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Abstract

Whitening loss provides theoretical guarantee in avoiding feature collapse for1

self-supervised learning (SSL) using joint embedding architectures. One typical2

implementation of whitening loss is hard whitening that designs whitening transfor-3

mation over embedding and imposes the loss on the whitened output. In this paper,4

we propose spectral transformation (ST) framework to map the spectrum of embed-5

ding to a desired distribution during forward pass, and to modulate the spectrum6

of embedding by implicit gradient update during backward pass. We show that7

whitening transformation is a special instance of ST by definition, and there exist8

other instances that can avoid collapse by our empirical investigation. Furthermore,9

we propose a new instance of ST, called IterNorm with trace loss (INTL). We10

theoretically prove that INTL can avoid collapse and modulate the spectrum of11

embedding towards an equal-eigenvalue distribution during the course of opti-12

mization. Moreover, INTL achieves 76.6% top-1 accuracy in linear evaluation on13

ImageNet using ResNet-50, which exceeds the performance of the supervised base-14

line, and this result is obtained by using a batch size of only 256. Comprehensive15

experiments show that INTL is a promising SSL method in practice.16

1 Introduction17

Self-supervised learning (SSL) via joint embedding architectures to learn visual representations has18

made significant progress over the last several years [1, 18, 7, 9, 2, 30], almost outperforming their19

supervised counterpart on many downstream tasks [28, 23, 32]. This paradigm addresses to train20

a dual pair of networks to produce similar embeddings for different views of the same image [9].21

One main challenge with the joint embedding architectures is how to prevent a collapse of the22

representation, in which the two branches ignore the inputs and produce identical and constant23

outputs [9]. A variety of methods have been proposed to successfully avoid collapse, including24

contrastive learning methods [41, 18, 34] that attract different views from the same image (positive25

pairs) while pull apart different images (negative pairs), and non-contrastive methods [16, 9] that26

directly match the positive targets without introducing negative pairs.27

The collapse problem is further generalized into dimensional collapse [20, 24] (or informational28

collapse [2]), where the embedding vectors only span a lower-dimensional subspace and would be29

highly correlated. In this case, the covariance matrix of embedding has certain zero eigenvalues, which30

degenerates the representation in SSL. To prevent dimensional collapse, a theoretically motivated31

paradigm, called whitening loss, is proposed by minimizing the distance between embeddings of32

positive pairs under the condition that embeddings from different views are whitened [12, 20].33

One typical implementation of whitening loss is hard whitening [12, 40] that designs whitening34

transformation over mini-batch data and imposes the loss on the whitened output [12, 20, 40]. We note35

that the whitening transformation is a function over embedding during forward pass, and modulates36

the spectrum of embedding implicitly during backward pass when minimizing the objective. This37

raises questions whether there exist other functions over embedding can avoid collapse? If yes, how38

the function affects the spectrum of embedding?39
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Figure 1: The framework using spectral transformation
(ST) to modulate the spectrum of embedding in joint em-
bedding architecture for SSL.

This paper proposes spectral transforma-40

tion (ST), a framework to modulate the41

spectrum of embedding in joint embed-42

ding architecture. ST maps the spec-43

trum of embedding to a desired distribu-44

tion during forward pass, and modulates45

the spectrum of embedding by implicit46

gradient update during backward pass47

(Figure 1). This framework provides a48

way to seek for functions beyond whiten-49

ing transformation that can avoid dimen-50

sional collapse. We show that whitening51

transformation is a special instance of ST52

using a power function by definition, and there exist other power functions that can avoid dimen-53

sional collapse by our empirical investigation (see Section 3.2 for details). We demonstrate that54

IterNorm [22], an approximating whitening method by using Newton’s iterations [3, 42], is also an55

instance of ST, and show that IterNorm with different iteration number corresponds to different ST56

(see Section 3.3 for details). We further theoretically characterize how the spectrum evolves as the57

increasing of iteration number of IterNorm.58

We empirically observe that IterNorm suffers from severe dimensional collapse and mostly fails to59

train the model in SSL unexpectedly, unlike its benefits in approximating whitening for supervised60

learning [22]. We thus propose IterNorm with trace loss (INTL), a simple solution to address the61

failure of IterNorm, by adding an extra penalty on the transformed output. Moreover, we theoretically62

demonstrate that INTL can avoid dimensional collapse, and reveal its mechanism in encouraging the63

covariance matrix of embedding to have equal eigenvalues. We conduct comprehensive experiments64

and show that INTL is a promising SSL method in practice. E.g., INTL achieves 76.6% top-165

accuracy in linear evaluation on ImageNet using ResNet-50, which exceeds the performance of66

the supervised baseline, and this result is obtained by using a batch size of only 256. Our main67

contributions are summarized as follows:68

• We propose spectral transformation, a framework to modulate the spectrum of embedding69

and to seek for functions beyond whitening that can avoid dimensional collapse. We show70

there exist other functions that can avoid dimensional collapse by empirical observations.71

• We propose a new instance of ST, called IterNorm with trace loss (INTL). We theoretically72

prove that INTL can avoid collapse and modulate the spectrum of embedding towards an73

equal-eigenvalue distribution during the course of optimization.74

• INTL is a promising SSL method in practice. INTL is on par with or outperforms the state-75

of-the-art SSL methods on standard benchmarks. Furthermore, these results are obtained by76

using a relatively small batch size.77

2 Related Work78

Our work is related to the SSL methods that address the feature collapse problem when using joint79

embedding architectures. Contrastive learning prevents collapse by attracting positive samples closer,80

and spreading negative samples apart [41, 43]. In these methods, negative samples play an important81

role and need to be well designed [29, 1, 19]. MoCos [18, 8] builds a memory bank with a momentum82

encoder to provide consistent negative samples, while SimCLR [7] addresses that more negative83

samples in a batch with strong data augmentations perform better. Our proposed INTL can avoid84

collapse and work well without negative samples.85

Non-contrastive methods by designing asymmetric network architecture avoid feature collapse86

without introducing negative pairs explicitly [4, 5, 26, 16, 9]. BYOL [16] appends a predictor after87

the online network and introduce momentum into the target network. SimSiam [9] further generalizes88

BYOL by empirically showing that stop-gradient is essential for preventing trivial solutions. Other89

progresses include a cluster assignment prediction using Sinkhorn-Knopp algorithm [5], and an90

asymmetric pipeline with a self-distillation loss for Vision Transformers [6]. It remains not clear91

how the asymmetric network avoids collapse without negative pairs, leaving the debates on batch92

normalization (BN) [13, 39, 33] and stop-gradient [9, 45], even though preliminary works have93

attempted to analyze the training dynamics [38] and build a connection between non-contrastive94

and contrastive methods [36, 14]. Our work addresses the more challenging dimensional collapse95

problem, and theoretically shows that our INTL can avoid dimensional collapse.96
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Whitening loss is a theoretically motivated paradigm to prevent dimensional collapse [12]. One97

typical implementation of whitening loss is hard whitening that designs whitening transformation over98

mini-batch data and imposes the loss on the whitened output. The designed whitening transformation99

includes batch whitening in W-MSE [12] and Shuffled-DBN [20], channel whitening in CW-RGP [40],100

and the combination of both in Zero-CL [47]. Our proposed ST generalizes whitening transformation101

and provides a frame to modulate the spectrum of embedding. Our proposed INTL can improve these102

work in training stability and performance, by replacing whitening transformation with IterNorm [22]103

and imposing an additional trace loss on the transformed output. Furthermore, we theoretically show104

that our proposed INTL encourages the covariance matrix of embedding having equal eigenvalues.105

Another way to implement whitening loss is soft whitening that imposes a whitening penalty as106

regularization on the embedding, including Barlow Twins [44], VICReg [2] and CCA-SSG [46].107

Different from these works, our proposed INTL imposes the trace loss on the approximated whitened108

output, which implicitly encourages the covariance matrix of embedding having equal eigenvalues to109

avoid dimensional collapse.110

There are also theoretical works analyzing how dimensional collapse occurs [20, 24] and how it111

can be avoided by using whitening loss [20, 40]. The recent works [17, 15] further discuss how to112

characterize the magnitude of dimensional collapse, and connect the spectrum of a representation113

to a power law. They show the coefficient of the power law is a strong indicator for the effects of114

the representation. Different from these works, our theoretical analysis presents a new thought in115

demonstrating how to avoid dimensional collapse, which provides theoretical basis for our proposed116

INTL.117

3 Spectral Transformation beyond Whitening118

3.1 Preliminary and Notation119

Joint embedding architectures. Let x denote the input sampled uniformly from a set of images120

D, and T denote the set of data transformations available for augmentation. We consider a pair of121

neural networks Fθ and F ′
θ′ , parameterized by θ and θ′ respectively. They take as input two randomly122

augmented views, x(1) = T1(x) and x(2) = T2(x), where T1,2 ∈ T; and they output the embedding123

z(1) = Fθ(x
(1)) and z(2) = F ′

θ′(x(2)). The networks are trained with an objective function that124

minimizes the distance between embeddings obtained from different views of the same image:125

L(x, θ) = Ex∼D, T1,2∼T ℓ
(
Fθ(T1(x)), F ′

θ′(T2(x))
)
. (1)

where ℓ(·, ·) is a loss function. The mean square error (MSE) of L2−normalized vectors as126

ℓ(z(1), z(2)) = ∥ z(1)

∥z(1)∥2
− z(2)

∥z(2)∥2
∥22 is usually used as the loss function [9]. This loss is also equiva-127

lent to the negative cosine similarity, up to a scale of 1
2 and an optimization irrelevant constant [9].128

This architecture is also called Siamese Network [9], if Fθ = F ′
θ′ . Another variant distinguishes the129

networks into target network F ′
θ′ and online network Fθ, and updates the weight θ′ of target network130

through exponential moving average (EMA) [8, 16] over θ of online network.131

Feature collapse. While minimizing Eqn. 1, a trivial solution known as complete collapse could132

occur such that Fθ(x) ≡ c, ∀x ∈ D. Moreover, a weaker collapse condition called dimensional133

collapse can be easily arrived, for which the projected features collapse into a low-dimensional134

manifold. To express dimensional collapse more mathematically, we refer to dimensional collapse as135

the phenomenon that one or certain eigenvalues of the covariance matrix of feature vectors degenerate136

to 0. Therefore, we can determine the occurrence of dimensional collapse by observing the spectrum137

of the covariance matrix.138

Whitening loss. To address the collapse problem, whitening loss [12] is proposed to minimize139

Eqn. 1, under the condition that embeddings from different views are whitened. Whitening loss140

provides theoretical guarantee in avoiding (dimensional) collapse, since the embedding is whitened141

with all axes decorrelated [12, 20]. Ermolov et al. [12] propose to whiten the mini-batch embedding142

Z ∈ Rd×m using batch whitening (BW) [21, 35] and impose the loss on the whitened output143

Ẑ ∈ Rd×m, given the mini-batch inputs X with size of m, as follows:144

min
θ

L(X; θ) = EX∼D, T1,2∼T ∥Ẑ(1) − Ẑ(2)∥2F

with Ẑ(v) = Σ− 1
2Z(v), v ∈ {1, 2}, (2)
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where Σ = 1
mZZT is the covariance matrix of embedding1. Σ− 1

2 is called the whitening matrix,145

and is calculated either by Cholesky decomposition in [12] or by eigen-decomposition in [20].146

E.g., zero-phase component analysis (ZCA) whitening [21] calculates Σ− 1
2 = UΛ− 1

2UT , where147

Λ = diag(λ1, . . . , λd) and U = [u1, ...,ud] are the eigenvalues and associated eigenvectors of Σ,148

i.e., UΛUT = Σ. One intriguing result shown in [40] is that hard whitening can avoid collapse by149

only constraining the embedding Z to be full-rank, but not whitened.150

We note that the whitening transformation is a function over embedding Z during forward pass, and151

modulates the spectrum of embedding Z implicitly during backward pass when minimizing MSE152

loss imposed on the whitened output. This raises questions whether there are other functions over153

embedding Z can avoid collapse? If yes, how the function affects the spectrum of embedding Z?154

3.2 Spectral Transformation155

In this section, we extend the whitening transformation to spectral transformation, a more general156

view to characterize the modulation on the spectrum of embedding, and empirically investigate the157

interaction between the spectrum of the covariance matrix of Ẑ and collapse of the SSL model.158

Definition 1. (Spectral Transformation) Given any one-variable mapping function g(·) in the159

definition domain λ(Z) = {λ1, λ2, . . . , λd}, spectral transformation (ST) maps the spectrum λ(Z)160

to g(λ(Z)) = {g(λ1), g(λ2), . . . , g(λd)}. Accordingly, for a d× d real symmetric matrix Σ, spectral161

transformation g(·) on Σ =
d∑

i=1

λiuiu
T
i is defined as g(Σ) =

d∑
i=1

g(λi)uiu
T
i . We denote g(Λ) =162

diag(g(λ(Z))), and ΦST = g(Σ) = Ug(Λ)UT is the transformation matrix.163

The output of spectral transformation is calculated by Ẑ = ΦSTZ = Ug(Λ)UTZ. The covariance164

matrix of Ẑ is:165

ΣẐ = 1
m ẐẐT = UΛg2(Λ)UT .166

Based on this formula, the essence of spectral transformation is mapping the spec-167

trum λ(Z) = {λ1, λ2, . . . , λd} to λ(Ẑ) =
{
λ1g

2(λ1), λ2g
2(λ2), . . . , λdg

2(λd)
}

.168

169
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Figure 2: Investigate ST using power functions. We
choose several p from 0 to 1.5. We show (a) the visu-
alization of the toy model output; (b) top-1 accuracy and
condition indicator (we use the inverse of the condition
number c−1 = λd

λ1
) on CIFAR-10 with ResNet-18. The

results on CIFAR-10 are averaged over five runs, with stan-
dard deviation shown as error bars and we show the details
of experimental setup in supplementary materials. Similar
phenomena can be observed when using other datasets
(e.g., ImageNet) and other networks (e.g., ResNet-50).

ST using power functions. Whitening170

is a special instance of spectral transfor-171

mation, where g(·) is a power function172

g(λ) = λ− 1
2 . We further study the173

mechanism of this power transformation,174

where we consider a more general trans-175

formation g(λ) = λ−p, p ∈ (−∞,+∞)176

for ST. Based on Definition. 1, this177

general power transformation is map-178

ping the spectrum λ(Z) to λ(Ẑ) =179 {
λ1

1−2p, λ2
1−2p, . . . , λd

1−2p
}

, e.g.,180

λ(Ẑ) = {1, 1, . . . , 1} when using181

whitening with p = 1
2 .182

We first conduct experiments on the 2D183

dataset with varying p and visualize out-184

puts of the toy models in Figure 2(a). We185

observe the toy model seems to perform186

well to avoid collapse although the trans-187

formed output is not ideally whitened, when p is in the neighborhood of 0.5, e.g. 0.45 ∼ 0.55. But188

when p gradually deviates from 0.5, collapse occurs. We then conduct experiments on real-world189

datasets to confirm these phenomena. The results shown in Figure 2(b) are consistent with the above190

phenomena. When p is set to 0.45 or 0.55, the model remains high evaluation performance as the191

one of p = 0.5. When p is in the neighborhood of 0.5, the transformed output has a well-conditioned192

spectrum that each eigenvalue approaches 1. When p deviates from 0.5 to a certain extent, the193

1The embedding is usually centralized by performing Z := Z(I− 1
m
1 · 1T ) for whitening, and we assume

Z is centralized in this paper for simplifying discussion.
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spectrum of the transformed output is not well-conditioned, which is closely related to collapse of194

the embedding. Therefore, we empirically show that if a certain ST could obtain a well-conditioned195

spectrum of transformed output, collapse could be avoided.196

Based on the above results, we empirically observe that the spectral transformation g(λ) = λ−p with197

p around 0.5 can avoid collapse. Therefore, we can design new algorithms based on our framework198

to avoid collapse.199

3.3 Implicit Spectral Transformation using Newton’s Iteration200

One problem of ST using power functions g(λ) = λ−p (p is around 0.5) is the numerical instability,201

when calculating eigenvalues λ and eigenvectors U using eigen-decomposition if the covariance202

matrix is ill-conditioned [31]. We provide detailed experiments and analysis in supplementary203

materials to confirm the existence of this problem in SSL.204

Naturally, if we can implement a spectral transformation that can modulate the spectrum without205

explicitly calculating λ or U, this problem can be solved. Indeed, we note an approximate whitening206

method by using Newton’s iteration, called iterative normalization (IterNorm) [22], is proposed207

to address the numerical problem of batch whitening in supervised learning. Specifically, given208

the centralized embedding Z, iteration number T and the trace-normalized covariance matrix209

ΣN = Σ/tr(Σ), it performs Newton’s iteration as follows.210

211 {
P0 = I

Pk = 1
2 (3Pk−1 −P3

k−1ΣN ), k = 1, 2, ..., T.
(3)

The whitening matrix Σ− 1
2 is approximated by ΦT = PT /

√
tr(Σ) and we have the whitened output212

Ẑ = ΦTZ. When T → +∞, ΦT → Σ− 1
2 and the covariance matrix of Ẑ will be an identity matrix.213

Here, we theoretically show that IterNorm is also an instance of spectral transformation as follows.214

Theorem 1. Define one-variable iterative function fT (x), satisfying215

fk+1(x) =
3
2fk(x)−

1
2xfk

3(x), k ≥ 0; f0(x) = 1.216

The mapping function of IterNorm is217

g(λ) = fT (
λ

tr(Σ) )/
√

tr(Σ),218

Without calculating λ or U, IterNorm implicitly maps ∀λi ∈ λ(Z) to λ̂i =
λi

tr(Σ)fT
2( λi

tr(Σ) ).219

The proof is shown in supplementary materials. For simplicity, we define the T-whitening function of220

IterNorm hT (x) = xfT
2(x), which obtains the spectrum of transformed output. Based on the fact221

that the covariance matrix of transformed output will be identity when T of IterNorm increases to222

infinity [3], we thus have223

∀λi > 0, lim
T→∞

hT (
λi

tr(Σ)
) = 1. (4)

Different iteration numbers T of IterNorm imply different T-whitening functions hT (·). It is interest-224

ing to analyze the characteristics of hT (·).225

Proposition 1. Given x ∈ (0, 1), ∀T ∈ N we have hT (x) ∈ (0, 1) and h′
T (x) > 0.226

The proof of Proposition 1 is shown in supplementary materials. Proposition 1 states hT (x) is a227

monotone increasing function for x ∈ (0, 1) and its range is also in (0, 1). Since λi

tr(Σ) ∈ (0, 1),228

∀λi > 0, we have229

∀T ∈ N, λi > λj > 0 =⇒ 1 > λ̂i > λ̂j > 0. (5)

Formula 5 indicates that IterNorm maps all non-zero eigenvalues to (0, 1) and preserves monotonicity.230

Proposition 2. Given x ∈ (0, 1), ∀T ∈ N, we have hT+1(x) > hT (x).231

The proof of Proposition 2 is shown in supplementary materials. Proposition 2 indicates that IterNorm232

gradually stretches the eigenvalues towards one as the iteration number T increases. This property233

of IterNorm theoretically shows that the spectrum of Ẑ will have better condition if we use a larger234

iteration number T of IterNorm.235
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In summary, our analyses theoretically show that IterNorm gradually stretches the eigenvalues towards236

one as the iteration number T increases, and the smaller the eigenvalue is, the larger T is required to237

approach one.238

4 Iterative Normalization with Trace Loss239

It is expected that IterNorm, as a kind of spectral transformation, can avoid collapse and obtain good240

performance in SSL, due to its benefits in approximating whitening for supervised learning [22].241

However, we empirically observe that IterNorm suffers severe dimensional collapse and mostly242

fails to train the model in SSL (we postpone the details in Section 4.2.). Based on the analyses in243

Section 3.2 and 3.3, we propose a simple solution by adding an extra penalty named trace loss on the244

transformed output Ẑ by IterNorm to ensure a well-conditioned spectrum. It is clear that the sum of245

eigenvalues of ΣẐ is less than or equal to d, we thus propose a trace loss that encourages the trace of246

ΣẐ to be its maximum d, when d ≤ m. In particular, we design a new method called IterNorm with247

trace loss (INTL) for optimizing the SSL model as2:248

min
θ∈Θ

INTL(Z) =

d∑
j=1

(1− (ΣẐ)jj)
2, (6)

where Z = Fθ(·) and Ẑ = IterNorm(Z). Eqn. 6 can be viewed as an optimization problem over θ249

to encourage the trace of Ẑ to be d.250

4.1 Theoretical Analysis251

In this section, we theoretically prove that INTL can avoid collapse, and INTL modulates the spectrum252

of embedding towards an equal-eigenvalue distribution during the course of optimization.253

Note that ΣẐ can be expressed using the T-whitening function hT (·) as ΣẐ =
d∑

i=1

hT (xi)uiu
T
i ,254

where xi = λi/tr(Σ) ≥ 0 and
d∑

i=1

xi = 1. When the range of Fθ(·) is wide enough, the optimization255

problem over θ (Eqn. 6) can be transformed as the following optimization problem over x (Eqn. 7)256

without changing the optimal value (please see supplementary materials for the details of derivation):257 
min
x

INTL(x) =
d∑

j=1

(
d∑

i=1

[1− hT (xi)]u
2
ji

)2

s.t.
d∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , d,

(7)

where uji is the j-th elements of vector ui. In this formulation, we can prove that our proposed INTL258

can theoretically avoid collapse, as long as the iteration number T of IterNorm is larger than zero.259

Theorem 2. Let x ∈ [0, 1]d, ∀T ∈ N+, INTL(x) shown in Eqn. 7 is a strictly convex function.260

x∗ = [ 1d , · · · ,
1
d ]

T is the unique minimum point as well as the optimal solution to INTL(x).261

The proof is shown in supplementary materials. Based on Theorem 2, INTL promotes the equality of262

all eigenvalues of the covariance matrix of embedding Z during the course of optimization, which263

provides a theoretical guarantee to avoid dimensional collapse.264

Connection to hard whitening. Hard whitening methods, like W-MSE [12] and shuffle-DBN [20],265

design a whitening transformation over each view and minimize the distances between the whitened266

outputs from different views. This mechanism encourages the covariance matrix of embedding to be267

full-rank [40]. Our INTL designs an approximated whitening transformation using IterNorm and268

imposes an additional trace loss penalty on the (approximately) whitened output. This encourages the269

covariance matrix of embedding having equal eigenvalues.270

Connection to soft whitening. Soft whitening methods, like Barlow-Twins [44] and VICReg [2]271

directly impose a whitening penalty as a regularization on the embedding. This encourages the272

covariance matrix of the embedding to be identity (with a fixed scalar γ, e.g., γI). Our INTL imposes273

2Without losing validity, we ignore the MSE term for simplifying discussion.
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Figure 3: Investigate the effectiveness of IterNorm with and without trace loss. We train the models on
CIFAR-10 with ResNet-18 for 100 epochs (details of experimental setup are shown in supplementary
materials). We apply IterNorm with various iteration numbers T , and show the results with (solid
lines) and without (dashed lines) trace loss respectively. (a) The spectrum of the transformed output
Ẑ; (b) The spectrum of the embedding Z; (c) The top-1 accuracy. (d) indicates that IterNorm (without
trace loss) suffers from numeric divergence when using a large iteration number, e.g. T = 9. It is
noteworthy that when T ≥ 11, the loss values are all NAN, making the model unable to be trained.
Similar phenomena can be observed when using other datasets (e.g., ImageNet) and other networks
(e.g., ResNet-50).

the penalty on the transformed output, but can be viewed as implicitly encouraging the covariance274

matrix of the embedding to be identity with a free scalar (i.e., having equal eigenvalues).275

Intuitively, INTL provides the equal-eigenvalues constraint on the covariance matrix of embedding,276

which is a stronger constraint than hard whitening (the full-rank constraint), but a weaker constraint277

than soft whitening (the whitening constraint). This preliminary but new comparison provides a new278

way to understand the whitening loss in SSL.279

4.2 Empirical Analysis280

In this section, we empirically show that IterNorm-only fails to avoid collapse, but IterNorm with281

trace loss can well avoid collapse.282

IterNorm fails to avoid collapse. In theory, IterNorm can map all non-zero eigenvalues to approach283

one, with a large enough T . In practice, it usually uses a fixed T , and it is very likely to encounter284

small eigenvalues during training. In this case, IterNorm cannot ensure the transformed output has285

a well-conditioned spectrum (Figure 3(a)), which potentially results in dimensional collapse. One286

may use a large T , however, IterNorm will encounter numeric divergence upon further increasing the287

iteration number T , even though it has converged. E.g., IterNorm suffers from numeric divergence288

in Figure 3(d) when using T = 9, since the maximum eigenvalue of whitened output is around289

107, significantly large than 1 (we attribute to the numeric divergence, since this result goes against290

Proposition 1 and 2, and we further validate it by monitoring the transformed output). It is noteworthy291

that when T ≥ 11, the loss values are all NAN, making the model unable to be trained. These292

problems make IterNorm difficult to avoid dimensional collapse in practice.293

The magic of trace loss for IterNorm. IterNorm with trace loss works significantly different from294

IterNorm-only. Our experimental results (Figure 3(b)) empirically show that INTL avoid dimensional295

collapse, which is consistent with our Theorem 2. INTL encourages the equality of all eigenvalues296

of the covariance matrix of embedding Z and achieve good evaluation performance (Figure 3(c))297

even when the iteration number T is only 1. This equal-eigenvalues optimal solution is derived298

from the combination of IterNorm and trace loss. Benefiting from trace loss, IterNorm can obtain299

well-conditioned spectra for the transformed output during training (Figure 3(a)), which helps to300

avoid collapse.301

5 Experiments on Standard SSL Benchmark302

In this section, we conduct experiments on standard SSL benchmarks to validate the effectiveness of303

our proposed INTL. We first evaluate the performance of INTL for classification on ImageNet [11],304

CIFAR-10/100 [25] and ImageNet-100 [37]. Then we evaluate the effectiveness in transfer learning,305

for a pre-trained model using INTL. We provide details of implementation and training protocol as306

well as computational overhead and the full PyTorch-style algorithm in supplementary materials.307

5.1 Evaluation for Classification308

Evaluation on ImageNet. We train our INTL using ResNet-50 backbone and evaluate the perfor-309

mance using the common linear evaluation protocol on ImageNet. The results are shown in Table 1.310

Our INTL achieves a top-1 accuracy of 76.6% that exceeds the performance of the supervised base-311

line [7] and other SSL methods. Moreover, this result is obtained under a batch size of only 256,312
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Table 1: Evaluation on ImageNet. All results are based on ResNet-50 backbone: (1) linear classifica-
tion on top of the frozen representations from ImageNet; (2) semi-supervised classification on top of
the fine-tuned representations from 1% and 10% of ImageNet samples. Following MoCo [8] and
SimSiam [9], our INTL is trained for 800 epochs with a batch size of 256 on 2 A100-40GB GPUs.

Method
Linear Semi-supervised

top-1 top-5 top-1 top-5
1% 10% 1% 10%

Supervised 76.5 - 25.4 56.4 48.4 80.4
SimCLR [7] 69.3 89.0 48.3 65.6 75.5 87.8
MoCo v2 [8] 71.1 - -
BYOL [16] 74.3 91.6 53.2 68.8 78.4 89.0
SwAV [5] 75.3 - 53.9 70.2 78.5 89.9
SimSiam [9] 71.3 - -
W-MSE [12] 72.6 - -
DINO [6] 75.3 - -
Barlow Twins [44] 73.2 91.0 55.0 69.7 79.2 89.3
VICReg [2] 73.2 91.1 54.8 69.5 79.4 89.5
INTL (ours) 76.6 93.1 61.7 72.0 84.6 90.9

Table 2: Classification accuracy (top 1 and top-5) of a linear classifier and a 5-nearest neighbors
classifier for different loss functions and datasets. The table is mostly inherited from [10]. All
methods are based on ResNet-18 with two views and are trained for 1000-epoch on CIFAR-10/100
with a batch size of 256 and 400-epoch on ImageNet-100 with a batch size of 128.

Method CIFAR-10 CIFAR-100 ImageNet-100
top-1 5-nn top-5 top-1 5-nn top-5 top-1 5-nn top-5

SimCLR [7] 90.74 85.13 99.75 65.78 53.19 89.04 77.64 65.78 94.06
MoCo V2 [8] 92.94 88.95 99.79 69.89 58.09 91.65 79.28 70.46 95.18
BYOL [16] 92.58 87.40 99.79 70.46 56.46 91.96 80.32 68.94 94.94
SwAV [5] 89.17 84.18 99.68 64.88 53.32 88.78 74.28 63.84 92.84
SimSiam [9] 90.51 86.82 99.72 66.04 55.79 89.62 78.72 67.92 94.78
W-MSE [12] 88.67 84.95 99.68 61.33 49.65 87.26 69.06 58.44 91.22
DINO [6] 89.52 86.13 99.71 66.76 56.24 90.34 74.92 64.30 92.78
Barlow Twins [44] 92.10 88.09 99.73 70.90 59.40 91.91 80.16 72.14 95.14
VICReg [2] 92.07 87.38 99.74 68.54 56.32 90.83 79.40 71.94 95.02
INTL (ours) 92.60 90.03 99.80 70.88 61.90 92.13 81.68 73.46 95.42

achieving one goal of SSL community that seeks for obtaining good performance with a small batch313

size.314

Semi-supervised training on ImageNet. Furthermore, we fine-tune our pre-trained INTL model315

on a subset of ImageNet. We use subsets of size 1% and 10% using the same split as SimCLR. The316

semi-supervised results obtained on the ImageNet validation set are also reported in Table 1. It shows317

that INTL outperforms other baselines with a significant margin.318

Evaluation on small and medium size datasets. In order to further test the generality of INTL, we319

also provide the linear evaluation results of INTL on CIFAR-10/100 [25] and ImageNet-100 [37] with320

ResNet-18 as the backbone. We strictly follow the experimental settings in solo-learn [10] for these321

datasets. As shown in Table 2, INTL achieves a top-1 accuracy of 92.60% on CIFAR-10, 70.88%322

on CIFAR-100 and 81.68% on ImageNet-100 which is on par with or exceeds the state-of-the-art323

methods reproduced by solo-learn. Meanwhile, INTL outperforms other baselines with a significant324

margin when using 5-nearest neighbors classifier which also indicates that INTL has learned good325

representations.326

5.2 Transfer to Downstream Tasks327

We examine the representation quality by transferring our pre-trained model to other tasks, including328

COCO [27] object detection and instance segmentation. We use the baseline of the detection codebase329

from MoCo [18] for INTL. The results of baselines shown in Table 3 are mostly inherited from [9].330

We observe that INTL performs much better than other state-of-the-art approaches on COCO object331

detection and instance segmentation, which shows the great potential of INTL in transferring to332

downstream tasks.333
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Table 3: Transfer Learning. All competitive unsupervised methods are based on 200-epoch pre-
training on ImageNet (IN). The table are mostly inherited from [9]. Our INTL is performed with 3
random seeds, with mean and standard deviation reported.

Method COCO detection COCO instance seg.
AP50 AP AP75 AP50 AP AP75

Scratch 44.0 26.4 27.8 46.9 29.3 30.8
Supervised 58.2 38.2 41.2 54.7 33.3 35.2
SimCLR [7] 57.7 37.9 40.9 54.6 33.3 35.3
MoCo v2 [8] 58.8 39.2 42.5 55.5 34.3 36.6
BYOL [16] 57.8 37.9 40.9 54.3 33.2 35.0
SwAV [5] (repro.) 60.2 39.8 43.0 56.6 34.6 36.8
SimSiam [9] 57.5 37.9 40.9 54.2 33.2 35.2
W-MSE [12] (repro.) 60.1 39.2 42.8 56.8 34.8 36.7
Barlow Twins [44] 59.0 39.2 42.5 56.0 34.3 36.5
INTL (ours) 61.2±0.08 41.2±0.12 44.7±0.19 57.8±0.04 35.7±0.04 38.1±0.12

5.3 Ablation Study334

Table 4: Effect of batch sizes for INTL. We
train 100 epoch on ImageNet and provide the
Top-1 accuracy using linear evaluation. The
embedding dimension is fixed to 8192.

Bs 32 64 128 256 512 1024
acc.(%) 64.2 66.4 68.1 68.7 69.5 69.7

Batch size. Most SSL methods, including certain335

whitening-based methods, are known to be sensitive336

to batch sizes, e.g. SimCLR [7], SwAV [5] and W-337

MSE [12] all require a large batch size (e.g. 4096)338

to work well. We then test the robustness of INTL339

to batch sizes. We train INTL on ImageNet for 100340

epochs with various batch sizes ranging from 32 to341

1024. As shown in Table. 4, even if the batch size is as low as 32 or 64, INTL still maintains good342

performance. At the same time, when the batch size increases, the accuracy of INTL is also improved.343

These results indicate that INTL has good robustness to batch sizes and can adapt to various scenarios344

that constrain the training batch size.345

64 128 256 512 1024 2048 4096 8192 16384
Embedding dimension

57.5

60.0

62.5

65.0

67.5

70.0

72.5

To
p-

1 
ac

cu
ra

cy
 %

INTL (ours)
Barlow Twins
SimCLR

Figure 4: Ablation experiments for varying em-
bedding dimensions. The batch size is fixed to
256.

Embedding dimension. Embedding dimension,346

the output dimension of the projection, is also a key347

element for most self-supervised learning methods,348

which may have a significant impact on training349

results. As illustrated in [44], Barlow Twins is very350

sensitive to embedding dimension and it requires a351

large dimension (e.g. 8192 or 16384) to work well.352

We also test the robustness of INTL to embedding353

dimensions. Following the setup of [7] and [44],354

we train INTL on ImageNet for 300 epochs with355

the dimension ranging from 64 to 16384. As shown356

in Figure. 4, even when the embedding dimension357

is low as 64 or 128, INTL still achieves good re-358

sults. These results show that INTL also has strong359

robustness to embedding dimensions.360

6 Conclusion and Limitation361

In this paper, we proposed spectral transformation (ST) framework to modulate the spectrum of362

embedding and to seek for functions beyond whitening that can avoid dimensional collapse. Our363

proposed IterNorm with trace loss (INTL) is well-motivated, theoretically demonstrated, and em-364

pirically validated in avoiding dimension collapse. Comprehensive experiments have shown the365

merits of INTL for achieving state-of-the-art performance for SSL in practice. We showed that INTL366

provides the equal-eigenvalues constraint on the covariance matrix of embedding, which is a stronger367

constraint than hard whitening (the full-rank constraint), but a weaker constraint than soft whitening368

(the whitening constraint). This preliminary but new results provides a potential way to understand369

and compare SSL methods.370

Limitation. Our work only explores the mechanism of ST using power function and Newton’s371

iteration for SSL. As a general concept, we believe that more functions in our ST framework can be372

designed to avoid collapse in the future. Besides, our theoretical work mainly revolves around the ST373

using Newton’s iteration, without providing theoretical analysis for more general ST. There are still374

mysteries about modulation of the spectrum in more general ST during backpropagation.375
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