Feature Selection in the Presence of Monotone Batch Effects

Peng Dai' Sina Baharlouei !

Abstract

We study the problem of feature selection in the
presence of monotone batch effects when merging
datasets from disparate technologies and different
environments affects the underlying causal depen-
dence of data features. We propose two novel
algorithms for this task: 1) joint feature selec-
tion and batch effect correction through transform-
ing the data batches using Generative Adversarial
Networks (GANSs); 2) transforming data using a
batch-invariant characteristic (i.e., feature rank)
to append datasets. We assess the performance
of the feature selection methods used in conjunc-
tion with our batch effect removal methods. Our
experiments on synthetic data show that the for-
mer method combined with Lasso improves the
F score significantly, even with few samples per
dataset. This method outperforms popular batch
effect removal algorithms, including Combat-Seq,
Limma, and PCA. Comparatively, while the rank-
ing method is computationally more efficient, its
performance is worse due to the information loss
resulting from ignoring the magnitude of data.

1. Introduction

Public-use datasets are becoming increasingly popular as
funding requirements, data transparency, and open-source
culture push researchers to share gathered data. Aggregation
of related datasets allows for greater statistical power during
analysis, particularly in the biological and genomics data
contexts, where each experiment may only contain a few
samples due to high experimental costs.

Merging datasets from disparate environments comes with
challenges, as datasets from the same environment may
be subject to similar biases. For example, differences in

'Industrial and Systems Engineering Department, University
of Southern California, Los Angeles, CA. >Department of Phar-
macology and Pharmaceutical Sciences, University of Southern
California, Los Angeles, CA.. Correspondence to: Peng Dai
<pengdai @usc.edu>.

Published at the ICML 2023 Workshop on Spurious Correlations,
Invariance, and Stability. Honolulu, Hawaii, USA. Copyright 2023
by the author(s).

Taojian Tu? Bangyan L. Stiles

2 Meisam Razaviyayn! Sze-chuan Suen'

genome sequencing machines (Pareek et al., 2011), hy-
bridization protocols (Young et al., 2020), and transforma-
tion methods (Robinson & Oshlack, 2010; Risso et al., 2014)
may lead to batch effects (i.e. systematic non-biological dif-
ferences between batches of samples) in gene expression
data. Batch effects can harm the performance of statisti-
cal inference algorithms (in particular, feature selection for
detecting useful biomarkers) by imposing bias on the pre-
dictions, increasing the false discovery rate, and reducing
prediction accuracy (Sims et al., 2008). Thus, detection and
removal of batch effects are crucial pre-processing stages
of the statistical analysis of various bioinformatics tasks
such as (single-cell) RNA sequencing (Chen et al., 2011),
metabolomics analysis (Liu et al., 2020), and cancer classi-
fication (Almugren & Alshamlan, 2019; Leek et al., 2010).

Prior literature has studied the problem of mitigating batch
effects. These methods can be categorized into several gen-
eral categories. Clustering and KNN-based methods remove
batch effects by finding the common sources of variations
among datasets based on the proximity of data points (Butler
et al., 2018; Zhang et al., 2019; Li et al., 2020; Fang et al.,
2021; Lakkis et al., 2021). More specifically, each data
batch is considered a cluster and the batch effect is viewed
as the between-cluster variances (Fang et al., 2021). These
methods are computationally expensive (due to computing
pairwise distances of data points) and might not perform
well if the batch effect changes the original distances of data
points drastically and differently among different batches.
Another collection of methods is based on reducing the di-
mension of the original data by removing the batch effects
as spurious dimensions in data (Haghverdi et al., 2018; Alter
et al., 2000; Butler et al., 2018). A common disadvantage
of such methods is that by projecting different batches onto
the same low-dimensional space, valuable information con-
tributing to the inference phase may be lost. Yet another
class of approaches formulate the batch effect problem as a
parametric model and estimate the unknown parameters by
classification or regression techniques (Johnson et al., 2007;
Lazar et al., 2013; Leek, 2014; Risso et al., 2014; Robinson
et al., 2010; Love et al., 2014; Zhang et al., 2020). The
most popular method in this category is arguably ComBat-
seq (Zhang et al., 2020), which considers a joint negative
binomial regression model for gene counts and the batch
effects. Their approach adjusts the parameters of the model
by matching the cumulative density functions of the data

Feature Selection in the Presence of Monotone Batch Effects

Ground Truth Data 1 (Dr*) Ground Truth Data 2 (D2*) Ground Truth Data 3 (Ds*)

C 0
< 00
2 ©
£ 0 0
=l

P,
1967
%)
Je&
Batch Effect Removal

%5

Available
% W -
¥ : gy Yy

2,

8)

D1 = fi(D1*) D2 = f2(D2¥) Ds = f3(Ds*)

Figure 1: The batch effect can be conceptualized as transfor-
mations on each of the ground-truth datasets which changes the
distribution of data in each in a potentially different way.

generated by the model and the original data. The common
problem of these approaches is the strict parametric assump-
tions on the data distribution (such as negative binomial) and
the model (linearity) that limit their applicability. A more
recent class of methods remove the batch effect by matching
the empirical distribution of different batches by minimizing
a distribution distance measure such as Kullback-Leibler
(KL) Divergence (Lakkis et al., 2021) or maximum mean
discrepancy (MMD) (Shaham et al., 2017; Niu et al., 2022).
Shaham et al. (2017) mitigates batch effect by minimizing
the Maximum Mean Discrepancy (MMD) between the two
distributions of samples. They consider one dataset as the
reference, and the other dataset is transformed to have a
similar distribution as the reference dataset. While their
algorithm works for two input datasets, our methodology
utilizes all input datasets to reduce the batch effect on all
of them simultaneously. Another significant difference be-
tween our framework and theirs is that we perform joint
batch removal and feature selection together instead of do-
ing these steps independently. As discussed, removing batch
effects jointly with feature selection can significantly en-
hance the feature selection accuracy. The reason is many
feature selection strategies (such as the popular LASSO
algorithm) make certain assumptions on the dataset (e.g.,
generalized linear models). Such assumptions may be in-
validated when the batch effect removal procedure does not
account for the downstream feature selection procedure.

Feature Selection Methods: Feature selection when no
batch effect is involved is extensively studied in the liter-
ature (Saeys et al., 2007; Jovi¢ et al., 2015). A popular
approach selects features with the highest correlation (e.g.,
Pearson or Spearman (He & Yu, 2010)) with the target vari-
able. To choose the most relevant features, one can then
compute the p-value for each computed correlation and
choose the ones with the highest correlation after adjusting
with false discovery rate control mechanisms such as the
Benjamini-Hochberg procedure (Benjamini & Hochberg,

1995). Notice that one can rely on exact statistical ap-
proaches such as permutation tests to avoid distributional
assumptions. A more popular approach for finding the most
relevant features with the highest prediction power of the
target variable is to formulate the problem as a Lasso re-
gression task. The output of the method is the features
corresponding to the non-zero elements of the regression
parameter vector (Vinga, 2021).

In this work, we handle the feature selection task and batch
effect removal through transformation of the data jointly.
In particular, we remove the batch effect by finding the
optimal transformations that minimize the maximum mean
discrepancy (MMD) of different data batches.

2. Problem Formulation and Methodology

Let us first rigorously define the problem of distribution-
free feature selection in the presence of batch effects: let
D, ..., D,, be acollection of datasets from m unique lab-
oratories studying the interactions of d input features (e.g.
gene expressions, proteomics data, etc) and a target vari-
able y. Ideally, all datasets in the collection follow the
identical distribution P* describing the joint distribution of
input features and the target variable. However, due to the
aforementioned factors in the previous section known as
the batch effect, the datasets in the collection do not follow
the ground-truth distribution P*. Formally, the batch effect

can be described as m different transformations f1, ..., fi
applied to the ground-truth datasets D7, ..., D}, ~ P* (see
Figure 1). We assume that all functions f;,i = 1,...,m, are

monotonically increasing. Thus each observed dataset can be
viewed as a transformation of the ground-truth data:

D= fi(D]) i=1,...,m. (1)

The goal of batch effect removal is to learn the underlying
transformations f1, ..., f,,, on the data batches such that the
ground-truth datasets Dy, . . ., D,, are recovered up to bijec-
tive mappings (see Figure 1). In other words, the optimal
transformations on the datasets make the distributions of
them as close as possible to each other. Thus, one can quan-
tify the quality of batch effect removal based on how close
the resulting distributions of datasets are after the transfor-
mations. Note that it is crucial for transformations to be
bijective. Otherwise, one can transform all datasets to zero,
and the difference between the transformed datasets will be
zero. However, such transformations are not desirable. Un-
fortunately, finding the optimal transformations over the set
of bijective functions is challenging from the optimization
point of view. We propose a novel formulation in the next
section to avoid such spurious solutions.

Feature Selection in the Presence of Monotone Batch Effects

2.1. MMD-based Approach

We utilize the maximum mean discrepancy (Gretton et al.,
2012) to measure the proximity of dataset distributions (Ar-
jovsky et al., 2017). Maximum Mean Discrepancy (MMD)
is a statistical measure that quantifies the dissimilarity be-
tween probability distributions. Given two datasets or dis-
tributions, MMD aims to determine the dissimilarity by
calculating the discrepancy between their respective means
in the Reproducing Kernel Hilbert Space (RKHS). Math-
ematically, let z and 2’ be independent random variables
following distribution p, and w as well as w’ independent
random variables following distribution ¢g. Then, the MMD
between distributions p and q is

MMD?[p, q] = E. o [k (2,2")] — 2B, o [k(z, w)]
+ Ew,w’ [k (’LU, w/)]

An empirical estimate of MMD is given by (Gretton et al.,
2006)

MMD; [z, y] = (m17) SO k(@i ;)
i=1 j#i

1 LS 9 M

i=1 j#i i=1 j=1

where k(-,) is a non linear kernel function. In our work,
we apply the Gaussian kernel, defined as

k(z,w) = exp ({%QMP)

Here, o is a hyper-parameter to control the width of the
kernel. To accurately estimate MMD and to avoid the van-
ishing gradient phenomenon, o takes a list of values. We set
o =[10"2,10"1,...,10], which is proper for even large
distributional differences.

We assume the predictor z* without batch effect follows a
multi-variate Gaussian distribution N'(u, X) with the zero
mean and an unknown covariance matrix. Therefore, we
can formulate the batch effect removal problem as finding
the optimal transformation and covariance matrix X such
that the total difference of transformed distributions and the
underlying normal distribution is minimized:

%17121’:1 ZleEMMD<@Z('DZ),N(O,Z)), 2)

where MMD(+, -) measures the maximum mean discrepancy
between the two input distributions/datasets. Each ®; trans-
formation is modeled by a two-layer neural network. We
add a non-negativity constraint on the weights of the neural
networks to ensure the corresponding transformations are
monotone. To avoid spurious solutions, we unify the feature
selection (Lasso regression) and the batch effect removal

task into the following optimization problem:

. 1« T 2
win L3S (070) 4 A0l

=1 (x,y)€D;

> MMD (9D, N(0.)). 3)

i=1

We simply the model by generating 3 randomly and do not
incorporate it into the training process. Here, the first term
in the objective function minimizes the regression loss; the
second term aims to remove the batch effect, and the last
term imposes sparsity on the weights of the linear model.
Problem (3) can be optimized using a first-order iterative al-
gorithm where at each iteration, a step of projected gradient
descent is applied on the parameters of the transformations
and then 6 is updated by the proximal graident method.
The details of the algorithm is relegated to Appendix A. In
Appendix B, we propose a simple approach based on the
order-statistics transformation (“Ranking method”). This
approach is less computationally intensive compared to the
MMD-based approach; however, as we observe in our nu-
merical experiments, the performance of MMD-based ap-
proach is drastically superior. We additionally consider a
Low-Rank MMD method, described in the next section, for
enhanced performance.

2.2. Low-Rank MMD Method

Problem (3) consists of many optimization parameters in
the high dimensional setting when the number of data points
is very limited compared to the dimension of the data (n <
d), In particular, the unknown covariance matrix ¥ has
O(d?) parameters to optimize. For instance, when d = 100
(or even larger for genomic datasets), A contains 10,000
variables, making it difficult to train. A practical approach is
considering a multi-Gaussian distribution with the randomly
generated covariance matrix as the reference distribution.

The common approach for generating a zero-mean multi-
Gaussian distribution (X ~ N™*4(0, X)) is by first gen-
erating a standard normal Gaussian distribution Z ~
N7Xd(0, 19%4) and then generating a random matrix A%<,
The resulting multi-Gaussian distribution follows a covari-
ance matrix of A7 A. In the problem context, the matrix A
is the variable matrix that needs to be trained.

Although our simulation results show that this method beats
the state-of-the-art approaches in the literature, the randomly
generated covariance matrix can be arbitrarily far from the
covariance matrix of the true data distribution. Thus, to
overcome the mentioned limitation of the random generation
of the covariance matrix, we assume that the ground-truth
covariance matrix is low-rank. This assumption reduces the
number of optimization parameters significantly. Further, in
most high-dimensional biological datasets, the majority of

Feature Selection in the Presence of Monotone Batch Effects

feature pairs are almost independent. Thus, the ground-truth
matrix is sparse in practice making the low-rank assumption
on the covariance matrix of the data practically reasonable.

A can be generated with dimension s x d where s < d.
Correspondingly, Z ~ N™*%(0, I5%%) and then X = AZ.
Consequently, the optimization problem is modified to in-
clude the low-rank matrix as follows:

ﬂanzz(

(x,y)€D;

(x)), ®i(y))

m

+MZMMD((D)AZ)+A||9H1)

=1

This modified approach is referred to as the “Low-Rank
MMD” method, which is implemented and evaluated on
synthetic datasets. The results, shown in Table 1, indicate
that both the low-rank MMD method and original MMD
methods perform well in two of the four scenarios. How-
ever, the low-rank method offers additional advantages and
potential for further exploration. One of the key benefits
of the low-rank approach is its increased explainability. By
incorporating a low-rank matrix, the model becomes more
interpretable, allowing a better understanding of the underly-
ing factors influencing the data. Furthermore, the low-rank
method demonstrates greater adaptability as the number of
samples changes.

In particular, as we vary the low-rank parameter s accord-
ing to the number of samples, the low-rank model exhibits
enhanced performance. This flexibility allows the model to
effectively capture the underlying patterns and dependen-
cies in the data, resulting in improved predictive power. By
adjusting the low-rank parameter dynamically, the low-rank
method can leverage the available information and adapt to
different dataset sizes.

We train the neural networks (®) and linear coefficients (6)
via Adam optimizer with full batch to minimize the loss
function described as 3.

3. Numerical Experiments

In this section, we evaluate the performance of MMD-based
and ranking-based methods on simulated datasets. To do
this, we first consider the feature selection tasks in the pres-
ence of distributional shifts. For this task, we measure
performance using the F1 score which is defined as the
harmonic mean of recall and precision. Moreover, to eval-
uate the effectiveness of the methods in removing batch
effects, we visualize the data batches before and after the
transformation.

3.1. Simulated Data

To evaluate the performance of our proposed methods
against state-of-the-art baselines in the literature, we gen-
erate datasets with different number of batches m and the
number of data points n in each batch. To this end, we gen-
erate mn data points with dimension d = 100. Each batch
follows a normal distribution with a randomly assigned cho-
sen mean and covariance. The target variable y is a linear
function of the input data plus a mean zero normal noise
(y = xT3* + ¢). To induce sparsity, each entry of 5* is set
to zero with the probability of 90%. To add batch effects
to batch k, we transform the dimension j in data point ¢ in
batch k as follows:

xj—akx + bpwij + cp + €

where ay, by, and ¢ are randomly generated positive num-
bers for batch k£ and € is Gaussian noise. We vary the
number of data points and data batches to evaluate the ef-
fectiveness of each approach in different scenarios. Besides
MMD-based and ranking-based methods proposed in this
paper, we evaluate several state-of-the-art approaches includ-
ing CombatSeq (Zhang et al., 2020), Limma (Smyth, 2005),
zero-mean-unit-variance, and PCA (Leek et al., 2010). We
also compare outcomes when we apply Lasso on the datasets
without moving batch effects. Table 1 reports the F1 score
for the aforementioned approaches in four different scenar-
ios.

(m, n) S1 S2 S3 S4
i (5,10) | (50,10) | (5,100) | (50,100)
Combat-Seq 0.424 | 0.313 0.444 0.759
Limma 0.077 | 0.109 0.217 0.238
PCA 0.143 | 0,089 0.228 0.238
Zero-Mean
Unit-Variance 0.061 0.204 0.231 0.16
Original Data 0.381 0.145 0.289 0.289
Ranking 0.444 | 0.095 0.214 0.214
Shaham 0.326 | 0.143 0.289 0.297
MMD 0.410 | 0.727 0.880 0.857
Low-Rank MMD | 0.537 | 0.400 0.857 0.909

Table 1: F1 Scores for Different Methods and Scenarios

3.2. Interpreting the Results

From Table 1, it is evident that the MMD-based approach
performs significantly better than other methods by a large
margin in scenario 2 to 4. In Scenario 1, Combat-Seq works
slightly better. This can be attributed to the requirement
in the MMD method that there be an adequate number of
samples to obtain the optimal transformations (modeled by
two-layer neural networks) effectively. Conversely, other
benchmarks perform even worse than applying Lasso on
the original datasets. This suggests that these approaches
may alter the underlying information within the datasets.

Feature Selection in the Presence of Monotone Batch Effects

Additionally, the ranking method does not effectively select
the correct features, potentially leading to the loss of crucial
information.

3.3. Convergence of the Training Approach

Based on Equation (3), the supervised learning loss, MMD
loss and £1 norm are expected to decrease during the train-
ing process as we minimize the objective. Figure 2 plots
the training process for scenario 3, the upper left is the
logarithmic prediction loss or supervised training loss, the
upper right is the £1 norm of 6, the lower left is the sum
of MMD between transformed data and reference data, the
lower right is the objective value in (3). We can see overall
the loss shows a declining trend. Small MMD loss indicates
the batch effects are corrected, and the transformed data’s
distributions are close to that of the reference data. Figure 3
shows the MMD between each pair of datasets before and
after transformation in scenario 3. The diagonals are black
(MMD=0) because the statistical distance between a dataset
and itself is 0.

log(prediction_loss) 1]
80
20+
60
154
104 40 4
5] 20 4
04 L
T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
MMD _loss Total_loss
30 125 4
1004
204
75 A
10 501
25
04 T T T T T T 01 T T T T T T
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

Figure 2: Training Loss

Non-diagonal values in Figure 3a are roughly between 1
and 2 whereas the post-transformation values in Figure 3b
are smaller than 0.1, showing that the batch effects have
been corrected. In Appendix C, we further discuss the con-
vergence behaviour and quality of the transformed datasets
obtained by our MMD-based approach. We additionally
describe the critical process of tuning hyper-parameters A
and 6 in Appendix D. All codes and outcomes are publicly
available at https://rb.gy/jehdu.

Conclusion: We proposed a joint optimization framework
for feature selection using Lasso and removing batch effects
by matching the distributions of datasets using MMD.
Aside from feature selection, the method can be used as an
effective tool to remove batch effects in a pre-processing
task. The numerical experiments on different scenarios
demonstrate the significant improvement in the performance

of this approach compared to other state-of-the-art methods.

Heatmap of MMD Before Transformation

T T T
1 3 4
Batches

Heatmap of MMD After Transformation

0.08

0.06

Batches

0.04

0.02

0.00

T T T T
1 2 3 4 5
Batches

(b) Heat-map of MMD After Transformation

References

Almugren, N. and Alshamlan, H. A survey on hybrid feature
selection methods in microarray gene expression data for
cancer classification. IEEFE access, 7:78533-78548, 2019.

Alter, O., Brown, P. O., and Botstein, D. Singular value de-
composition for genome-wide expression data processing
and modeling. Proceedings of the National Academy of
Sciences, 97(18):10101-10106, 2000.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International conference
on machine learning, pp. 214-223. PMLR, 2017.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
Jjournal on imaging sciences, 2(1):183-202, 2009.

Benjamini, Y. and Hochberg, Y. Controlling the false dis-
covery rate: a practical and powerful approach to multiple
testing. Journal of the Royal statistical society: series B
(Methodological), 57(1):289-300, 1995.

https://rb.gy/jehdu

Feature Selection in the Presence of Monotone Batch Effects

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija,
R. Integrating single-cell transcriptomic data across differ-
ent conditions, technologies, and species. Nature biotech-
nology, 36(5):411-420, 2018.

Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E.,
Jin, L., and Liu, C. Removing batch effects in analysis
of expression microarray data: an evaluation of six batch
adjustment methods. PloS one, 6(2):e17238, 2011.

Fang, Z.-Y., Lin, C.-X., Xu, Y.-P,, Li, H.-D., and Xu, Q.-S.
Rebet: a method to determine the number of cell clusters
based on batch effect removal. Briefings in Bioinformat-
ics, 22(6):bbab204, 2021.

Gretton, A., Borgwardt, K., Rasch, M., Scholkopf, B., and
Smola, A. A kernel method for the two-sample-problem.
Advances in neural information processing systems, 19,

2006.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723-773, 2012.

Haghverdi, L., Lun, A. T., Morgan, M. D., and Marioni,
J. C. Batch effects in single-cell rna-sequencing data are
corrected by matching mutual nearest neighbors. Nature
biotechnology, 36(5):421-427, 2018.

He, Z. and Yu, W. Stable feature selection for biomarker
discovery. Computational biology and chemistry, 34(4):
215-225, 2010.

Johnson, W. E., Li, C., and Rabinovic, A. Adjusting batch ef-
fects in microarray expression data using empirical bayes
methods. Biostatistics, 8(1):118-127, 2007.

Jovié, A., Brkié, K., and Bogunovié, N. A review of feature
selection methods with applications. In 2015 38th inter-
national convention on information and communication
technology, electronics and microelectronics (MIPRO),
pp- 1200-1205. ITeee, 2015.

Lakkis, J., Wang, D., Zhang, Y., Hu, G., Wang, K., Pan,
H., Ungar, L., Reilly, M. P, Li, X., and Li, M. A joint
deep learning model enables simultaneous batch effect
correction, denoising, and clustering in single-cell tran-
scriptomics. Genome research, 31(10):1753—-1766, 2021.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lazar, C., Meganck, S., Taminau, J., Steenhoff, D., Coletta,
A., Molter, C., Weiss-Solis, D. Y., Duque, R., Bersini,
H., and Nowé, A. Batch effect removal methods for
microarray gene expression data integration: a survey.
Briefings in bioinformatics, 14(4):469-490, 2013.

Leek, J. T. Svaseq: removing batch effects and other un-
wanted noise from sequencing data. Nucleic acids re-
search, 42(21):e161-161, 2014.

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Lang-
mead, B., Johnson, W. E., Geman, D., Baggerly, K., and
Irizarry, R. A. Tackling the widespread and critical im-
pact of batch effects in high-throughput data. Nature
Reviews Genetics, 11(10):733-739, 2010.

Li, X., Wang, K., Lyu, Y., Pan, H., Zhang, J., Stambolian, D.,
Susztak, K., Reilly, M. P,, Hu, G., and Li, M. Deep learn-
ing enables accurate clustering with batch effect removal
in single-cell rna-seq analysis. Nature communications,
11(1):1-14, 2020.

Liu, Q., Walker, D., Uppal, K., Liu, Z., Ma, C., Tran, V., Li,
S., Jones, D. P, and Yu, T. Addressing the batch effect
issue for lc/ms metabolomics data in data preprocessing.
Scientific reports, 10(1):1-13, 2020.

Love, M. 1., Huber, W., and Anders, S. Moderated estima-
tion of fold change and dispersion for rna-seq data with
deseq2. Genome biology, 15(12):1-21, 2014.

Niu, J., Yang, J., Guo, Y., Qian, K., and Wang, Q. Joint deep
learning for batch effect removal and classification toward
maldi ms based metabolomics. BMC bioinformatics, 23
(1):1-19, 2022.

Ouyang, L. and Key, A. Maximum mean discrepancy for
generalization in the presence of distribution and miss-
ingness shift. arXiv preprint arXiv:2111.10344, 2021.

Pareek, C. S., Smoczynski, R., and Tretyn, A. Sequencing
technologies and genome sequencing. Journal of applied
genetics, 52(4):413-435, 2011.

Risso, D., Ngai, J., Speed, T. P., and Dudoit, S. Normaliza-
tion of rna-seq data using factor analysis of control genes
or samples. Nature biotechnology, 32(9):896-902, 2014.

Robinson, M. D. and Oshlack, A. A scaling normalization
method for differential expression analysis of rna-seq
data. Genome biology, 11(3):1-9, 2010.

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. edger:
a bioconductor package for differential expression analy-
sis of digital gene expression data. bioinformatics, 26(1):
139-140, 2010.

Saeys, Y., Inza, 1., and Larranaga, P. A review of feature
selection techniques in bioinformatics. bioinformatics,
23(19):2507-2517, 2007.

Shaham, U., Stanton, K. P., Zhao, J., Li, H., Raddassi, K.,
Montgomery, R., and Kluger, Y. Removal of batch effects
using distribution-matching residual networks. Bioinfor-
matics, 33(16):2539-2546, 2017.

Feature Selection in the Presence of Monotone Batch Effects

Sims, A. H., Smethurst, G. J., Hey, Y., Okoniewski, M. J.,
Pepper, S. D., Howell, A., Miller, C. J., and Clarke, R. B.
The removal of multiplicative, systematic bias allows
integration of breast cancer gene expression datasets—
improving meta-analysis and prediction of prognosis.
BMC medical genomics, 1(1):1-14, 2008.

Smyth, G. K. Limma: linear models for microarray data.
Bioinformatics and computational biology solutions using
R and Bioconductor, pp. 397420, 2005.

Vinga, S. Structured sparsity regularization for analyzing
high-dimensional omics data. Briefings in Bioinformatics,
22(1):77-87,2021.

Young, A. P., Jackson, D. J., and Wyeth, R. C. A technical
review and guide to rna fluorescence in situ hybridization.
PeerJ, 8:¢8806, 2020.

Zhang, F., Wu, Y., and Tian, W. A novel approach to remove
the batch effect of single-cell data. Cell discovery, 5(1):
1-4, 2019.

Zhang, Y., Parmigiani, G., and Johnson, W. E. Combat-
seq: batch effect adjustment for rna-seq count data. NAR
genomics and bioinformatics, 2(3):1qaa078, 2020.

Feature Selection in the Presence of Monotone Batch Effects

A. Algorithm for MMD Method

Algorithm 1 MMD-based feature selection and batch effect removal

1: Initialize @ with normal distribution and ®; randomly for all 1 < ¢ < m.

cfort=1,...,T do
Update the parameters in ®; via Adam optimizer and set all negative weights to 0 for all 2 < ¢ < m.
Update 6 by applying one step of ISTA (Beck & Teboulle, 2009) on Problem (3).
Return features corresponding to non-zero elements in 6.

end for

AN AN

B. Ranking Method

An alternative, less computationally intense approach to the MMD-based method is to do prediction by relying on features
that are invariant under batch effect transformations f1, ..., f,,. In particular, since these transformations are monotonically
increasing, they do not change the order of entries in any row of the data matrix. Thus, the order statistic in each row is
unchanged, which means the row-wise order statistics is invariant under the batch effects. After applying the order statistics,
one can perform Lasso regression or other feature selection algorithms on the transformed dataset. Despite its simplicity,
using the order statistics instead of the original data can lead to information loss, as it only considers the orders not the
magnitude of data.

Algorithm 2 Feature Selection with Ranking-based Method

1: Convert original data (X,Y") to ranking data R(X,Y) = (X', Y”) per row;
2: Apply Lasso on R(X,Y) and select corresponding features.

C. Validate Multi-variate Gaussian Distribution

In Figure 3b, we can observe that the Maximum Mean Discrepancy (MMD) of the transformed datasets are not equal to
0. We consider this to be a reasonable outcome because the reference dataset is generated randomly and is expected to
differ from the true underlying distribution. The goal is for the transformed data to be close to a multivariate Gaussian
distribution rather than an exact match to the reference data. If the MMD in Figure 3b were 0, it would indicate overfitting.
Figure 4 displays the histograms and overlays the corresponding Gaussian curves for the original data and the transformed
data achieved through linear mapping with the random vector a. Notably, after the transformation, the data exhibits a clear
Gaussian distribution, unlike the data prior to the transformation.

Histogram Before Transformation Histogram After Transformation

—— Gaussian Curve

0.00030 A 0.05 4
Histogram

0.00025 4 0.04 4

0.00020

0.00015

0.02 q
0.00010 4

Frequency / Probability Density

0.00005 - 0.017

0.00000

—20000 —10000 0 10000 Data -20 0 20

Figure 4: Histogram for Validating Gaussian Distribution

The transformed data does not fully converge to the reference data due to the design of the optimization problem 3. In
Problem 3, we conceptualize minimizing the MMD as the main objective and the Lasso as a regularization term. Since
the underlying distribution follows a sparse linear relationship, forcing the transformed data to be exactly the same as the
reference data would lead to large supervised loss and £, norm. Hence, appropriate tuning of hyper-parameters A and x
becomes crucial in achieving good performance.

Feature Selection in the Presence of Monotone Batch Effects

D. Hyper-Parameter Tuning

The selection of suitable hyper-parameters in problem 3 significantly impacts the overall performance. However, determining
optimal values for A and 6 poses a considerable challenge. In realistic datasets, the true coefficient vector g is unknown,
making it difficult to assess the final results accurately. Consequently, an alternative metric is needed to replace the F1 score
for conducting cross-validation

1.0 —— Normalized Logarithmic Supervised Learning Loss
F1 Score

0.8

0.6

0.4

0.2 1
T T T T T T
o 10 20 30 40 50

k*1000 iteration

Figure 5: F1 Score Versus Normalized Logarithmic Supervised Learning Loss

One potential indicator is the supervised learning loss. We calculate the F1 score at regular intervals, typically every 1000
iterations, while simultaneously recording the logarithmic supervised learning loss. To facilitate comparison, we normalize
the loss by dividing it by the maximum logarithmic supervised learning loss. Figure 5 demonstrates that as the supervised
learning loss decreases, the F1 score tends to increase.

Drawing inspiration from this observation, we can utilize cross-validation to identify the optimal values of § and A that
minimize the converged supervised learning loss for test datasets.

In addition, we have observed that when each term in equation 3, along with its corresponding coefficients, possesses similar
magnitudes, the overall performance improves. This phenomenon has also been mentioned in the work by Ouyang (Ouyang
& Key, 2021).

The idea behind this approach involves training the model with random values for A and 6. Once the training loss converges,
the values of A and 6 are reset such that the terms = 37" 2 (x,y)eDi £(h0(<I>Z-(x)) , @z(y)) (supervised training loss),

py o, MMD ((I)i(Di),N (0, E)) (MMD loss), and A||@]]1 (£1 norm) are approximately equal. For instance, if the

supervised training loss is 1000, the MMD loss is 0.1, and the L1 norm is 10, we can set i = 10* and # = 100. This process
is repeated until no further updates are needed for A and . This method assists in determining suitable hyper-parameters
and adjusting step sizes accordingly.

Subsequently, cross-validation is employed to search for the values of # and A that minimize the supervised learning loss
on the test dataset. The empirical settings for A and 6 can also help narrow down the search range during cross-validation
implementation.

