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Abstract

Reliable estimation of treatment effects from ob-
servational data is important in many disciplines
such as medicine. However, estimation is chal-
lenging when unconfoundedness as a standard
assumption in the causal inference literature is
violated. In this work, we leverage arbitrary (po-
tentially high-dimensional) instruments to esti-
mate bounds on the conditional average treatment
effect (CATE). Our contributions are three-fold:
(1) We propose a novel approach for partial iden-
tification through a mapping of instruments to
a discrete representation space so that we yield
valid bounds on the CATE. This is crucial for reli-
able decision-making in real-world applications.
(2) We derive a two-step procedure that learns
tight bounds using a tailored neural partitioning
of the latent instrument space. As a result, we
avoid instability issues due to numerical approxi-
mations or adversarial training. Furthermore, our
procedure aims to reduce the estimation variance
in finite-sample settings to yield more reliable
estimates. (3) We show theoretically that our
procedure obtains valid bounds while reducing
estimation variance. We further perform exten-
sive experiments to demonstrate the effectiveness
across various settings. Overall, our procedure
offers a novel path for practitioners to make use
of potentially high-dimensional instruments (e.g.,
as in Mendelian randomization).

1. Introduction

Estimating the conditional average treatment effect (CATE)
from observational data is an important task for personalized
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decision-making in medicine (Feuerriegel et al., 2024). For
example, a common question in medicine is to estimate the
effect of alcohol consumption on the onset of cardiovascular
diseases (Holmes et al., 2014). There are several reasons,
including costs and ethical concerns, why CATE estimation
is often based on observational data, such as electronic
health records and clinical registries.

However, identify-
ing the CATE from
observational data is
challenging as it typ-
ically requires strong
assumptions in the
form of wunconfound-
edness (Rubin, 1974).
Unconfoundedness

assumes there exist
no additional unob-
served confounders U
between treatment A
and outcome Y. If the unconfoundedness assumption is
violated, a common strategy is to leverage instrumental
variables (IVs) Z. IVs affect only the treatment A but
exclude unobserved confounding between Z and Y, which
often can be ensured by design such as for randomized
studies with non-compliance (Imbens & Angrist, 1994).
The causal graph for the IV setting is shown in Fig. 1.

Figure 1. Overview of the IV set-
ting. We consider complex instru-
ments Z (e.g., gene data, text, im-
ages), observed confounders X,
unobserved confounders U, binary
treatment A, and outcome Y.

Motivational example:  Mendelian randomization.
Mendelian randomization (Pierce et al., 2018) refers
to the use of genetic information as instruments Z to
estimate the effect of a treatment or exposure A (e.g.,
alcohol consumption) on some medical outcome Y (e.g.,
cardiovascular diseases). In this setting, there are further
patient characteristics that are observed (X) but also
unobserved (U), which one accounts for through the
instrument. Yet, common challenges are that (i) instruments
with genetic information are often high-dimensional and
(ii) involve complex, non-linear relationships between
instruments and treatment intake or exposure.

However, existing IV methods using machine learning for
point estimation of the CATE rely on strong simplifying
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assumptions (— violating (ii) from above). For example,
some methods assume linearity in some feature space in the
CATE and make other, strict parametric assumptions on the
unobserved confounders such as additivity or homogeneity
(Hartford et al., 2017; Singh et al., 2019; Xu et al., 2021).
Yet, such simplifying assumptions are often not realistic
and can even lead to unreliable and false conclusions by the
mis-specification of the CATE.

A potential remedy is to use IVs for partial identification
of the CATE where one circumvents any hard parametric
assumptions by estimating upper and lower bounds of the
CATE (Manski, 1990). This is usually sufficient in med-
ical practice when one is merely interested in whether a
treatment variable (e.g., exposure as in Mendelian random-
ization) has a positive or a negative effect. So far, methods
for partial identification of the CATE in IV settings are rare.
There exist closed-form bounds (i.e., via a fixed target esti-
mand that can be learned), yet only for the setting with both
discrete instruments and discrete treatments (Balke & Pearl,
1997).

Existing machine learning methods for partial identification
are typically designed for simple instruments that are bi-
nary or discrete (— violating (i) from above). Alternatively,
methods that extend partial identification for continuous
instruments require unstable training paradigms such as ad-
versarial learning (Kilbertus et al., 2020; Padh et al., 2023)
which becomes even more unstable for more complex in-
struments. In contrast, there is a scarcity of methods that
can deal robustly with continuous, as well as complex and
potentially high-dimensional instruments such as, e.g., gene
expressions as in Mendelian randomization but also text,
images, or graphs.'

QOur paper: In this work, we leverage complex instruments
for partial identification of the CATE. Specifically, we allow
for instruments that can be continuous and potentially high-
dimensional (such as gene information) and, on top of that,
we explicitly allow for complex, non-linear relationships
between instruments and treatment intake or exposure. In
the rest of this paper, we refer to this setting as “complex’
instruments.

s

To this end, we proceed as follows. (1) We propose a novel
approach for partial identification through a mapping of
complex instruments to a discrete representation space so
that we yield valid bounds on the CATE. We motivate our
approach in Fig. 2. (2) We derive a two-step procedure that
learns tight bounds using a neural partitioning of the latent
instrument space. As a result, we avoid instability issues
due to numerical approximations or adversarial training,
which is a key limitation of prior works. We further improve

'In Appendix B, we provide an extended discussion about the
real-world relevance of our method.
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Figure 2. Leveraging complex instruments for partial identifica-
tion of the CATE through discrete representations of Z. Naive
discretization on the IV input space leads to wide, and thus non-
informative, bounds. Our method learns a latent representation
@(Z) to yield tight bounds.

the performance of our procedure by explicitly reducing
the estimation variance in finite-sample settings to yield
more reliable estimates. (3) We provide a theoretical analy-
sis of our procedure and perform extensive experiments to
demonstrate the effectiveness across various settings.

Contributions:> (1) To the best of our knowledge, this is the
first IV method for partial identification of the CATE based
on complex instruments. (2) We derive a two-step procedure
to learn tight bounds. (3) We demonstrate the effectiveness
of our method both theoretically and numerically.

2. Related Work

Machine learning for CATE estimation with I'V: Exist-
ing works have different objectives. One literature stream
leverages I'Vs for CATE estimation but focuses on settings
where the treatment effect can be point-identified from the
data. This includes work that extends the classical two-stage
least-squares estimation to non-linear settings by learning
non-linear feature spaces (Singh et al., 2019; Xu et al., 2021),
deep conditional density estimation in the first stage (Hart-
ford et al., 2017), or using moment conditions (Bennett
et al., 2019). Another literature stream aims at new machine
learning methods with favorable properties such as being
doubly robust (Kennedy et al., 2019; Ogburn et al., 2015;
Semenova & Chernozhukov, 2021; Syrgkanis et al., 2019)
or multiply robust (Frauen & Feuerriegel, 2023). Recently,
researchers started applying machine learning methods to
IVs from Mendelian randomization (Legault et al., 2024;
Malina et al., 2022), which is our motivational example
from above. However, these works aim at point-identified
CATE estimation with IVs. As a result, these rely on hard
and generally untestable assumptions on some effects in the
causal graph, such as linearity, monotonicity, additivity, or
homogeneity (Wang & Tchetgen Tchetgen, 2018). This is

2Code is available at https://github.com/
JSchweisthal/ComplexPartialIdentif.
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unlike our method for partial identification that does not
require such hard assumptions and that is non-parametric.

Partial identification: Partial identification aims to identify
and learn upper and lower bounds of some causal quantity
(e.g., the CATE) when the causal quantity itself cannot be
point identified from the data and assumptions. In a general
setting with binary treatments, Robins (1989) and Manski
(1990) derived closed-form bounds on the ATE for bounded
outcomes Y. Further work extended these ideas to settings
with binary instrumental variables, binary treatments, and bi-
nary outcomes (Balke & Pearl, 1994; 1997) to derive tighter
bounds. Newer approaches for discrete variables include the
works of Duarte et al. (2023) and Guo et al. (2022). Swan-
son et al. (2018) provide an extensive overview of partial
identification in this setting. Other works focus on how to
leverage additional observed confounders to further tighten
bounds on the ATE (see, e.g., Levis et al., 2023). However,
these works do not focus on efficiently leveraging continu-
ous or even high-dimensional instruments for learning tight
bounds, unlike our work that is tailored to such complex
instruments.

Another literature stream focuses on partial identification
under general causal graphs (Balazadeh et al., 2022; Frauen
et al., 2023; 2024), including IV settings with continuous
variables such as continuous treatments (Gunsilius, 2020;
Hu et al., 2021; Kilbertus et al., 2020; Padh et al., 2023).
However, these methods either make strong assumptions
about the treatment response functions or require unstable
optimization via adversarial training and/or generative mod-
eling such as through using GANs. This can easily result
in unreliable estimates of bounds for finite data, especially
with high-dimensional instruments. Further, these methods
are not directly tailored for binary treatments, unlike our
method.

Research gap: To the best of our knowledge, reliable ma-
chine learning methods for partial identification of the CATE
with complex instruments are missing. To draw conclusions
about CATEs (as in, e.g., Mendelian randomization), our
method is the first to: (i) make use of the complex instru-
ment information (e.g., continuous or high-dimensional),
(ii) avoid making strong parametric assumptions by focus-
ing on partial identification, and (iii) avoid unstable training
procedures such as adversarial learning.

3. Problem Setup

Setting: We focus on the standard IV setting (Angrist et al.,
1996; Wooldridge, 2013). Hence, we consider instruments
(e.g., gene data, text, images) givenby Z € Z C R4 but, un-
like previous research, allow the instruments to be complex.
As such, we allow the instruments to be continuous and
potentially high-dimensional. We further have access to an

observational dataset D = {z;, x;, a;, y; } -, of size n. The
data is sampled i.i.d. from a population (Z, X, A,Y) ~ P,
with observed confounders X € X C RP, binary treat-
ments A € A C {0, 1}, and bounded outcomes Y € ) C
[s1,s2] C R. Additionally, we allow for unobserved con-
founders U of arbitrary form between A and Y.

We further assume a causal structure as shown in Fig. 1.
In particular, we assume that Z is an instrumental variable
that has an effect on the treatment A but no direct effect
on the outcome Y except through A. Further, we assume
that Z is independent of X, e.g., by randomization. In
Appendix B, we provide an extended discussion to show
the real-world relevance and validity of our assumptions in
different settings.

Notation: Throughout our work, we denote the response
Sunction by p®(z,z) = E[Y|X =2,A =a,Z = z] and
the propensity score by m(x,z) :=P(A=1|X =z,Z =
CATE: We use the potential outcomes framework (Ru-
bin, 1974) to formalize our causal inference problem. Let
Y (a) € Y denote the potential outcome under treatment
A = a. We are thus interested in the CATE 7(z) =
E[Y (1) = Y(0)|X = «].

Identifiability: We make the following standard assump-
tions from the literature in partial identification with
IVs (Angrist et al., 1996). Assumption 1 (Consistency):
Y(A) = Y. Assumption2 (Exclusion): Z 1 Y (A) |
(X, A,U). Assumption 3 (Independence): Z 1 (U, X).

Note that, however, Assumptions 1-3 from the standard IV
setting are not sufficient to ensure identifiability of the CATE
(Gunsilius, 2020). To ensure identifiability, one would re-
quire additional assumptions, such as linearity or, more
generally, additive noise assumptions (Hartford et al., 2017;
Wang & Tchetgen Tchetgen, 2018). Yet, such assumptions
are highly restrictive and are neither testable nor typically
ensured in real-world scenarios. Hence, this motivates our
objective to perform partial identification instead.

Objective: The goal of partial identification can be formal-
ized in different ways. First, we can formulate the space
we are optimizing over as the distributions (over joint data
including unobserved U) that are compatible with the ob-
served data distribution by

M= {P*(z,aw,u, Y)|P(z,a,z,y) = /P*(z,a,x,u,y) du}.
()

Option 1 (Classical formulation). Recent works (e.g.,
(Frauen et al., 2023)) often formulate the goal of partial
identification such that b (z) = {b; (), b] ()} with

by () =

Jnf 7o (2), bl (@) = sup Tee(z) (2)

PxeM
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gives optimal sharp lower and upper bounds. Here, we
explicitly denote the dependency of the CATE 7(z) on the
unobservable compatible data distributions by the index P*.

Option 2 (Ours). Alternatively, we can provide the following
formulation. First, we define the sets of valid bounds via

Vo= {b: X = R|7p-(z) > b(z) forall P* € M,z € X}

Vi={b: X —)R}Tp*(iﬂ) < b(z) forall P* € M,z € X} .

3)
Then, we can minimize the average bound width over all
valid bounds to get by(z) = {b; (2), b3 ()}, i.e.,

arg min
b—€eV_,btev,

by, by € Exbt(X)—-b"(X)]. &)

Lemma 1. It holds that Px (b (X) = by(X)) = L.

Proof. See Appendix A. O

More informally, without additional constraints on the func-
tional form of the bounds, our Option 2 almost surely gives
the sharp bounds from Option I. In Option 2, we focus on
providing valid bounds (b~ (x),b™ (z)) for the CATE 7(z)
such that b~ (z) < 7(x) < b™(z) holds for all possible
x € X. Furthermore, the bounds should be informative,
i.e., we would like to minimize the expected bound width
Ex[b*(X) — b~ (X)], while still ensuring validity.

For our method, we leverage formulation 2 as this provides
multiple benefits such as allowing us to adopt closed-form
bounds from the discrete IV setting and to avoid alternating
learning, which we show in the following sections.

4. Partial identification of the CATE with
complex instruments

4.1. Overview

We now present our proposed method to solve the partial
identification problem from Eq. (4). Solving Eq. (4) directly
is infeasible because it involves the unknown CATE 7(z).
Hence, we propose the following approach:

Outline: (1) We learn a discretized representation (also
called partitioning) ¢(Z) of the instrumental variable Z.

2) We then derive closed-form bounds given the discrete
representation ¢. (3) We transform the closed-form bounds
back to our original bounding problem and, in particular,
express all quantities involved as quantities that can be
estimated from observational data.

Below, we first explain why existing closed-form bounds are
not directly applicable and why deriving such bounds is non-
trivial. We then proceed by providing the corresponding
theory for the above method. Specifically, we first take a
population view to show theoretically that our bounds are

valid (Sec. 4.2). Then, we take a finite-sample view and
present an estimator (Sec. 4.3).

Limitations of existing bounds: There exist different ap-
proaches for bounding treatment effects (see Sec. 2) using
continuous instruments, yet these either require additional
assumptions or can easily become unstable, especially for
high-dimensional Z. Furthermore, these bounds consider
continuous treatments but are not tailored for binary treat-
ments (e.g., whether a drug is administered). Hence, we
derive custom bounds for our setting.

Why is the derivation non-trivial? For binary treatments, it
turns out that there exist closed-form solutions for bounds
whenever the instrument Z is discrete. That is, the existing
bounds for the average treatment effect (ATE) with con-
tinuous bounded outcome proposed in (Manski, 1990) can
be extended to non-parametric closed-form bounds for the
CATE (Schweisthal et al., 2024). While these bounds are
useful in a setting with discrete instruments Z, they are not
directly applicable to continuous or even high-dimensional
Z due to two main reasons: (1) The bounds need to be
evaluated for all combinations [,m € Z2 C R? x R4,
which is intractable. (2) Evaluating the bounds only on a
random subset of combinations [, m can result in arbitrary
high estimation variance for regions with a low joint density
of p(X = x,Z =1)orp(X = x,Z = m). Hence, we
must derive a novel method for estimating bounds based
on complex instruments (that are, e.g., continuous or high-
dimensional), yet this is a highly non-trivial task.

4.2. Population view

In the following theorem, we provide a novel theoretical
result of how to obtain valid bounds based on discrete repre-
sentations ¢(Z) of the instrument Z.

Theorem 1 (Bounds for arbitrary instrument discretizations).
Let¢ : Z — {0,1,...,k} be an arbitrary mapping from the
high-dimensional instrument Z to a discrete representation.
We define

[ E @ RP(Z) = 07 = 2)
) = e = b ®
P(A=a|lZ =2)P(Z =2)dz and
[ w2, 2)P(p(2) =l Z = z) B

7T¢(ac,€)—/z Fo(Z) =0) P(Z =2)dz
(6)

Then, under Assumptions 1, 2, and 3, the CATE 7(x) is
bounded by
by (z) < 7(x) < bf(2), 0
with
b;‘(x) = min bg;l’m(x) and b, (x) = maxb,,

l,m l,m lm(x)

®
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where

b:;;l’m(x) =my(x, l)u(lf)(x, D+ (1—mp(z,1))s2 9)
- (1 - 7T¢(x,m)),u25(ac7m) - 7T¢(:L‘7m)81,

bt (%) =mo(2, Dprg (2, 1) + (1 = m (2, 1)1 (10)
— (1 = ol m))pd (2, m) — 7 (ar, m) 5o
Proof. See Appendix A. O

Theorem 1 states that, in population, we yield valid closed-
form bounds for 7(x) for arbitrary representations ¢. In
particular, we can relax the optimization problem from
Eq. (4) and obtain valid bounds b;- T(X) > b5 (X) and
by~ (X) < by (X) by solving

¢* € argmin Ex[b, T (X) — b, (X)]. (1)
PP

Here, we highlight the dependence of variables on the repre-
sentation ¢ in green to show the differences to Eq. (4). Note
the following differences: In contrast to Eq. (4), we do not
impose any validity constraints in Eq. (11) because Theo-
rem 1 automatically ensures the validity of our bounds. Fur-
thermore, in contrast to Eq. (4), the objective from Eq. (11)
only depends on identifiable quantities that can be estimated
from observational data.

Implications of Theorem 1: A naive implementation mini-
mizing the bounds following Eq. (11) would require alter-
nating learning. The reason is that, after every update step
of ¢(z), the quantities u§(z,1) and 7§ (x, 1) are not valid
for the updated ¢ anymore and would need to be retrained
to ensure valid bounds. This is computationally highly ex-
pensive and causes unstable training as well as convergence
problems. However, our method circumvents these issues:
by using Theorem 1, we show that, while training ¢(z), the
quantities (1 (,£) and 7y(x, £) can be directly calculated.
For that, we can simply evaluate the nuisance functions,
which only need to be trained once in the first stage. This
holds because in our derivation of closed-form bounds for
arbitrary discrete representations of complex Z, the bounds
only depend on (i) discrete probabilities, (ii) quantities that
are independent of ¢ and thus do not change for different ¢,
and (iii) the discrete representation mapping to be learned
itself. As a result, we circumvent the need for adversarial or
alternating training, which results in more robust estimation.

4.3. Finite-sample view

In practice, we have to estimate the bounds from Theorem 1
from finite observational data. For this purpose, we start
with arbitrary initial estimators: 7(z, z) is the estimator
of the propensity score 7(x, z), 1*(z, z) of the response
function p®(x, z), and 7j(z) of n(z) = P(A=1]| Z = z).

Once the initial estimators are obtained, we can estimate
our second-stage nuisance functions defined in Eq. (34) and
(35) via

~a 1 S ~a
) = S T =y = af 247
" (12)
L{p(z;) = £} (an(z) + (1 — a) (1 — 7i(2;)))],

1
i Holz) =6}

’f%(l’,g) =

Zﬁ(m,zj)]l{(b(zj) =0}

(13)
Finally, we can directly ‘plug in’ these estimators into
Eq. (8) to compute estimates of the upper and lower bound

b (), bg (z).

A naive approach would now directly use (b, (z), E;f(x))
to solve the optimization in Eq. (11). However, for finite
samples, it turns out this is infeasible without restricting the
complexity of the representation function. The reason is
outlined in the following theoretical results.

Lemma 2 (Tightness-bias-variance trade-off). Let E,, and
Var,, denote the expectation and variance with respect to
the observational data (of size n). Then, it holds

B[ (b -5 @) ] <2( (b0 - ;@) a9
(i) Population tightess

+ Var, (b (@) ).

(iii) Estimation variance

+Ey [bf. (@) = b ()] ’

(ii) Estimation bias

Proof. See Appendix A. O

Interpretation of Lemma 2: Lemma 2 shows that the mean
squared error (MSE) between the estimated representation-
based bound b () and the ground-truth optimal bound

by (x) can be decomposed into the following three com-
ponents: (i) population tightness, (ii) estimation bias, and
(iii) estimation variance. e Term (i) describes the discrep-
ancy between the representation-based bound in population
b; () and the ground-truth optimal bound b (). It will de-
crease if we allow for more complex representations ®, for
example by increasing the number of partitions k. e Term (ii)
describes the estimation bias due to using finite-sample esti-
mators for estimating the bounds. It will generally depend
on the type of estimators we employ for 7 (z, 2), ji%(x, 2),
and 7j(z). e Finally, term (iii) characterizes the variance due
to using finite-sample estimators. In contrast to term (i), it
will increase when we allow the representation to be more
complex.

To make point (iii) more explicit, we derive the asymptotic
distributions of the estimators from Eq. (12) and Eq. (13)
that are used during training of ¢ to estimate the final
bounds.
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Theorem 2 (Asymptotic distributions of estimators). As-
suming oracle estimation of first-stage nuisance functions,
such that i* = p®, 7 = 7w, and 1) = 1), it holds that

wﬂ%@@—@@xnﬁN@7 (15)

De,o c

i (g 2 0) — (2, 0)) SN (o, L ar(1(2) | 6(2) = f))

16)

201
forc=qi 4 d= W, such that c,d > 0 and where
i

pro =P(&(Z) = 0), qs = P(A=a| §(2) = £), g(Z) =
i (x, 2)(@i(Z) + (1 — a)(1 — 7(2)), MZ) = #(z,Z), and
0.0 = Elg(Z) | ¢(2) = 1.

Proof. See Appendix A. O

‘We observe that the variance of the estimators (and, thus,
of the estimated bounds) explodes for small values of
pes = P(¢(Z) = ). Note that we show this behavior
assuming oracle first-stage nuisance estimates without any
estimation error. Consequently, the variance will be inflated
even more when assuming additional estimation error in the
first stage. Hence, to reduce the estimation variance, we aim
to learn a representation ¢ that avoids low p, , for some /,
e.g., by limiting the number of partitions k. = Altogether,
as a consequence of Lemma 2 and Theorem 2, we obtain
an inherent trade-off between tightness of the bounds in
population and estimation variance in finite-samples.’

Learning objective for the representation ¢: Due to the
inherent trade-off between tightness of the bounds and es-
timation variance, the aim for learning the representation
¢ is two-fold. On the one hand, we (a) aim to learn tight4
bounds, which is given in the objective in Eq. (11). On
the other hand, we (b) also have to account for control-
ling the variance in finite-sample settings, especially for
high-dimensional Z. Motivated by Theorem 2, we ensure
Do, > € for some € > 0, where py 4 is an estimator of
pes = P(¢(Z) = £). Combining both (a) and (b) yields
the following objective:

¢* € argmin Ex [l};f(X) - 3; (X)] st
e

De,g > €,
(17)

3Importantly, Lemma 2 and Theorem 2 hold for arbitrary ¢

and its bound estimators l;(zf (z), enabling more stable updates by
reducing estimation variance during training. Consequently, these
results also apply to the finally learned or optimal ¢*, leading to
lower variance in final estimates.

“Here and in the following we refer to “tight” as to minimizing
the expected bound width also under potential constraints. This
is distinct from the term “sharp” which refers to the — in theory —
tightest achievable bounds.

1 (Var(g(Z) | 9(2) =10 +d>),

forsomee > Oandall £ € {1,...,k}. We next present a
neural method to learn tight bounds using the above objec-
tive.

5. Neural method for learning CATE bounds
with complex instruments

In this section, we propose a neural method for our objective
to learn tight and valid bounds. Our method consists of
two separate stages (see Algorithm 1): (1) we learn initial
estimators of the three nuisance functions, and (2) we learn
an optimal representation ¢*, so that the width of the bounds
is minimized. Note that our method is completely model-
agnostic. Hence, arbitrary machine learning models can
be used in the first and second stages in order to account
for the properties of the data. For example, for instruments
with gene data, one could use pre-trained encoders to further
optimize the downstream performance. We give an overview
of the workflow of our method in Fig. 3 (see Algorithm 1 in
Appendix H for pseudocode).

1) Initial nuisance estimation: In the first stage, we can
use arbitrary machine learning models (e.g., feed-forward
neural network) to learn the first-stage nuisance functions
%z, 2) = BY | X = 2,4 = a,Z = 2], #t(x,2) =
PA=1|X=2,Z=2),andij(z) =P(A=1]|2Z =

Recall that we consider Z and X, which are both potentially
high-dimensional. Hence, for i*(z,z) and #(z,z), we
use network architectures that have (i) different encoding
layers for X and Z, so that we capture structured infor-
mation within the variables and (ii) shared layers on top
of the encoding to learn common structures. Further, for
[i%(x, z), we use two outcome heads for both treatment
options A € {0, 1} to ensure that the influence of the treat-
ment on the outcome prediction does not ‘get lost’” in the
high-dimensional space of X and Z (Shalit et al., 2017).

2) Representation learning: In the second stage, we train
a neural network to learn discrete representations of the
instruments with the objective of obtaining tight bounds but
with constraints on the estimation variance. To learn the
function ¢(z), we use a neural network ¢y with trainable
parameters 6. Then, on top of the final layer of the encoder,
we leverage the Gumbel-softmax trick (Jang et al., 2017),
which allows us to learn k discrete representations of the
latent space of the instruments, where k can be flexibly
chosen as a hyperparameter.

Custom loss function: We further transform our objective
into a loss function to train the network ¢y. For that, we
design a compositional loss consisting of three terms:

@ A bound-width minimization loss that aims at our objec-
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Figure 3. Workflow of the second stage of our method for calculating bounds on the CATE: The representation network ¢g learns discrete
latent representations of the complex Z (e.g., continuous or high-dimensional). By employing the pre-trained fi, 7, and 7, we can directly
calculate the nuisance estimates conditional on the latent representation ¢(z) by using Eq. (12) and Eq. (13) to yield the bounds.

tive in Eq. (17), defined via

R .
Lo(0) = — > by (xi) — by, () (18)
i=1

® A regularization loss to enforce the constraints in
Eq. (17), i.e., enforcing that pg s = P(¢e(Z) = £) > e,
V¢ el,...,k, for some ¢ > 0. For that, we aim to penal-
. . . . k .
ize the negative log-likelihood — > 7, log(P(¢9(Z) = j)),
which we can estimate via

k n
Lasl0)= =Y log (D Wonlz) = 1) 19)

(® An auxiliary guidance loss La(6), which enforces
more heterogeneity between P(Z | ¢g(2) l) and
P(Z | $o(Z) = m), for all [, m. To achieve this, we add
an additional linear classification head p; with weights ¢
on top of the last hidden layer of ¢y before the discretiza-
tion. The auxiliary guidance loss is explicitly defined as the
cross-entropy loss via

n k
Lan(8) = =2 3" 5" 1{00(=1) = jHog (e (), 20)

i=1 j=1

where p¢(z;) is the predicted probability of assigning z;
to discrete representation j by the additional classification
head. While £, (6) is not strictly necessary for our ob-
jective, we empirically observed that it helps to stabilize
training by avoiding convergence to non-informative local
minima. Hence, we yield our final training loss
L(0) = L(0) + ALreg(6) + vLaux (6), 21
with hyperparameters A and . Here, A controls the trade-
off between bound tightness and estimation variance, and
can thus be tailored depending on the application. The
hyperparameter ~y can be simply tuned as usual.

The key advantage of our method is its efficiency and robust-
ness compared to alternatives like alternating learning or
adversarial training. In the second stage, only the discretiza-
tion network ¢y is updated to minimize Ly, while first-stage
nuisance estimators remain fixed and are merely evaluated.
This enables reusing trained first-stage networks across dif-
ferent second-stage training settings (e.g., varying k), which
makes the training procedure more computationally efficient
and robust.

6. Experiments

Baselines: Existing methods (see Sec. 2) focus either on
(a) point identification with strong assumptions, (b) par-
tial identification with continuous treatment variables, or
(c) discrete instruments. We instead focus on a setting with
complex instruments and binary treatments. Hence, existing
methods are not tailored to our setting, because of which a
fair comparison is precluded. Instead, we thus demonstrate
the validity and tightness of our bounds. Further, for com-
parison, we propose an additional NATVE baseline, which
first learns a discretization of the instruments (via k-means
clustering) and then learns the nuisance functions wrt. to
the discretized instruments to apply the existing bounds for
discrete instruments from Lemma 3 on top.’

Data: We perform experiments mimicking Mendelian Ran-
domization but where we simulate the data to have access to
the ground-truth CATE for performance evaluations, so that
we can check for coverage and validity of the bounds. We
consider three different realistic settings. For Datasets 1 and
2, we consider a one-dimensional continuous instrument
representing a polygenic risk score (Pierce et al., 2018).

Further, in Dataset 1, we model the true 7(x, z) as a rather
simple function to check if our method is already compet-
itive in such settings. In Dataset 2, we model 7 (z, z) as

>We provide comparison to other naively adapted baselines in
Appendix E.
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Metric Dataset 1 Dataset 2

Naive Ours Rel. Improvement Naive Ours Rel. Improvement
Coverage[T] | 1.00 £ 0.00 1.00 £ 0.00 0.00% 1.00 £ 0.00 1.00 £ 0.00 0.00%
Width[|] 1.224+0.05 | 1.05 £ 0.01 13.9% 1.31+0.16 | 1.14 +£0.16 13.0%
MSDI[|] 0.28 +0.06 | 0.03 £+ 0.03 89.3% 0.09 +0.06 | 0.06 + 0.06 33.3%

Table 1. Datasets 1 and 2: Comparison of both methods (NAIVE vs. Ours) regarding coverage, width, and MSD. Relative performance

improvements in green.

Metric Naive Ours Rel. Improve
Coverage*[1] | 0.84 £0.37 | 0.97 £ 0.05 15.5%
Width*[]] 1.88 £+ 0.06 1.82 + 0.05 3.2%
MSE*[|] 0.124+0.02 | 0.10 & 0.02 16.7%
MSD[/] 0.10 +0.10 | 0.03 & 0.02 70.3%

Table 2. Dataset 3: Comparison of both methods (NAIVE vs. Ours)
regarding the coverage with respect to the oracle bounds, width,
and MSD. Relative performance improvements in green.

Figure 4. Datasets 1 and 2: Estimated bounds on the CATE.
mean =+ sd over 5 runs for different k. Left: Dataset 1 with a
simple 7(x, z). Right: Dataset 2 with a complex 7 (z, 2).

a complex function to evaluate the performance in more
challenging settings. We use the same CATE for Dataset 1
and Dataset 2 to allow for comparisons between both. In
Dataset 3, we model high-dimensional instruments with sin-
gle nucleotide polymorphisms (SNPs, i.e., genetic variants
(Burgess et al., 2020)) to test our method in an additional
realistic and even more complex setting.® In all datasets, we
model the CATE to be heterogeneously conditioned on X
to check whether the bounds adapt to different subpopula-
tions. Details are in Appendix D. Additionally, we provide
experiments for a real-world case study in Appendix E.4.

Performance metrics: We report the following metrics
to assess the validity and robustness of the estimated
bounds: (i) The coverage, i.e., how often the true CATE
lies within the estimated bounds. (ii) The average width
of bounds, where lower values indicate more informative
bounds. (iii) The mean squared difference (MSD) of the
predicted bounds over different values of &, indicating the
robustness wrt. to the selection of the hyperparameter. For
Dataset 3, we model 7(z, z) to be dependent on some la-
tent discrete representation of the observed Z, such that
we can approximate oracle bounds. Thus, we can evaluate
the coverage wrt. to the oracle bounds (denoted as cov-
erage*) and the MSE to the bounds. Further, for reliable
decision-making, we would like to obtain tight bounds but

%We provide additional experiments to show the robustness
across instrument dimensions in Appendix E

only under the constraint that they yield valid coverage. We
thus propose two new metrics, which we call width* and
MSE*, which denote the corresponding metrics but where
we filter for runs with coverage* > 95%. This allows us to
properly compare the ability to learn tight bounds without
distortions due to falsely overconfident predictions.

Implementation details: For our method, we use multi-
layer-perceptrons (MLPs) for the first-stage nuisance es-
timation and an MLP with Gumbel-softmax (Jang et al.,
2017) discretization on the last layer for learning ¢¢y. For
the NAIVE baseline, we use k-means clustering in the first
step to learn discretized instruments and then use MLPs with
identical architecture for the nuisance estimation to ensure a
fair comparison. We provide further details in Appendix C.

Results: We present the results of our experiments in Ta-
ble 1 (for Datasets 1 and 2) and in Table 2 (for Dataset 3).
Therein, we compare our method against the NAIVE base-
line averaged over multiple runs and over different choices
of clusters k. Here, we report the results averaged over
multiple £ because, as usual in causal inference, hyperpa-
rameter tuning is more challenging without access to the
ground truth CATE, and thus there are different strategies
for selecting k (see also Appendix F). Thus, taking the aver-
age over the reasonably selected & can be seen as reporting
the summarized performance over different strategies that
would have resulted in selecting the different values of k
(e.g., by an expert-informed approach).

Overall, we observe the following patterns: (i) Both meth-
ods (i.e., ours and the NATVE baseline) almost always reach
a perfect coverage of 100% for the true CATE, which shows
the validity of the bounds. For Dataset 3, our method
achieves better coverage wrt. to the oracle bounds, which
further suggests that our method leads to a more reliable
estimation. (ii) As expected, on average, our method learns
tighter bounds for Datasets 1 and 2 (lower width), and for
Dataset 3 our method learns tighter valid bounds that are
closer to the oracle bounds (lower width* and MSE*). This
demonstrates that our method can clearly improve over a
discretization that uses solely information of Z in the first
step (NATVE). (iii) Unlike the baseline, our method is robust
over different values of k. This is demonstrated by a low
MSD in all datasets, with improvements up to 89% over the
naive baseline.

Sensitivity over k: To better understand the robustness
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Figure 5. Dataset 3 (high-dimensional): Sensitivity analysis wrt. to the number of partitions k showing the MSE*[|] (left), width*[] ]
(middle), and coverage*[1] (right) over 5 runs.

Dataset Method k Coverage[1] Width[]]
Naive 2 1.00 4+ 0.00 1.62 4+ 0.06
Dataset 1 3 1.00+0.00 0.83+0.16
Ours 2 1.00 + 0.00 1.01 +0.05
3 1.00 4+ 0.00 1.09 4+ 0.04
Naive 2 1.00 4+ 0.00 1.34 +0.19
Dataset 2 3 1.00 4+ 0.00 1.28 +0.20
Ours 2 1.00 £ 0.00 1.13 +£0.19
3 1.00 4+ 0.00 1.154+0.31

Table 3. Datasets 1 and 2: Sensitivity over k.

as well as the source of performance gain of our method,
we analyze the behavior of the methods for different pa-
rameters k. For that, for Datasets 1 and 2, we report the
performance metrics for varying k in Table 3 and the esti-
mated bounds in Fig. 4. For high dimensional Dataset 3,
we display the MSE*, width*, and coverage™® over varying
k in Fig. 5. Overall, we observe robust behavior of our
method but unstable behavior of the NAIVE baseline wrt.
k. The latter is also clearly visible by the large differences
in the learned bounds in Fig. 4 on the left, and the higher
variation in MSE*, width*, and coverage* in Fig. 5, with
rapidly declining coverage* of the naive method for higher
k. In contrast, our method performs robust, with close to
optimal coverage* even for higher k. Further, in Fig. 5, we
observe lower MSE* and width* for our method for all &,
demonstrating strong improvements in learning tighter but
still reliable bounds of the CATE.

Overall, our method yields bounds that are valid for a given
k as well as over varying values of k, which is naturally
encouraged by our objective of flexibly learning represen-
tations while penalizing estimation variance. We provide
an extended discussion about the role of k and a practical
guideline for selection in Appendix F.

Takeaways: Our method can successfully learn bounds that
have close to optimal coverage and a low width. Further,
our method outperforms the NAIVE baseline clearly while
ensuring robustness. Here, our results show that the source
of the performance gain is the way we learn the represen-
tation ¢ and that the performance gain from our method

increases for more complex datasets and modeling settings.

Limitations: Our method for partial identification allows
us to relax multiple assumptions that are inherent to meth-
ods for point identification. Nevertheless, we still rely on
the standard assumptions of IV settings. However, such
assumptions often hold by design or can be ensured by ex-
pert knowledge such as in Mendelian randomization. We
provide an extended discussion in Appendix B.

Conclusion: We propose a novel method for learning tight
bounds on treatment effects by making use of complex in-
struments (e.g., instruments that are continuous, potentially
high-dimensional, and that have non-trivial relationships
with the treatment intake or exposure).
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Impact Statement

While our work relaxes the strict unconfoundedness assump-
tion for CATE estimation by leveraging instrumental vari-
ables, it still requires standard validity conditions for instru-
ments, which must be justified through domain knowledge
or experiment design. By mapping instruments to a discrete
representation space, we enable reliable partial identification
of treatment effects, which is crucial for decision-making
when point identification is unrealistic. Our method fur-
ther aims to reduce estimation variance, which enhances
stability in finite-sample settings. Additionally, the setting
we address—estimating partial identification bounds for the
CATE with complex instruments—has not been directly tar-
geted before, as most existing methods rely on untestable
and often unrealistic assumptions. By providing an alterna-
tive that avoids these strong assumptions, our approach lays
an important foundation for future research and offers a start-
ing point for further exploration in this underexplored area.
This contributes to more robust causal inference, particularly
in medicine, where unobserved confounding is common and
reliable treatment effect estimation is essential.
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A. Proofs
A.1. Proof of Lemma 1
Proof of Lemma 1. Proof by contradiction. By Equations (2), (3), and (4), it holds that

by (z) > by (z) Vx € X and (22)
bf(z) <bj(z) Vo € X. (23)
Assume that Lemma 1 would not hold by
Px (b1(X) = b2(X)) < 1. (24)
= 3S C X :P(S)>0andbj (x) >b; (x) Vz €8 (25)
— E[bf (X) — by (X)] (26)
::jf b 0) = by (@) + [ b (@) = b (o) B(a) @7)
e S
< [ W)~ b @) + [ (@) - 03 (@)iP(a) (28)
e S
=E[b3 (X) — by (X)), (29)

because [, bi (z) — by (x)dP(x) < [4 b3 (x) — by (x)dP(z) due to the definition of S and [, by (z) — by (2)dP(z) <
Js. b3 (x) — by (x)dP(x) due to the definition of by, by . This contradicts the definition of b3 ,b; as minimizers of the

average bound width via Eq. (4). The argument for the upper bounds b, b; follows analogously. [

A.2. Proof of Theorem 1

We begin by stating a result from the literature that obtains valid bounds for discrete instruments.
Lemma 3 ((Swanson et al., 2018; Schweisthal et al., 2024)). Under Assumptions 1 and 2, the CATE is bounded via

b (z) < 7(x) < bT(2), (30)
with
bt (z) = rlnrlr? blfm(x) and b (z) = max by (@) 31)
where
b;fm(a:) = m(x, \p(z,1) + (1 — 7(z,1))s2 — (1 — w(2z,m))u’ (z,m) — w(x,m)s1, (32)
blfm(x) =m(x, \p'(z, 1)+ (1 = 7(z,1)s1 — (1 — w(2,m))u’ (z,m) — w(z, m)ss. (33)

Proof of Theorem 1. First, note that, for a given representation ¢, the representation ¢(Z) is still a valid (discrete) instrument
that satisfies Assumptions 1 and 2. Hence, we can apply Lemma 3 using ¢(Z) as an instrument and immediately obtain the
bounds from Theorem 1, but with representation-induced nuisance functions pg(z,0) = E[Y|X = z,A = a,¢(Z) = {|
and my(x,0) =P(A=1X =2,¢(Z) =) for £ € {0, ..., k}.

We can write the representation-induced response function as
E[Y|X = o, A = a,6(Z) = €] ¥ / EY|X =, A=a,7 = 2|P(Z = 2| A = a,6(Z) = ) dz
z

P(p(Z) =lA=a,Z =2)P(A=a|lZ =2)P(Z = =z)

P(A = dlo(Z) = OF(&(Z) = 0) @

:/E[Y\X:x,A:a,Z:z]
z

1
T P(A=d|é(2) = OP($(2) = )

(34)
/ EY| X =z,A=0a,Z=2P(¢p(Z) =lA=0a,Z = 2)P(A=a|lZ =2)P(Z = z)dz
Z
1
T P(A=dl¢(Z) = OP(H(Z) = 0)

/ EY| X =2,A=0a,Z=2P(¢(Z) =4Z = 2)P(A=0a|lZ = 2)P(Z = z)dz
z

12



Learning Representations of Instruments for Partial Identification of Treatment Effects

and the representation-induced propensity score as

P(A = 1|X = 2, $(2) = 1) ZL¥ / PA= 11X = 2,7 = 2)P(Z = 2|$(Z) = €) dz
Z

_ 1y — _ gy P(Z=2)
f/ZIP’(Af X =2,Z =2)P(¢(Z) =¢|Z = z) Plo(Z) = ) (35)
1
_IPW):K)/Z]P(A =1X=2,7Z=2)P(¢(2) =4Z =2)P(Z =2z)dz,
which completes the proof. O
A.3. Proof of Lemma 2
Proof. The result follows from
E, {(bj(w) - B;(x))Q] —E, [(b;(x) — b3 (2) + . (x) — B;(x))Q] (36)
<2 ((b;(x) - ég(m? +E, {(bqf* (z) — z;qf(x))QD 37)
(%) . 2 R 2 .
(=)2 ((b;(x) ~ b (@) +En |0 (2) — b ()] + Varn(b;(x))) , (38)
where we used the bias-variance decomposition for the MSE for (x). O

A .4. Proof of Theorem 2

Proof. We derive the asymptotic distributions of the estimators ﬂg(:c, ¢) from Eq. (12) and 74 (x, ¢) from Eq. (13) when
assuming oracle estimation of first-stage nuisance functions, such that 4* = p® 7 = 7, and 7 = 7. We proceed by
analyzing the numerator and denominator of each estimator. First, we show that both are asymptotically normal and then we
apply the delta method to obtain the asymptotic distribution of the ratios.

Distribution of /i (z, £): Recall from Equation (12) that we can write ig(z, £) as

Sy
gz, 0) = <=, (39)
where
1 n
Sp = EZWJ" with  Wj = i*(z, 2j)1{¢(2;) = £}an(z;) + (1 — a)(1 —0(z;))], (40)
j=1
N, = %ZDj, with D; = 1{¢(z;) = £,a; = a}. (41)
j=1
We define the moments
pw = E[W] = pebe (42)
012,[, = Var(W) = pe(vye — pg@%) (43)
pp = E[D] = peqe (44)
o} = Var(D) = peqe(1 — peqe) (45)
cwp = Cov(W, D) = peqebe(1 — pe), (46)
where py = P(¢(Z) = 0), g = P(A = a | 9(Z) = 1), 00 = E[g(Z) | ¢(Z) = ], and ¢ = E[g(Z)* | $(Z) = 4], with

9(Z) = p*(z, Z)(an(Z) + (1 — a)(1 — 73(Z)). Note that, for better readability, in this proof we avoid the double indexing
showing the dependency on ¢ which we used in the theorem in the main paper.

13



Learning Representations of Instruments for Partial Identification of Treatment Effects

By the central limit theorem, we know that

Sp—pw' d 0 _ (oW cwp
Alttn) () (%)

Let f(s,n) = 7. We are interested in the asymptotic distribution of the ratio /i (z, ¢) = f(Sy, N,). The delta method
states that

1
Using that the gradient is V. f T (uw, pup) = <, M;V> , we can obtain the asymptotic variance via
UD MDD
T 0124/ HwCW D M%/VU%)
vf (,U/W7MD)Evf(IU/W7MD) = 5 - 2 3 + 1 (49)
KD Hp Hp
1 —07)  62(1—
be qp Q%
1 [V Z Z) =14 62(1 —
:< wlo(2) | 92) =) | 63 3171%%)). s
Pe qp a4y

Distribution of 74 (z, £): Recall from Equation (13) that we can write 7, (z, £) as

. Shn
77(25(3:’6) = N77 (52)
where
1 n
n = — j ith ;=T 5 %j 1 i) =1 )
Sn =~ ; Wj, with W; = #(x,2z)1{o(z;) = I} (53)
1 n
N, = — D, ith D; =1 N =1} 54
n ; iy W1 J {¢(Z]) } (54)
We define the moments
pw = E[W] = peb, (55)
0‘2,‘, = Var(W) = pe(vye — pg@?) (56)
1o =E[D] = pe (57)
ot = Var(D) = pe(1 — py) (58)
Cwp = COV(VV7 D) = pzee(l — pz), (59)

where p; = P(¢(Z) = £), 0, = E[h(Z) | ¢(Z) = £], and v, = E[1(Z)? | $(Z) = €], with h(Z) = #(z, Z).

By the central limit theorem, we know that

Sn — uw\ d 0 (% cwp
() =2 ((0) == (0 ) @
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We can then calculate the asymptotic variance using the delta method as above and obtain

0.2 c 2 0.2
Vi (uw, 1up)EV f(pw, pp) = —2- — plald 3WD + MW4 b (61)

1255 1255) tp
1

= () — 6?2 62
pe (ve — 07) (62)
1

= Var(h(Z) | o(2) = 0). (63)
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B. Real-world relevance and validity of assumptions

In this section, we elaborate on the real-world relevance of our considered setting and show that our assumptions often hold
and are even weaker than the ones of existing approaches. For that, we draw upon two real-world settings.

B.1. Mendelian randomization

Mendelian randomization (MR; the main motivational example from our paper) is a widely used method from biostatistics
to estimate the causal effect of some treatment or exposure (such as alcohol consumption) on some outcome (such as
cardiovascular diseases). We refer to (Pierce et al., 2018) for an introduction to MR, which also shows that MR is
widely used in medicine. For that, genetic variants (such as different single nucleotide polymorphisms, SNPs) are used as
instruments where it is known that they only influence the exposure but not directly the outcome. Our method for partial
identification with complex instruments is perfectly suited for this common real-world application. Depending on the use
case, either a predefined genetic risk score (Burgess et al., 2020) as a continuous variable, or up to hundreds of SNPs are
used simultaneously as I'Vs to strengthen the power of the analysis, resulting in high-dimensional instruments (Pierce et al.,
2018).

Validity of assumptions: The IV assumptions used in our paper such as the exclusion and independence assumptions
can be ensured by expert knowledge (e.g., given some observed confounder age (X ), genetic variations (Z) do not affect
age) or, in some cases, they can be even directly tested for (Glymour et al., 2012). In contrast, as explained in Sec. 2,
existing methods for MR rely on additional hard assumptions on top such as the knowledge about the parametric form of
the underlying data-generating process. Especially with such high-dimensional IVs, misspecification of these models may
result in significantly biased effect estimates. In contrast, our method does not rely on any parametric assumption and also
no additional assumptions compared to previous methods, thus enabling more reliable causal inferences in the real-world
application of MR by using strictly weaker assumptions than existing work.

B.2. Indirect experiments

With indirect experiments (IEs), we show that, in principle, our method is not constrained to medical applications but is also
highly useful in various other domains. IEs are widely applied in various areas such as social sciences or public health to
estimate causal effects in settings with non-adherence, i.e., where people cannot be forced to take treatments but rather be
encouraged by some nudge (Pearl, 1995). For instance, researchers might be interested in estimating the effect of some
treatment such as participating in a healthcare program (7") on some health outcome Y by randomly assigning nudges Z
(IVs) in the form of different text messages on social media promoting participation. Here, common nudges (IVs) are in the
form of, for instance, text or even image data and thus high-dimensional, showing the necessity of a method capable of
handling complex IVs such as ours.

In principle, our method can be applied to every setting with continuous or multi-dimensional IVs where one wants to avoid
making the hard untestable assumptions necessary for point identification such as linearity or additivity (e.g., Hartford et al.
(2017)). Specific examples for applications with high-dimensional I'Vs are text-based nudges for encouraging vaccinations
(Milkman et al., 2021), or various kinds of experiments where text nudges are generated by different strategies such as for
political microtargeting (Hackenburg & Margetts, 2024) or for personalized persuasion in general (Matz et al., 2024).

Another important application area is online marketing. Concrete use cases involve extended A/B testing for evaluating the
benefits of new features, e.g., when one is interested in the effect of a new version of an app on user engagement. Here,
users with features such as age, gender, and content preferences (X) can be nudged by emails or push notifications (Z) to
test a new feature such as using a new version of an app (A) to estimate its effect on engagement metrics such as screen time
(Y). Further, our method could also be extended to improve current methods for optimizing instrument designs for indirect
experiments that for now assume identifiability is possible (e.g., Chandak et al. (2023)).

Validity of assumptions: As a major benefit of IEs, the IV assumptions are ensured per design as the IVs are randomly
assigned, and, thus they always hold. Hence, our method provides a promising tool for evaluating the effects of IEs.
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C. Implementation and training details

Model architecture: For all our models, we use MLPs with ReLLU activation function. For ,&g, we use 2 layers to encode X
and 3 layers to encode Z. Then, we concatenate the outputs and add 2 additional shared layers. Finally, we calculate the
outputs by a separate treatment head for A = 0 and A = 1 to ensure the expressiveness of A for predicting Y. For 7, we
use the same architecture. For 7), we use 3 layers. For ¢y, we also use 3 layers and apply discretization on top of the K
outputs (Jang et al., 2017). For the nuisance parameters of the k-means baseline, we use the same models as for fig and
for a fair comparison. We use a neuron size of 10 for all hidden layers.

Training details: For training our nuisance functions, we use an MSE loss for the functions learning the continuous outcome
Y and a cross-entropy loss for functions learning the binary treatment A. For all models, we use the Adam optimizer with a
learning rate of 0.03. We train our models for a maximum of 100 epochs and apply early stopping. For our method, we
fixed A = 1 and performed random search to tune for [0, 1] for 7. We use PyTorch Lightning for implementation. Each
training run of the experiments could be performed on a CPU with 8 cores in under 15 minutes.
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D. Data description

Dataset 1: We simulate an observed confounder X ~ Uniform|[—1, 1] and an unobserved confounder U ~ Uniform[—1, 1].

The instrument Z is defined as

1 1 1
Z ~ Mixture <2Unif0rm[—1, 1] + 1Beta(2, 2) + 1(—Beta(2, 2))) . (64)

We define p as
1

1+exp(—((2|Z] —max(Z2))+ X +0.5-U))"

. (65)

Then, the propensity score is given by
m=(p—0.5)-0.9+0.5. (66)

We then sample our treatment assignments from the propensity scores as

A ~ Bernoulli(r). (67)

The conditional average treatment effect (CATE) is defined as

4 .
(X)) = — (2.5X)* + 12 smégX) + 0.5 cos(X) 405, 68)

The outcome Y is then generated by

Y = (X 4+ 0.5U + 0.1 - Laplace(0,1)) - 0.25 + 7(X) - A. (69)

Dataset 2: We keep the other properties but change the propensity score to be more complex, which results in harder-to-learn
optimal representations of Z for tightening the bounds. The propensity score is given by

0.04
m=sin(25Z2+X+U)- 0484048 + ————~. 70
( ) 1+ exp(—3|Z)) 70)
Dataset 3: We simulate X and U as above. Then, we sample a d-dimensional Z € {0, 1} with d = 20 as
Z ~ Binomial(d, 0.5). (71)

Thus, our modeling is here inspired by using multiple SNPs (appearances of genetic variations) as instruments (Burgess
et al., 2020), where we simulate potential variations for 20 genes.

Then, we define

M&

[1{j <5}7j] (72)

J=1

and the propensity score, inspired by the more complex setting of Dataset 2, as

0.04
=048sin(l0p+ X +U)+048+ ——————— . 73
T (100 ) T exp(—3/50]) 7
Then, we define the CATE as
—(1.6X +0.5)* +12sin(4X + 1.5 X
r(x) = - —(LOX + 05 + 126X + 1.5) +cos(X) | (74)

80

and the outcome dependent on 7, X and U analogously as for Datasets 1 and 2.
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Dataset 4: To test our method even in higher-dimensional settings, we consider a 4th dataset with /00-dimensional IVs. For
that, we adapt the DGP from dataset 3 but set d = 100. Then we adjust the latent discrete IV score as
d
p= [1{j < 25}Z)]. (75)

j=1

By Eq. (72) and Eq. (75), we ensure that some of the modeled SNPs are irrelevant for 7 and thus do not affect the treatment
or exposure A. Thereby, we focus on realistic settings in practice, where the relevance of instruments cannot always be
ensured which imposes challenges especially for existing methods for point identification, but not for our approach. Further,
we ensure that the latent score p can only take 5 discrete levels for dataset 3 and 25 discrete levels for dataset 4. This allows
us to approximate oracle bounds using the discrete bounds on top of p by leveraging Lemma 3 such that we can evaluate our
method and the baseline in comparison to oracle bounds.

To create the simulated data used in Sec. 6, we sample n = 2000 from the data-generating process above. We then split
the data into train (40%), val (20%), and test (40%) sets such that the bounds and deviation can be calculated on the same
amount of data for training and testing.
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E. Additional Results
E.1. Additional baselines

As mentioned in the main paper, existing methods are not designed for our considered setting of continuous or high-
dimensional I'Vs with binary treatments. However, to further show the advantages and necessity of our tailored method, we
compare with two additional baselines that were not developed for our task but which we adapted for our task, namely, one
from uncertainty quantification for point estimates and one from the discrete instruments setting:

(1) DeeplV with bootstrapped confidence intervals. DeeplV (Hartford et al., 2017) is a neural method tailored for high-
dimensional instruments when point identification can be ensured. This requires the additional assumption of additivity of
the unobserved confounding, which usually cannot be ensured and is not necessary for our method. For DeeplV, we can
approximate confidence intervals using bootstrapping. Here, we approximate confidence intervals with a confidence level of
95%, indicating an expected coverage of 95% if assumptions were not violated. However, note that these intervals can only
adjust for statistical uncertainty, but not for identifiability uncertainty due to the violation of causal assumptions. Thus, this
baseline acts as an additional motivation for why bound estimators such as our method are important.

(ii) Discretized IVs: As a further additional baseline, we proceed by directly discretizing the high-dimensional IVs and then
estimating the existing bounds for discrete IVs. Hence, one loses information from the IV due to the discretization. Our
implementation here is the same as for the naive baseline, however, the k partitions are not learned by k-means clustering
but instead defined by a simple grouping rule. To ensure a fair comparison, we average the results of experiments conducted
with the same number of partitions & for all methods.

Metric DeeplIV (CI) Discretized Naive Ours Rel. Improvement
Coverage[ 1] 0.52+0.29 | 1.00+0.00 | 1.00 % 0.00 1.00 £ 0.00 0.0%
Coverage*[1] | 0.00£0.00 | 0.99£0.01 | 0.84+£0.37 0.97 £0.05 0.0%
Width*[|] — 1.91 +£0.07 | 1.88+0.06 | 1.82 4+ 0.04 3.2%
MSE*[]] — 0.13+0.02 | 0.12+0.02 | 0.10 & 0.02 16.6%
MSD[|] — 0.08 +£0.03 | 0.10+0.10 | 0.03 &= 0.02 70.3%

Table 4. Dataset 3: Comparison of methods (Naive vs Ours) on coverage and width metrics with relative performance improvement.
Note: “—"" means that there are no reliable runs for which the corresponding performance metrics could be calculated.

Results: We report our results for Dataset 3 in Table 4. We observe that the DeeplV method, as expected, gives falsely
overconfident bounds with only about 53% coverage of the true CATE and no coverage of the oracle bounds. Thus, there
are no reliable runs for which the other metrics could be calculated (denoted by “— in the tables). This emphasizes the
necessity for using bound estimators. Further, we observe that the discretized baseline gives more conservative and wider
bounds under similar coverage (higher Width* and MSE*) and performs less robustly with regard to k (higher MSD). In
sum, the results confirm the strong performance of our method.

E.2. High-dimensional dataset

Metric DeeplV (CI) Discretized Naive Ours Rel. Improvement
Coverage[1] 0.01 £0.00 | 1.00 £0.00 | 1.00 £ 0.00 1.00 = 0.00 0.0%
Coverage*[1] | 0.00£0.00 | 1.00£0.00 | 1.00=+£ 0.00 1.00 + 0.00 0.0%
Width*[|] — 1.90 +£0.06 | 1.82+0.13 | 1.75 £ 0.08 3.7%
MSE*[]] — 0.26 £0.03 | 0.23+0.05 | 0.21 4= 0.03 10.9%
MSDI[|] — 0.05+0.03 | 0.10+0.04 | 0.05 %+ 0.01 48.2%

Table 5. Dataset 4 (100-dimensional IVs): Comparison of methods (Naive vs Ours) on coverage and width metrics with relative
performance improvement. Note: “—" means that there are no reliable runs for which the corresponding performance metrics could be
calculated.

To show the validity of our method in even more high-dimensional settings, we added additional experiments with 100-
dimensional IVs. For that, we introduced our Dataset 4 (see Appendix D). We report the results for our method and the
same baselines as in the previous section. Further, for the higher-dimensional setting, we varied the hyperparameter k over
[2,5,7,10,20] for all bound estimation methods. We observe similar patterns as for our other dataset. In particular, the
DeeplV baseline fails entirely to provide reliable bounds. In summary, our method shows robust performance by providing
tighter and more reliable bounds than the baseline, even in high-dimensional settings. This emphasizes the applicability of
our bounds in even more complex settings.
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E.3. Ablation studys

To further examine the robustness of our method in non-standard settings, we perform two additional ablation studies, one
for varying the DGP and one for varying the selected nuisance models.

Linear DGP: To analyze if our flexible method also performs robustly in simple settings, we evaluate our method which
uses neural networks at every stage on a simple linear DGP. For that we adapt our Dataset 3 and use linear functions for the
dependencies between the variables. We report the results in Table 6. As expected, our method performs also robustly in
the simpler linear setting and outperforms the baseline by a clear margin again. Summarized, our method shows strong
performance which emphasizes its applicability to datasets of various complexity levels.

Metric Naive Ours Rel. Improve
Coverage[1] 1.00 £0.00 | 1.00 £ 0.00 0.0
Coverage*[1] | 0.92 £0.18 | 1.00 £ 0.00 8.6%
Width*[]] 2.07 £ 0.04 1.99 £+ 0.05 3.9%
MSE*[|] 0.10 £ 0.01 0.08 £+ 0.01 20.0%
MSD[/] 0.08 £ 0.08 0.04 £+ 0.03 50.0%

Table 6. Linear DGP: Comparison of methods across key metrics. Relative performance improvements in green.

Non-linear DGP with linear models: In our method, we leverage neural networks at all stages to allow for consistent and
flexible estimation of all properties. However, since our method is model-agnostic in principle, we analyze the behavior
of our method when using non-flexible (mis-specified) models. For that, we implement our method and the baseline by
using linear models for the nuisance estimates and evaluate the performance on our non-linear Dataset 3 (i.e., the nuisances
and the bounds are misspecified). We report the results in Table 7. As expected, because of the misspecification of the
nuisance models, full coverage of the bounds cannot be guaranteed. However, our method still outperforms the naive
baseline evidently with respect to coverage and MSD while yielding similar bound tightness. Further, with coverage to the
oracle bounds over 90% and low MSD, our method still predicts close to valid bounds robustly over different runs which is
unlike the naive baseline. This shows that our method is also robust against misspecification of the nuisance models as when
using linear models for non-linear datasets.

Metric Naive Ours Rel. Improve
Coverage[1] 0.96 + 0.06 1.00 £ 0.00 4.1%
Coverage*[1] | 0.59 +£0.28 | 0.91 £ 0.04 54.2%
Width*[]] 1.91 £+ 0.02 1.91 + 0.03 0.0%
MSE*[|] 0.14 +£0.04 | 0.14 4 0.02 0.0%
MSD[/] 0.20 £ 0.11 0.02 £ 0.01 90.0%

Table 7. Non-linear DGP with linear nuisance models: Comparison of methods across key metrics. Relative performance improvements
in green.

E.4. Real world experiments: ADJUVANT study

We provide results using real-world data from an ADJUVANT chemotherapy study (Liu et al., 2021) as provided in
https://github.com/cancer-oncogenomics/minerva—-adjuvant-nsclc/tree/v1.0.0. We use the
real-world data to study the effect of exposure (smoking) on progression-free survival in cancer. This yields a typical MR
setting; i.e., we use 22 genetic variations as IVs, smoking status (binarized as yes/no) as the exposure, and disease-free
progression (DFP) as the outcome, while controlling for possible confounders such as age. We report the results in Table 8.
While yielding slightly tighter bounds, our method shows clearly lower variation with respect to k, indicating robust
behavior.

Further, in Fig. 6, we display the estimated bounds on the CATE of disease-free progression (DFP) in months conditional on
age averaged over multiple k. We observe clearly lower variation in bound estimates for our method compared to the naive
baseline. Further, our method shows more stable estimates over different ages and centering around an effect of 0. This is as
expected, as the genetic variations in the study are not selected to be strongly correlated with the exposure (smoking) and we
do not expect a strong heterogeneity in age on DFP.

In Fig. 7, we show the estimated width for different k. As expected, both methods show lower width for higher &, but also
increased variance. Thus, for real-world application in a sensitive field like medicine and without access to ground truth
CATE:s for evaluation, a possible strategy would be to select a lower k such as & = 2 or 3. This results in a bit wider bounds
but also in clearly reduced variance and more reliable estimates than for k£ = 7.
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Metric Naive Ours Rel. Improve
Width[]] | 48.10 £0.76 | 47.72 £ 0.90 0.79%
MSD[|] 9.43 £+ 3.82 2.18 £ 0.80 76.88%

Table 8. Real-world data: Comparison of both methods (NAIVE vs. Ours) regarding width, and MSD. The other metrics such as coverage
cannot be evaluated due to a lack of knowledge of the ground truth CATE. Relative performance improvements in green. Results are
reported for k € {2,3,5,7}.
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Figure 6. Estimated bounds on the CATE of disease-free pro-
gression (DFP) in months conditional on age. Averaged over Figure 7. Estimated width for different .

multiple k.

F. Role of number of partitions &
F.1. Why our method is robust to different choice of &

One major advantage of our method is that it is clearly less sensitive to the hyperparameter k than, for example, the naive
baseline. Empirically, we demonstrate this in our experiments by lower variance and stable behavior over varying k,
especially visible in the low values of MSD. This is due to the combination of learning flexible representations tailored to
minimize bound width (allowing us to estimate tight bounds already for low k) while ensuring reliable estimates of the
nuisance functions in the second stage by using our regularization loss in Eq. (19) (ensuring robust behavior also for higher
k).

Note that the robustness of our method is especially beneficial when applying our method to real-world settings in causal
inference. In real-world settings from causal inference, hyperparameter tuning and model evaluation are not directly possible
because oracle CATE or oracle bounds are not known. Thus, the robustness against suboptimal selection of hyperparameters
such as k is crucial. In the following, we provide further high-level theoretical insights into the role of k and propose
practical recommendations for selecting k in real-world applications.

Estimation error for different k: The hyperparameter A controls the regularization loss in Eq. (19), i.e., it tries to maximize
Pep =P(pg(Z) =L) >eforall{ € 1,..., k. Thus, if we choose A high enough, then we enforce that py 4 = 1/k for all

¢e1,..., k. Plugged into Theorem 12, the asymptotic variances for the nuisance estimators are (w +d

for fig(x,£), and k (Var(h(Z) | $(Z) = £)) for 7ty (x, £), respectively. Thus, for large enough A, the variance of the nuisance
estimators (and, thus, also likely of the final bounds) will increase for increasing k. However, as an interesting side note, for
a fixed (not too large) A, the penalization term in Eq. (19) will also grow with growing & due to the same reason, which
yields an automated stabilization for higher k. This is also shown in our experiments where higher values of k do not
necessarily result in a higher variance.

Bound tightness for different ©: On a population level, the bounds get tighter with growing k. This follows straight-
forwardly from Theorem 1, since using more k increases the flexibility of ¢. While the exact bound width is highly
non-trivial, we can use results from Schweisthal et al. (2024) about bounds for the CATE with discrete instruments
to give some intuition. Specifically, in our setting, for some z, the bound width is bounded by b;f(:c) — b;(a:) <
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ming , {(s2 — 51)(2 — mp(z,€) — (1 — mp(z,m)))} with £,m € {1,..., k}. This has two major implications. First, if for
some z, ¢ is learned such that ¢(z, ¢) is close to 1 for some [ and 74 (2, m) is close to 0 for some m, the bound width is
close to zero (“point identification”). Second, if the optimal partitioning function ¢ is the same for all z (implying b(z) = b),
then setting k = 3 can be sufficient to yield the tightest bounds. This is because, by using a flexible network for ¢, the
partitions can be learned such that partition 1 yields propensity scores as close as possible to zero (as the data allows),
partition 2 yields propensity scores as close as possible to 1, and partition 3 contains all z resulting in propensity scores
between those values. Note, however, that this is only valid in population but can result in highly unreliable estimation in
finite sample data.

F.2. Practical guidelines for selecting %

Although we showed that our method is designed to be robust against different selections of k, we provide two potential
guidelines for how to choose k in real-world settings where ground-truth CATE or bounds are not available for model
selection.

Approach 1: Expert-informed approach. In some medical applications, physicians might already know or make an educated
guess about a number of underlying clusters of patient characteristics such as genetic variants. For instance, this is a
common assumption in subgroup identification or latent class analysis in medicine where patient groups are characterized
by having similar responses to treatments or showing similar associations with diseases (Kongsted & Nielsen, 2017). Thus,
no data-driven approach is necessary here but one can integrate existing domain knowledge.

Approach 2: Data-driven for hypothesis confirmation. Often, physicians are interested in whether some treatment or
exposure has a positive or negative effect (i.e., lower bound > 0 or upper bound < 0) for at least some observations z.
Thus, % can be selected by increasing & until such an effect can be observed while holding the variance minimal. Then, the
variance can be approximated (e.g., by bootstrapping to test for the reliability of the corresponding bound model and its
effect). Thus, this approach can be used when our method is used as a support tool for hypothesis confirmation.

Last, straightforwardly, from an exploratory perspective, all hyperparameters (k, A, ) can be altered together to examine the
behavior of bound width and estimation variance to post-hoc find a suitable hyperparameter configuration for a dataset that
fulfills the subjective preferences of the practitioner.
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G. Sensitivity analysis

We perform a sensitivity analysis over the hyperparameters in our custom loss function. We report the results in Fig. 8
and Fig. 9 for dataset 3 and for £ = 3. We observe that y does not affect the bound size but can be optimized to reduce
estimation variance, as mentioned in the motivation of our auxiliary guidance loss. Thus, A demonstrates the trade-off
between tightness and variance and shows the importance of our regularization loss. Here, A can be increased to reduce the
variance. In our experiments, the optimal trade-off between reduced variance and bound tightness also results in optimal
oracle coverage, showing the practicability of our regularization.
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Figure 8. Sensitivity over A. Left: Average bound width. Right: Oracle coverage. Averaged over 5 runs = sd.
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H. Training procedure

Algorithm 1: Two-stage learner for estimating bounds with complex instruments

Input :observational data sampled from (Z, X, A, Y'), epochs e, batch size n, neural network ¢g with parameters 6, learning rate §
Output : bounds b<;9 (z), b$6 (z)

// First stage (nuisance estimation)

A%z, z) — RBY | X =2,A=a,Z = 2]

#z,2) «PA=1|X=2,2Z =2)

Az) «PA=1|2Z=2)

// Second-stage (partition learning and bound calculation)

fore € {1,...,e} inbatches do
for¢ € {1,...,k}do
00 (g 0) — 1 b nay o N = Az _ — (2
Ry (0 €) = i s Y A2 (60 (20) = @) + (= )1 = ()

Z;”’ 7 (x, z;)1{do(2;) = £})

N ) = 1
Tog (z,€) Z;}b 1{eg(z;)=t}

end

bgg () = ming m, B;ﬁs;lym(r), b;g (z) = max; m b
L(8) + L(0) + ALreg(8) + 7 Laux (0) as per Sec. 5
0+ 0 —06VeL(0)

poitm (@) forl,m e {1,... K}

end
// Final bounds

return Z;;e (x), 819 (z)
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