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ABSTRACT

Spiking neural networks (SNNs) offer a promising pathway to implement deep
neural networks (DNNs) in a more energy-efficient manner since their neurons
are sparsely activated and inferences are event-driven. However, there have been
very few works that have demonstrated the efficacy of SNNs in language tasks
partially because it is non-trivial to represent words in the forms of spikes and
to deal with variable-length texts by SNNs. This work presents a “conversion +
fine-tuning” two-step method for training SNN for text classification and proposes
a simple but effective way to encode pre-trained word embeddings as spike trains.
We show empirically that after fine-tuning with surrogate gradients, the converted
SNNss achieve comparable results to their DNN counterparts with much less energy
consumption across multiple datasets for both English and Chinese. We also show
that such SNNs are more robust to adversarial attacks than DNNs.

1 INTRODUCTION

Inspired by the biological neuro-synaptic framework, modern deep neural networks are successfully
used in various applications (Krizhevsky et al.,[2012; (Graves & Jaitlyl [2014; Mikolov et al., | 2013b).
However, the amount of computational power and energy required to run state-of-the-art deep
neural models is considerable and continues to increase in the past decade. For example, a neural
language model of GPT-3 (Brown et al.| |2020) consumes roughly 190, 000 kWh to train (Dhar,
2020; |Anthony et al.l [2020), while the human brain performs perception, recognition, reasoning,
control, and movement simultaneously with a power budget of just 20 W (Cox & Dean, [2014])). Like
biological neurons, spiking neural networks (SNNs) use discrete spikes to compute and transmit
information, which are more biologically plausible and also energy-efficient than deep learning
models. Spike-based computing fuelled with neuromorphic hardware provides a promising way to
realize artificial intelligence while greatly reducing energy consumption.

Although many studies have shown that SNNs can produce competitive results in vision (mostly
classification) tasks (Cao et al.,|2015; |Diehl et al., [2015; [Rueckauer et al., [ 2017; Shrestha & Orchard),
2018 Sengupta et al.,[2019), there are very few works that have demonstrated their effectiveness in
natural language processing (NLP) tasks (Diehl et al.| 2016} Rao et al.,|2022). SNNs offer a promising
opportunity for processing sequential data. Rao et al.|(2022)) showed that long-short term memory
(LSTM) units can be implemented by spike-based neuromorphic hardware with the spike frequency
adaptation mechanism. They tested the performance of such spike-based networks (called RelNet)
on a question-answering dataset (Weston et al.,2015)), and observed that RelNet could solve 16 out
of the 17 toy tasks. A task is considered to be solved if the network has an error rate at most 5% on
unseen instances of the task. In their design, each word is encoded as a one-hot vector, and a sentence
is also fed into the network in the form of one-hot coded spikes. Such a one-hot encoding schema
limits the size of the vocabulary that could be used (otherwise, very high-dimensional vectors are
required to represent words used in a language). Besides, it is impossible for spike-based networks
to leverage the word embeddings learned from a large amount of text data. |Diehl et al.| (2016)) used
pre-trained word embeddings in their TrueNorth implementation of a recurrent neural network and
achieved 74% accuracy in a question classification task. However, an external projection layer is
required to project word embeddings to the vectors with positive values that can be further converted
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Figure 1: An illustration of a two-step method (conversion + fine-tuning) for training spiking neural
networks for text classification: initialize an SNN with the weights of a tailored network trained with
the gradient descent, and perform backpropagation with surrogate gradients on the converted SNN.
The tailored network is obtained by replacing the max-pooling operation with average-pooling, the
Sigmoid activation function with ReLU, and the word embeddings with their positive equivalents.

into spike trains. Such a projection layer cannot be easily implemented by spike-based networks, and
in fact, they used a hybrid architecture that combines artificial and spiking neural networks.

In this study, we propose a two-step recipe of “conversion + fine-tuning” to train spiking neural
networks for NLP. A normally-trained neural network is first converted to a spiking neural network by
simply duplicating its architecture and weights, and then the converted SNN is fine-tuned afterward.
Before the conversion, a proper tailored network needs to be built and trained first. Taking a
convolutional neural network for sentence classification, called TextCNN (Kiml 2014), as an example
(see Figure[I)), the original TextCNN is first modified to a tailored CNN by replacing the max-pooling
operation with average-pooling, the Sigmoid activation function with ReLU, and the word embeddings
with positive-valued vectors (shifted). After the tailored network is trained on a dataset with the
gradient descent algorithm, it is converted to a spiking neural network that is further fine-tuned with
the surrogate gradient method (Zenke & Vogels| [2021)) on the same datast. The SNNs trained with the
proposed two-step training strategy yield comparable results to their DNN counterparts with much
less energy consumption. The contribution of this study can be summarized as follows:

* We present a two-step method for training SNNs for language tasks, which combines the
conversion-based approach (also known as shallow training) and the backpropagation using
surrogate gradients at the fine-tuning phase.

* We propose a method to convert word embeddings to spike trains, which makes it possible
for SNNss to leverage the word embeddings pre-trained from a large amount of text data.
The ablation study shows that using pre-trained word embeddings can significantly improve
the performance of SNNs.

* This study is among the first to demonstrate that well-trained spiking neural networks can
achieve comparable results to their DNN counterparts on 6 text classification datasets and
for both English and Chinese languages. We also show that SNNs perform more robustly
against adversarial attacks than traditional DNNs.

2 RELATED WORK

SNNss offer a promising computing paradigm due to their ability to capture the temporal dynamics of
biological neurons. Several methods have been proposed for training SNNs, and they can be roughly
divided into two categories: conversion-based and spike-based approaches. The conversion-based
approaches are to train a non-spiking network first and convert it into an SNN that produces the same
input-output mapping for a given task as that of the original network. In the spike-based approaches,
SNNSs are trained using spike-timing information in an unsupervised or supervised manner.
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The advantage of conversion-based approaches is that the non-differentiability of discrete spikes can
be circumvented and the burden of training in the temporal domain is partially removed. (Cao et al.
(2015) proposed an approach for converting a deep CNN into an SNN by interpreting the activations
as firing rates. To minimize performance loss in the conversion process, Diehl et al.| (2015)) presented
a new weight normalization method to regulate firing rates, which boosts the performance of SNNs
without additional training time. Sengupta et al.|(2019) pushed spiking neural networks going deeper
by exploring residual architectures and introducing a layer-by-layer weight normalization method.
However, the conversion is just an approximation, leading to a decline in the accuracy of converted
SNNs. Another drawback of such approaches is that converting high precision activations into spikes
requires a long sequence of time steps in simulation which increases latency at the inference. [Rathi
et al.|(2020) proposed a hybrid approach to partially address the issue of long-time sequences, which
is most related to this study. Initialized with the weights from a trained neural network, the converted
SNN is trained using backpropagation. Although this helps to reduce the number of required time
steps, it appears to degrade accuracy in image classification tasks. In contrast, we experimentally
show that the fine-tuning with surrogate gradients can further improve the accuracy across multiple
text classification datasets and the obtained SNNs are capable of integrating the temporal dynamics
of spikes properly derived from the pre-trained word embeddings via backpropagation through time.

Inspired by neuroscience, unsupervised SNN training with local STDP-based rules has drawn great
attention (Masquelier et al., 2009). Diehl & Cook! (2015) demonstrated that an SNN trained in a
completely unsupervised way yields comparable accuracy to deep learning on the MNIST dataset.
However, unsupervised trained SNNs generally perform worse than their supervised counterparts.
Early works in supervised approaches are the tempotron (Glitig & Sompolinsky, [2006) and ReSuMe
(Ponulak & Kasinski, [2010). Most works in this line rely on the gradients estimated by a differentiable
approximate function so that gradient descent can be applied with backpropagation using spike times
(Bonhte et al.,|2002; [Booij & tat Nguyen, 2005) or backpropagation using spikes (i.e., backpropagation
through time) (Shrestha & Orchard, 2018; [Hunsberger & Eliasmith, 2015; Bellec et al., 2018
Huh & Sejnowskil, 2018). To date, supervised learning has been unable to surpass the conversion-
based approaches although it turns out to be more computationally efficient. SNNs have provided
competitive results, but mostly in vision-related tasks. In this study, we provide proof of experiments
that spiking CNNs can yield competitive accuracies over multiple language datasets by combining
the advantages of conversion-based approaches and backpropagation using spikes.

3 METHOD

We describe our method for training SNNs for text classification in the following. We first present
the approach to building tailored neural networks and the conversion process by taking TextCNN as
an example (Kim, [2014])), and then depict the way to fine-tune the converted SNNs with surrogate
gradients, where the pre-trained word embeddings were transformed into spike trains produced by a
Poisson event-generation function. The entire training procedure is summarized in Algorithm [T}

3.1 CONVERSION-BASED APPROACH

The idea behind the conversion-based approaches is simple—interpreting the activations as firing
rates and mapping the magnitude of values output by each unit of a DNN to the frequency of spikes
generated by the corresponding neuron of the converted SNN. To enable such conversions, a DNN
architecture should be tailored to fit the requirements of SNN by removing some operations (listed in
Subsection [3.1.T) that cannot be realized by spike-based computation (Cao et al.,[2015). The tailored
DNN is trained in the same way as one would with conventional DNN, and the learned weights are
then applied to the SNN converted from the tailored DNN. Some weight normalization methods
are often applied to regulate firing rates after the conversion (Diehl et al., 2015} Rueckauer et al.,
2017} [Sengupta et al.| |2019). From our experimentation on multiple language datasets, we found that
when the conversion is followed by the fine-tuning step, the effectiveness of weight normalization is
negligible for text classification tasks (see Subsection [d.3)).

3.1.1 TAILORED NEURAL NETWORK

Although the proposed method can be applied to all the deep neural architectures that can be converted
to SNNs, we take the convolutional neural networks for sentence classification (TextCNN) (Kim),
2014) as an example architecture for clarity (this architecture is also used in the experiments).
As shown in Figure (1] the TextCNN applies a convolution layer with multiple filter widths and
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feature maps over word embeddings learnt from an unsupervised neural language model, and then
summarizes the outputs of the convolution layer over time by a max-pooling (followed by a fully-
connected layer) to produce a sentence representation. The TextCNN is trained over the summarized
representations by minimizing a given loss function.

The operations that will produce negative values or those not supported by SNNs should be avoided
or replaced with other alternatives in tailored neural networks because negative values are quite
hard to be precisely represented in SNNs. There is also no simple and good way to implement the
max-pooling operation in SNNs, which requires two additional network layers with lateral inhibition
and causes a loss in accuracy due to the additional complexity. The biases of neurons also cannot
easily be implemented in SNNs since their value could be positive or negative. Like |Cao et al.|(2015)),
we create tailored neural networks by making the following changes to their original DNNs:

* Word embeddings are converted into the vectors of the same dimension with positive values
by normalization and shifting (discuss later in Subsection [3.1.2).

* All the non-linear activation functions are replaced with ReLU (rectified linear unit) activa-
tion function (i.e., ReLU(z) = max(z, 0)).

* The biases are removed from all the convolutional and fully-connected layers.

* The average-pooling is used instead of the max-pooling, which can be easily implemented
in spike-based computation.

3.1.2 PRE-TRAINED WORD EMBEDDINGS

Pre-trained word embeddings have been successfully used in a wide range of NLP tasks, and they
should be useful for SNNs to generalize from a training set with a limited size to possible unseen
texts too. The values of word embeddings are not all positive, and therefore an appropriate method is
required to convert those word embeddings into the vectors with positive values so that the inputs to
the first layer of an SNN are all non-negative. We tried several methods to fulfill this purpose, and
found the following one is simple, but effective in preserving the semantic regularities in language
captured in the original word embeddings when they are converted and transformed to spike trains.
We first calculate the mean value p and the standard deviation o of the values of pre-trained word
embeddings, clip all the values within g 4+ 30, u — 30/, perform the normalization by subtracting
and then dividing by 6 x o, and shift all the components of vectors within the range of [0, 1].

For English, we used 300-dimentional GloVe embeddings (Pennington et al.,|2014) trained on a text
dataset merged from Wikipedia 2014 and Gigaword 5. For Chinese, the Word2 Vec toolkit (Mikolov:
et al.,[2013a)) was used to learn word embeddings of 300 dimensions from a text corpus composed of
Baidu Encyclopedia, Wikipedia-zh, People’s Daily News, Sogou News, Financial News, ZhihuQA,
Weibo and Complete Library in Four Sections (Li et al., |2018b)). In the supervised training stage
of tailored neural networks, the converted (positive-valued) word embeddings are free to modify
and their values will be clipped to [0, 1] if they were modified to values greater than 1 or less than 0.
SNNs only take spikes as input, and thus a Poisson spike train will be generated for each component
of a word embedding with a firing rate proportional to its scale.

3.1.3 TRAINING AND CONVERSION

We use the cross-entropy loss to train the tailored neural networks as usual. As illustrated in Figure
the conversion of a tailored network to an SNN is straightforward. All the processing blocks of
the converted SNN are inherited from the tailored network except a spike generator that is added to
the SNN, which is used to generate Poisson spike trains derived from the learned word embeddings.
Each neuron of the tailored network will be replaced with a leaky integrate-and-fire neuron (discuss
later in subsection [3.2.1)), and the weights for convolutional and fully-connected layers in the tailored
network become the synaptic strengths in the converted SNN. The ReLU activation functions are no
longer needed since their functionality is implicitly provided by the neuron’s membrane threshold.

3.2 FINE-TUNING WITH SURROGATE GRADIENTS

Once an SNN is converted from a tailored network (trained), we can fine-tune the converted SNN
by the generalized backpropagation algorithm with surrogate gradients on the same dataset that was
used to train the tailored network. The converted weights can be viewed as a good initialization,
which contributes to solving the problem of temporal and spatial credit assignment for the SNN. In
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Figure 2: Computational steps in training SNNs by the generalized backpropagation with surrogate
gradients. (a) A recurrent representation of a leaky integrate-and-fire (LIF) neuron. (b) An unrolled
computational graph of the LIF neuron where time flows from left to right.

the fine-tuning stage, the word embeddings present in the form of spike trains are fixed because such
spike trains are generated randomly and there is no one-to-one mapping between a word embedding
and its spike train. However, such temporal codes with timing disturbances make SNNs more robust
to adversarial attacks (see the experimental results in subsection4.4) because the trained SNNs are
more tolerant to noise appearing in input spike trains randomly generated.

3.2.1 INTEGRATE-AND-FIRE NEURON

There have been many spiking neuron models that could be used to build SNNs (Izhikevich, [2004),
we chose to use a widely-used, first-order leaky integrate-and-fire (LIF) neuron as the building block.
Like the artificial neuron model, LIF neurons operate on a weighted sum of inputs, which contributes
to the membrane potential U; of the neuron at time step ¢. If the neuron is sufficiently excited by the
weighted sum and its membrane potential reaches a threshold Uy, a spike Sy will be generated:

F7ﬁw>mM

S, =
"To, ifU < U

()
The dynamics of the neuron’s membrane potential can be modelled as an resistor—capacitor circuit,
an approximate solution to the differential equation of this circuit can be represented as follows:
Ug =1 + U1 — St—1Usnr )
L =WX,

where X, are inputs to the LIF neuron at time step ¢, W is a set of learnable weights used to integrate
different inputs, I; is the weighted sum of inputs, S is the decay rate of membrane potential, and
U;_1 is the membrane potential at the previous time ¢ — 1. The last term of S;_; Uiy, is introduced to
account for spiking and membrane potential reset. A LIF neuron model is illustrated in Figure[2] (a).

3.2.2 SURROGATE GRADIENT

Backpropagation through time (BPTT) is one of the most popular approaches for training SNNs
(Shrestha & Orchard} 2018} [Huh & Sejnowskil 2018 |Cramer et al., [2022). This approach applies the
generalized backpropagation algorithm to the unrolled computational graph. The gradients flow from
the final output of a network to its input layer (indicated by the orange dashed arrows in Figure 2] (b)).
In this way, computing the gradients through an SNN is most similar to that of a recurrent neural
network. To deal with the spike non-differentiability problem, the Heaviside step function, shown as
Equation (1), is applied to determine whether a neuron emits a spike during the forward pass while
this function is replaced with a differentiable one during the backward pass. The derivative of the
differentiable function is used as a surrogate, and this approach is known as the surrogate gradient.
We chose to use Fast-Sigmoid (Zheng & Mazumder, |2018) as the surrogate function St, where & is
set to 25 by default:
. U,

Spre —t 3
T kU )
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Algorithm 1 The global algorithm of “conversion + fine-tuning” for training spiking neural networks.

Input: E: A set of pre-trained word embeddings;
D: A training set consisting of N instances {(x:,y:) }1e1;
R: A traditional neural network (architecture only);
M A spiking neural network with a set of learnable weights W
[: A decay rate of membrane potential;
Unr: A membrane threshold;
n: A learning rate 1) used at the fine-tuning phase.

L. Conversion Step:
Transform pre-trained word embeddings E to the vectors with positive values (Subsection [3.1.2));
Build a tailored neural network from a traditional neural network R (Subsection|3.1.1));
Train the tailored neural network on the training set D with the gradient descent algorithm;
Convert the tailored neural network (trained) to the corresponding spiking neural network M.

I1. Fine-Tuning Step:
for each mini-batch B in D do

Generate a Poisson spike train for each component of all the word embeddings appeared in B;
Perform a forward pass and record the spikes as well as the membrane potentials at every time step;
Calculate the derivative of the loss with respect to the weights (see Equatlon @;
Update the weights of the spiking neural network M by W =W — 77 (see Append1x

end

Return The fine-tuned spiking neural network M.

3.2.3 Loss FUNCTION

Since the surrogate function, like Equation (3), is applied when working backward, we can add a
softmax layer to the end of SNNs to predict the category labels at each time step ¢ for an instance
i, denoted by ¢j¢. The SNNs are fine-tuned by minimizing the cross-entropy spike rate error using
the generalized gradient descent. This is equivalent to minimizing the KL-divergence between the
prediction distribution 7 and the target distribution % at each time step ¢ for an instance i. We use
the 1-of-K coding scheme to represent the target . The loss function for N training instances is:

L—_ < i(yxlogyt>> “

t=1

where T is the number of time steps used for training SNNs. Finding the derivative of this loss with
respect to the weights allows the use of gradient decent to train SNNs. We list an efficient way to
calculate the derivatives in Appendix

4 EXPERIMENTS

We conducted four sets of experiments. The first is to evaluate the accuracy of the SNNs trained with
the proposed method on 6 different text classification benchmarks for both English and Chinese by
comparing to their DNN counterparts. The goal of the second experiment is to see how robust the
SNNs would be to defend against existing sophisticated adversarial attacks. The third one is to show
that the conversion and fine-tuning sets are essential for training SNNs by ablation study. The last
experiment is to see how the performance of SNNs is impacted by the value of decay rate, the number
of neurons used to predict for each category, and the value of membrane threshold.

4.1 DATASET

We used the following 6 text classification datasets to evaluate the SNNs trained with the proposed
method, four of which are English datasets and the other two are Chinese benchmarks: MR (Pang &
Leel 2005), SST-5 (Socher et al.,|2013), SST-2 (the binary version of SST-5), Subj, ChnSenti, and
Waimai. These datasets vary in the size of examples and the length of texts. If there is no standard
training-test split, we randomly select 10% examples from the entire dataset as the test set. We
describe the datasets used for evaluation in Appendix
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Table 1: Classification accuracy achieved by different models on 6 datasets. The model obtained
by applying the model-based normalization on the converted SNN is denoted as “Conv SNN + MN”
and that by applying the data-based normalization as “Conv SNN + DN”. The SNNs trained with the
“conversion + fine-tuning” is denoted as “Conv SNN + FT”".

Method English Dataset Chinese Dataset
MR SST-2 Subj SST-5 ChnSenti Waimai

Original TextCNN 77.41+0.22 83.254+0.16 94.00+0.22 45.48+0.16 | 86.74+0.15 88.49+0.16
Tailored TextCNN 76.9440.25 83.034+0.21 91.5040.12 43.48+0.13 | 85.794+0.15 88.2140.15
Directly-trained SNN | 51.554+1.31  75.7340.91 53.30+1.80 23.0840.56 | 63.1840.42 66.4240.39
Conv SNN 74.134+0.97 80.074+0.78 90.40+0.39 41.4040.73 | 84.164+0.62 86.43+0.43
Conv SNN + MN 74.70+0.52 79.90+0.61 89.40+0.57 40.59+1.13 | 84.8940.32 85.2140.46
Conv SNN + DN 74.194+0.78 80.674+0.95 90.30+0.86 40.63+1.78 | 83.734+0.35 86.33+0.35
Conv SNN + FT 75.4540.51 80.914+0.34 90.60+0.32 41.63+0.44 | 85.02+0.22 86.66+0.17

4.2 IMPLEMENTATION DETAILS

We used TextCNN (Kim, [2014) as the neural network architecture from which the tailored network is
built, and filter widths of 3, 4, and 5 with 100 feature maps each. When training the tailored networks,
we set the dropout rate to 0.5, the batch size to 32, and the learning rate to le — 4.

SnnTorch framework provided by (Eshraghian et al, 2021 was used to train SNNs, which extends
the capabilities of PyTorch (Paszke et al.,|2019) and can perform gradient-based learning with SNNs.
We set the number of time steps to 50, the membrane threshold Uy, to 1, the decay rate 5 to 1, the
batch size to 50, and the learning rate to 5e — 5 at the fine-tuning stage of SNNs.

Eshraghian et al.| (2021)) showed that if we collect the results produced by multiple neurons and count
their spikes, it is possible to accurately measure a firing rate from a population of neurons in a very
short time window. Therefore, we also used such a commonly-used ensemble method in the tailored
networks and the converted SNNs. Specifically, instead of assigning one neuron to each category for
prediction, we use i neurons for each category and the prediction results on h spiking neurons are
ensembled to get a final output. Unless otherwise specified, we set h to 10 in all the experiments.

4.3 RESULTS

We reported in Table[T]the classification accuracy achieved by the SNN trained with the “conversion +
fine-tuning”” method on 4 English and 2 Chinese datasets, compared to several baselines, including the
converted SNNs without the fine-tuning, the converted SNNs with two weight normalization methods,
and the SNNs directly-trained with surrogate gradients without using the weights of tailored networks
for the initialization. Diehl et al.| (2015) proposed two ways to perform the weight normalization on
the converted SNNs. The first one is called a model-based normalization that considers all possible
positive activations and re-scale all the weights by the maximum positive input, and the second is
called a data-based normalization in which the weights are normalized according to the maximum
activation reached by propagating all the training examples through the network.

The numbers reported in Table[T|show that the SNNs trained with the proposed method outperform all
the SNN baselines across 6 text classification datasets. They also achieved comparable results to the
original TextCNNs by a small drop of 2.51% on average in accuracy (2.89% difference for English
and 1.78% for Chinese respectively). The fine-tuned SNNs achieved up to 1.32% improvement in
accuracy (0.61% increase on average). Besides, the standard deviation decreased to 0.33 from 0.65
(almost halved) after the fine-tuning. We tried some combinations of “conversion + normalization
+ fine-tuning” and found that when the conversion is followed by the fine-tuning step, the weight
normalization contributes a little to the performance of SNNs on the text classification tasks.

4.4 ADVERSARIAL ROBUSTNESS

Deep neural networks have proven to be vulnerable to adversarial examples (Samanta & Mehtal
2017;Wongl 2017; |Liang et al., |2018} |Alzantot et al., 2018), and the existence and pervasiveness of
adversarial examples have raised serious concerns. We believe that SNNs provide a promising means
to defend against adversarial attacks due to the non-differentiability of spikes and their tolerance to
noise introduced by randomly-generated input spike trains. We evaluated the empirical robustness of



Published as a conference paper at ICLR 2023

Table 2: Empirical results on 4 English datasets under 4 different adversarial attack algorithms on
randomly selected 1,000 examples for each dataset.

TextFooler BERT-Attack TextBugger PWWS
Dataset Model Cln Boa Suc Boa Suc Boa Suc Boa Suc
MR TextCNN | 77.50 | 8.60 88.11 830 88.38 | 13.30 81.58 | 5.30 92.79
SNN 74.30 | 16.40 77.47 | 10.40 8591 | 22.70 69.45 | 12.20 82.98
SST-2 TextCNN | 81.80 | 8.30 89.51 4.70 94.08 | 13.30 83.54 | 4.10 94.75
SNN 80.20 | 14.70 81.39 | 9.20 88.22 | 21.50 72.37 | 11.00 86.11
Subj TextCNN | 93.50 | 11.10 87.12 | 740 91.28 | 12.30 84.60 | 6.40 92.31
SNN 90.40 | 47.40 47.09 | 39.50 56.16 | 51.00 42.50 | 41.40 54.41
SST-5 TextCNN | 44.80 | 0.70  98.31 0.30  99.33 1.80 95.74 | 0.50  98.80
SNN 41.10 | 7.00 8449 | 5.10 89.90 | 830 81.33 | 5.50 88.51

SNNs under test-time attacks with four black-box, synonym substitution-based attacks: TextFooler
(Jin et al.;2020), TextBugger (Li et al.,[2018a), BERT-Attack (L1 et al., [ 2020), and PWWS (Ren et al.,
2019). BERT-Attack generates synonyms dynamically by using BERT (Devlin et al.l 2019), and all
the other attack algorithms use K nearest neighbor words of GloVe vectors (Pennington et al.|[2014)
to generate the synonyms of a word. In this experiment, we set the maximum percentage of words
that can be modified to 0.3, the size of the synonym set to 15, and the semantic similarity threshold
between an original text and the adversarial one to 0.8. The following metrics (L1 et al., 2021) are
used to report the results of empirical robustness:

* The clean accuracy (Cln) is the accuracy achieved by a classifier on the clean texts.

* The robust accuracy (Boa) is the accuracy of a classifier achieved under a certain attack.

* The success rate (Suc) is the number of texts successfully perturbed by an attack algorithm

(causing the model to make errors) divided by all the number of texts to be attempted.

Table E] shows the clean accuracy, robust accuracy (i.e., accuracy under attack), and attack success
rate achieved by the SNNs under four sophisticated attacks on all 4 English datasets, compared
to the original TextCNNs. Following the evaluation setting used in (Li et al., [2021; Wang et al.,
2021;Zhang et al., 2021)), we randomly sampled 1, 000 examples from each test set to evaluate the
models’ adversarial robustness because it is prohibitively slow to attack the entire test set. For fair
comparison, the ensemble method (see Subsection for details) was not used in the SNNs when
they were evaluated under adversarial attacks since existing studies show that ensemble methods can
be used to improve the adversarial robustness (Strauss et al.,[2017; [Yuan et al.l|2021). Therefore,
the clean accuracy of SNNs reported in Table [2]is slightly lower than those in Table|l} From these
numbers, we can see that the SNNs consistently perform better than the original neural networks
under all four attack algorithms in both the robust accuracy and attack success rate while suffering
little performance drop on the clean data. The SNNs can improve the robust accuracy under attack by
average 13.55% and lower the attack success rate by 17% on average. On the Subj dataset, the robust
accuracy can even be increased by a fairly significant margin of 38.7% with 42.1% decrease in the
attack success rate under the test-time BERT-Attack.

4.5 ABLATION STUDY AND IMPACT OF HYPER-PARAMETERS

We conducted an ablation study over all the considered datasets on the SNNs obtained by two variants
of training methods to analyze the necessity of the shallow training (i.e., conversion step) and the
pre-trained word embeddings. One is to train SNNs directly with the surrogate gradients without the
conversion step. As we can see from the row indicated by “Directly-trained SNN” from Table|[T] the
SNNss trained directly perform considerably worse than those trained with the two-step method by a
significant margin of 21.17% accuracy on average. It shows that the conversion step is indispensable
in training SNNs. Another is to use randomly-generated word embeddings to train SNNs. We
report these results in Table[3] where the models indicated by “RWE” were initialized with the word
embeddings randomly generated, while those by “PRE” were with pre-trained word embeddings.
No matter what training method is used, a significant drop in accuracy is observed in all the SNNs.
Comparing the numbers shown in the last two rows of Table[3] we noticed a considerable difference
of up to 1.39% in accuracy on average between the SNNs with or without using pre-trained word
embeddings, indicating their effectiveness in improving the performance of SNNs.

We want to understand how the performance and estimated energy consumption of SNNs are impacted
by the choice of three important hyper-parameters: the number of neurons per category, the value



Published as a conference paper at ICLR 2023

Table 3: Classification accuracy achieved by the models using randomly-generated word embeddings
(denoted as “RWE”) and those using pre-trained word embeddings (denoted as “PWE”).

Method English Dataset Chinese Dataset
MR SST-2 Subj SST-5 ChnSenti Waimai

Original TextCNN (RWE) | 75.024+0.19 81.93+0.20 92.204+0.23 44.2940.15 | 84.5340.18 86.85+0.16
Tailored TextCNN (RWE) | 74.324+0.24 81.5940.17 91.40+0.22 42.414+0.18 | 83.5540.16 86.7940.14
Conv SNN (RWE) 73.2941.01 79.1040.83 90.2040.40 39.8140.69 | 82.864+0.68 86.0140.38
Conv SNN + MN (RWE) | 73.514+0.54 76.91+0.87 89.20+0.47 38.3440.86 | 82.9740.51 84.74+0.74
Conv SNN + DN (RWE) | 72.7840.91 79.5740.95 89.704+0.72 38.47+1.14 | 82.19+0.49 85.94+0.53
Conv SNN + FT (RWE) | 74.064+0.42 80.21+0.35 90.304+0.26 40.42+0.30 | 83.754+0.07 86.13+0.24
Conv SNN + FT (PWE) |75.45+0.51 80.91+0.34 90.60+0.32 41.63+0.44 | 85.02+0.22 86.66+0.17

SST-2 ChnSenti

,,,,,,,,,,,,,

Accuracy %

05 10 15 20 25 50 05 10 15 20 25 50
Threshold U Threshold Uy,

© (d)

Figure 3: The impact of hyper-parameters. (a) Accuracy versus the number of neurons used per
category. (b) Accuracy versus the decay rate of 3. (c) and (d) Accuracy and the proportion of active
neurons influenced by different values of membrane thresholds Uy, on SST-2 and ChnSenti datasets.

of decay rate 3, and the membrane threshold Uy,. As we mentioned in Subsection 4.2} more than
one spiking neuron can be assigned to each category to improve the accuracy of prediction. Figure
[3] (a) shows that the classification accuracy is generally insensitive to the number of neurons used
for prediction, and the highest accuracy can be achieved around 10 neurons per category. It appears
that if more neurons are used, the SNNs suffer from the problem of over-fitting. As we can see from
Figure[3|(b), if the conversion-based method is used the value of 5 should be set to 1.0, otherwise the
accuracy will be severely degraded. A single spike only consumes a constant amount of energy (Cao
et al.,|2015)). The amount of energy consumption heavily depends on the number of spikes and the
number of time steps used at the inference stage. Figure[3|(c) and (d) show that we can reduce the
number of active neurons (approximately the number of spikes) by increasing the value of membrane
threshold while suffering little or no performance drop, which implies the possibility of about 50%
energy saving by carefully adjusting the values of membrane threshold (say Uy, = 2). In Appendix
[A.4 we show that the SNNs can reduce more than 10 times the energy consumption on average,
compared to conventional TextCNNs. We also want to understand how the choice of the number of
time steps impacts the accuracy of SNNs (see Appendix [A.5]for details). We found that the fine-tuned
SNNs using 50 time-steps outperform all the converted SNNs without the fine-tuning including those
using 80 time-steps, indicating that the proposed fine-tuning method can significantly speed up the
inference time and reduce the energy consumption while maintaining the accuracy.

5 CONCLUSION

We found that it is hard to train spiking neural networks for language tasks directly using the error
backpropagation through time although SNNs are supposed to be suitable for modeling time-varying
data due to their temporal dynamics. To address this issue, we suggested a two-step training recipe:
start with an SNN converted from a normally-trained tailored network, and perform backpropagation
on the converted SNN. We also proposed a method to make use of pre-trained word embeddings
in SNNs. Pre-trained word embeddings are projected into vectors with positive values after proper
normalization and shifting, which can be used to initialize tailored networks and converted to spike
trains as input of SNNs. Through extensive experimentation on 6 text classification datasets, we
demonstrated that the SNNs trained with the proposed method achieved competitive results on both
English and Chinese datasets. Such SNNs were also proven to be less vulnerable to textual adversarial
examples than traditional neural counterparts. It would be interesting to see if we can pre-train SNNs
unsupervisedly using masked language modeling with a large collection of text data in the future.
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A APPENDIX

A.1 THE DERIVATIVE OF THE LOSS WITH RESPECT TO THE WEIGHTS

Given a loss function defined in Equation (), the losses at every time step can be summed together
to give the following global gradient as illustrated in Figure [2] (b):

oL OL; oW,
aW Z ; ZZE)W o ®)

i <t

where ¢ and j denote different time steps, and L; is the loss calculated at the step ¢. No matter which
time step is, the weights of an SNN are shared across all steps. Therefore, we have Wy = Wy =

= W, which also indicates that J = 1. Thus, Equation can be written as follows:

(6)
i ]<z
Based on the chain rule of derivatives, we obtain:
=S5 5 o o
OL: 9S; <~ OU; @
9S; 9U; = OW;
where aLl is the derivative of the cross-entropy loss at the time step 1 with respect to S;, and 25’ can

we can split it into two parts:

be easﬂy derlved from Equatlon ' As to the last term of i<i 8W ,

oW, T oW T L= W,

®

From Equation 1 , we know that BU’ = X,. Therefore, Equation (5) can be simplified as follows:

OL 0L 0S; | oU; ou;

= 9
ow — 05; 0U; | OW; &~ OW; ©)
T N— |\ , 7<i—1
constant constant
By the chain rule of derivatives over time, gg} can be factorized into two parts:
J

OW; — 0U;_1 OW;

It is easy to see that 8U is equal to /3 from Equation (2| , and Equation (5) can be written as:

AL ~0L; 3S: | AU oU; Ui an
oW — £~ 098, 0U; | oW, — OU;—1 OW;
T N \ ; J<i—1\ ,
constant constant constant

We can treat 6U‘ L

recurrently as Equation . Finally, we can update the weights 1 by the rule of
W=Ww — naW, where 7 is a learning rate.

A.2 DATASET

* MR: It consists of movie-review documents labeled with respect to their overall sentiment
polarity (positive or negative) or subjective rating (Pang & Leel [2005).

* SST-5: The Stanford Sentiment Treebank 5 comprises 11,855 sentences extracted from
movie reviews for sentiment classification (Socher et al., [2013)). There are 5 different classes
(very negative, negative, neutral, positive, and very positive).
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Figure 4: (a) Classification accuracy versus the number of epochs used to fine-tune SNNs (b) and (c¢)
Accuracy and the proportions of active neurons influenced by different values of membrane thresholds
Ui on MR and Subj datasets.

* SST-2: It is the binary version of SST-5, and there are just 2 classes (positive and negative).

* Subj: The task of this dataset is to classify a sentence as being subjective or objectiveﬂ

* ChnSenti: This datasets contains about 7, 000 Chinese hotel reviews annotated with positive
or negative label

* Waimai: It consists of 12, 000 Chinese user reviews collected by a food delivery platform
for binary sentiment classification (positive and negativeﬂ

A.3 MORE ANALYSIS ON THE IMPACT OF HYPER-PARAMETERS

Figure ] (a) shows how the accuracy of SNNs varies as the number of epochs grows at the fine-tuning
phase. Although the highest accuracy is achieved with different numbers of epochs for different
datasets, the peak accuracy is always reached within 5 epochs, indicating that just a few epochs are
required to fine-tune the converted SNNs and such additional training time and effort are acceptable.
For each value of membrane threshold Uy, the corresponding accuracy and the proportion of active
spiking neurons on both MR and Subj datasets are reported in Figure ] (b) and (c) respectively. We
found similar trends as those for SST-2 and ChnSenti datasets shown in Figure [3|(c) and (d), which
confirms that the energy consumption can be further reduced by about 50% without suffering much
performance loss. We also investigate the impact of the dropout technique on the performance of the
resulting SNNs. Table ] shows the accuracy on 6 text classification datasets achieved by different
neural models that were trained without using the dropout technique (Srivastava et al.,[2014). By
comparing the numbers reported in Tables [1| (where the dropout rate was set to 50% during the
training process) and 4] it is clear that the dropout technique is still quite useful to train spike neural
networks although its contribution to the performance of SNNs is slightly smaller than that of DNNs.

A.4 COMPARISON OF ENERGY CONSUMPTION

We compare theoretical energy consumption of TextCNNs and SNNs on 6 different text classification
test datasets, and reported the results in Table[5] The way to calculate the number of floating point
operations (FLOPs), the number of synaptic operations (SOPs), and the average theoretical energy
consumption (Power) will be discussed later. As we can see the numbers from Table [5] classical
TextCNNs demand more than 10 times the energy consumption on average, compared to SNNs. On
the test set of Waimai, the SNN can reduce up to 14.4 times (i.e., 93.05% decrease) average energy
consumption required for predicting each text example, compared to the corresponding TextCNN.

For spiking neural networks (SNNs), the theoretical energy consumption of layer & can be calculated
as Power (&) = 77f] x SOPs(¢), where 771f] is the energy consumption per synaptic operation (SOP)
(Indiveri et al.||2015; [Hu et al., [2018)). The number of synaptic operations at the layer & of an SNN is
estimated as SOPs(¢) = T x v x FLOPs(§), where T is the number of times step required in the
simulation, + is the firing rate of input spike train of the layer £, and FLOPs(¢) is the estimated floating

1https ://www.cs.cornell.edu/people/pabo/movie-review—data/

2https ://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/
ChnSentiCorp_htl_all/ChnSentiCorp_htl_all.csv

jhttps ://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/
waimai_10k.csv
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Table 4: Classification accuracy achieved by different models on 6 datasets. These models were
trained without using the dropout technique. The model obtained by applying the model-based
normalization on the converted SNN is denoted as “Conv SNN + MN” and that by applying the
data-based normalization as “Conv SNN + DN”. The SNNs trained with the “conversion + fine-tuning”
is denoted as “Conv SNN + FT”.

Method English Dataset Chinese Dataset
MR SST-2 Subj SST-5 ChnSenti Waimai

Original TextCNN | 76.2940.25 82.704+0.18 92.604+0.20 43.4040.23 | 85.11+0.14 87.82+0.17
Tailored TextCNN | 75.9140.19 82.2640.23 92.5040.23 42.6740.25 | 84.4340.15 87.82+0.18
Conv SNN 74.68+1.16 73.41+0.95 86.50+0.42 35.2941.20 | 69.61+0.64 84.63+0.53
Conv SNN + MN | 57.83+1.51 73.75+0.74 89.5040.54 29.1040.95 | 68.934+0.73 80.46+0.64
Conv SNN + DN | 74.734+0.54 75.3840.53 87.00+0.65 35.48+1.03 | 70.4540.57 84.3540.43
Conv SNN + FT |75.16+0.52 75.4540.30 90.50+0.34 38.8740.41 | 83.99+0.28 86.04+0.25

Table 5: Comparison of energy consumption on 6 text classification benchmarks. The floating point
operations of TextCNN are denoted as “FLOPs” and the synaptic operations of SNNs as “SOPs”.
The average theoretical energy required for each test example prediction is indicated by “Power”.

Dataset Model FLOPs/SOPs(G) | Power (mJ) | Energy Reduction | Accuracy (%)
we O e 0
I T T
IO e |0
R T
Gusent [ IO [ 0T || | s
R BT

point operations at the layer £. For classical artificial neural networks like TextCNNS, the theoretical
energy consumption required by the layer £ can be estimated by Power(£) = 12.5pJ « FLOPs(¢).
Note that 1J = 103 mJ = 102 pJ = 10%° fJ.

A.5 THE IMPACT OF THE NUMBER OF TIME STEPS

We want to understand how the choice of the number of time steps used at the inference stage impacts
the accuracy of SNNs by varying the number of times steps from 10 to 80. As we can see Figure
[3](a), generally the larger the number of time steps the higher the accuracy achieved by the SNNs.
However, the performance increases smoothly when the number of time steps is larger than 50. It is
noteworthy that the inference time of SNNs that are converted from ANNs for computer vision tasks
turns out be very large (of the order of a few thousand-time steps).

We also would like to know whether the fine-tuning can help to reduce the number of time steps
required to achieve reasonable performance. In Figure[5](b) and (c), we report accuracy achieved by
the SNNs with and without the fine-tuning on English and Chinese text classification benchmarks
respectively. We found that on all the considered datasets the fine-tuned SNNs with 50 time-steps
outperform the converted SNNs (without the fine-tuning) using any time step between 20 and 80 at the
inference, even those with the largest 80 time-steps. On the Subj, ChnSenti, and Waimai datasets, the
fine-tuned SNNs using 40 time-steps can beat all the converted SNNs without the fine-tuning phase
including those using 80 time-steps, indicating that the proposed fine-tuning method can significantly
speed up the inference time and reduce the energy consumption while maintaining the accuracy.
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Figure 5: Classification accuracy versus the number of time steps. (a) The accuracy achieved by the
fine-tuned SNNs with various time steps at the inference time on the test sets of MR, Subj, ChnSenti,
and Waimai datasets. (b) The accuracy achieved by the SNNs with and without the fine-tuning on
two English text classification benchmarks. (c) The accuracy achieved by the SNNs with and without
the fine-tuning on two Chinese text classification datasets.

A.6 MOTIVATION AND LIMITATIONS

Unlike classical artificial neural networks (ANNSs), spiking neural networks (SNNs) do not transmit
information in form of continuous values, but rather the time when a membrane potential reaches a
specific threshold. Once the membrane potential reaches the threshold, the neuron fires and generates
a pulse signal that travels to the downstream neurons which increase or decrease their potentials in
proportion to the connection strengths in response to this signal. SNNs incorporate the concept of
time into their computing model in addition to neuronal and synaptic states. They are considered to
be more biologically plausible neuronal models than classical ANNs. Besides, SNNs are suitable for
implementation on low power hardware, and offer a promising computing paradigm to deal with large
volumes of data using spike trains for information representation in a more energy-efficient manner.
Nowadays, excessive energy consumption is a major impairment to more wide-spread applications
of ANNSs. Spike-based neuromorphic hardware now are available to alleviate this problem by more
energy-efficient implementations of ANNSs than specialized hardware such as GPUs. It has been
reported that improvements in energy consumption of up to 2 « 3 orders of magnitude when
compared to conventional ANN acceleration on embedded hardware (Azghadi et al., [2020; [Ceolini
et al.;|2020; Davies et al.,[2021)). For more introduction to SNNs, we refer readers to several good
reviews (Roy et al., 2019; Tavanaei et al.,2019; Taherkhani et al., | 2020; Eshraghian et al.| 2021)).

Many neuromorphic systems now allow us to simulate software-trained models without performance
loss. Since mature on-chip training solutions are not yet available, it remains a great challenge to
deploy high-performing SNNs on such hardware due to the lack of efficient training algorithms. In
addition, there have been very few works that have demonstrated the efficacy of SNNs in natural
language processing (NLP) tasks. This study shows how encoding pre-trained word embeddings as
spike trains and training with the two-step recipe (conversion + fine-tuning) can yield competitive
performance on multiple text classification benchmarks both for English and Chinese languages,
thereby giving us a glimpse of how learning algorithms can empower neuromorphic technologies for
energy-efficient and ultralow-latency language processing in the future. SNNs still lag behind ANNs
in terms of accuracy yet. Through intensive research on SNNs in recent years, the performance gap
between deep neural networks (DNNs) and SNNs is constantly narrowing, and can even vanish on
some vision tasks. SNNs cannot currently outperform DNNs on the datasets that were created to
train and evaluate conventional DNNs (they use continuous values). Such data should be converted
into spike trains before it can be feed into SNNs, and this conversion might cause loss of information
and result in a reduction in performance. Therefore, the comparison is indirect and unfair. New
datasets that have properties which are compatible with SNNs are expected to be available in the near
future, such as those obtained by event-based cameras (Ramesh et al.|[2019) or the spiking activities
that are recorded from biological nervous systems (Maggi et al.,[2018), which could be difficult for
classical DNNs. For language processing, it would be interesting to see if we can pre-train SNN's
unsupervisedly using masked language modeling with a large collection of text data and narrow the
performance gap between SNNs and start-of-the-art transformer-based models in the future.
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