ∈ A. Hence, ∥TBQ(s, a)−Q(s, a)∥

L
q,dπµ0 (S×A)

= 0 < δ.

However, we find that
∥Q(s, a)−Q∗(s, a)∥Lp(S×A) = h · µ(D)

1
p = h · 2

1
p ≥ n,

which completes the proof.

Remark C.15. If dπµ0
is a discrete probability distribution, L∞,dπ

µ0 (S ×A) is not a good choice. However, the sample
process should be considered in practical reinforcement learning algorithms and as a consequence, we have to apply the
space L∞,dπ

µ0 (S ×A) rather than L∞ (S ×A).

D. Derivation of CAR-DQN
Our theory motivates us to use the following objective:

Lcar(θ) := ∥TBQθ −Qθ∥
L

∞,d
πθ
µ0 (S×A)

(299)

= sup
(s,a)∈S×A

dπθ
µ0
(s, a) |TBQθ(s, a)−Qθ(s, a)| (300)

= sup
(s,a)∈S×A

dπθ
µ0
(s, a)

∣∣∣∣r(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

Qθ (s
′, a′)

]
−Qθ(s, a)

∣∣∣∣ . (301)

However, the objective is intractable in a model-free setting, due to the unknown environment, i.e. unknown reward function
and unknown transition function.
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Remark D.1. We apply the space L∞,d
πθ
µ0 (S ×A) rather than L∞ (S ×A) because the sampling process should be

considered in practical reinforcement learning algorithms.

D.1. Surrogate Objective

We can derive that

Lcar(θ) = sup
s∈S

max
a∈A

dπθ
µ0
(s, a) |TBQθ(s, a)−Qθ(s, a)| (302)

= sup
s∈S

max
sν∈Bϵ(s)

max
a∈A

dπθ
µ0
(s, a) |TBQθ(sν , a)−Qθ(sν , a)| (303)

= sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)−Qθ(sν , a)| . (304)

However, in a practical reinforcement learning setting, we cannot directly get the estimation of TBQθ(sν , a).

Theorem D.2. Let Ltrain
car (θ) := sup(s,a)∈S×A dπθ

µ0
(s, a)maxsν∈Bϵ(s) |TBQθ(s, a)−Qθ(sν , a)| and Ldiff

car (θ) :=
sup(s,a)∈S×A dπθ

µ0
(s, a)maxsν∈Bϵ(s) |TBQθ(sν , a)− TBQθ(s, a)|. We have that∣∣Ltrain

car (θ)− Ldiff
car (θ)

∣∣ ≤ Lcar(θ) ≤ Ltrain
car (θ) + Ldiff

car (θ). (305)

Proof. On one hand, we have

Lcar(θ) = sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)−Qθ(sν , a)| (306)

≤ sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
(|TBQθ(s, a)−Qθ(sν , a)|+ |TBQθ(sν , a)− TBQθ(s, a)|) (307)

≤ sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)− TBQθ(s, a)| (308)

+ sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(s, a)−Qθ(sν , a)| . (309)

On the other hand, we have

Lcar(θ) = sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)−Qθ(sν , a)| (310)

≥ sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
||TBQθ(sν , a)− TBQθ(s, a)| − |TBQθ(s, a)−Qθ(sν , a)|| (311)

≥

∣∣∣∣∣ sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)− TBQθ(s, a)| (312)

− sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(s, a)−Qθ(sν , a)|

∣∣∣∣∣ , (313)

where the second inequality comes from Lemma B.5.

It is hard to calculate or estimate Ldiff
car (θ) in practice. Fortunately, we think Ldiff

car (θ) should be small in practice and we
give a constant upper bound of Ldiff

car (θ) in the smooth environment.

Lemma D.3. Suppose Q and r are uniformly bounded, i.e. ∃MQ,Mr > 0 such that |Q(s, a)| ≤MQ, |r(s, a)| ≤Mr ∀s ∈
S, a ∈ A. Then TBQ(·, a) is uniformly bounded, i.e.

|TBQ(s, a)| ≤ CQ, ∀s ∈ S, a ∈ A, (314)

where CQ = max
{
MQ,

Mr

1−γ

}
. Further, for any k ∈ N, T k

BQ(·, a) has the same uniform bound as TBQ(·, a), i.e.∣∣T k
BQ(s, a)

∣∣ ≤ CQ, ∀s ∈ S, a ∈ A. (315)
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Proof.

|TBQ(s, a)| =
∣∣∣∣r(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

Q (s′, a′)

]∣∣∣∣ (316)

≤ |r(s, a)|+ γEs′∼P(·|s,a)

∣∣∣∣max
a′∈A

Q (s′, a′)

∣∣∣∣ (317)

≤Mr + γMQ (318)

≤ max

{
MQ,

Mr

1− γ

}
, ∀s ∈ S, a ∈ A. (319)

Let CQ = max
{
MQ,

Mr

1−γ

}
. Suppose the inequality (315) holds for k = n. Then, for k = n+ 1, we have

∣∣T n+1
B Q(s, a)

∣∣ = ∣∣∣∣r(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

T n
BQ (s′, a′)

]∣∣∣∣ (320)

≤ |r(s, a)|+ γEs′∼P(·|s,a)

∣∣∣∣max
a′∈A

T n
BQ (s′, a′)

∣∣∣∣ (321)

≤Mr + γCQ (322)
≤ (1− γ)CQ + γCQ (323)
= CQ. (324)

By induction, we have
∣∣T k

BQ(s, a)
∣∣ ≤ CQ, ∀s ∈ S, a ∈ A, k ∈ N.

Lemma D.4. Suppose the environment is (Lr, LP)-smooth and suppose Q and r are uniformly bounded, i.e. ∃MQ,Mr > 0
such that |Q(s, a)| ≤MQ, |r(s, a)| ≤Mr ∀s ∈ S, a ∈ A. Then TBQ(·, a) is Lipschitz continuous, i.e.

|TBQ(s, a)− TBQ(s′, a)| ≤ LTB
∥s− s′∥, (325)

where LTB
= Lr + γCQLP and CQ = max

{
MQ,

Mr

1−γ

}
. Further, for any k ∈ N, T k

BQ(·, a) is Lipschitz continuous and

has the same Lipschitz constant as TBQ(·, a), i.e.∣∣T k
BQ(s, a)− T k

BQ(s′, a)
∣∣ ≤ LTB

∥s− s′∥. (326)

Proof. For all s1, s2 ∈ S, we have

TBQ(s1, a)− TBQ(s2, a) (327)

= r(s1, a) + γEs′∼P(·|s1,a)

[
max
a′∈A

Q (s′, a′)

]
− r(s2, a)− γEs′∼P(·|s2,a)

[
max
a′∈A

Q (s′, a′)

]
(328)

= (r(s1, a)− r(s2, a)) + γ

∫
s′
(P(s′|s1, a)− P(s′|s2, a))max

a′∈A
Q (s′, a′) ds′. (329)

Then, we have

|TBQ(s1, a)− TBQ(s2, a)| (330)

≤ |(r(s1, a)− r(s2, a))|+
∣∣∣∣γ ∫

s′
(P(s′|s1, a)− P(s′|s2, a))max

a′∈A
Q (s′, a′) ds′

∣∣∣∣ (331)

≤ Lr∥s1 − s2∥+ γ

∫
s′
|P(s′|s1, a)− P(s′|s2, a)|

∣∣∣∣max
a′∈A

Q (s′, a′)

∣∣∣∣ ds′ (332)

≤ Lr∥s1 − s2∥+ γCQ

∫
s′
|P(s′|s1, a)− P(s′|s2, a)| ds′ (333)

≤ Lr∥s1 − s2∥+ γCQLP∥s1 − s2∥ (334)
= (Lr + γCQLP) ∥s1 − s2∥. (335)
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The second inequality comes from the Lipschitz property of r. The third inequality comes from the uniform boundedness of
Q and the last inequality utilizes the Lipschitz property of P.

Note that the uniform boundedness used in the above proof is CQ rather than MQ. Then, due to lemma D.3, we can extend
the above proof to T k

B .

Theorem D.5. Suppose the environment is (Lr, LP)-smooth and suppose Qθ and r are uniformly bounded, i.e. ∃MQ,Mr >
0 such that |Qθ(s, a)| ≤MQ, |r(s, a)| ≤Mr ∀s ∈ S, a ∈ A. If M := supθ,(s,a)∈S×A dπθ

µ0
(s, a) <∞, then we have

Ldiff
car (θ) ≤ CTB

ϵ, (336)

where CTB
= LTB

M , LTB
= Lr + γCQLP and CQ = max

{
MQ,

Mr

1−γ

}
.

Proof.

Ldiff
car (θ) = sup

(s,a)∈S×A
dπθ
µ0
(s, a) max

sν∈Bϵ(s)
|TBQθ(sν , a)− TBQθ(s, a)| (337)

≤ sup
(s,a)∈S×A

dπθ
µ0
(s, a) max

sν∈Bϵ(s)
(Lr + γCQLP) ∥sν − s∥ (338)

≤ (Lr + γCQLP) ϵ sup
(s,a)∈S×A

dπθ
µ0
(s, a) (339)

≤M (Lr + γCQLP) ϵ, (340)

where the first inequality comes from Lemma D.4 and the last inequality comes from the uniform boundedness of dπθ
µ0

.

D.2. Approximate Objective

Lemma D.6. For any function f : Ω→ R and λ > 0, we have

max
p∈∆(Ω)

[Eω∼pf(ω)− λKL(p∥p0)] = λ lnEω∼p0

[
e

f(ω)
λ

]
, (341)

where ∆(Ω) denotes the set of probability distributions on Ω. And the solution is achieved by the following distribution q:

q(ω) =
p0(ω)e

f(ω)
λ∫

ω∈Ω
p0(ω)e

f(ω)
λ dµ(ω)

=
1

C
p0(ω)e

f(ω)
λ . (342)

Proof. Let

C := Eω∼p0

[
e

f(ω)
λ

]
=

∫
ω∈Ω

p0(ω)e
f(ω)
λ dµ(ω),

q(ω) =
p0(ω)e

f(ω)
λ∫

ω∈Ω
p0(ω)e

f(ω)
λ dµ(ω)

=
1

C
p0(ω)e

f(ω)
λ .

Then, we have

Eω∼pf(ω)− λKL(p∥p0) (343)

=Eω∼p

[
λ ln e

f(ω)
λ − λ ln

p(ω)

p0(ω)

]
(344)

=λEω∼p

[
ln

e
f(ω)
λ p0(ω)

p(ω)

]
(345)

=λEω∼p

[
ln

Cq(ω)

p(ω)

]
(346)

=λ [lnC −KL(p∥q)] (347)
≤λ lnC (348)

=λ lnEω∼p0

[
e

f(ω)
λ

]
. (349)
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Note that the equal sign holds if and only if p = q. Thus, we get

q ∈ arg max
p∈∆(Ω)

[Eω∼pf(ω)− λKL(p∥p0)] .

We get the following approximate objective of Ltrain
car (θ):

Lapp
car (θ) = max

(s,a,r,s′)∈B

1

|B|
max

sν∈Bϵ(s)

∣∣∣r + γmax
a′

Qθ̄(s
′, a′)−Qθ(sν , a)

∣∣∣ . (350)

Denote

fi = f(si, ai, ri, s
′
i) := max

sν∈Bϵ(si)

∣∣∣ri + γmax
a′

Qθ̄(s
′
i, a

′)−Qθ(sν , ai)
∣∣∣ . (351)

To fully utilize each sample in the batch, we derive the soft version of the above objective:

Ltrain
car (θ) = max

(s,a,r,s′)∈B

1

|B|
f(s, a, r, s′) (352)

=
1

|B|
max

p∈∆(B)

∑
(si,ai,ri,s′i)∈B

pif(si, ai, ri, s
′
i) (353)

≥ 1

|B|
max

p∈∆(B)

 ∑
(si,ai,ri,s′i)∈B

pif(si, ai, ri, s
′
i)− λKL (p∥U (B))

 , (354)

where U (B) represents the uniform distribution over B. According to Lemma D.6, the optimal solution of the maximization
problem (354) is p∗:

p∗i =
e

1
λ fi∑

i∈|B| e
1
λ fi

. (355)

The maximization problem (354) is the lower bound of the maximization problem (353) so p∗ is a proper approximation of
the optimal solution of the maximization problem (353). Thus, we get the soft version of the CAR objective:

Lsoft
car (θ) =

1

|B|
∑

(si,ai,ri,s′i)∈B

e
1
λ fi∑

i∈|B| e
1
λ fi

max
sν∈Bϵ(si)

∣∣∣ri + γmax
a′

Qθ̄(s
′
i, a

′)−Qθ(sν , ai)
∣∣∣ . (356)

E. Examples of Intrinsic States
In Figure 6, 7, 8, we show some examples in 3 Atari games (Pong, Freeway, and RoadRunner) that the state observation s
and adversarial observation sν have the same intrinsic state.

F. Additional Algorithm Details
Algorithm. We present the CAR-DQN training algorithm in Algorithm 1.

DQN architecture. We implement Dueling network architectures (Wang et al., 2016) and the same architecture following
(Zhang et al., 2020; Oikarinen et al., 2021) which has 3 convolutional layers and a two-head fully connected layers. The first
convolutional layer has 8× 8 kernel, stride 4, and 32 channels. The second convolutional layer has 4× 4 kernel, stride 2,
and 64 channels. The third convolutional layer has 3× 3 kernel, stride 1, and 64 channels and is then flattened. The fully
connected layers have 512 units for both heads wherein one head outputs a state value and the other outputs advantages of
each action. Every middle layer is applied by the ReLU activation function.
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Algorithm 1 Consistent Adversarial Robust Deep Q-Learning (CAR-DQN).
Input: Number of iterations T , target network update frequency M , a schedule βt for the exploration probability β, a
schedule ϵt for the perturbation radius ϵ.
Initialize current Q network Q(s, a) with parameters θ and target Q network Q′(s, a) with parameters θ′ ← θ.
Initialize replay buffer B.
for t = 1 to T do

With probability βt select random action at, otherwise select at = argmaxa Q(st, a; θ).
Execute action at in environment and observe reward rt and the next state st+1.
Store transition pair {st, at, rt, st+1} in B.
Randomly sample a minibatch of N transition pairs {si, ai, ri, si+1} from B.
Set yi = ri + γQ′(si+1, argmaxa′ Q(si, a

′; θ); θ′) for non-terminal si, and yi = ri for terminal si.
Define Lsoft

car (θ):
Lsoft
car (θ) :=

∑
i∈|B|

αi max
sν∈Bϵt (si)

|yi −Q(sν , ai; θ)| ,

where αi =
e

1
λ

maxsν |yi−Q(sν,ai;θ)|∑
i∈|B| e

1
λ

maxsν |yi−Q(sν,ai;θ)|
.

Option 1: Use projected gradient descent (PGD) to solve Lsoft
car (θ).

For every i ∈ |B|, run PGD to solve:

si,ν = argmax
sν∈Bϵt (si)

|yi −Q(sν , ai; θ)| .

Compute the approximation of Lsoft
car (θ):

Lcar(θ) =
∑
i∈|B|

αi |yi −Q(si,ν , ai; θ)| ,

where αi =
e

1
λ |yi−Q(si,ν ,ai;θ)|∑

i∈|B| e
1
λ |yi−Q(si,ν ,ai;θ)|

.

Option 2: Use convex relaxations of neural networks to solve a surrogate loss for Lsoft
car (θ).

For every i ∈ |B|, obtain upper and lower bounds on Q(s, ai; θ) for all s ∈ Bϵt(si):

ui(θ) = ConvexRelaxUB (Q(s, ai; θ), θ, s ∈ Bϵt(si)) ,

li(θ) = ConvexRelaxLB (Q(s, ai; θ), θ, s ∈ Bϵt(si)) .

Compute the surrogate loss for Lsoft
car (θ):

Lcar(θ) =
∑
i∈|B|

αi max {|yi − ui(θ)| , |yi − li(θ)|} ,

where αi =
e

1
λ

max{|yi−ui(θ)|,|yi−li(θ)|}∑
i∈|B| e

1
λ

max{|yi−ui(θ)|,|yi−li(θ)|}
.

Update the Q network by performing a gradient descent step to minimize Lcar(θ).
Update target Q network every M steps: θ′ ← θ.

end for

G. Comparation between RADIAL-DQN and CAR-DQN with Increasing Perturbation Radius
The core at RADIAL-DQN is a heuristic robust regularization that minimizes the overlap between bounds of perturbed Q
values of the current action and others:

Lradial (θ) = E(s,a,s′,r)

[∑
y

Qdiff(s, y) ·Ovl(s, y, ϵ)

]
,
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where Qdiff(s, y) = max(0, Q(s, a)−Q(s, y)), Ovl(s, y, ϵ) = max(0, Q̄(s, y, ϵ)−Q(s, a, ϵ)+η) and η = c·Qdiff(s, y), c =
0.5. Qdiff is treated as a constant for the optimization. We consider RADIAL-DQN could perform better than CAR-DQN
with increasing perturbation radius since Lradial (θ) is a stronger regularization to enhance robustness while compromising
natural rewards. The stronger robust constraint is mainly reflected in two aspects:

• The loose bounds. RADIAL-DQN uses the cheap but loose convex relaxation method (IBP) to estimate Q̄(s, y, ϵ) and
Q(s, a, ϵ).

• The positive margin η.

They both result in Ovl(s, y, ϵ) a stronger constraint for representing the overlap of perturbed Q values. However, RADIAL-
DQN has the following weaknesses:

• Lradial (θ) will harm natural rewards. As shown in Figure 4, the natural rewards curve of RADIAL-DQN on
RoadRunner distinctly tends to decrease, especially around 0.5 million steps. In contrast, the natural curves of our
CAR-DQN showcase more stable upward trends in all environments. Besides, as shown in Table 5, RADIAL-DQN
training with a larger radius attains lower natural rewards which also restricts robustness according to our theory, while
CAR-DQN keeps a better and consistent natural and robust performance.

• Heuristic implementation lacks theoretical guarantees and introduces sensitive hyperparameter c. We conduct additional
experiments on RoadRunner with different c and observe the sensitivity of RADIAL-DQN to the choice of c. Larger
c could cause poor performance because the robustness constraint is too strict and thus the policy degrades to some
simple policy with lower rewards. Smaller c may result in much weaker robustness. By contrast, our CAR-DQN is
developed based on the theory of optimal robust policy and stability. Although we also introduce a hyperparameter λ,
our ablation studies in Figure 5 show that our algorithm is insensitive to it.

Table 4. Performance of RADIAL-DQN sensitive to different positive margins c ·Qdiff(s, y).

Model Natural Return PGD MinBest
ϵ = 1/255 ϵ = 3/255 ϵ = 5/255 ϵ = 1/255 ϵ = 3/255 ϵ = 5/255

RADIAL-DQN (c = 0.25) 14678± 329 14836± 314 13670± 466 13512± 617 14712± 309 14804± 457 13226± 351
RADIAL-DQN (c = 0.5) 46224± 1133 45990± 1112 42162± 1147 23248± 499 46082± 1128 42036± 1048 25434± 756

RADIAL-DQN (c = 0.75) 3992± 482 3992± 482 3992± 482 3992± 482 3992± 482 3992± 482 3992± 482

• Depending on the currently learned optimal action. Lradial (θ) essentially takes the currently learned action as a robust
label which may produce a wrong direction for robustness training if the learned action is not optimal. In contrast,
our CAR-DQN seeks optimal robust policies with theoretical guarantees and does not utilize the learned action for
robustness training, simultaneously improving natural and robust performance.

The main motivation of CAR-DQN based on our theory is to improve natural and robust performance concurrently which
makes sense in real-world scenarios where strong adversarial attacks are relatively rare. Our training loss can guarantee
robustness under the attack with the same perturbation radius as the training. We also think it is a very significant problem
whether and how we can design an algorithm training with little epsilon and theoretically guarantee robustness for larger
epsilon. However, this is beyond the scope of our paper and we will consider this problem in subsequent work.

Moreover, as shown in Table 6, CAR-DQN also achieves the top performance in larger perturbation radiuses on Pong
and BankHeist and matches the RADIAL-DQN on Freeway. To show the superiority of CAR-DQN further, we also train
CAR-DQN with a perturbation radius of 3/255 and 5/255 on RoadRunner for 4.5 million steps (see Table 5). We can see that
CAR-DQN still attains superior natural and robust performance training with larger attack radiuses while RADIAL-DQN
markedly degrades its natural performance due to the too-strong robustness constraint. CAR-DQN always has a higher
robust return on the training radius than RADIAL-DQN.

H. Additional Experiment Results
Training stability. We also observe that there are some instability phenomena in the training of CAR, RADIAL, and WocaR
in Figure 4. We conjecture that the occasional instability in CAR training comes from the unified loss combining natural and
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Table 5. Performance of CAR-DQN and RADIAL-DQN trained with different perturbation radiuses on the RoadRunner environment.
The best results of the algorithm with the same training radius are highlighted in bold.

Model Natural Return PGD MinBest
ϵ = 1/255 ϵ = 3/255 ϵ = 5/255 ϵ = 1/255 ϵ = 3/255 ϵ = 5/255

RADIAL-DQN (ϵ = 1/255) 46224± 1133 45990± 1112 42162± 1147 23248± 499 46082± 1128 42036± 1048 25434± 756
CAR-DQN (ϵ = 1/255) 49398± 1106 49456± 992 28588± 1575 15592± 885 47526± 1132 32878± 1898 21102± 1427

RADIAL-DQN (ϵ = 3/255) 34656± 1104 35094± 1277 35082± 948 32770± 1062 35096± 1277 34374± 996 27926± 881
CAR-DQN (ϵ = 3/255) 47348± 1305 46284± 1114 43578± 1315 27060± 1117 46286± 1122 42602± 1336 24862± 1195

RADIAL-DQN (ϵ = 5/255) 35160± 1157 36158± 1104 36732± 1076 34826± 913 36158± 1104 36732± 1076 34592± 913
CAR-DQN (ϵ = 5/255) 42545± 2028 43230± 1468 37845± 2344 39235± 1519 43645± 1531 37535± 2112 38150± 1316

robustness objectives which may cause undesirable optimization direction under a batch of special samples. The instability
of RADIAL is particularly evident in the robustness curve on the BankHeist environment and natural curve on the Freeway
environment and it may be from the larger batch size (=128) setting during the RADIAL training while CAR, SA-DQN and
WocaR set the batch size as 32 or 16. The worst-case estimation of WocaR may be inaccurate in some states and WocaR also
uses a small batch of size 16. The combination of these two can lead to instability, especially in complex environments such
as RoadRunner and BankHeist. Another possible reason is that CAR, RADIAL, and WocaR all use the cheap relaxation
method leading to a loose bound while SA-DQN utilizes a tighter relaxation.

Table 6. Average episode rewards ± standard error of the mean over 50 episodes on baselines and CAR-DQN. The best results of the
algorithm with the same type of solver are highlighted in bold.

Environment Model Natural Return PGD MinBest ACR
ϵ = 1/255 ϵ = 3/255 ϵ = 5/255 ϵ = 1/255 ϵ = 3/255 ϵ = 5/255 ϵ = 1/255 ϵ = 3/255 ϵ = 5/255

Pong

Standard DQN 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −20.8± 0.1 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0 0 0 0

PGD SA-DQN 21.0± 0.0 21.0± 0.0 −19.4± 0.3 −21.0± 0.0 21.0± 0.0 −19.4± 0.2 −21.0± 0.0 0 0 0
CAR-DQN (Ours) 21.0± 0.0 21.0± 0.0 16.8± 0.7 −21.0± 0.0 21.0± 0.0 20.7± 0.1 −0.8± 2.8 0 0 0

Convex
Relaxation

SA-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 −19.6± 0.1 21.0± 0.0 21.0± 0.0 −9.5± 1.3 1.000 0 0
RADIAL-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 4.9± 0.6 0.898 0 0
WocaR-DQN 21.0± 0.0 21.0± 0.0 20.5± 0.1 20.6± 0.1 21.0± 0.0 20.7± 0.1 20.9± 0.1 0.979 0 0

CAR-DQN (Ours) 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 0.986 0 0

Freeway

Standard DQN 33.9± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0 0 0

PGD SA-DQN 33.6± 0.1 23.4± 0.2 20.6± 0.3 7.6± 0.3 21.1± 0.2 21.3± 0.2 21.8± 0.3 0.250 0.275 0.275
CAR-DQN (Ours) 34.0± 0.0 33.7± 0.1 25.8± 0.2 3.8± 0.2 33.7± 0.1 30.0± 0.3 26.2± 0.2 0 0 0

Convex
Relaxation

SA-DQN 30.0± 0.0 30.0± 0.0 30.2± 0.1 27.7± 0.1 30.0± 0.0 30.0± 0.0 29.2± 0.1 1.000 0.912 0
RADIAL-DQN 33.1± 0.1 33.3± 0.1 33.3± 0.1 29.0± 0.1 33.3± 0.1 33.3± 0.1 31.2± 0.2 0.998 0 0
WocaR-DQN 30.8± 0.1 31.0± 0.0 30.6± 0.1 29.0± 0.2 31.0± 0.0 31.1± 0.1 29.0± 0.2 0.992 0.150 0

CAR-DQN (Ours) 33.2± 0.1 33.2± 0.1 32.3± 0.2 27.6± 0.3 33.2± 0.1 32.8± 0.2 31.0± 0.1 0.981 0 0

BankHeist

Standard DQN 1317.2± 4.2 22.2± 1.9 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0 0 0

PGD SA-DQN 1248.8± 1.4 965.8± 35.9 35.6± 3.4 0.6± 0.3 1118.0± 6.3 50.8± 2.5 4.8± 0.7 0 0 0
CAR-DQN (Ours) 1307.0± 6.1 1243.2± 7.4 908.2± 17.0 83.0± 2.2 1242.6± 8.4 970.8± 9.6 819.4± 9.0 0 0 0

Convex
Relaxation

SA-DQN 1236.0± 1.4 1232.2± 2.5 1208.8± 1.7 1029.8± 34.6 1232.2± 2.5 1214.8± 2.6 1051.0± 35.5 0.991 0.409 0
RADIAL-DQN 1341.8± 3.8 1341.8± 3.8 1346.4± 3.2 1092.6± 37.8 1341.8± 3.8 1328.6± 5.4 732.6± 11.5 0.982 0 0
WocaR-DQN 1315.0± 6.1 1312.0± 6.1 1323.4± 2.2 1094.0± 10.2 1312.0± 6.1 1301.6± 3.9 1041.4± 17.4 0.987 0.093 0

CAR-DQN (Ours) 1349.6± 3.0 1347.6± 3.6 1332.0± 7.3 1191.0± 9.0 1347.4± 3.6 1338.0± 2.9 1233.6± 5.0 0.974 0 0

RoadRunner

Standard DQN 41492± 903 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0 0 0

PGD SA-DQN 33380± 611 20482± 1087 0± 0 0± 0 24632± 812 614± 72 214± 26 0 0 0
CAR-DQN (Ours) 49700± 1015 43286± 801 25740± 1468 2574± 261 48908± 1107 35882± 904 23218± 698 0 0 0

Convex
Relaxation

SA-DQN 46372± 882 44960± 1152 20910± 827 3074± 179 45226± 1102 25548± 737 12324± 529 0.819 0 0
RADIAL-DQN 46224± 1133 45990± 1112 42162± 1147 23248± 499 46082± 1128 42036± 1048 25434± 756 0.994 0 0
WocaR-DQN 43686± 1608 45636± 706 19386± 721 6538± 464 45636± 706 21068± 1026 15050± 683 0.956 0 0

CAR-DQN (Ours) 49398± 1106 49456± 992 28588± 1575 15592± 885 47526± 1132 32878± 1898 21102± 1427 0.760 0 0

Insensitivity of learning rate and batch size. We compare the performance of CAR-DQN with different small batch
size (16, 32) and learning rate (1.25× 10−4, 6.25× 10−5) which are respectively used by Zhang et al. (2020); Liang et al.
(2022). As shown in Figure 13, we can see CAR-DQN is insensitive to these parameters.
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Figure 6. Examples of intrinsic states in Pong games. The direction of movement of the ball is marked.
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Figure 7. Examples of intrinsic states in Freeway games. The directions of movement of cars around the chicken are marked.
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Figure 8. Examples of intrinsic states in Road Runner games. The directions of movement of trucks and the competitors are marked.
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Figure 9. Natural and robustness performance exhibited by SA-DQN agents during the training process on 4 Atari games.
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Figure 10. Natural and robustness performance exhibited by RADIAL-DQN agents during the training process on 4 Atari games.
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Figure 11. Natural and robustness performance exhibited by WocaR-DQN agents during the training process on 4 Atari games.
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Figure 12. Natural, PGD attack and MinBest attack rewards of CAR-DQN with different soft coefficients on RoadRunner.
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Figure 13. Episode rewards of CAR-DQN with different batch sizes and learning rates during training on RoadRunner and BankHeist
with and without PGD attack.
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