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ABSTRACT

How to enhance the alignment of text and image features in CLIP model is a key
challenge in zero-shot industrial anomaly detection tasks. Recent studies mostly
rely on precise category prompts for pre-training, but this approach is prone to
overfitting, which limits the generalization ability of the mode. To address this
issue, we propose the concept of fuzzy prompts and introduce Clustering-Driven
Stacked Prompts (CSP) along with the Ensemble Feature Alignment (EFA) mod-
ule to improve the alignment between text and image features. This design signif-
icantly outperforms other methods in terms of training speed, stability, and final
convergence results, showing remarkable efficiency in enhancing anomaly detec-
tion segmentation performance. What is even more surprising is that fuzzy stacked
prompts exhibit strong generalization in classification tasks, enabling them to
adapt to various anomaly classification tasks without any additional operations.
Therefore, we further propose the Regulating Prompt Learning (RPL) module,
which leverages the strong generalization ability of fuzzy stacked prompts to regu-
larize prompt learning, thereby improving performance in anomaly detection clas-
sification tasks. We conducted extensive experiments on seven industrial anomaly
detection datasets, which demonstrate that our method achieves state-of-the-art
performance in zero-shot anomaly detection and segmentation tasks.

Industrial anomaly detection (Xie et al., 2023; Roth et al., 2022; Mou et al., 2023; Wang et al.,
2023) is an important research area in the field of computer vision. It involves two primary tasks:
distinguishing between normal and anomalous images through anomaly detection classification and
achieving pixel-level anomaly localization through anomaly detection segmentation. However, the
challenge of anomaly detection lies in the unknown nature of anomalies. Due to the lack of avail-
able anomalous data samples, it is difficult to extract features of anomalies. Traditional methods
often rely on unsupervised (Yi & Yoon, 2020; Massoli et al., 2022; Sohn et al., 2021; Gong et al.,
2019) or self-supervised (Deng & Li, 2022a; Zhu et al., 2024; Deng & Li, 2022b; Cao et al., 2022)
approaches. By learning from a large number of normal samples, the model can memorize the
characteristics of these normal samples and then detect anomalies by calculating the differences
between test samples and the learned normal distribution. A significant drawback of these meth-
ods is the necessity of handling large amounts of cross-class data. Furthermore, as the number of
object categories to be detected increases, a separate model needs to be trained for each category,
leading to a significant increase in the number of models. Therefore, developing a unified cold-start
model that can adapt to multiple categories without requiring additional training becomes an ideal
solution and is also an open challenge faced by both the academic and industrial communities. Re-
cently, significant progress has been made in zero-shot anomaly detection (ZSAD) (Baugh et al.,
2023; Deng et al., 2023; Cao et al., 2023) using CLIP (Radford et al., 2021) as a pre-trained vision-
language model (Cao et al., 2024; Zhou et al., 2024; Chen et al., 2023; Jeong et al., 2023; Chen
& et al., 2023). This approach identifies anomalies by computing the cosine similarity between
text and image features, marking regions with higher similarity as anomalous. A pioneering ZSAD
work, WinCLIP (Jeong et al., 2023), employed manually designed text templates and multi-scale
image feature extraction for classification tasks, achieving excellent results by aligning image and
text features. Subsequently, APRIL-GAN (Chen & et al., 2023) introduced a strategy enhanced by
a pre-trained linear layer, utilizing features from different layers to align text and image features,
demonstrating outstanding performance in anomaly segmentation tasks as well. Following APRIL-
GAN (Chen & et al., 2023), several methods based on pre-trained linear layers or adapters have
emerged for segmentation tasks. On the template of text prompts, WinCLIP (Jeong et al., 2023)
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Figure 1: We compared several different prompt design methods. (a) uses precise prompts, leading
to significant fluctuations in various metrics during training and severe overfitting, which results in a
notable decline in the AUPRO metric. (b) adopts a uniform abstract fuzzy prompt, replacing specific
class names with “object”. During training, this method quickly achieves fitting but also experiences
overfitting; however, its convergence outcome is much better than that of the precise prompts. (c)
illustrates our proposed stacked fuzzy prompt method. As observed, this method surpasses the pre-
vious methods in terms of stability, convergence speed, and final convergence results, demonstrating
a remarkably strong generalization capability.

used a completely training-free approach with precisely designed text templates for different cate-
gories, obtaining normal and anomalous text features by averaging. APRIL-GAN (Chen & et al.,
2023) and subsequent methods (Zhou et al., 2024; Chen et al., 2023; Cao et al., 2024) adopted this
design, using precise category prompts during both training and testing phases. However, as shown
in Fig 1, the use of precise category prompts led to poor stability in the model during training, with
significant fluctuations in various metrics. We believe this instability is due to the linear layer learn-
ing various object categories’ related semantics during training. To address this issue, we experi-
mented with fuzzy text prompts, replacing all categories with the abstract noun “object”. The results
showed that the model converged rapidly within less than one epoch, with metrics surpassing those
of the original APRIL-GAN (Chen & et al., 2023) results, though overfitting occurred subsequently.
Based on these tests, we propose a Clustering-Driven Stacked Fuzzy Prompt approach. By stacking
object categories and using fuzzy text prompts, this method effectively avoids overfitting caused by
abstract prompts and trains multiple linear layers capable of learning different knowledge in Fig 1
demonstrates the performance of the Clustering-Driven Fuzzy Stacked Prompt in anomaly detec-
tion segmentation tasks. Compared to the method of using precise category prompts, it is possible
to achieve outstanding stability, convergence speed, and final convergence results. After clustering
training, different linear layers learn different abnormal feature attributes. During the testing phase,
different weights are assigned to the different linear layers based on the distance between the test
class and the training cluster centers, thus more comprehensively segmenting out abnormal areas.

In the anomaly classification task, AnomalyCLIP (Zhou et al., 2024) achieved notable results us-
ing prompt learning (Zhou et al., 2021; 2022; Khattak et al., 2023b; Li et al., 2024). By pre-
training a class-agnostic prompt, it not only eliminates the need for manually designed templates
but also avoids the influence of object semantics on the alignment process, thereby better aligning
the anomalies themselves. However, a major issue with prompt learning in classification tasks is
its susceptibility to overfitting. To prevent overfitting, AnomalyCLIP (Zhou et al., 2024) had to
reduce the number of training parameters, which in turn limited its performance. In our tests, we
found that fuzzy stacked prompts showed certain advantages in classification tasks, even without
any training, by directly aligning with image features. It is important to note that precise prompts
generate two text features for each category, whereas fuzzy prompts generate only two text features
for all categories, one positive and one negative. Therefore, to avoid overfitting in prompt learning
for classification tasks and to fully leverage the advantages of prompt learning, we employed fuzzy
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stacked prompts for regularization. This approach not only improves the stability and generalization
of the model but also enhances its performance in classification tasks.

Finally, we conducted extensive experiments to verify the effectiveness of our mixed prompts in
adapting the base model to zero-shot anomaly segmentation. Specifically, our final model, Fuzzy-
CLIP, achieved state-of-the-art performance on various zero-shot anomaly segmentation datasets
under different settings. Our contributions are summarized as follows:

• We propose the concept of fuzzy prompts based on the CLIP model and apply it to industrial
anomaly detection tasks.

• We proposed Clustering-Driven Stacked Prompt (CSP) and Ensemble Feature Alignment
(EFA) modules using fuzzy stacked prompts for pre-training, enhancing feature alignment,
and achieving accurate anomaly segmentation.

• We introduced Regulating Prompt Learning (RPL), using fuzzy stacked prompts to regu-
larize prompt learning and complete anomaly classification.

• The comprehensive experimental results on multiple datasets in the industrial anomaly de-
tection field indicate that FuzzyCLIP has achieved excellent zero-shot anomaly detection
performance in handling highly diverse semantic data from the defect detection domain.

1 RELATED WORKS

Zero-shot Anomaly Detection. In the field of industrial anomaly detection, pre-trained vision
models (Dosovitskiy et al., 2021; Li et al., 2022; Radford et al., 2021; Khattak et al., 2023a; Zhang
et al., 2023) have demonstrated strong performance due to their excellent generalization and feature
extraction capabilities. Currently, anomaly detection methods based on pre-trained large models can
be categorized into two main types: The first type does not require any additional training, such as
WinCLIP (Jeong et al., 2023) and SAA (Cao et al., 2023). As a pioneering work, WinCLIP (Jeong
et al., 2023) employs a sliding window method to extract multi-granularity image features for fea-
ture alignment, achieving significant results in classification tasks. However, it requires multiple
encodings of the same image to capture anomalous features. SAA (Cao et al., 2023), as a pioneer
in the collaboration of multiple pre-trained large models, combines the capabilities of Grounding
DINO (Liu et al., 2023) and SAM (Khattak et al., 2023a), where Grounding DINO achieves lo-
calization through text prompts, followed by SAM performing segmentation using box prompts.
However, a notable drawback of this method is its high usage cost and long inference time.

The second type of method requires additional training on anomaly detection data. APRIL-
GAN (Chen & et al., 2023) first proposed using a linear layer to enhance the alignment of text fea-
tures with image features at different levels, successfully completing anomaly segmentation tasks,
but it overlooked the classification task. Similarly, SDP (Chen et al., 2023) uses a linear layer to
strengthen feature alignment and incorporates CLIP Surgery (Li et al., 2023) with a V-Vattention
dual-branch structure. Although this approach significantly improves anomaly perception, the dual-
branch structure introduces additional computational costs.

Prompt Learning in Vision-Language Models. Prompt Learning, as an efficient alternative to
parameter tuning, differs from traditional full-network fine-tuning by achieving satisfactory results
with fewer tuned parameters. CoOp (Zhou et al., 2021) introduced learnable text prompts for few-
shot classification. Building on this, DenseCLIP (Rao et al., 2022) extended prompt learning to
dense prediction tasks by adding an image decoder. PromptSRC (Khattak et al., 2023b) introduced
regularization through raw feature output, while AnomalyCLIP (Zhou et al., 2024) became the first
model to apply prompt learning to industrial anomaly detection, proposing object-agnostic prompt
learning to avoid the potential adverse effects of different object semantics on anomaly detection.
With its glocal context optimization, AnomalyCLIP(Zhou et al., 2024) is capable of capturing lo-
cal anomalous semantics, thus allowing it to perform both classification and segmentation tasks
without the need for an additional decoder network. However, the dual-branch structure of Anoma-
lyCLIP(Zhou et al., 2024) is undoubtedly its greatest drawback, increasing model complexity and
computational costs. Moreover, the pre-training approach may lead to underfitting or overfitting
issues, posing challenges to the model’s stability and generalization capabilities.
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2 APPROACH

2.1 OVERVIEW

In this paper, we propose FuzzyCLIP, which enhances segmentation and classification performance
in industrial anomaly detection through stacked fuzzy prompts. As shown in Fig 2, FuzzyCLIP first
introduces the Clustering-Driven Stacked Prompt (CSP) module to categorize the training data (see
Sec.2.2). It then employs the Ensemble Feature Alignment (EFA) module (see.2.3) to learn differ-
ent anomalous features, further improving the alignment of image and text features. For anomaly
detection classification tasks, we design the Regulating Prompt Learning (RPL) module, which uti-
lizes the broad generalization ability of stacked fuzzy prompts to regularize prompt learning (see
Sec.2.4), thereby effectively enhancing classification performance.

Figure 2: Overview of FuzzyCLIP. To enhance the alignment of image and text features and accom-
plish anomaly detection and segmentation tasks, FuzzyCLIP introduces Clustering-Driven Stacked
Prompts (CSP) and an Ensemble Feature Alignment (EFA) module to learn various anomalous at-
tributes. In anomaly detection classification tasks, we regularize prompt learning through stacked
fuzzy prompts, a process referred to as the Regulating Prompt Learning (RPL) module, which ef-
fectively improves classification performance and enhances the model’s generalization ability.

2.2 CLUSTERING-DRIVEN STACKED PROMPT (CSP)

In the application of CLIP, text descriptions play a critical role. One of the most widely used tech-
niques is the Compositional Prompt Ensemble (CPE), introduced by the pioneering work of Win-
CLIP (Jeong et al., 2023). CPE generates different descriptions by designing positive and negative
templates. Specifically, CPE combines predefined states and template lists, inserting object names
into these templates.

Prompt = [State] [Cls] [State] (1)
After passing through the text encoder of CLIP (Radford et al., 2021), the positive and negative text
features are averaged, resulting in two sets of text features, Tn and Tp. Additionally, the cosine
similarity between the two representative vectors and the image feature Fc is used to determine
which distribution the image is more inclined towards, indicating whether the object is more likely
to be normal or anomalous.

S = Softmax
(
Fc · [Tn,Tp]

T
)

(2)

The goal of CPE design is to achieve feature alignment without the need for training. Later methods
that involve training, such as APRIL-GAN (Chen & et al., 2023), inherited the CPE design concept
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but still used class-specific CPE during training. This led to severe fluctuations during training and
poor generalization of the trained feature alignment enhancement modules (such as linear layers).
These methods also used n ∗ 2 sets of text features. Based on these issues, we propose class-stacked
fuzzy prompts to improve the stability and generalization of feature alignment.

StackedPrompt = [State] [Clsa] . . . [Clsn] [State] (3)

In our improvement, the [State] part still employs the CPE method to design templates and process
text features using averaging to obtain two text features, positive and negative.

For class stacking, we use K-means clustering on all categories in the training data and design a
scoring mechanism to select the stacked classes. In our improvement, we use the total sum of
squared distances from each class to its cluster center, plus a penalty factor, to calculate the score.
We then select the number of classes with the lowest score.

k∗ = argmin
k

(
k∑

i=1

∑
x∈Ci

∥x− 1

|Ci|
∑

x′∈Ci

x′∥2 + λ(n)

)
(4)

In this context, |Ci| represents the number of data points in class Ci. Additionally, we introduced a
penalty coefficient λ(n) = 0.1× en to optimize the model’s performance during the clustering and
feature alignment process. The introduction of this penalty factor λ(n) is intended to balance the
number of classes, as each additional class requires training an extra set of linear layers in subsequent
modules. Having too many classes not only reduces the amount of data per class, affecting train-
ing effectiveness but also increases computational and training complexity. By using this scoring
mechanism, we optimize the number of classes and enhance the effectiveness of feature alignment.

2.3 ENSEMBLE FEATURE ALIGNMENT (EFA)

For anomaly detection segmentation, extracting features from different layers of an image encoder to
obtain diverse image features is an efficient approach. However, while CLIP links image features and
text features in a joint embedding space, during training, only class labels receive direct supervision
from language signals, whereas the entire image feature map lacks similar guidance. In other words,
the alignment between image feature maps and text features is missing, making direct comparison
to infer anomaly maps unfeasible.

To enhance the alignment between text features and image features, we adopted pre-trained linear
layers similar to APRIL-GAN. However, we obtained multiple groupings and their corresponding
fuzzy stacked text prompt features through the CSP module. Based on these groupings, we trained
multiple linear layers separately.

F j′

c = kjF j
c + bj (5)

In this context, F j′

s ∈ RH×W×C represents the image features output from different layers j, which
we typically obtain from the layers at indices [6, 12, 18, 24]. kj and bj represent the weights and
biases of the linear layer at level j, respectively. We then compute the cosine similarity between
the textual features and image features, and after applying softmax normalization, we obtain the
anomaly map results M j

f for each layer. This prepares us for the subsequent training.

Mf = Softmax
(
F j′

c · [Tn,Tp]
T
)

(6)

During training, we froze the parameters of CLIP and used focal loss (Lfocal) and dice loss (Ldice)
functions to optimize the linear layers. This approach aims to improve the alignment between text
features and image features, thereby enhancing the performance of anomaly detection segmentation.

Lfocal =− α(1−Mf)
γ log(Mf)Mgt

− (1− α)Mγ
f log(1−Mf)(1−Mgt)

(7)

Ldice = 1− 2
∑

(Mf ·Mgt) + ϵ∑
(Mf) +

∑
(Mgt) + ϵ

(8)

where Mgt is the ground truth anomaly map and the hyperparameters α, γ, and ϵ are set to 1, 2, and
1, respectively. The final loss function is L = Lfocal + Ldice.
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During the testing phase, we employ different fuzzy stacked prompts for inference. By generating
multiple sets of textual prompt features based on the stacking method between test and training
categories, we adapt to multiple linear layers.

StackedPrompti = [State] [Clstest] [Clusteri] [State] (9)

In the formula, Clusteri represents the category names from the clustering performed during train-
ing. Since the features captured by different linear layers vary, for test samples of different cate-
gories, we assign weights to the outputs of each linear layer by calculating the cosine similarity be-
tween the image features and the clustered textual prompt features generated during training. Next,
we compute the cosine similarity between the weighted outputs of the textual and image features,
and by summing the multiple outputs, we obtain the final anomaly detection map. This approach
fully leverages the advantages of each linear layer, allowing the model to handle anomaly detection
and segmentation tasks more flexibly and accurately across different categories.

T i
n = TextEncoder{StackedPrompti} (10)

wi = softmax(Fc · T i
n),Output =

k∑
i=1

wi ·Outputi (11)

where T i
n represents the text feature obtained from the stacked prompt through the text encoder, Fc

denotes the image features. wi represents the weight assigned to each linear layer. This approach ef-
fectively leverages the strengths of each linear layer, allowing the model to handle anomaly detection
segmentation tasks more flexibly and accurately when dealing with different categories.

2.4 REGULATING PROMPT LEARNING (RPL)

In anomaly detection classification tasks, manually designed text templates often struggle to ac-
curately generate text embeddings that capture both anomalous and normal semantics, thereby af-
fecting the effective querying of corresponding visual embeddings. Furthermore, the text features
Ts ∈ Rn×2×C generated by the Compositional Prompt Ensemble (CPE) increase computational
complexity. However, our tests reveal that fuzzy stacked text prompts exhibit strong capabilities.
Notably, the text features T

′

s ∈ R1×2×C generated by the fuzzy stacked text prompts after pass-
ing through the text encoder can be applied to multiple categories, as shown in Table 1. To ad-

Table 1: Classification Performance Metrics on MVTec Dataset

No Train
Classification (MVTec)

PromptAUROC AP F1-max
Precise Prompt 86.1 93.5 90.4 Rn×2×C

Fuzzy Prompt 87.7 94.6 90.9 R1×2×C

dress this issue, we leveraged the strong generalization capability of fuzzy stacked prompts. In
prompt learning, in addition to introducing a loss function for the classification task, we also added
a regularization loss that uses the text features from the fuzzy stacked prompts to regularize the
prompt. Specifically, in the anomaly detection classification task, cross-entropy loss is employed
to enhance the generalization performance of the classification task. To further optimize the model,
mean squared error loss is introduced to regularize the prompts through fuzzy stacked prompts. This
strategy combines the classification capability of cross-entropy loss with the regularization effect of
mean squared error loss, thereby improving the model’s generalization ability, reducing the risk of
overfitting, and enhancing classification accuracy.

Lcls = − log(py), Ltext =
1

d

d∑
i=1

(T ′ − Ttrain)
2 (12)

where py is the predicted probability for the true label y, d is the feature vector dimension, T ′

the fuzzy stacked prompt feature vector, and Ttrain,i the trained text feature vector.During the testing
phase, this single set of trained prompts is sufficient to perform anomaly classification for all classes.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We conducted a series of experiments to assess the anomaly segmentation performance of our
method in a zero-shot setting, focusing on the latest and most challenging industrial anomaly seg-
mentation benchmarks. We also performed extensive ablation studies to validate the effectiveness
of each component we proposed.

3.1.1 DATASETS AND METRICS.

We conduct experiments on seven real industrial datasets, including MVTec-AD (Bergmann et al.,
2019), VisA (Zou et al., 2022), BTAD (Mishra et al., 2021) , MPDD (Jezek et al., 2021),
DAGM (Wieler & Hahn, 2007), KSDD (Tabernik et al., 2020) and DTD-Synthetic (Aota et al.,
2023). We conducted a fair and comprehensive comparison with existing zero-shot anomaly de-
tection and segmentation (ZSAS) methods using widely adopted metrics, namely AUROC, AP,
AUPRO, and F1-max. The anomaly detection performance is evaluated using the Area Under the
Receiver Operating Characteristic Curve (AUROC). AP quantifies the accuracy of the model at
different recall levels. The PRO metric represents the coverage of the segmented region over the
anomalous region. F1-max represents the harmonic mean of precision and recall at the optimal
threshold, implying the model’s accuracy and coverage.

3.1.2 IMPLEMENTATION DETAILS.

We use the publicly available CLIP model (VIT-L/14@336px) as our backbone and extract patch
embeddings from 6-th, 12-th, 18-th, and 24-th layers. The images used for training and testing are
scaled to a resolution of 518 × 518. The length of learnable word embeddings is set to 12. The
learnable token embedding is attached to the first 8 layers of the text encoder, with a length of 29
in each layer. All parameters of the CLIP model are frozen. Due to the ZSAD task, it is necessary
to ensure that the auxiliary data does not contain the content of the test dataset. The framework
training employ the Adam optimizer. For the linear training sets MVTec-AD and VisA, the learning
rates are set at 1e-4 and 1e-3 for the this stage, respectively, while in the prompt learning stage, both
are set at 1e-4. Training proceeds for 2 epochs with a batch size of 16. In the RPL phase, we set the
length of the learnable word embeddings to 12. These learnable token embeddings are appended to
the first 9 layers of the text encoder to refine the text space, with each layer having a length of 20.
The entire training process lasts for one epoch and the learning rate is set at 1e-3. All experiments
were conducted using PyTorch 1.10.0 and run on a single NVIDIA RTX 3090 24GB GPU.

3.2 PERFORMANCE COMPARISON WITH SOTA METHOD

We compared methods without the need for training, such as WinCLIP (Jeong et al., 2023),
SAA (Cao et al., 2023), and CLIP Surgery (Li et al., 2023), to those that necessitate training, in-
cluding APIRL-GAN (Chen & et al., 2023), CLIP-AD (Chen et al., 2023), AnomalyCLIP (Zhou
et al., 2024). We use the experimental results from the original paper, and since the CLIP Surgery
and AnomalyCLIP methods only have some metrics, we reproduce the results using the original
code and the weight files provided in the code. As shown in Table 2, our method outperforms other
approaches on all metrics for segmentation tasks in both the MVTec and VisA datasets under the
zero-shot configuration. In classification tasks, our method slightly lags behind SDP+ in terms of
AUROC and F1-max metrics. This is primarily due to SDP+ employing a dual-branch structure,
which enhances performance through multi-branch collaboration. Nevertheless, our method ex-
ceeds or matches all metrics of AnomalyCLIP, which also uses a dual-branch structure, but employs
prompt learning. Notably, while our method is slightly below SDP+ on the MVTec dataset, it signif-
icantly surpasses SDP+ on all metrics for the VisA dataset. To further validate the effectiveness of
our method, we tested it on other public datasetsBTAD (Mishra et al., 2021) , MPDD (Jezek et al.,
2021), DAGM (Wieler & Hahn, 2007), KSDD (Tabernik et al., 2020) and DTD-Synthetic (Aota
et al., 2023) with results shown in Table 3. All methods were trained on the VisA dataset. This
allows for the comparison of performance across different datasets and provides a more comprehen-
sive evaluation of the effectiveness of FuzzyCLIP. Our method demonstrates strong capabilities in
both anomaly detection segmentation and classification tasks. While AnomalyCLIP, which employs
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a class-agnostic training approach, also achieves relatively good results, it does not perform as well
as FuzzyCLIP in terms of overall segmentation effectiveness and classification accuracy (AP).

Table 2: Performance comparison of SOTA approaches on the MVTec-AD (Bergmann et al., 2019)
and VisA (Zou et al., 2022) datasets. Evaluation metrics include AUROC, F1-max, AUPRO, and
AP. Bold indicates the best performance and underline indicates the runner-up.

Evaluation Type

Method WinCLIP APRIL-GAN CLIP Surgery SAA+ SDP+ AnomalyCLIP FuzzyCLIP (Ours)

Pixel-Level MVTec (64.6,18.2,31.7) (44.0,40.8,43.3) (69.9,23.2,29.8) (42.8,37.8,28.8) (85.1,36.3,40.0) (81.4,34.5,39.1) (86.4,46.0,47.6)

(AUPRO,AP,F1-max) VisA (56.8, 5.4 ,14.8) (86.8,25.7,32.3) (64.7,10.3,15.2) (36.8,22.4,27.1) (83.0,18.1,24.6) (87.0,21.3,28.3) (89.8,28.0,34.2)

Image-Level MVTec (91.8,96.5,92.9) (86.1,93.5,90.4) (90.2,95.5,91.3) (63.1,81.4,87.0) (92.2,96.6,93.4) (91.5,96.6,92.7) (91.7,96.6,92.7)

(AUROC,AP,F1-max) VisA (78.1,81.2,79.0) (78.0,81.4,78.7) (76.8,80.2,78.5) (71.1,77.3,76.2) (78.3,82.0,79.0) (82.1,85.4,80.4) (84.7,86.9,82.7)

In Fig 3, we present visual results of zero-shot anomaly segmentation (ZSAS) to further validate
the effectiveness of our proposed method. We also compare our approach with other methods such
as SAA+, APRIL-GAN, SDP+, and Anomaly-CLIP. In comparison to these methods, our approach
demonstrates stronger performance in both localization and segmentation of anomaly regions, pro-
viding more accurate identification of anomalous areas and yielding superior segmentation results.

Table 3: Performance Comparison of Different Methods across Various Tasks

Task Method BTAD DAGM DTD SDD MPDD Average Rank

Pixel-level APRIL-GAN (21.9,32.4,37.4) (21.8,47.5,50.3) (41.5,67.7,65.4) (17.5,15.0,25.9) (27.8,24.9,29.7) 2.9
(AUPRO,AP,F1-max) AnomalyCLIP (66.0,43.2,49.4) (88.6,58.1,59.6) (87.9,52.8,55.9) (91.0,41.7,50.0) (80.2,27.8,32.7) 1.8

Ours (73.0,45.9,49.9) (79.1,47.6,51.8) (91.6,68.5,67.0) (87.2,23.6,36.6) (88.6,29.2,33.1) 1.4

Image-level APRIL-GAN (69.7,21.9) (94.5,95.8) (94.0,85.5) (88.0,96.7) (82.5,76.8) 2.4
(AUROC,AP) AnomalyCLIP (85.2,87.9) (95.8,97.8) (94.6,93.9) (80.0,95.8) (80.4,75.8) 1.8

Ours (83.2,83.5) (96.3,96.7) (96.5,91.6) (93.0,97.3) (76.8,76.2) 1.7

3.3 ABLATION STUDIES

To validate the effectiveness of our method, we conducted a component-wise analysis of the prompt
design in our framework. All ablation studies are conducted on the Visa.

3.3.1 THE EFFECTIVENESS OF FUZZY PROMPT

We tested the fuzzy prompts under the same settings as APRIL-GAN, making only changes to the
text prompts without any other modifications. This approach allowed us to evaluate the performance
of fuzzy prompts under identical conditions, ensuring their effectiveness and improvement in the
specific task.

Table 4: Comparison between precise prompts, abstract fuzzy prompts, and stacked fuzzy prompts.

Method
Segmentation

epochAUPRO AP F1-max
Precise Prompt 44.0 40.8 43.3 15

Abstract Fuzzy Prompt 83.2 42.0 44.2 2
Stacked Fuzzy Prompt 86.6 44.2 46.6 2

The results in Table 4 clearly demonstrate that whether using abstract fuzzy prompts (i.e., replacing
specific categories with abstract nouns) or stacked fuzzy prompts, the fuzzy prompts significantly
outperform precise text prompts in terms of both convergence speed and final convergence results.
This indicates that fuzzy prompts not only accelerate the model’s training process but also enhance
the model’s overall performance. By training for only 2 epochs, our method achieved improvements
of 42.6, 3.4, and 3.3 percentage points in the AUPRO, AP, and F1-max metrics, respectively. These
significant enhancements further validate the effectiveness and advantages of using fuzzy prompts
in anomaly detection tasks.
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Table 5: The impact of different prompts
and data settings on pixel-level results.

Prompt
Data Pixel-level #Imgs

Settings AUPRO AP F1-max Num
Precise All Data 44.0 40.8 43.3 2162

Stacked

All Data 86.6 44.2 46.6 2162
Cluster1 86.1 44.3 46.6 1360
Cluster2 84.1 39.9 43.4 802

EFA 86.4 46.0 47.6 2162

Figure 3: Comparison of visualization results

3.3.2 THE EFFECTIVENESS OF CSP AND EFA

In our framework, the Clustering-Driven Stacked Prompt (CSP) and Ensemble Feature Alignment
(EFA) modules work together to accomplish the anomaly detection and segmentation tasks. Specifi-
cally, in the CSP module, we employ the K-means clustering method to select classes and determine
the number of categories through our designed scoring mechanism. The figure Fig 4 below clearly
illustrates the classification results on two public datasets: MVTec was categorized into one class,
while VisA was divided into two classes.

Figure 4: Clustering result of the MVTec and VisA datasets after the Clustering-Driven Stacked
Prompt (CSP) module.

In the subsequent experiments, we removed the CSP module, which involved training a single set
of linear layers directly using all categories to obtain a baseline result. Then, we introduced the
CSP module and conducted training on the VisA dataset. The CSP module divided the dataset into
two categories: one category included pcb1, pcb2, pcb3, pcb4, while the other category contained
the remaining classes. We trained on these two categories separately and tested each using the
corresponding trained linear layers during the testing phase.

Surprisingly, as shown in Table 5, under the Cluster1 and Cluster2 settings, despite a significant
reduction in training data, the results were comparable to those of the model trained with the full
dataset. Particularly in the Cluster1 setting, the AP metric even slightly surpassed our baseline
results. This indicates that, even with reduced training data, the clustering strategy implemented
through the CSP module can effectively enhance the model’s performance, especially when the data
distribution is relatively clear. By incorporating the EFA module, our approach dynamically assigns
different weights to the outputs of various linear layers based on the distances between test samples
and multiple clustering centers. This adaptive weighting method ensures that the strengths of each
linear layer are effectively utilized. As a result, the model becomes more flexible and accurate in
handling anomaly detection segmentation tasks, particularly when dealing with diverse categories.

We believe that the limited sample size and number of categories in the MVTec and VisA datasets
restrict the performance of our method. Therefore, we merged multiple datasets and categorized
them according to our approach for comparison. The results are shown in Table 6. As the number
of clusters increases, all metrics improve. For certain metrics that show a decline, we analyzed the
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Table 6: Pixel-Level Performance Across Datasets

Train Test
MVTec VisA DTD MPDD DAGM BTAD SDD Average

Train Data Cluster Num

VisA
1 (86.6,44.2,46.6) ( — , — , — ) (90.7,66.0,65.2) (88.5,28.6,33.5) (80.2,44.3,48.6) (79.3,47.7,51.8) (88.1,14.4,27.6) (85.6,40.9,45.6)

2 (86.4,46.0,47.6) ( — , — , — ) (91.3,66.4,65.1) (89.1,31.2,35.1) (79.3,45.9,50.0) (76.0,48.6,53.5) (88.0,22.1,35.4) (85.0,43.4,47.8)

MVTec MPDD 1 ( — , — , — ) (89.4,25.7,32.0) (92.5,68.4,66.9) ( — , — , — ) (81.1,48.3,52.1) (73.5,37.1,42.4) (93.7,41.9,47.3) (86.0,44.3,48.1)

2 ( — , — , — ) (88.9,22.8,30.0) (91.9,70.3,68.9) ( — , — , — ) (79.4,49.6,53.4) (76.1,40.8,44.4) (94.1,44.2,50.1) (86.1,45.5,49.4)

MVTec DTD
1 ( — , — , — ) (87.8,23.6,30.4) ( — , — , — ) (85.9,27.4,33.4) (77.8,49.3,54.6) (68.7,32.0,37.2) (89.6,44.1,51.0) (82.0,35.3,41.3)

2 ( — , — , — ) (88.4,20.5,27.5) ( — , — , — ) (88.3,26.6,33.3) (79.7,54.0,57.0) (72.0,28.0,33.9) (92.9,39.3,48.4) (84.3,33.7,40.0)

3 ( — , — , — ) (89.1,23.9,30.8) ( — , — , — ) (87.6,26.5,33.0) (80.6,53.3,56.1) (73.4,32.7,37.5) (92.9,41.5,50.3) (84.7,35.6,41.5)

MVTec DAGM
1 ( — , — , — ) (90.0,22.7,30.1) (94.2,75.6,73.6) (89.5,27.2,34.1) ( — , — , — ) (78.9,42.4,47.7) (93.2,41.0,51.5) (89.2,41.8,47.4)

2 ( — , — , — ) (90.1,21.5,30.1) (94.2,71.9,72.9) (89.7,26.2,32.4) ( — , — , — ) (81.2,45.7,50.3) (95.4,42.4,51.6) (90.1,41.5,47.5)

3 ( — , — , — ) (90.1,23.1,30.4) (94.9,76.6,74.0) (90.4,28.1,34.8) ( — , — , — ) (81.7,46.1,51.6) (95.3,42.8,50.1) (90.5,43.3,48.2)

situation and found that this is primarily due to significant data shifts during K-means clustering,
leading to underfitting in the linear layers and thus affecting the overall performance results.

3.3.3 THE EFFECTIVENESS OF RPL

In our framework, the Regulating Prompt Learning (RPL) module enhances anomaly detection clas-
sification performance through regularization with fuzzy stacked prompts. We first evaluated the
effectiveness of using fuzzy stacked prompts for regularization.

Setting
Image-level (VisA)

AUROC AP F1-max
w/o RPL 79.0 82.9 78.8
w RPL 84.7 86.9 82.7

Table 7: RPL module ablation study

Table 7 shows a comparison between using
only the classification loss (Lcls) and incor-
porating regularization loss (Ltext)with fuzzy
stacked prompts into the classification loss. We
observed a significant improvement in anomaly
detection classification performance with the
inclusion of fuzzy stacked prompt regulariza-
tion loss. This indicates that the regularization
method plays a crucial role in enhancing the
model’s generalization capability and improving classification performance. In addition, several
key factors significantly impact the performance of prompt learning, including Depth of Learnable
Token Embeddings M; Length of Learnable Token Embeddings L; Learnable text prompts E; Ini-
tialization of Prompts; Detailed analysis can be seen in appendix A

4 CONCLUSION

In this paper, we propose the concept of fuzzy stacked prompts and apply it to industrial anomaly
detection. This pre-training method is not only simple and efficient but also significantly enhances
the classification and segmentation capabilities in anomaly detection. Additionally, our approach
can continually improve anomaly detection performance in real industrial scenarios by adding more
linear layers as the data volume and number of categories increase. However, our method also has
some limitations. For instance, the performance may not meet expectations for categories that are
difficult to describe accurately with text. In future work, we will continue to explore ways to further
enhance the feature alignment capabilities of CLIP to address more complex scenarios.
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A APPENDIX

This supplementary appendix includes the following contents: A.1 a more detailed introduction to
some state-of-the-art methods; A.2 an analysis of some hyperparameters of the RPL module; A.3
an analysis of how to select categories from text prompts during the segmentation process; A.4
ablation experiments on the selection of template initialization in the prompt learning process; A.5
presentation of details of some results.

A.1 STATE-OF-THE-ART METHODS.

• WinCLIP (Jeong et al., 2023) They create an extensive collection of custom-designed text
prompt templates tailored for anomaly detection and employ a window scaling strategy to
achieve anomaly segmentation. This method efficiently accomplishes anomaly detection,
segmentation, and classification tasks by extracting features at different scales.

• APRIL-GAN (Chen & et al., 2023) APRIL-GAN is an enhanced version of WinCLIP.
It first optimizes the text prompt templates and then enhances local visual semantics by
combining learnable linear projections. Through the design of linear layers, it strengthens
the alignment between image features and text features at different levels, thus achieving
more precise segmentation.

• CLIP-AD (Chen et al., 2023) CLIP-AD utilizes a text prompting design similar to Win-
CLIP, adapting to ZSAS tasks through multi-branch feature surgery design and fine-tuning
techniques.

• CoCoOp (Zhou et al., 2022) CoCoOp is a method that applies CLIP to image classification
tasks based on prompt learning. It uses continuously learnable vectors instead of manually
designed text prompts, enhancing the model’s generalization to novel classes by making
the prompt conditioned on each input image. To adapt CoCoOp to the ZSAS task, we im-
proved the prompt templates used in the original paper. Specifically, the original template
[v1(x)][v2(x)] · · · [vr(x)][class] is replaced with [v1(x)][v2(x)] · · · [vr(x)][good][class] and
[v1(x)][v2(x)] · · · [vr(x)][damaged][class] for the generation of normal and abnormal text
prompts, where vi(x) represents the learnable word embeddings that incorporate image
features x.
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• AnomalyCLIP (Zhou et al., 2024) AnomalyCLIP proposes learning object-agnostic textual
prompts for zero-shot anomaly detection. It replaces specific product categories [class]
with [object] in the textual prompts, enabling the model to focus on the anomalous regions
in the images.

A.2 HYPARAMETER ANALYSIS.

We studied the impact of the depth M of learnable token embeddings, the length L of learnable
token embeddings, and the learnable text prompt E on model performance, with evaluation metrics
including AP, F1-max, and AUROC, as shown in Fig 5. The trends for all metrics are generally
consistent. Since we employed the Regulating Prompt Learning (RPL) module, the learnable token
length can reach 20, the depth can reach 9, and the learning length of the text prompts is set to 12.
Under these parameters, the trends for all evaluation metrics are consistent: when the parameters
have not reached optimal values, the model is in an underfitting state and cannot effectively detect
anomalies; when the parameters exceed the optimal values, the model enters an overfitting state,
learning some redundant information that negatively impacts the final results. This highlights the
importance of carefully selecting parameters during training to ensure that the model effectively
captures useful anomaly features.

Figure 5: Hyperparameter Analysis. We present the Length of Learnable Token Embeddings L; the
Depth of Learnable Token Embeddings M; Learnable text prompts E ablation study of the AP, F1-
max, and AUROC across the dimensions of Length of Learnable Text Prompt, Depth of Learnable
Text Prompt, and Prompt Length. The orange represents AP, the blue represents F1-max, and the
green represents AUROC.

A.3 ANALYSIS OF TEST CATEGORY NAMES SELECTION.

During the segmentation testing, it is crucial to select appropriate textual prompts. To adapt to our
proposed Ensemble Feature Alignment (EFA) module, we conducted ablation experiments on dif-
ferent prompts, with the results shown in Table 8. Initially, we tested using only the test object
names and only the stacked object names during training, finding that the difference between these
two approaches was minimal. Subsequently, combining the two yielded significant effects. Using
test object names enhanced the perceptual capabilities of the CLIP model, making it more focused
on the target rather than the background; while the stacked object names used during training better
aligned with the trained linear layer, guiding the model to focus on anomalies rather than complete
objects. We also tested the combination of using both test object names and stacked object names
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during training, but the results were not as effective as the previous method. This indicates that re-
peatedly mentioning object names may cause CLIP to shift its focus on the target, thereby affecting
the model’s performance. This experimental result underscores the importance of avoiding redun-
dant information when selecting textual prompts to maintain the model’s sensitivity to anomalies.

Table 8: Comparison of the selection of class in abnormal segmentation tests.

Test prompt AUROC AP F1-max
Test obj 89.8 26.5 33.0
cluster 89.8 26.5 32.9

Test obj+cluster 89.8 28.0 34.2
Test obj+cluster+Test obj 89.7 26.9 33.0

A.4 PROMPT LEARNING INITIALIZATION TEMPLATE SELECTION ANALYSIS.

In prompt learning, template initialization is a crucial influencing factor. We conducted tests on
various templates while maintaining the design of stacked fuzzy prompts, where ”cluster” represents
stacked fuzzy prompts. To simplify the experiment, we default the number of clusters to 1. In
addition to stacked prompts, we also tested abstract prompts, using ”object” instead of specific
category names. The results showed that the overall performance was not as good as the initialized
stacked fuzzy prompts. This indicates that stacked fuzzy prompts can more effectively capture
exceptional features during initialization, enhancing the performance of model.

Table 9: The experimental results when using different text prompt templates during prompt learning

Test on VisA AUROC AP F1-max
a photo of a good [cluster]

82.6 85.9 81.0a photo of a damaged [cluster]

This is a good photo of [cluster]
82.5 85.9 81.1This is a damaged photo of [cluster]

It is a photo of a [cluster] without damage
79.7 83.0 80.4It is a photo of a [cluster] with damage

There is not a damaged [cluster] in the photo
82.9 86.1 81.1There is a damaged [cluster] in the photo

It is a good, perfect and pristine picture of [cluster]
81.7 85.1 80.3It is a damaged, flawed, and broken picture of [cluster]

a photo of a good object
81.2 83.9 80.8a photo of a damaged object

This is a good photo of object
80.3 83.4 80.6This is a damaged photo of object

It is a photo of a object without damage
78.0 81.4 79.7It is a photo of a object with damage

There is not a damaged object in the photo
81.8 85.1 81.1There is a damaged object in the photo

It is a good, perfect and pristine picture of object
79.1 82.8 79.8It is a damaged, flawed, and broken picture of object

A.5 FINE-GRAINED ZSAD PERFORMANCE.

In this section, we present the fine-grained data subset-level ZSAD performance in detail.
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Figure 6: Anomaly score maps for the data Bottle. The first row represents the input. The second
row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 7: Anomaly score maps for the data Tile. The first row represents the input. The second row
presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 8: Anomaly score maps for the data Wood. The first row represents the input. The second
row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 9: Anomaly score maps for the data Leather. The first row represents the input. The second
row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.
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Figure 10: Anomaly score maps for the data Grid. The first row represents the input. The second
row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 11: Anomaly score maps for the data Hazelnut. The first row represents the input. The
second row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 12: Anomaly score maps for the data Capsule. The first row represents the input. The second
row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.

Figure 13: Anomaly score maps for the data Carpet. The first row represents the input. The second
row presents the segmentation results from FuzzyCLIP. The last line is the ground truth.
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