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Abstract

Recently, large language models (LLMs) have made remarkable progress in natural
language processing (NLP). The most representative ability of LLMs is in-context
learning (ICL), which enables LLMs to learn patterns from in-context exemplars
without training. However, there remains limited intuition for how in-context
learning works. In this paper, we present a novel perspective on prompting LLMs
by conceptualizing it as contextual retrieval from a model of associative memory,
which can be biologically plausible. We establish a theoretical interpretation of
ICL based on an extension of the framework of Hopfield Networks. Based on our
theory, we further analyze how in-context exemplars influence the performance
of ICL. Our study sheds new light on the mechanism of ICL by connecting it to
memory retrieval, with potential implications for advancing the understanding of
LLMs.

1 Introduction

In recent years, large language models (LLMs) have garnered significant attention due to their
ability to revolutionize natural language processing (NLP) by demonstrating impressive language
understanding and reasoning capabilities (5; 4; 29; 37; 28). LLMs are first pretrained on extensive
data using the language modeling technique where the model predicts the next token given a context.
Without finetuning on task-specific data, LLMs leverage in-context learning (ICL), also referred to as
few-shot prompting, to make predictions. Through ICL, LLMs can find underlying patterns of the
input query through given in-context exemplars, such as a set of input/output pairs, and use them to
complete the response.

The understanding of ICL currently remains intuitive and lacks theoretical foundation. Past works
on ICL mainly focus on empirical investigation (23; 11; 19; 40) or data distribution to explain
how ICL emerges (6; 38). In this work, we adopt a novel and distinct perspective by theoretically
reframing ICL as contextual retrieval rather than a learning problem (8; 35; 9), as there is no actual
weight update involved. We conceptualize LLM as a biologically plausible model of associative
memory (13), also known as content-addressable memory. In the realm of machine learning, memory
models (13; 17; 31; 16; 25; 18) have been widely studied for a long time. Two fundamental models
are Hopfield Network (13) and its extension, sparse distributed memory (17). The retrieval process
can also be viewed as pattern recognition (18).

Through the lens of memory models, we demonstrate that ICL with self-attention (34) in LLMs can
be interpreted as retrieving patterns from associative memory of Hopfield Networks with context.
Correspondingly, we establish a theoretical framework and analyze retrieval error. We further look
into the influence of in-context exemplars on performance of ICL based on our contextual retrieval
formulation. We also conduct extensive experiments as sources of evidence to our theoretical analysis.
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2 ICL as Contextual Retrieval

This section presents a formulation of ICL as pattern retrieval based on context from memories of
modern Hopfield Networks (MHNs)(25; 18; 22). Brief overview of Hopfield Networks is provided in
Appendix A. In this section, we first give a formal setup of ICL. For a pre-trained language model
whose parameters are denoted as θ, given an input x, the model will predict ỹ for ground truth by
conditioning on the query and a context sequence containing K exemplars that are drawn from an
accessible labeled dataset D(x,y) (each exemplar ei = (xi, yi)). Formally, we denote the sequence of
all K in-context exemplars e, i.e., e = e1, ..., eK . We can then have

ỹ = argmaxyP (y|e,x, θ). (1)

From the perspective of HNs, the input string [e,x] is a cue to the associative memory. The feed-
forwarding process in the language model is to reconstruct the completion ỹ of x that aligns with
patterns of context e by recalling information stored into the model’s memory during pretraining.
For LLM, the pretraining is implemented as predicting masked/ next tokens of sentences, which is
essentially teaching the model to reconstruct completion based on context like HNs.

To demonstrate the close relation between ICL and retrieving from HNs, we first extend the model
definitions discussed by Ramsauer et al. (25); Millidge et al. (22) to construct a Hopfield Network with
Context (HN-C). We then show that contextual retrieval from HN-C is equivalent to self-attention
in LLMs. To incorporate context in HNs, we consider stored patterns in memory as applying a
linear transformation to raw vectors with a memory matrix, which is different from past frameworks
(25; 18; 22) that assume a static array of stored patterns. Thus, in our case, context patterns are
dynamically defined depending on the input context. It is also important to note that retrieval does
not necessarily mean extracting the exact stored patterns in memory without loss, but rather involves
the induction of completion based on the input patterns that are typically not fully identical to the
stored memories (18). Actually, contextual retrieval setting is indeed how the human brain retrieves
episodic memory (26).

Formally, we denote some underlying query vector of input strings by σ ∈ Rdm . We define there are
M context vectors λi ∈ Rdm which are represented by a matrix Λ ∈ Rdm×M . We define memory
matrix ξQ ∈ Rdm×dq and ξK ∈ Rdm×dq respectively for query vector σ and context vector λ. We
further define Z := ξTKΛ and each column vector z is context pattern. Accordingly, we have
u := σξQ as query pattern. We then define the update rule for u of the model based on the Universal
Hopfield Network (22) as follows:

unew = sep(γ sim(u, Z))ΛT ξK , (2)

where γ is a scalar value, sim is a similarity function and sep is a separation function. We set sim as
dot production and sep as softmax function. Then the update rule can be further specified as Eq. 4.

unew = softmax(γ uZ)ΛT ξK (3)

= softmax(γ σξQξ
T
KΛ)ΛT ξK (4)

This formulation can be converted to self-attention by applying a linear transformation to unew, i.e.,
unewWv = softmax(γQKT )V, where we write σξQ = Q, ξTKΛ = KT and ΛT ξKWv = V.
Therefore, the update rule for contextual retrieval from HNs can be equivalent to self-attention
through simple conversion. For self-attention, query pattern is Q and the context pattern is namely
K. We give further detailed interpretation of ICL as pattern retrieval in Appendix B.

Definition 1 (Query-Context Separation) For zi, δ := uzi − uzj , where zj ̸= {zi|i ∈ [1,M ]} and
i, j ∈ [1,M ].

We then establish the distinction in similarity scores between context patterns and query patterns
as a metric for evaluating the degree of separation between two context patterns with respect to the
query pattern. The larger δ is between zi and some other patterns zj , the easier it will be for zi to
be matched by the query pattern u. Moreover, we define the pattern retrieval error as ∥f(u)− u⋆∥,
where f is the update rule for the query pattern and u⋆ is the corresponding underlying ground-truth
pattern of y in the same associative space to u. It is assumed that both the query vectors and context
vectors follow some distribution within the pre-trained model, allowing the model to effectively
capture and represent their patterns. Different from the defined error of HNs in (25), we consider a
general case where uT is not necessarily in {zi|i ∈ [1,M ]}.
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Theorem 1 (Retrieval Error) For some zi that has t instances, i.e., t =
∑M

j=1 1{zj = zi}.
The ground-truth pattern u⋆ = (zi + ∆z)T . We define c := exp(−γ(uzi − maxzi ̸=zjuzj)) =
exp(−γδmin), and zmax = max(z1, ..., zM ). The retrieval error ϵ := ∥f(u)− u⋆∥ is then bounded

by [0, ∥∆z∥+ β∥zmax∥], where β =

(
1−

(
1 + c(M−t)

t

)−1

+ c(M − t)

)
and β ∝ cMt

The proof is displayed in Appendix D. We can see the upper bound consists of two parts, i.e., ∥∆z∥
and β∥zmax∥. We name ∥∆z∥ as Instance Error which directly reflects the match between a context
pattern zi and the target pattern u⋆. On the other hand, β∥zmax∥ is named as Contextual Error
that mainly indicates the separation of zi from other context patterns (remind that β ∝ cMt =

exp(−γδmin)
M
t ), i.e., how easy for the model to rely on zi more for the retrieval. Additionally, when

t = 1 and ||∆z|| = 0, we are directly retrieving the pattern from context patterns stored in the HN.
We next discuss two primary questions on ICL, utilizing our retrieval framework as a foundation, and
offer some theoretical predictions. Additionally, we show some phenomena implying the biological
plausibility of ICL in Appendix C.

How does the relation among context patterns influence retrieval error? We first assume the
instance error is already acceptably small, otherwise the decrease of the contextual error in the upper
bound can be trivial to the total error. Then from Theorem 1, given the ∥zmax∥, the contextual error
is proportionate to cMt . Recall that c = exp(−γ(uzi−maxzi ̸=zjuzj)) = exp(−γδmin). When δmin

is larger, the context pattern zi is well separated from other distinct context patterns for the query
pattern u. zi will be more prominent when conducting softmax in Eq. 4 and the upper bound of ϵ will
be lower, which indicates the potential of smaller error.

How does the number of context patterns influence retrieval error? With the increase of M , M
t

and c may change accordingly depending on newly introduced context patterns. Given the instance
error, this fluctuation leads to the different tendencies of the upper bound, which means varied
potential of the actual error. When context vectors are randomly sampled from the distribution, larger
M is often observed to enable generally better performance of ICL (23; 4; 39). However, chances
are that if one context pattern zi already has minimum instance error, larger M may lead to declined
performance due to the introduced contextual error from other context patterns (i.e., increased M

t
and c). We empirically show this in Sec. 3. Thus, the influence of M can be uncertain depending on
chosen context patterns.

2.1 Exemplar Selection

This section analyzes the default random selection based on our retrieval framework. We first detail
the definition of exemplar selection.

Definition 2 (Exemplar Selection) For an input query x and output y sampled from distribution
p(Dte) of task T , a set of K exemplars Scontext is selected from training data Dtr

(x,y) to minimize
ℓ(y, ỹ), where ỹ = argmaxyP (y|e1, ..., eK ,x), ei = (xei , yei), ei ∈ Scontext.

We assume p(Dte) ≈ p(Dtr
(x,y)) ≈ p∗ that is the population distribution. We also regard patterns as

latent variables that underlie string sequences.

Random Selection. Random selection is the default method (4) that can be considered as sampling
exemplars from p(Dtr

(x,y)). When K is large enough, we assume p(Scontext) ≈ p(Dtr
(x,y)) ≈ p∗.

Accordingly, the mode of context patterns, i.e., argmaxz
∑M

j=1 1{zj = z} may approximate the
mode (denoted by ẑ) of the pattern distribution of samples from p∗. Then for the upper bound of
retrieval error ϵ with zi = argmaxz

∑M
j=1 1{zj = z}, the instance error can be approximated to the

error given by ẑ, i.e., ∥∆z∥ ≈ ∥ẑ − (u∗)T ∥. Because ẑ may more or less be relevant to (u∗)T when
they follow the same pattern distribution, with sufficiently large K, random selection may give a
decent retrieval error. On the other hand, when K is small, random selection may perform poorly
and have great variance depending on sampled exemplars. We provide empirical verification of our
theoretical prediction in Fig. 1 of Sec. 3.
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Figure 1: The relation between the performance of ICL with random exemplar selection and the
number of exemplars (i.e., K). Apart from random selection, we assume the oracle access to ground
truth so as to select the best exemplars for each query (denoted as “instance best”).

3 Experiments

Experimental Setup. We consider inducing linguistic structures as our testbed that is a fundamental
ability to downstream NLP tasks (20). We employ the commonly used Penn Treebank corpus (21)
with the standard splits (2-21) for training containing 39832 sentences, 22 for validation, 23 for test).
PTB is an often-used benchmark for constituency parsing in English. The corpus is collected from a
variety of sources including stories, news, and scientific abstracts. We employ Code-Davinci-002,
known as Codex (7). For the evaluation, we report sentence-level unlabeled parsing F1 that is
computed separately for each sentence and then averaged across the dataset.

Effects of K. We conduct experiments with different number of in-context exemplars. The results
are shown in Fig. 1. The performance of ICL increases with more exemplars for random selection.
Recall in our theory in Sec. 2.1, we consider the drawback of random selection is it needs a large
K to reach an optimal status where the mode of exemplars approximates the major patterns of the
population. Fig. 1 verifies our reasoning and demonstrates the random selection will achieve a decent
performance and then tend to be stabilized with the increase of K.

Comparison with oracle exemplars. For each query instance, we also assume the access to ground
truth and rank training data that can give the best performance when used as the only exemplar for
the query. We report the average result in Fig. 1. When K = 1, such oracle method gives the best
result, while the performance drops immediately with additional exemplars and starts to stagnate.
This can be caused by the increased contextual error as is discussed in our theoretical analysis of
Sec. 2. Including more optimal exemplars turns out to give similar performance to random selection.
Therefore, different from supervised tuning, for ICL more exemplars do not always guarantee a
better performance, which depends on added exemplars. Additionally, the observation indicates when
knowing the optimal exemplar for a query (which is likely to be impossible in practice), we do not
need many-shot prompting. However, for cases with no access to such information, simply increasing
K may actually be a good strategy for better performance.

4 Conclusion

In this work, we investigate in-context learning (ICL) of large language models through the lens of
models of associative memory. We have shown that in-context learning can be theoretically equivalent
to contextual retrieval from a Hopfield Network. Based on our theoretical framework, we further
analyze the influence of in-context exemplars on ICL performance. All in all, our work interprets
ICL as contextual retrieval from memory and links recent LLMs to biologically plausible Hopfield
Networks, which may shed new light on understanding LLMs.
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A Brief Review of Hopfield Networks

Hopfield Networks (HNs) (13) were introduced to store and retrieve information. The standard
HN (13) consists of a neural network of N neurons that can in total store M binary patterns of
dimension D. Memory ξ is denoted as an array of stored pattern vectors, i.e., ξ = [m1, ...,mM ],
where ξ ∈ RM×D. During the retrieval process, the configuration of neurons is fixed to the query
pattern (e.g., incomplete mi), and an update rule f for σ is defined to retrieve the similar or the
same pattern to the query. Each update lowers the energy function E of the network, which belongs
to the Ising spin-glass model (27) in physics. The energy is expected to converge to an attractor
state (local minimum) through repeated updates. Eventually, HNs will return the pattern from its
memory that is the most similar to the input. Additionally, HNs are similar to humans’ memory
system. The neuron’s state corresponds to the firing rate or activity level of biological neurons. The
weights of the network correspond to the strength of the synaptic connections between neurons in the
brain. Similar to HNs, memories in brains are stored in a distributed manner across many regions and
neurons. There are associative areas storing relations between features. Complex memories can then
be recalled to generate predictions based on partial cues or associations (3; 2) just like HNs.

B Pattern Retrieval

From the perspective of memory models, ICL can be reinterpreted as retrieving underlying patterns
of input based on context vectors λ following the update rule. This interpretation is focused on the
association among neurons in some middle layer of the model, where the hidden states at each token
position may encode some unique information (1). Query and context are thus assumed to be encoded
into separate vectors. The retrieval process consists of the following stages. (1) Query vector σ and
context vectors λ are mapped to the associative space through linear transformation with ξQ and ξK
to reveal underlying patterns. (2) Then a similarity score between u and z is computed to measure
their mutual closeness in the associative space. Dot product is considered as the similarity function
for self-attention. (3) An exponential separation function, i.e., Softmax is computed to stress the
prominent context patterns that have higher similarity scores. (4) After separation, unew is computed
as a weighted sum of context patterns. Remind that there can be repetition in context patterns (which
means some zi = zj). So more frequent context patterns might thus have a larger contribution to the
weighted summation.

C Biological Plausibility

The process of ICL in LLMs exhibits similarities to the memory retrieval process in the human
brain, both of which involves the use of prompts or cues related to targeted information to retrieve.
Similar to LLMs, human memory retrieval also heavily depends on contextual cues for successful
recall (33; 10; 12; 30).

Human’s memories can actually exist in a state of being available but inaccessible (32). When
some information cannot be recalled with internal cues (i.e., without external hints), such as in free
recall tasks, it is considered inaccessible. However, external cues, e.g., category cues related to
the target items to recall, can greatly increase the accessibility of memory. Likewise, LLMs can
provide answers to questions that they initially fail in zero-shot prompting scenarios when given
related in-context exemplars. The query together with in-context exemplars can also be viewed
as partial information cues for memory retrieval, providing incomplete or fragmented versions of
the target (15; 14). Additionally, the cue-to-target similarity, also known as encoding specificity,
is critical to the likelihood of successful recall for human brain (33; 24). Similarly, LLMs that are
trained through language modeling may exhibit such requirements for in-context exemplars (36).

For humans, prompts are typically extralist cues, originating from a different list of stored memories
to be retrieved. But extralist cues can still be effective if they are relevant to the target (33; 24).
Similarly, in the case of ICL, it is uncommon to encounter context and target output that exactly match
the training data. However, by providing relevant exemplars, LLMs may still capture underlying
patterns of query with the guide of in-context demonstrations and generalize to unseen cases.
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D Proof of Theorem 1

Proof :

∥f(u)− u⋆∥ = ∥∆z + zi − t[softmax(γ u,Z)]izi −
M∑

j, zj ̸=zi

[softmax(γuZ)]jzj∥

= ∥∆z +

(
1− t

exp(γuzi)∑M
j exp(γuzj)

)
zi −

M∑
j, zj ̸=zi

exp(γuzj)∑M
k exp(γuzk)

zj∥

= ∥∆z +

(
1− t

1 +
∑M

j, j ̸=i exp(γ(uzj − uzi))

)
zi −

M∑
j, zj ̸=zi

exp(γ(uzj − uzi))

1 +
∑M

k, k ̸=i exp(γ(uzk − uzi))
zj∥

For zi, δmin = uzi − maxzi ̸=zj (uzj) and recall t =
∑M

j=1 1{zj = zi}, so we can get,

1− t

1 +
∑M

j, j ̸=i exp(γ(uzj − uzi))
≤ 1− t

t+ (M − t)exp(−γδmin)
= 1− 1

1 + M−t
t exp(−γδmin)

.

For zj and zj ̸= zi,

exp(γ(uzj − uzi))

1 +
∑M

k, k ̸=i exp(γ(uzk − uzi))
≤ 1

exp(γδmin)
= exp(−γδmin).

Then, for the retrieval error, we can have,

ϵ ≤ ∥∆z∥+

(
1− 1

1 + M−t
t exp(−γδmin)

)
∥zi∥+ exp(−γδmin)

M∑
j, zj ̸=zi

∥zj∥.

Let c := exp(−γδmin) and zmax = max(z1, ..., zM ). Then,

ϵ ≤ ∥∆z∥+

(
1− 1

1 + c(M−t)
t

+ c(M − t)

)
∥zmax∥.

Furthermore, − 1

1 + c(M−t)
t

+ c(M − t) ∝ c

(
M

t
+ (M − t)

)
,

Therefore, ϵ ∝ c
M

t
, given ∥∆z∥ and ∥zmax∥.

Thus, we have proved the upper bound of the retrieval error. For the lower bound, if u⋆ is retrieved
without loss, the error will be naturally zero.
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