000
001FUZZYCLIP:CLUSTERING-DRIVENSTACKED002
003PROMPT IN ZERO-SHOT ANOMALY DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

How to enhance the alignment of text and image features in CLIP model is a key challenge in zero-shot industrial anomaly detection tasks. Recent studies mostly rely on precise category prompts for pre-training, but this approach is prone to overfitting, which limits the generalization ability of the mode. To address this issue, we propose the concept of fuzzy prompts and introduce Clustering-Driven Stacked Prompts (CSP) along with the Ensemble Feature Alignment (EFA) module to improve the alignment between text and image features. This design significantly outperforms other methods in terms of training speed, stability, and final convergence results, showing remarkable efficiency in enhancing anomaly detection segmentation performance. What is even more surprising is that fuzzy stacked prompts exhibit strong generalization in classification tasks, enabling them to adapt to various anomaly classification tasks without any additional operations. Therefore, we further propose the Regulating Prompt Learning (RPL) module, which leverages the strong generalization ability of fuzzy stacked prompts to regularize prompt learning, thereby improving performance in anomaly detection classification tasks. We conducted extensive experiments on seven industrial anomaly detection datasets, which demonstrate that our method achieves state-of-the-art performance in zero-shot anomaly detection and segmentation tasks.

027

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

029 Industrial anomaly detection (Xie et al., 2023; Roth et al., 2022; Mou et al., 2023; Wang et al., 2023) is an important research area in the field of computer vision. It involves two primary tasks: distinguishing between normal and anomalous images through anomaly detection classification and 031 achieving pixel-level anomaly localization through anomaly detection segmentation. However, the challenge of anomaly detection lies in the unknown nature of anomalies. Due to the lack of avail-033 able anomalous data samples, it is difficult to extract features of anomalies. Traditional methods 034 often rely on unsupervised (Yi & Yoon, 2020; Massoli et al., 2022; Sohn et al., 2021; Gong et al., 2019) or self-supervised (Deng & Li, 2022a; Zhu et al., 2024; Deng & Li, 2022b; Cao et al., 2022) approaches. By learning from a large number of normal samples, the model can memorize the 037 characteristics of these normal samples and then detect anomalies by calculating the differences between test samples and the learned normal distribution. A significant drawback of these methods is the necessity of handling large amounts of cross-class data. Furthermore, as the number of 040 object categories to be detected increases, a separate model needs to be trained for each category, leading to a significant increase in the number of models. Therefore, developing a unified cold-start 041 model that can adapt to multiple categories without requiring additional training becomes an ideal 042 solution and is also an open challenge faced by both the academic and industrial communities. Re-043 cently, significant progress has been made in zero-shot anomaly detection (ZSAD) (Baugh et al., 044 2023; Deng et al., 2023; Cao et al., 2023) using CLIP (Radford et al., 2021) as a pre-trained vision-045 language model (Cao et al., 2024; Zhou et al., 2024; Chen et al., 2023; Jeong et al., 2023; Chen 046 & et al., 2023). This approach identifies anomalies by computing the cosine similarity between 047 text and image features, marking regions with higher similarity as anomalous. A pioneering ZSAD 048 work, WinCLIP (Jeong et al., 2023), employed manually designed text templates and multi-scale image feature extraction for classification tasks, achieving excellent results by aligning image and text features. Subsequently, APRIL-GAN (Chen & et al., 2023) introduced a strategy enhanced by 051 a pre-trained linear layer, utilizing features from different layers to align text and image features, demonstrating outstanding performance in anomaly segmentation tasks as well. Following APRIL-052 GAN (Chen & et al., 2023), several methods based on pre-trained linear layers or adapters have emerged for segmentation tasks. On the template of text prompts, WinCLIP (Jeong et al., 2023)

069 Figure 1: We compared several different prompt design methods. (a) uses precise prompts, leading to significant fluctuations in various metrics during training and severe overfitting, which results in a 070 notable decline in the AUPRO metric. (b) adopts a uniform abstract fuzzy prompt, replacing specific 071 class names with "object". During training, this method quickly achieves fitting but also experiences 072 overfitting; however, its convergence outcome is much better than that of the precise prompts. (c) 073 illustrates our proposed stacked fuzzy prompt method. As observed, this method surpasses the pre-074 vious methods in terms of stability, convergence speed, and final convergence results, demonstrating 075 a remarkably strong generalization capability. 076

078

079

used a completely training-free approach with precisely designed text templates for different categories, obtaining normal and anomalous text features by averaging. APRIL-GAN (Chen & et al., 081 2023) and subsequent methods (Zhou et al., 2024; Chen et al., 2023; Cao et al., 2024) adopted this 082 design, using precise category prompts during both training and testing phases. However, as shown 083 in Fig 1, the use of precise category prompts led to poor stability in the model during training, with 084 significant fluctuations in various metrics. We believe this instability is due to the linear layer learn-085 ing various object categories' related semantics during training. To address this issue, we experi-086 mented with fuzzy text prompts, replacing all categories with the abstract noun "object". The results 087 showed that the model converged rapidly within less than one epoch, with metrics surpassing those 880 of the original APRIL-GAN (Chen & et al., 2023) results, though overfitting occurred subsequently. Based on these tests, we propose a Clustering-Driven Stacked Fuzzy Prompt approach. By stacking 089 object categories and using fuzzy text prompts, this method effectively avoids overfitting caused by 090 abstract prompts and trains multiple linear layers capable of learning different knowledge in Fig 1 091 demonstrates the performance of the Clustering-Driven Fuzzy Stacked Prompt in anomaly detec-092 tion segmentation tasks. Compared to the method of using precise category prompts, it is possible 093 to achieve outstanding stability, convergence speed, and final convergence results. After clustering 094 training, different linear layers learn different abnormal feature attributes. During the testing phase, different weights are assigned to the different linear layers based on the distance between the test 096 class and the training cluster centers, thus more comprehensively segmenting out abnormal areas.

In the anomaly classification task, AnomalyCLIP (Zhou et al., 2024) achieved notable results us-098 ing prompt learning (Zhou et al., 2021; 2022; Khattak et al., 2023b; Li et al., 2024). By pre-099 training a class-agnostic prompt, it not only eliminates the need for manually designed templates 100 but also avoids the influence of object semantics on the alignment process, thereby better aligning 101 the anomalies themselves. However, a major issue with prompt learning in classification tasks is 102 its susceptibility to overfitting. To prevent overfitting, AnomalyCLIP (Zhou et al., 2024) had to 103 reduce the number of training parameters, which in turn limited its performance. In our tests, we 104 found that fuzzy stacked prompts showed certain advantages in classification tasks, even without 105 any training, by directly aligning with image features. It is important to note that precise prompts generate two text features for each category, whereas fuzzy prompts generate only two text features 106 for all categories, one positive and one negative. Therefore, to avoid overfitting in prompt learning 107 for classification tasks and to fully leverage the advantages of prompt learning, we employed fuzzy

stacked prompts for regularization. This approach not only improves the stability and generalization of the model but also enhances its performance in classification tasks.

Finally, we conducted extensive experiments to verify the effectiveness of our mixed prompts in adapting the base model to zero-shot anomaly segmentation. Specifically, our final model, Fuzzy-CLIP, achieved state-of-the-art performance on various zero-shot anomaly segmentation datasets under different settings. Our contributions are summarized as follows:

115 116

117

118

119

120

121

122 123

124

• We propose the concept of fuzzy prompts based on the CLIP model and apply it to industrial anomaly detection tasks.

- We proposed Clustering-Driven Stacked Prompt (CSP) and Ensemble Feature Alignment (EFA) modules using fuzzy stacked prompts for pre-training, enhancing feature alignment, and achieving accurate anomaly segmentation.
- We introduced Regulating Prompt Learning (RPL), using fuzzy stacked prompts to regularize prompt learning and complete anomaly classification.
- The comprehensive experimental results on multiple datasets in the industrial anomaly detection field indicate that FuzzyCLIP has achieved excellent zero-shot anomaly detection performance in handling highly diverse semantic data from the defect detection domain.
- 125 126 127

128

1 RELATED WORKS

129 Zero-shot Anomaly Detection. In the field of industrial anomaly detection, pre-trained vision 130 models (Dosovitskiy et al., 2021; Li et al., 2022; Radford et al., 2021; Khattak et al., 2023a; Zhang 131 et al., 2023) have demonstrated strong performance due to their excellent generalization and feature 132 extraction capabilities. Currently, anomaly detection methods based on pre-trained large models can 133 be categorized into two main types: The first type does not require any additional training, such as 134 WinCLIP (Jeong et al., 2023) and SAA (Cao et al., 2023). As a pioneering work, WinCLIP (Jeong 135 et al., 2023) employs a sliding window method to extract multi-granularity image features for fea-136 ture alignment, achieving significant results in classification tasks. However, it requires multiple 137 encodings of the same image to capture anomalous features. SAA (Cao et al., 2023), as a pioneer 138 in the collaboration of multiple pre-trained large models, combines the capabilities of Grounding DINO (Liu et al., 2023) and SAM (Khattak et al., 2023a), where Grounding DINO achieves lo-139 calization through text prompts, followed by SAM performing segmentation using box prompts. 140 However, a notable drawback of this method is its high usage cost and long inference time. 141

The second type of method requires additional training on anomaly detection data. APRIL-GAN (Chen & et al., 2023) first proposed using a linear layer to enhance the alignment of text features with image features at different levels, successfully completing anomaly segmentation tasks, but it overlooked the classification task. Similarly, SDP (Chen et al., 2023) uses a linear layer to strengthen feature alignment and incorporates CLIP Surgery (Li et al., 2023) with a V-Vattention dual-branch structure. Although this approach significantly improves anomaly perception, the dual-branch structure introduces additional computational costs.

149

Prompt Learning in Vision-Language Models. Prompt Learning, as an efficient alternative to 150 parameter tuning, differs from traditional full-network fine-tuning by achieving satisfactory results 151 with fewer tuned parameters. CoOp (Zhou et al., 2021) introduced learnable text prompts for few-152 shot classification. Building on this, DenseCLIP (Rao et al., 2022) extended prompt learning to 153 dense prediction tasks by adding an image decoder. PromptSRC (Khattak et al., 2023b) introduced 154 regularization through raw feature output, while AnomalyCLIP (Zhou et al., 2024) became the first 155 model to apply prompt learning to industrial anomaly detection, proposing object-agnostic prompt 156 learning to avoid the potential adverse effects of different object semantics on anomaly detection. 157 With its glocal context optimization, AnomalyCLIP(Zhou et al., 2024) is capable of capturing lo-158 cal anomalous semantics, thus allowing it to perform both classification and segmentation tasks without the need for an additional decoder network. However, the dual-branch structure of Anoma-159 lyCLIP(Zhou et al., 2024) is undoubtedly its greatest drawback, increasing model complexity and 160 computational costs. Moreover, the pre-training approach may lead to underfitting or overfitting 161 issues, posing challenges to the model's stability and generalization capabilities.

162 2 APPROACH

164

165

2.1 OVERVIEW

In this paper, we propose FuzzyCLIP, which enhances segmentation and classification performance in industrial anomaly detection through stacked fuzzy prompts. As shown in Fig 2, FuzzyCLIP first introduces the Clustering-Driven Stacked Prompt (CSP) module to categorize the training data (see Sec.2.2). It then employs the Ensemble Feature Alignment (EFA) module (see.2.3) to learn different anomalous features, further improving the alignment of image and text features. For anomaly detection classification tasks, we design the Regulating Prompt Learning (RPL) module, which utilizes the broad generalization ability of stacked fuzzy prompts to regularize prompt learning (see Sec.2.4), thereby effectively enhancing classification performance.

Figure 2: Overview of FuzzyCLIP. To enhance the alignment of image and text features and accomplish anomaly detection and segmentation tasks, FuzzyCLIP introduces Clustering-Driven Stacked Prompts (CSP) and an Ensemble Feature Alignment (EFA) module to learn various anomalous attributes. In anomaly detection classification tasks, we regularize prompt learning through stacked fuzzy prompts, a process referred to as the Regulating Prompt Learning (RPL) module, which effectively improves classification performance and enhances the model's generalization ability.

199 200

201

207

2.2 CLUSTERING-DRIVEN STACKED PROMPT (CSP)

In the application of CLIP, text descriptions play a critical role. One of the most widely used techniques is the Compositional Prompt Ensemble (CPE), introduced by the pioneering work of Win-CLIP (Jeong et al., 2023). CPE generates different descriptions by designing positive and negative templates. Specifically, CPE combines predefined states and template lists, inserting object names into these templates.

$$Prompt = [State] [Cls] [State]$$
(1)

After passing through the text encoder of CLIP (Radford et al., 2021), the positive and negative text features are averaged, resulting in two sets of text features, T_n and T_p . Additionally, the cosine similarity between the two representative vectors and the image feature F_c is used to determine which distribution the image is more inclined towards, indicating whether the object is more likely to be normal or anomalous.

$$S = \text{Softmax} \left(\boldsymbol{F}_{c} \cdot \left[\boldsymbol{T}_{n}, \boldsymbol{T}_{p} \right]^{T} \right)$$
(2)

213 214

The goal of CPE design is to achieve feature alignment without the need for training. Later methods that involve training, such as APRIL-GAN (Chen & et al., 2023), inherited the CPE design concept

but still used class-specific CPE during training. This led to severe fluctuations during training and poor generalization of the trained feature alignment enhancement modules (such as linear layers). These methods also used n * 2 sets of text features. Based on these issues, we propose class-stacked fuzzy prompts to improve the stability and generalization of feature alignment.

$$StackedPrompt = [State] [Cls_a] \dots [Cls_n] [State]$$
(3)

In our improvement, the [*State*] part still employs the CPE method to design templates and process text features using averaging to obtain two text features, positive and negative.

For class stacking, we use K-means clustering on all categories in the training data and design a scoring mechanism to select the stacked classes. In our improvement, we use the total sum of squared distances from each class to its cluster center, plus a penalty factor, to calculate the score. We then select the number of classes with the lowest score.

$$\boldsymbol{k^*} = \arg\min_{\boldsymbol{k}} \left(\sum_{i=1}^{k} \sum_{\boldsymbol{x} \in C_i} \|\boldsymbol{x} - \frac{1}{|C_i|} \sum_{\boldsymbol{x}' \in C_i} \boldsymbol{x}' \|^2 + \boldsymbol{\lambda}(\boldsymbol{n}) \right)$$
(4)

In this context, $|C_i|$ represents the number of data points in class C_i . Additionally, we introduced a penalty coefficient $\lambda(n) = 0.1 \times e^n$ to optimize the model's performance during the clustering and feature alignment process. The introduction of this penalty factor $\lambda(n)$ is intended to balance the number of classes, as each additional class requires training an extra set of linear layers in subsequent modules. Having too many classes not only reduces the amount of data per class, affecting training effectiveness but also increases computational and training complexity. By using this scoring mechanism, we optimize the number of classes and enhance the effectiveness of feature alignment.

238 239 240

220 221

224

225

226

227

228 229

230 231

2.3 ENSEMBLE FEATURE ALIGNMENT (EFA)

L

For anomaly detection segmentation, extracting features from different layers of an image encoder to obtain diverse image features is an efficient approach. However, while CLIP links image features and text features in a joint embedding space, during training, only class labels receive direct supervision from language signals, whereas the entire image feature map lacks similar guidance. In other words, the alignment between image feature maps and text features is missing, making direct comparison to infer anomaly maps unfeasible.

To enhance the alignment between text features and image features, we adopted pre-trained linear
layers similar to APRIL-GAN. However, we obtained multiple groupings and their corresponding
fuzzy stacked text prompt features through the CSP module. Based on these groupings, we trained
multiple linear layers separately.

$$\boldsymbol{F_c^{j'}} = k^j \boldsymbol{F_c^j} + b^j \tag{5}$$

In this context, $F_s^{j'} \in \mathbb{R}^{H \times W \times C}$ represents the image features output from different layers j, which we typically obtain from the layers at indices [6, 12, 18, 24]. k^j and b^j represent the weights and biases of the linear layer at level j, respectively. We then compute the cosine similarity between the textual features and image features, and after applying softmax normalization, we obtain the anomaly map results M_f^j for each layer. This prepares us for the subsequent training.

258 259

251

$$M_{\rm f} = {\rm Softmax} \left(\boldsymbol{F}_c^{j'} \cdot \left[\boldsymbol{T}_n, \boldsymbol{T}_p \right]^T \right)$$
(6)

²⁶⁰ During training, we froze the parameters of CLIP and used focal loss ($\mathcal{L}_{\text{focal}}$) and dice loss ($\mathcal{L}_{\text{dice}}$) ²⁶¹ functions to optimize the linear layers. This approach aims to improve the alignment between text ²⁶² features and image features, thereby enhancing the performance of anomaly detection segmentation.

$$\mathcal{L}_{\text{focal}} = -\alpha (1 - M_{\text{f}})^{\gamma} \log(M_{\text{f}}) M_{\text{gt}} - (1 - \alpha) M_{\text{f}}^{\gamma} \log(1 - M_{\text{f}}) (1 - M_{\text{gt}})$$
(7)

265 266

263

264

- 267
- 267

$$\mathcal{L}_{\text{dice}} = 1 - \frac{2\sum (M_{\text{f}} \cdot M_{\text{gt}}) + \epsilon}{\sum (M_{\text{f}}) + \sum (M_{\text{gt}}) + \epsilon}$$
(8)

where M_{gt} is the ground truth anomaly map and the hyperparameters α , γ , and ϵ are set to 1, 2, and 1, respectively. The final loss function is $\mathcal{L} = \mathcal{L}_{focal} + \mathcal{L}_{dice}$.

During the testing phase, we employ different fuzzy stacked prompts for inference. By generating multiple sets of textual prompt features based on the stacking method between test and training categories, we adapt to multiple linear layers.

$$StackedPrompt_{i} = [State] [Cls_{test}] [Cluster_{i}] [State]$$
(9)

275 In the formula, $Cluster_i$ represents the category names from the clustering performed during train-276 ing. Since the features captured by different linear layers vary, for test samples of different cate-277 gories, we assign weights to the outputs of each linear layer by calculating the cosine similarity be-278 tween the image features and the clustered textual prompt features generated during training. Next, 279 we compute the cosine similarity between the weighted outputs of the textual and image features, and by summing the multiple outputs, we obtain the final anomaly detection map. This approach 280 fully leverages the advantages of each linear layer, allowing the model to handle anomaly detection 281 and segmentation tasks more flexibly and accurately across different categories. 282

$$T_n^i = \text{TextEncoder}\{\text{StackedPrompt}_i\}$$
(10)

288

289

290

291

292 293

303

283

274

 $w_i = \operatorname{softmax}(F_c \cdot T_n^i), \operatorname{Output} = \sum_{i=1}^k w_i \cdot \operatorname{Output}_i$ (11)

where T_n^i represents the text feature obtained from the stacked prompt through the text encoder, F_c denotes the image features. w_i represents the weight assigned to each linear layer. This approach effectively leverages the strengths of each linear layer, allowing the model to handle anomaly detection segmentation tasks more flexibly and accurately when dealing with different categories.

2.4 REGULATING PROMPT LEARNING (RPL)

In anomaly detection classification tasks, manually designed text templates often struggle to accurately generate text embeddings that capture both anomalous and normal semantics, thereby affecting the effective querying of corresponding visual embeddings. Furthermore, the text features $T_s \in \mathbb{R}^{n \times 2 \times C}$ generated by the Compositional Prompt Ensemble (CPE) increase computational complexity. However, our tests reveal that fuzzy stacked text prompts exhibit strong capabilities. Notably, the text features $T'_s \in \mathbb{R}^{1 \times 2 \times C}$ generated by the fuzzy stacked text prompts after passing through the text encoder can be applied to multiple categories, as shown in Table 1. To ad-

Table 1: Classification Performance Metrics on MVTec Dataset

	Classific			
No Train	AUROC	AP	F ₁ -max	Prompt
Precise Prompt	86.1	93.5	90.4	$\mathbb{R}^{n \times 2 \times C}$
Fuzzy Prompt	87.7	94.6	90.9	$\mathbb{R}^{1\times 2\times C}$

dress this issue, we leveraged the strong generalization capability of fuzzy stacked prompts. In 310 prompt learning, in addition to introducing a loss function for the classification task, we also added 311 a regularization loss that uses the text features from the fuzzy stacked prompts to regularize the 312 prompt. Specifically, in the anomaly detection classification task, cross-entropy loss is employed 313 to enhance the generalization performance of the classification task. To further optimize the model, 314 mean squared error loss is introduced to regularize the prompts through fuzzy stacked prompts. This 315 strategy combines the classification capability of cross-entropy loss with the regularization effect of 316 mean squared error loss, thereby improving the model's generalization ability, reducing the risk of 317 overfitting, and enhancing classification accuracy.

$$\mathcal{L}_{\rm cls} = -\log(p_y), \quad \mathcal{L}_{\rm text} = \frac{1}{d} \sum_{i=1}^d (T' - T_{\rm train})^2 \tag{12}$$

where p_y is the predicted probability for the true label y, d is the feature vector dimension, T'the fuzzy stacked prompt feature vector, and $T_{\text{train},i}$ the trained text feature vector. During the testing phase, this single set of trained prompts is sufficient to perform anomaly classification for all classes.

324 3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We conducted a series of experiments to assess the anomaly segmentation performance of our method in a zero-shot setting, focusing on the latest and most challenging industrial anomaly segmentation benchmarks. We also performed extensive ablation studies to validate the effectiveness of each component we proposed.

332 333

326

327

3.1.1 DATASETS AND METRICS.

334 We conduct experiments on seven real industrial datasets, including MVTec-AD (Bergmann et al., 335 2019), VisA (Zou et al., 2022), BTAD (Mishra et al., 2021), MPDD (Jezek et al., 2021), 336 DAGM (Wieler & Hahn, 2007), KSDD (Tabernik et al., 2020) and DTD-Synthetic (Aota et al., 337 2023). We conducted a fair and comprehensive comparison with existing zero-shot anomaly de-338 tection and segmentation (ZSAS) methods using widely adopted metrics, namely AUROC, AP, 339 AUPRO, and F_1 -max. The anomaly detection performance is evaluated using the Area Under the Receiver Operating Characteristic Curve (AUROC). AP quantifies the accuracy of the model at 340 different recall levels. The PRO metric represents the coverage of the segmented region over the 341 anomalous region. F_1 -max represents the harmonic mean of precision and recall at the optimal 342 threshold, implying the model's accuracy and coverage. 343

- 344 345
- 3.1.2 IMPLEMENTATION DETAILS.

346 We use the publicly available CLIP model (VIT-L/14@336px) as our backbone and extract patch 347 embeddings from 6-th, 12-th, 18-th, and 24-th layers. The images used for training and testing are 348 scaled to a resolution of 518×518 . The length of learnable word embeddings is set to 12. The 349 learnable token embedding is attached to the first 8 layers of the text encoder, with a length of 29 350 in each layer. All parameters of the CLIP model are frozen. Due to the ZSAD task, it is necessary to ensure that the auxiliary data does not contain the content of the test dataset. The framework 351 training employ the Adam optimizer. For the linear training sets MVTec-AD and VisA, the learning 352 rates are set at 1e-4 and 1e-3 for the this stage, respectively, while in the prompt learning stage, both 353 are set at 1e-4. Training proceeds for 2 epochs with a batch size of 16. In the RPL phase, we set the 354 length of the learnable word embeddings to 12. These learnable token embeddings are appended to 355 the first 9 layers of the text encoder to refine the text space, with each layer having a length of 20. 356 The entire training process lasts for one epoch and the learning rate is set at 1e-3. All experiments 357 were conducted using PyTorch 1.10.0 and run on a single NVIDIA RTX 3090 24GB GPU. 358

359 360

3.2 PERFORMANCE COMPARISON WITH SOTA METHOD

361 We compared methods without the need for training, such as WinCLIP (Jeong et al., 2023), 362 SAA (Cao et al., 2023), and CLIP Surgery (Li et al., 2023), to those that necessitate training, in-363 cluding APIRL-GAN (Chen & et al., 2023), CLIP-AD (Chen et al., 2023), AnomalyCLIP (Zhou et al., 2024). We use the experimental results from the original paper, and since the CLIP Surgery 364 and AnomalyCLIP methods only have some metrics, we reproduce the results using the original code and the weight files provided in the code. As shown in Table 2, our method outperforms other 366 approaches on all metrics for segmentation tasks in both the MVTec and VisA datasets under the 367 zero-shot configuration. In classification tasks, our method slightly lags behind SDP+ in terms of 368 AUROC and F_1 -max metrics. This is primarily due to SDP+ employing a dual-branch structure, 369 which enhances performance through multi-branch collaboration. Nevertheless, our method ex-370 ceeds or matches all metrics of AnomalyCLIP, which also uses a dual-branch structure, but employs 371 prompt learning. Notably, while our method is slightly below SDP+ on the MVTec dataset, it signif-372 icantly surpasses SDP+ on all metrics for the VisA dataset. To further validate the effectiveness of 373 our method, we tested it on other public datasetsBTAD (Mishra et al., 2021), MPDD (Jezek et al., 374 2021), DAGM (Wieler & Hahn, 2007), KSDD (Tabernik et al., 2020) and DTD-Synthetic (Aota 375 et al., 2023) with results shown in Table 3. All methods were trained on the VisA dataset. This allows for the comparison of performance across different datasets and provides a more comprehen-376 sive evaluation of the effectiveness of FuzzyCLIP. Our method demonstrates strong capabilities in 377 both anomaly detection segmentation and classification tasks. While AnomalyCLIP, which employs

a class-agnostic training approach, also achieves relatively good results, it does not perform as well as FuzzyCLIP in terms of overall segmentation effectiveness and classification accuracy (AP).

Table 2: Performance comparison of SOTA approaches on the MVTec-AD (Bergmann et al., 2019) and VisA (Zou et al., 2022) datasets. Evaluation metrics include AUROC, F_1 -max, AUPRO, and AP. Bold indicates the best performance and underline indicates the runner-up.

Evaluation Type	Method	WinCLIP	APRIL-GAN	CLIP Surgery	SAA+	SDP+	AnomalyCLIP	FuzzyCLIP (Ours)
Pixel-Level	MVTec	(64.6,18.2,31.7)	(44.0, <u>40.8</u> , <u>43.3</u>)	(69.9,23.2,29.8)	(42.8,37.8,28.8)	(<u>85.1</u> ,36.3,40.0)	(81.4,34.5,39.1)	(86.4, 46.0, 47.6)
$(AUPRO, AP, F_1-max)$	VisA	(56.8, 5.4 ,14.8)	(86.8, <u>25.7,32.3</u>)	(64.7, 10.3, 15.2)	(36.8,22.4,27.1)	(83.0,18.1,24.6)	(<u>87.0</u> ,21.3,28.3)	(89.8, 28.0, 34.2)
Image-Level	MVTec	(<u>91.8,96.5</u> , 92.9)	(86.1,93.5,90.4)	(90.2,95.5,91.3)	(63.1,81.4,87.0)	(92.2,96.6 ,93.4)	(91.5, 96.6 , <u>92.7</u>)	(91.7, 96.6 , <u>92.7</u>)
$(AUROC, AP, F_1-max)$	VisA	(78.1, 81.2, 79.0)	(78.0,81.4,78.7)	(76.8, 80.2, 78.5)	(71.1, 77.3, 76.2)	(78.3,82.0,79.0)	$(\underline{82.1}, \underline{85.4}, \underline{80.4})$	(84.7, 86.9, 82.7)

In Fig 3, we present visual results of zero-shot anomaly segmentation (ZSAS) to further validate the effectiveness of our proposed method. We also compare our approach with other methods such as SAA+, APRIL-GAN, SDP+, and Anomaly-CLIP. In comparison to these methods, our approach demonstrates stronger performance in both localization and segmentation of anomaly regions, providing more accurate identification of anomalous areas and yielding superior segmentation results.

Table 3: Performance Comparison of Different Methods across Various Tasks

Task	Method	BTAD	DAGM	DTD	SDD	MPDD	Average Rank
Pixel-level	APRIL-GAN	(21.9,32.4,37.4)	(21.8,47.5,50.3)	(41.5, <u>67.7,65.4</u>)	(17.5,15.0,25.9)	(27.8,24.9,29.7)	2.9
(AUPRO, AP, F1-max)	AnomalyCLIP	(<u>66.0,43.2,49.4</u>)	(88.6, 58.1, 59.6)	(87.9,52.8,55.9)	(91.0, 41.7, 50.0)	(80.2,27.8,32.7)	1.8
	Ours	(73.0, 45.9, 49.9)	$(\underline{79.1}, \underline{47.6}, \underline{51.8})$	(91.6, 68.5, 67.0)	$(\underline{87.2}, \underline{23.6}, \underline{36.6})$	(88.6, 29.2, 33.1)	1.4
Image-level	APRIL-GAN	(69.7,21.9)	(94.5,95.8)	(94.0,85.5)	(<u>88.0,96.7</u>)	(82.5,76.8)	2.4
(AUROC, AP)	AnomalyCLIP	(85.2,87.9)	(95.8,97.8)	(<u>94.6</u> , 93.9)	(80.0,95.8)	(<u>80.4</u> ,75.8)	1.8
	Ours	(<u>83.2,83.5</u>)	(96.3 , <u>96.7</u>)	(96.5 , <u>91.6</u>)	(93.0,97.3)	(76.8, <u>76.2</u>)	1.7

3.3 ABLATION STUDIES

To validate the effectiveness of our method, we conducted a component-wise analysis of the prompt design in our framework. All ablation studies are conducted on the Visa.

3.3.1 THE EFFECTIVENESS OF FUZZY PROMPT

We tested the fuzzy prompts under the same settings as APRIL-GAN, making only changes to the text prompts without any other modifications. This approach allowed us to evaluate the performance of fuzzy prompts under identical conditions, ensuring their effectiveness and improvement in the specific task.

Table 4: Comparison between precise prompts, abstract fuzzy prompts, and stacked fuzzy prompts.

	Seg	Segmentation					
Method	AUPRO	AP	F_1 -max	epoch			
Precise Prompt	44.0	40.8	43.3	15			
Abstract Fuzzy Prompt	83.2	42.0	44.2	2			
Stacked Fuzzy Prompt	86.6	44.2	46.6	2			

The results in Table 4 clearly demonstrate that whether using abstract fuzzy prompts (i.e., replacing specific categories with abstract nouns) or stacked fuzzy prompts, the fuzzy prompts significantly outperform precise text prompts in terms of both convergence speed and final convergence results. This indicates that fuzzy prompts not only accelerate the model's training process but also enhance the model's overall performance. By training for only 2 epochs, our method achieved improvements of 42.6, 3.4, and 3.3 percentage points in the AUPRO, AP, and F_1 -max metrics, respectively. These significant enhancements further validate the effectiveness and advantages of using fuzzy prompts in anomaly detection tasks.

Figure 3: Comparison of visualization results

3.3.2 THE EFFECTIVENESS OF CSP AND EFA

In our framework, the Clustering-Driven Stacked Prompt (CSP) and Ensemble Feature Alignment (EFA) modules work together to accomplish the anomaly detection and segmentation tasks. Specifically, in the CSP module, we employ the K-means clustering method to select classes and determine the number of categories through our designed scoring mechanism. The figure Fig 4 below clearly illustrates the classification results on two public datasets: MVTec was categorized into one class, while VisA was divided into two classes.

Figure 4: Clustering result of the MVTec and VisA datasets after the Clustering-Driven Stacked Prompt (CSP) module.

In the subsequent experiments, we removed the CSP module, which involved training a single set of linear layers directly using all categories to obtain a baseline result. Then, we introduced the CSP module and conducted training on the VisA dataset. The CSP module divided the dataset into two categories: one category included pcb1, pcb2, pcb3, pcb4, while the other category contained the remaining classes. We trained on these two categories separately and tested each using the corresponding trained linear layers during the testing phase.

Surprisingly, as shown in Table 5, under the Cluster1 and Cluster2 settings, despite a significant reduction in training data, the results were comparable to those of the model trained with the full dataset. Particularly in the Cluster1 setting, the AP metric even slightly surpassed our baseline results. This indicates that, even with reduced training data, the clustering strategy implemented through the CSP module can effectively enhance the model's performance, especially when the data distribution is relatively clear. By incorporating the EFA module, our approach dynamically assigns different weights to the outputs of various linear layers based on the distances between test samples and multiple clustering centers. This adaptive weighting method ensures that the strengths of each linear layer are effectively utilized. As a result, the model becomes more flexible and accurate in handling anomaly detection segmentation tasks, particularly when dealing with diverse categories.

We believe that the limited sample size and number of categories in the MVTec and VisA datasets
restrict the performance of our method. Therefore, we merged multiple datasets and categorized
them according to our approach for comparison. The results are shown in Table 6. As the number of clusters increases, all metrics improve. For certain metrics that show a decline, we analyzed the

Table 6:	Pixel-Level	Performance	Across Datasets
----------	-------------	-------------	-----------------

Train	Test	MVTec	VisA	DTD	MPDD	DAGM	BTAD	SDD	Average
Train Data	Cluster Num								
VicA	1	$(\textbf{86.6}, \underline{44.2}, \underline{46.6})$	(-,-,-)	$(\underline{90.7}, \underline{66.0}, \pmb{65.2})$	$(\underline{88.5}, \underline{28.6}, \underline{33.5})$	$(80.2, \underline{44.3}, \underline{48.6})$	(79.3 , <u>47.7</u> , <u>51.8</u>)	$(\pmb{88.1},\underline{14.4},\underline{27.6})$	$(\pmb{85.6}, \underline{40.9}, \underline{45.6})$
VISA	2	$(\underline{86.4},\!\textbf{46.0},\!\textbf{47.6})$	(-,-,-)	$(\textbf{91.3,66.4},\underline{65.1})$	(89.1, 31.2, 35.1)	$(\underline{79.3},\!45.9,\!50.0)$	$(\underline{76.0},\!\textbf{48.6},\!\textbf{53.5})$	$(\underline{88.0}, \textbf{22.1}, \textbf{35.4})$	$(\underline{85.0},\!\textbf{43.4},\!\textbf{47.8})$
MVTec MPDD	1	(-,-,-)	(89.4, 25.7, 32.0)	$(\textbf{92.5}, \underline{68.4}, \underline{66.9})$	(-,-,-)	$(\pmb{81.1}, \underline{48.3}, \underline{52.1})$	(<u>73.5,37.1,42.4</u>)	(<u>93.7,41.9,47.3</u>)	$(\underline{86.0}, \underline{44.3}, \underline{48.1})$
MIT RELMIDD	2	(-,-,-)	$(\underline{88.9}, \underline{22.8}, \underline{30.0})$	$(\underline{91.9}, \textbf{70.3, \textbf{68.9}})$	(-,-,-)	$(\underline{79.4},\!\textbf{49.6},\!\textbf{53.4})$	(76.1, 40.8, 44.4)	(94.1, 44.2, 50.1)	(86.1, 45.5, 49.4)
	1	(-, -, -)	(87.8, <u>23.6,30.4</u>)	(-, -, -)	(85.9, 27.4, 33.4)	(77.8,49.3,54.6)	(68.7, <u>32.0,37.2</u>)	$(\underline{89.6}, 44.1, 51.0)$	(82.0, <u>35.3,41.3</u>)
MVTec_DTD	2	(-,-,-)	$(\underline{88.4}, 20.5, 27.5)$	(-, -, -)	(88.3 , <u>26.6</u> , <u>33.3</u>)	$(\underline{79.7}, \pmb{54.0}, \pmb{57.0})$	$(\underline{72.0}, 28.0, 33.9)$	(92.9 ,39.3,48.4)	$(\underline{84.3}, 33.7, 40.0)$
	3	(-,-,-)	$(\boldsymbol{89.1, 23.9, 30.8})$	(-, -, -)	(<u>87.6</u> ,26.5,33.0)	$(80.6, \underline{53.3}, \underline{56.1})$	(73.4, 32.7, 37.5)	$(92.9, \underline{41.5}, \underline{50.3})$	(84.7, 35.6, 41.5)
	1	(-,-,-)	$(\underline{90.0}, \underline{22.7}, \underline{30.1})$	(<u>94.2,75.6,73.6</u>)	$(89.5, \underline{27.2}, \underline{34.1})$	(-,-,-)	(78.9,42.4,47.7)	(93.2,41.0, <u>51.5</u>)	$(89.2, \underline{41.8}, 47.4)$
MVTec_DAGM	2	(-,-,-)	$(\textbf{90.1},\!21.5,\!\underline{30.1})$	(<u>94.2</u> ,71.9,72.9)	$(\underline{89.7}, 26.2, 32.4)$	(-,-,-)	$(\underline{81.2}, \underline{45.7}, \underline{50.3})$	$(\textbf{95.4},\underline{42.4},\textbf{51.6})$	$(\underline{90.1}, 41.5, \underline{47.5})$
	3	(-,-,-)	(90.1, 23.1, 30.4)	(94.9, 76.6, 74.0)	(90.4, 28.1, 34.8)	(-, -, -)	$(81.7,\!46.1,\!51.6)$	$(\underline{95.3}, 42.8, 50.1)$	$(90.5,\!43.3,\!48.2)$

situation and found that this is primarily due to significant data shifts during K-means clustering, leading to underfitting in the linear layers and thus affecting the overall performance results.

3.3.3 THE EFFECTIVENESS OF RPL

In our framework, the Regulating Prompt Learning (RPL) module enhances anomaly detection clas-505 sification performance through regularization with fuzzy stacked prompts. We first evaluated the 506 effectiveness of using fuzzy stacked prompts for regularization. 507

Table 7 shows a comparison between using 508 only the classification loss (\mathcal{L}_{cls}) and incor-509 porating regularization loss (\mathcal{L}_{text})with fuzzy 510 stacked prompts into the classification loss. We 511 observed a significant improvement in anomaly 512 detection classification performance with the 513 inclusion of fuzzy stacked prompt regulariza-514 tion loss. This indicates that the regularization 515 method plays a crucial role in enhancing the

	Image-level (VisA)								
Setting	AUROC	AP	F_1 -max						
w/o RPL	79.0	82.9	78.8						
w RPL	84.7	86.9	82.7						

Table 7: RPL module ablation study

516 model's generalization capability and improving classification performance. In addition, several 517 key factors significantly impact the performance of prompt learning, including Depth of Learnable Token Embeddings M; Length of Learnable Token Embeddings L; Learnable text prompts E; Ini-518 tialization of Prompts; Detailed analysis can be seen in appendix A 519

- 4
- 522 523 524

525

526

527

528

529

530

520 521

500

501 502

504

CONCLUSION

In this paper, we propose the concept of fuzzy stacked prompts and apply it to industrial anomaly detection. This pre-training method is not only simple and efficient but also significantly enhances the classification and segmentation capabilities in anomaly detection. Additionally, our approach can continually improve anomaly detection performance in real industrial scenarios by adding more linear layers as the data volume and number of categories increase. However, our method also has some limitations. For instance, the performance may not meet expectations for categories that are difficult to describe accurately with text. In future work, we will continue to explore ways to further enhance the feature alignment capabilities of CLIP to address more complex scenarios.

- 531 532
- 533 534

535

536

References

Toshimichi Aota, Lloyd Teh Tzer Tong, and Takayuki Okatani. Zero-shot versus many-shot: Unsupervised texture anomaly detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5564–5572, 2023.

537 538

> Matthew Baugh, James Batten, Johanna P. Müller, and Bernhard Kainz. Zero-shot anomaly detection with pre-trained segmentation models. CoRR, abs/2306.09269, 2023.

541

542 Computer Vision and Pattern Recognition (CVPR), 2019. 543 Yunkang Cao, Qian Wan, Weiming Shen, and Liang Gao. Informative knowledge distillation for 544 image anomaly segmentation. Knowl. Based Syst., 248:108846, 2022. 545 546 Yunkang Cao, Xiaohao Xu, Chen Sun, Yuqi Cheng, Zongwei Du, Liang Gao, and Weiming Shen. 547 Segment any anomaly without training via hybrid prompt regularization. CoRR, abs/2305.10724, 548 2023. 549 550 Yunkang Cao, Jiangning Zhang, Luca Frittoli, Yuqi Cheng, Weiming Shen, and Giacomo Boracchi. 551 Adaclip: Adapting clip with hybrid learnable prompts for zero-shot anomaly detection, 2024. 552 Xuhai Chen and et al. A zero-/few-shot anomaly classification and segmentation method for CVPR 553 2023 VAND workshop challenge tracks 1&2: 1st place on zero-shot AD and 4th place on few-shot 554 AD. CoRR, abs/2305.17382, 2023. 555 556 Xuhai Chen, Jiangning Zhang, Guanzhong Tian, Haoyang He, Wuhao Zhang, Yabiao Wang, 557 Chengjie Wang, Yunsheng Wu, and Yong Liu. CLIP-AD: A language-guided staged dual-path 558 model for zero-shot anomaly detection. CoRR, abs/2311.00453, 2023. 559 Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding. 560 In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 9727–9736. 561 2022a. 562 563 Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding. 564 In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 9727–9736, 565 2022b. 566 Hanqiu Deng, Zhaoxiang Zhang, Jinan Bao, and Xingyu Li. Anovl: Adapting vision-language 567 models for unified zero-shot anomaly localization. CoRR, abs/2308.15939, 2023. 568 569 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 570 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-571 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at 572 scale. In 9th International Conference on Learning Representations, ICLR, 2021. 573 574 Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh, and Anton van den Hengel. Memorizing normality to detect anomaly: Memory-augmented deep 575 autoencoder for unsupervised anomaly detection. In IEEE/CVF International Conference on 576 Computer Vision, ICCV, pp. 1705–1714. IEEE, 2019. 577 578 Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash Ravichandran, and Onkar 579 Dabeer. Winclip: Zero-/few-shot anomaly classification and segmentation. In IEEE/CVF Confer-580 ence on Computer Vision and Pattern Recognition, CVPR, pp. 19606–19616. IEEE, 2023. 581 582 Stepan Jezek, Martin Jonak, Radim Burget, Pavel Dvorak, and Milos Skotak. Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions. In 13th Inter-583 national Congress on Ultra Modern Telecommunications and Control Systems and Workshops, 584 ICUMT 2021, Brno, Czech Republic, October 25-27, 2021, pp. 66–71, 2021. 585 586 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan 587 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without 588 forgetting. In IEEE/CVF International Conference on Computer Vision, ICCV, pp. 15144–15154, 2023a. 590 591 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation with-592 out forgetting. In Proceedings of the IEEE/CVF International Conference on Computer Vision

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mytec ad — a comprehen-

sive real-world dataset for unsupervised anomaly detection. In 2019 IEEE/CVF Conference on

11

(ICCV), 2023b.

594 Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. BLIP: bootstrapping language-image 595 pre-training for unified vision-language understanding and generation. In Kamalika Chaudhuri, 596 Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International 597 Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, 598 volume 162, pp. 12888-12900, 2022. Yi Li, Hualiang Wang, Yiqun Duan, and Xiaomeng Li. CLIP surgery for better explainability with 600 enhancement in open-vocabulary tasks. CoRR, abs/2304.05653, 2023. 601 602 Zheng Li, Xiang Li, Xinyi Fu, Xin Zhang, Weiqiang Wang, Shuo Chen, and Jian Yang. Promptkd: Unsupervised prompt distillation for vision-language models. In Proceedings of the IEEE/CVF 603 Conference on Computer Vision and Pattern Recognition, pp. 26617–26626, 2024. 604 605 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei 606 Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding DINO: marrying DINO with grounded 607 pre-training for open-set object detection. CoRR, 2023. 608 Fabio Valerio Massoli, Fabrizio Falchi, Alperen Kantarci, Seymanur Akti, Hazim Kemal Ekenel, 609 and Giuseppe Amato. MOCCA: multilayer one-class classification for anomaly detection. *IEEE* 610 Trans. Neural Networks Learn. Syst., 33(6):2313–2323, 2022. 611 612 Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio Piciarelli, and Gian Luca Foresti. VT-613 ADL: A vision transformer network for image anomaly detection and localization. In 30th IEEE International Symposium on Industrial Electronics, ISIE 2021, Kyoto, Japan, June 20-23, 2021, 614 pp. 1–6, 2021. 615 616 Shancong Mou, Xiaoyi Gu, Meng Cao, Haoping Bai, Ping Huang, Jiulong Shan, and Jianjun Shi. 617 RGI: robust gan-inversion for mask-free image inpainting and unsupervised pixel-wise anomaly 618 detection. In The Eleventh International Conference on Learning Representations, ICLR 2023, 619 Kigali, Rwanda, May 1-5, 2023, 2023. 620 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-621 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya 622 Sutskever. Learning transferable visual models from natural language supervision. In Proceed-623 ings of the 38th International Conference on Machine Learning, ICML, pp. 8748–8763, 2021. 624 Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, 625 and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting. In 626 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, 627 LA, USA, June 18-24, 2022, pp. 18061-18070. IEEE, 2022. doi: 10.1109/CVPR52688.2022. 628 01755. URL https://doi.org/10.1109/CVPR52688.2022.01755. 629 630 Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter V. Gehler. Towards total recall in industrial anomaly detection. In IEEE/CVF Conference on Com-631 puter Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, 632 2022. 633 634 Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. Learning and evalu-635 ating representations for deep one-class classification. In International Conference on Learning 636 Representations, ICLR, 2021. 637 Domen Tabernik, Samo Sela, Jure Skvarc, and Danijel Skocaj. Segmentation-based deep-learning 638 approach for surface-defect detection. J. Intell. Manuf., 31, 2020. 639 640 Yue Wang, Jinlong Peng, Jiangning Zhang, Ran Yi, Yabiao Wang, and Chengjie Wang. Multimodal 641 industrial anomaly detection via hybrid fusion. In IEEE/CVF Conference on Computer Vision 642 and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, 2023. 643 Matthias Wieler and Tobias Hahn. Weakly supervised learning for industrial optical inspection. In 644 DAGM symposium in, pp. 11, 2007. 645 Guoyang Xie, Jinbao Wang, Jiaqi Liu, Yaochu Jin, and Feng Zheng. Pushing the limits of fewshot 646 anomaly detection in industry vision: Graphcore. In The Eleventh International Conference on 647 Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023.

- Jihun Yi and Sungroh Yoon. Patch SVDD: patch-level SVDD for anomaly detection and segmentation. In Hiroshi Ishikawa, Cheng-Lin Liu, Tomás Pajdla, and Jianbo Shi (eds.), 15th Asian Conference on Computer Vision ACCV, volume 12627 of Lecture Notes in Computer Science, pp. 375–390, 2020.
- Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, and Heung-Yeung
 Shum. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. In *The Eleventh International Conference on Learning Representations, ICLR*, 2023.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision language models. *CoRR*, abs/2109.01134, 2021.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-language models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition* (*CVPR*), 2022.
 - Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen. Anomalyclip: Object-agnostic prompt learning for zero-shot anomaly detection. In *The Twelfth International Conference on Learning Representations (ICLR)*, pp. 1–33, 2024.
- Jiale Zhu, Peiyi Yan, Jielin Jiang, Yan Cui, and Xiaolong Xu. Asymmetric teacher-student feature pyramid matching for industrial anomaly detection. *IEEE Trans. Instrum. Meas.*, 73:1–13, 2024.
 - Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), *Computer Vision ECCV 2022 17th European Conference, Tel Aviv*, volume 13690, pp. 392–408, 2022.
- 671 672 673

680

682

683

684

685

686

687

688

689

690

691

692

693

662

663

664

667

668

669

670

A APPENDIX

This supplementary appendix includes the following contents: A.1 a more detailed introduction to some state-of-the-art methods; A.2 an analysis of some hyperparameters of the RPL module; A.3 an analysis of how to select categories from text prompts during the segmentation process; A.4 ablation experiments on the selection of template initialization in the prompt learning process; A.5 presentation of details of some results.

- 681 A.1 STATE-OF-THE-ART METHODS.
 - WinCLIP (Jeong et al., 2023) They create an extensive collection of custom-designed text prompt templates tailored for anomaly detection and employ a window scaling strategy to achieve anomaly segmentation. This method efficiently accomplishes anomaly detection, segmentation, and classification tasks by extracting features at different scales.
 - APRIL-GAN (Chen & et al., 2023) APRIL-GAN is an enhanced version of WinCLIP. It first optimizes the text prompt templates and then enhances local visual semantics by combining learnable linear projections. Through the design of linear layers, it strengthens the alignment between image features and text features at different levels, thus achieving more precise segmentation.
 - CLIP-AD (Chen et al., 2023) CLIP-AD utilizes a text prompting design similar to Win-CLIP, adapting to ZSAS tasks through multi-branch feature surgery design and fine-tuning techniques.
- CoCoOp (Zhou et al., 2022) CoCoOp is a method that applies CLIP to image classification tasks based on prompt learning. It uses continuously learnable vectors instead of manually designed text prompts, enhancing the model's generalization to novel classes by making the prompt conditioned on each input image. To adapt CoCoOp to the ZSAS task, we improved the prompt templates used in the original paper. Specifically, the original template $[v_1(x)][v_2(x)] \cdots [v_r(x)][class]$ is replaced with $[v_1(x)][v_2(x)] \cdots [v_r(x)][good][class]$ and $[v_1(x)][v_2(x)] \cdots [v_r(x)][damaged][class]$ for the generation of normal and abnormal text prompts, where $v_i(x)$ represents the learnable word embeddings that incorporate image features x.

• AnomalyCLIP (Zhou et al., 2024) AnomalyCLIP proposes learning object-agnostic textual prompts for zero-shot anomaly detection. It replaces specific product categories [class] with [object] in the textual prompts, enabling the model to focus on the anomalous regions in the images.

705 706

708

719

702

703

704

A.2 HYPARAMETER ANALYSIS.

We studied the impact of the depth M of learnable token embeddings, the length L of learnable 709 token embeddings, and the learnable text prompt E on model performance, with evaluation metrics 710 including AP, F_1 -max, and AUROC, as shown in Fig 5. The trends for all metrics are generally 711 consistent. Since we employed the Regulating Prompt Learning (RPL) module, the learnable token 712 length can reach 20, the depth can reach 9, and the learning length of the text prompts is set to 12. 713 Under these parameters, the trends for all evaluation metrics are consistent: when the parameters 714 have not reached optimal values, the model is in an underfitting state and cannot effectively detect 715 anomalies; when the parameters exceed the optimal values, the model enters an overfitting state, 716 learning some redundant information that negatively impacts the final results. This highlights the 717 importance of carefully selecting parameters during training to ensure that the model effectively 718 captures useful anomaly features.

739

741

Figure 5: Hyperparameter Analysis. We present the Length of Learnable Token Embeddings L; the 740 Depth of Learnable Token Embeddings M; Learnable text prompts E ablation study of the AP, F_1 max, and AUROC across the dimensions of Length of Learnable Text Prompt, Depth of Learnable 742 Text Prompt, and Prompt Length. The orange represents AP, the blue represents F_1 -max, and the 743 green represents AUROC. 744

745

746 747

ANALYSIS OF TEST CATEGORY NAMES SELECTION. A.3

748 During the segmentation testing, it is crucial to select appropriate textual prompts. To adapt to our 749 proposed Ensemble Feature Alignment (EFA) module, we conducted ablation experiments on dif-750 ferent prompts, with the results shown in Table 8. Initially, we tested using only the test object 751 names and only the stacked object names during training, finding that the difference between these 752 two approaches was minimal. Subsequently, combining the two yielded significant effects. Using 753 test object names enhanced the perceptual capabilities of the CLIP model, making it more focused on the target rather than the background; while the stacked object names used during training better 754 aligned with the trained linear layer, guiding the model to focus on anomalies rather than complete 755 objects. We also tested the combination of using both test object names and stacked object names

during training, but the results were not as effective as the previous method. This indicates that re peatedly mentioning object names may cause CLIP to shift its focus on the target, thereby affecting
 the model's performance. This experimental result underscores the importance of avoiding redun dant information when selecting textual prompts to maintain the model's sensitivity to anomalies.

Table 8: Comparison of the selection of class in abnormal segmentation tests.

Test prompt	AUROC	AP	F ₁ -max
Test_obj	89.8	26.5	33.0
cluster	89.8	26.5	32.9
Test_obj+cluster	89.8	28.0	34.2
Test_obj+cluster+Test_obj	<u>89.7</u>	<u>26.9</u>	<u>33.0</u>

A.4 PROMPT LEARNING INITIALIZATION TEMPLATE SELECTION ANALYSIS.

In prompt learning, template initialization is a crucial influencing factor. We conducted tests on various templates while maintaining the design of stacked fuzzy prompts, where "cluster" represents stacked fuzzy prompts. To simplify the experiment, we default the number of clusters to 1. In addition to stacked prompts, we also tested abstract prompts, using "object" instead of specific category names. The results showed that the overall performance was not as good as the initialized stacked fuzzy prompts. This indicates that stacked fuzzy prompts can more effectively capture exceptional features during initialization, enhancing the performance of model.

Table 9: The experimental results when using different text prompt templates during prompt learning

781				
782	Test on VisA	AUROC	AP	F ₁ -max
783	a photo of a good [cluster]			
784	a photo of a damaged [cluster]	<u>82.6</u>	<u>85.9</u>	<u>81.0</u>
785	This is a good photo of [cluster]			
786	This is a damaged photo of [cluster]	82.5	<u>85.9</u>	81.1
787	It is a photo of a [cluster] without damage			
780	It is a photo of a [cluster] with damage	79.7	83.0	80.4
790	There is not a damaged [cluster] in the photo		064	01.1
791	There is a damaged [cluster] in the photo	82.9	86.1	81.1
792	It is a good, perfect and pristine picture of [cluster]	01 5	0.5.4	
793	It is a damaged, flawed, and broken picture of [cluster]	81.7	85.1	80.3
794	a photo of a good object	01.0	000	00.0
795	a photo of a damaged object	81.2	83.9	80.8
796 707	This is a good photo of object	00.2	02.4	00.0
798	This is a damaged photo of object	80.3	83.4	80.6
799	It is a photo of a object without damage	70.0	014	70.7
800	It is a photo of a object with damage	/8.0	81.4	/9./
801	There is not a damaged object in the photo	01.0	051	01 1
802	There is a damaged object in the photo	81.8	85.1	81.1
803	It is a good, perfect and pristine picture of object	70.1	00.0	70.0
804	It is a damaged, flawed, and broken picture of object	/9.1	82.8	/9.8
C 38 C 1				

A.5 FINE-GRAINED ZSAD PERFORMANCE.

809 In this section, we present the fine-grained data subset-level ZSAD performance in detail.

Figure 6: Anomaly score maps for the data Bottle. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Y	\mathbf{V}	\wedge	L_		1	$\mathbf{\lambda}$	Y	R	X	Å.	Y
$\left \right $	$\left \right\rangle$	\nearrow		-	/		$\left \right\rangle$			\neg	$\left \right $

Figure 7: Anomaly score maps for the data Tile. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

		1.	F		A LA	•				-		
• • •	• •	6 e	*	*	• 1	•	•		and an	3	•	di.
· · · · · · · · · · · · · · · · · · ·	•	`_`	•	ų	•	• ,	•	•		•	*	•

Figure 8: Anomaly score maps for the data Wood. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

2	1	-		۰	•	1	-	-		1		×	
1	1	-	ŀ	۲		1			•	1	44	4	4
/	1	~	•	•	•	1	-	-	•	•		•	~

Figure 9: Anomaly score maps for the data Leather. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 10: Anomaly score maps for the data Grid. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 11: Anomaly score maps for the data Hazelnut. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

500		500	Pers 300	C 300			C 300			-	(1 500)	500
((216)						-40		•	()
*	-	1	-	-7	,	1	^	r		I		_ x _

Figure 12: Anomaly score maps for the data Capsule. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

e k		•	3									
0 0	•	*		•		۲	- 🔶		N		*	**
• 、	•	•		T	•	•	►	•	•	•	•	-

Figure 13: Anomaly score maps for the data Carpet. The first row represents the input. The second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.