Under review as a conference paper at ICLR 2026

CLEANEDIT: RETENTION-AWARE PRUNING AND
BOUNDED REPLAY FOR LIFELONG MODEL EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

While lifelong model editing allows deployed systems to be updated continuously,
the accumulation of edits often leads to performance decay and instability. This
decay stems from the unchecked growth of the edit memory, where redundant or
harmful entries corrupt the model’s knowledge and increase inference costs. We
address this challenge with CleanEdit, a self-maintaining mechanism that actively
manages the edit memory. The core of CleanEdit is a principled maintenance
loop. It first diagnoses the impact of each edit by estimating its counterfactual
harm. A sequential hypothesis test then makes a statistically grounded decision to
prune entries identified as detrimental. To avoid losing valuable information, the
supervisory signal from pruned samples is recycled for relearning via a bounded
replay process. Experiments on sequential editing benchmarks demonstrate that
CleanEdit significantly improves the model’s post-edit performance, achieving a
superior balance between retaining past knowledge and integrating new informa-
tion.

1 INTRODUCTION

The goal of lifelong model editing is to enable deployed language models to adapt continuously
Zheng et al.| (2025). However, this very adaptability introduces a critical vulnerability: the progres-
sive degradation of stability. Unlike static models, continuously edited systems Hartvigsen et al.
(2023)); Meng et al.| (2022); [Wang et al.|(2025) suffer from memory pollution, where the edit mem-
ory, initially a source of correction, gradually becomes a source of error as redundant and conflicting
entries accumulate. This process inflates the system and erodes its reliability, making long-term de-
ployment challenging. Addressing this issue is crucial to establishing a sustainable lifelong editing
paradigm.

To overcome this challenge, we propose CleanEdit, a framework that redefines lifelong editing as a
problem of active memory curation rather than passive accumulation. The framework of CleanEdit
is shown in Figure[I] At its core, CleanEdit incorporates two complementary mechanisms. The first
is Retention-Aware Pruning, a statistically principled approach that identifies and removes destabi-
lizing edits through counterfactual harm estimation and sequential hypothesis testing. The second
is Bounded Replay, which recycles supervision from pruned yet challenging samples to prevent
knowledge gaps and improve resilience to recurring errors. Together, these mechanisms transform
edit memory from a liability into a self-maintaining component that supports stable long-term adap-
tation.

While pruning and replay strengthen the intrinsic stability of edit memory, real-world deployment
also demands flexibility to accommodate different operational scenarios. A single maintenance
strategy is insufficient, as practical applications require a balance between computational cost and
reliability. To meet this need, CleanEdit introduces three scheduling modes. The Comprehensive
mode provides proactive maintenance with predictable overhead, the Progressive mode aligns main-
tenance with natural data boundaries to enhance stability in batched settings, and the Dynamic mode
offers fully reactive intervention for mission-critical systems where reliability must be guaranteed.
Our contributions are summarized as follows:

* We introduce the CleanEdit framework, a new paradigm for lifelong editing that empha-
sizes active memory curation to ensure long-term stability and reliability.

Under review as a conference paper at ICLR 2026

. M (¢ \ 1
Update: Capltal of (@ Key-Value Memory (2} Edited Output
France is Lyon
=L | The || capital || France || is | { The capital of France is] + Paris
;Q / % {Mount Everest is located in }Q-[Africa]
R Error Monit
Knowledge Neurons | Key-Value Store Keyo Valueo) ITor iom or
I
ERR> 7,
[Bounded Rl Queue] I:l Error times ny | others a7
L) TRR> 74,
| Mount Everest is located in OE count, > maz, Error Count

Figure 1: Overall structure of CleanEdit. A lifelong model-editing adaptor provides key-value
retrieval. CleanEdit adds a self-maintaining layer with three components: per-key evidence via
counterfactual or metric-anchored harm, anytime pruning with explicit control, and bounded recy-
cling with event/period scheduling.

* We propose two core mechanisms, Retention-Aware Pruning and Bounded Replay, that
mitigate instability while preventing catastrophic forgetting.

* We design and validate three scheduling modes, Comprehensive, Progressive, and Dy-
namic, which make CleanEdit adaptable to real-world deployment scenarios and address
the trade-off between stability and efficiency.

* We demonstrate state-of-the-art empirical performance on challenging lifelong editing
benchmarks. For example, on text classification of SCOTUS dataset/Chalkidis et al.|(2022]),
CleanEdit improves the crucial Test Retention Rate(TRR) and Edit Retention Rate (ERR)
balance by more than 10%, confirming its ability to deliver significantly more stable and
reliable models.

2 RELATED WORK

2.1 TAXONOMY AND ADAPTOR-BASED LIFELONG EDITING

Building on recent taxonomies of model editors Hartvigsen et al.|(2023);|Wang et al.|(2025), we cate-
gorize existing methods into three major families. Meta-learning editors employ auxiliary networks
to predict localized weight updates from a single edit instance (e.g., MEND Mitchell et al.| (2022al);
KnowledgeEditor |Cao et al.[(2021); Ju et al.| (2024))). These approaches are effective for one-shot
or small-batch corrections but often drift under long edit sequences. Locate-then-edit editors first
identify the storage location of knowledge and then directly modify the corresponding parameters
(e.g., ROME |Meng et al.| (2022), MEMIT |[Meng et al.[(2023))). Variants at the neuron or module
level intervene at finer granularity; while they perform well on isolated edits, they are highly sen-
sitive to layer selection and prone to interference when applied repeatedly. Memory-based editors
augment the model with external or adaptor modules that store and retrieve corrections at infer-
ence (e.g., SERAC Mitchell et al.|(2022b)); GRACE Hartvigsen et al.|(2023)); dynamic LoRA-based
approaches such as MELO |Yu et al.| (2023)). These preserve the backbone weights and upstream
behavior. Among them, GRACE enhances layers with a discrete key—value codebook and activates
edits based on similarity thresholds, enabling thousands of sequential updates with minimal col-
lateral impact. We adopt this adaptor-based paradigm but focus on its systems-level challenges:
memory growth, redundancy, and instability over long horizons. Our method, CleanEdit, addresses
these issues by making the memory self-maintaining through metric-driven pruning and bounded
recycling, thereby sustaining favorable TRR/ERR trade-offs over time.

2.2 PRUNING FOR STABLE EDITING

Classical sensitivity-guided pruning (Optimal Brain Damage |LeCun et al.| (1989)) demonstrated
that removing low-utility parameters can maintain accuracy. Subsequent scalable variants—such as

Under review as a conference paper at ICLR 2026

magnitude pruning, Deep Compression |[Han et al.| (2016), and later structured or movement-based
approaches for transformers Sanh et al.|(2020)—show that substantial sparsification is possible with
minimal performance degradation. In contrast to these static compression techniques, we prune
the edit memory itself. CleanEdit treats keys as prunable units, eliminating persistently redundant
or harmful entries under explicit edit metrics, and recycling their supervision. This results in a
compact, stable memory well-suited for lifelong editing.

3 METHOD

Section Overview. We aim to make lifelong model editing stable and maintainable. CleanEdit inte-
grates three synergistic components: (i) per-key evidence that quantifies a key’s utility, (ii) anytime,
thresholded pruning with optional always-valid e-process guarantees, and (iii) a bounded recycling
queue that reuses supervision without growing memory. Together, these form a lightweight mainte-
nance loop that removes harmful keys while preserving helpful ones. Algorithm [I]summarizes the
full procedure.

High-level Roadmap. We first introduce the backbone—adapter setup and notation. We then define
two complementary forms of per-key evidence—counterfactual loss-difference and metric-anchored
harm—and show how they drive pruning with anytime guarantees. Next, we view the policy through
an online decision-theoretic lens to derive regret bounds. We then describe a bounded recycling
queue that preserves utility after pruning. Finally, we present scheduling policies and implementa-
tion complexity, culminating in unified pseudocode in Algorithm]

3.1 PRELIMINARIES AND NOTATION

We consider a frozen backbone fy : X —) augmented with GRACE-style discrete adapters at
layers £ (Hartvigsen et al.l 2023). In the adapter layer £ € £, the memory is a codebook C(©) =

{(1&, ”1@ g(‘))}gv:q. Given pre-activation h(~1)(z), the nearest key i* and distance d* are

» (1)

i*(x,f) = argmin ||h(£_1)(m) - ky)’

d*(z,f) = min Hh(e_l)(x) - ky) H2 (2)
The edited representation is

4 . 0
oo - (% it <0,

3)
hy)(h(f— 1) (Qj)) otherwise.

Here héé) (+) (also denoted as hgé) (+)) is the frozen backbone’s original layer-wise forward map. Let
fo.c be the full network with adaptors, a lifelong stream {(x¢, y;) }+>1 arrives online. If fy ¢ (z:) #
ys, an edit is created. We evaluate with TRR (retention of past knowledge) and ERR (editing of
new knowledge), defined in Sec.

3.2 PER-KEY EVIDENCE: COUNTERFACTUAL AND METRIC-ANCHORED HARM

We quantify the utility of a key k= (k, v, €) by two complementary notions.

Counterfactual (loss-difference) harm. Ablating £ at inference gives

Ak(xvy) = g(fé‘,C(x)ay) - g(fe,ck (1')711/)7 (4)
computed by a single counterfactual forward where k is selected by d*. Positive A, indicates that

keeping k increases loss on (x,).

Metric-anchored (thresholded) harm for streaming. Let s(x,y; f) € [0, 1] be a task score (e.g.,
calibrated QA correctness or 0/1 classification accuracy) and let a be a task-specific adequacy thresh-
old (a=0.9 for QA; a=1.0 for classification). Define

H (2,y) = s(z,y; foc) — a.)

Under review as a conference paper at ICLR 2026

here s(;) indicate test score at reference. We interpret H ,(Ca) > 0 as beneficial/non-harmful (do not

prune) and H®

event

< 0 as harmful (candidate for pruning). When key k fires at time ¢, we log the

Zne = W H (2e,9) <0} (©)
For a period P € N (used by Comprehensive scheduling), we aggregate at boundaries ¢t =
0 (mod P) and update the per-key counter Cy

Ci(t) = Ch(t—P) + > Zps 7

3.3 ANYTIME, THRESHOLDED EVIDENCE PRUNING

Let o € N be the pruning count threshold. CleanEdit prunes by the rule
PRUNE(k) <= Ci(t) > a, (8)

i.e., “+1 or direct pruning” at maintenance triggers. Optionally, for explicit statistical guarantees
we couple Eq. [§] with always-valid e-process bounds (Howard et al., 2021): form an anytime radius
rady (¢, §) for the bad-event rate py, = E[Z}, ;] atrisk 0 € (0, 1), and prune if P (t) —p* > rady (¢,)
for a tolerated rate p*. This adds theory while preserving the simple counter Eq. [§] as the primary
mechanism.

Theorem 1 (Type-I control for benign keys). If pr < p*, then with the optional e-process guard,
the probability of pruning k at any time is at most 6 (Howard et al.| [2021)).

Theorem 2 (Sample complexity for harmful keys). If pr > p* + A for some A > 0, then with
probability at least 1 — 6, CleanEdit prunes k after at most
= 1 1
ng < C N logg 9

activations for a universal constant C determined by the chosen e-process boundary (Howard et al.,
2021)).

3.4 ONLINE DECISION-THEORETIC VIEW AND REGRET

Each key induces an action ay,, € {KEEP, PRUNE}. Let the instantaneous regret be

et = Ufo.c.(@e),ye) — A foc: (@), ye), (10)

where C is the hindsight-optimal sequence knowing {py}. The rule Eq. is an elimination policy
under standard stochastic assumptions, which combines elimination-style sample complexity with
stochastic stability (Lattimore et al.| 2020).

T
S Kk ﬁredatt}rk,t] = 6(> !) + O(VT), (11)

E[Rr] = E —
t=1 k k:pr>p* Pk =P

3.5 BOUNDED RECYCLING QUEUE

Pruning discards a key but not its supervision. Let Q be a FIFO retry buffer. When key & is pruned
with source (z;,y;), if fo.c, (z;) # y;, insert (z;,y;) with a cap Ryax:

Pt = min(Rmax, vt foc, () # yj}), (j,97) € Qif r!*L >4t (12)

On dequeue, we perform a minimal GRACE edit (add/expand/split) if still mispredicted. Let £r be
distinct edits up to 7'. Then

Z ro S Rmax ‘€T|7 |Qt| S Rmax Npruned(t) + Npending(t)a (13)
JjEET

which yields O(1) amortized maintenance and damped variance in TRR/ERR under dynamic trig-
gering.

Under review as a conference paper at ICLR 2026

3.6 SCHEDULING AND IMPLEMENTATION

Maintenance (testing, pruning, recycling) is triggered by one of three modes:

Comprehensive: trigger every P arrivals; counters update by Eq.
Progressive: trigger at dataset/time-block boundaries (stable).

Dynamic: trigger when monitors cross thresholds, e.g., TRR; < 7rrg or ERR; < Tggrg.

We implement Dynamic via an e-process change detector to avoid rapid toggling, enjoying anytime
false-alarm control (Martin} [2025). With safety margin v and bounded drift Vi, expected triggers
over horizon T scale as O(1+Vr /7).

Evidence logging adds at most one counterfactual forward (for Ay) and a constant-time metric
update (for Zy, ;) per fired key, atop nearest-neighbor retrieval. Testing and queue operations are
O(1) amortized per trigger. Memory remains compact because harmful keys are eliminated in
O(log(1/8)/A?) activations by Eq. |9 benign keys enjoy type-I control, and retries are bounded
by Rmax- The overall CleanEdit procedure, including evidence collection, pruning, recycling, and
scheduling, is summarized in Algorithm 1]

Algorithm 1 CleanEdit

Inputs: codebooks {C(¥)}; schedule S € {COMPREHENSIVE, PROGRESSIVE, DYNAMIC}; period
P; task threshold a; prune threshold o € N; risk §; retry cap Ryax
1: Initialize per-key counters C}, < 0, buffers By, < 0, and recycling queue Q <« (0.
2: for incoming (x4, y;) do
3 Run GRACE retrieval and edit; let k be the key that fired (if any).
4: if a key k fired then
5: Compute task score s; <— s(x¢,Ys; fo.c)s set Zy s < W{s; —a <0}.
6.
7
8

if Z;, . = 1 then
if S = DYNAMIC then
if C), +1 > « then

9: prune k;
10: if the source (x;, y;) still fails under fy ¢, , enqueue with cap R,ax; continue
11: else
12: CpL+C,+1
13: else
14: By < B +1
15: if Trigger(S,t) then
16: for each key £ do
17: if Ci, + By, > o then
18: prune k; if the source still fails, enqueue with cap R.x; Br < 0; continue
19: else
20: CrL+ Cp,+ By, B, <+ 0
21: if optional anytime guard holds: py — p* > rady (¢, d) then
22: prune k; if the source still fails, enqueue with cap Ry ax

4 EXPERIMENTS

We evaluate CleanEdit on two representative lifelong editing tasks: (1) Question Answering (QA)
with a T5 model on zsRE, and (2) Document Classification with a BERT model on SCOTUS.
These settings cover both generative and discriminative scenarios and follow standard benchmarks.
We compare against finetuning-based editors (FT, FT+EWC, FT+Retrain), meta-learning editors
(MEND), locate-then-edit methods (ROME), and memory-based editors (Memory, Defer, GRACE).

4.1 EXPERIMENT SETUP

Datasets and Models. For QA, we use a 60M-parameter T5 trained on NQ |[Kwiatkowski et al.
(2019) and evaluate on zsRE dataset |[Levy et al.| (2017). The pre-edit performance is 0.72

Under review as a conference paper at ICLR 2026

Table 1: Main results on SCOTUS (Document Classification) and zsRE (QA). Abbreviations
of scheduling modes: C = Comprehensive, P = Progressive, D = Dynamic. Thresholds selected on
validation and frozen for test: C/D use =20, P uses a=25. AAvg is the absolute gain over GRACE
on the same task. Best per column in bold.

Classification (SCOTUS) QA (zsRE/NQ)

Method TRR ERR Avg. AAvg Method TRR ERR Avg. AAvg
FT|Lin et al.|(2022) 52 52 52 FT 56 .82 .69
FT+EWC [Kirkpatrick et al.|(2016) .67 .50 .58 FT+EWC 51 .82 .66
FT+Retrain |Rolnick et al. (2019) 67 .83 .75 FT+Retrain .27 .99 .63
MEND Mitchell et al.|(2022al) 19 27 23 MEND 25 27 26
Defer Mitchell et al.| (2022b) 33 41 37 Defer 72 31 .52
Memory 21 20 21 Memory 25 27 26
GRACE |[Hartvigsen et al.|(2023) 81 .82 .82 GRACE .69 96 .82
CleanEdit (ours)

C («=20) 85 1.00 93 +11% C(@=20) 83 99 91 +9%

P (a=25) 82 95 89 +7% P(a=20) .83 93 188 +6%

D (a=20) 87 94 91 +9% D («=20) .83 1.00 91 +9%

FlHartvigsen et al.[(2023) on NQ and 0.31 F1 on zsRE, which is followed by Hartvigsen et al.
(2023). For classification, we use a 120M-parameter BERT trained on SCOTUS |Chalkidis et al.
(2022) decisions from 1946-1982 with 11 labels. Pre-edit accuracy is 99% on in-domain test doc-
uments and 55% on out-of-domain documents from 1992-2009. Test data is the original held-out
evaluation set used to measure generalization: for SCOTUS it is the 1982—-1991 documents; for QA,
we draw 1k items from NQ. Edit data is the cumulative set of inputs for which the system creates
edits: for QA we apply edits to 1000 zsRE instances; for SCOTUS, we apply edits to 931 documents
from 1992-2009.

Baselines and protocol. All implementations follow official setups or public code and were run
separately on two NVIDIA A100 PCle 80 GB and one NVIDIA A100 SXM4 40 GB GPU. Each
mispredicted instance triggers an edit. We report TRR on test data and ERR on edit data, plus
their macro average (AVG.). All results average 5 seeds with standard deviations. Hyperparameters
(pruning threshold 7 and routing radius €) are selected on validation streams and then frozen for
testing. Statistical reliability (CIs, paired tests, bootstrap) follows the procedure in Appendix |A|and
is referenced where relevant.

Evaluation Metrics. We follow prior work and report three metrics. 7Test Retention Rate (TRR)
Hartvigsen et al.|(2023) measures how well the edited model retains performance on its original test
distribution, computed as the average task score m(f(z;),y;) over (z;,y;) € Dies; for SCOTUS,
Diest 1s the 1982—1991 court documents, and for QA we sample 1k items from NQ. Edit Retention
Rate (ERR) Hartvigsen et al.| (2023) measures how well the model remembers past edits, averaging
m(f(x;),y:) over (z;,y;) € Deas (the cumulative set of successful edits). For compact reporting
we also use a Avg. score defined as the macro average %(TRR +ERR), balancing generalization and
edit fidelity.

Model-selection policy (ex-ante). Unless otherwise noted, all hyperparameters, including the
routing radius € and pruning threshold «, are selected on the validation stream and then frozen
before any test evaluation. This ex-ante policy is used for all main results (Table [I)). Post-hoc
ablations (Sec. Table [5} Appendix visualize sensitivity curves and are not used for model
selection. Our default on SCOTUS is e=3 under this policy; QA follows the same ex-ante rule.

4.2 MAIN RESULTS ACROSS BENCHMARKS

Table [T compares CleanEdit with strong editors on SCOTUS (Document Classification [Chalkidis
et al.| (2022)) and zsRE |Levy et al.|(2017) (QA). As shown in Table |1} CleanEdit delivers a consis-
tently stronger TRR—ERR balance than all baselines across both tasks under the Comprehensive,

Under review as a conference paper at ICLR 2026

Table 2: Schedule summary on SCOTUS with e=3. Choose the optimal « for each schedule (shown
in Sec. EII), resulting TRR/ERR, and a robust window of thresholds with similar qualitative behavior.

Schedule Default« TRR ERR Robust window
Comprehensive 20 .85 1.00 {20,25,30, 35,40, 50}
Progressive 25 .82 95 {25, 40, 50, 100, 200}
Dynamic 20 .87 .94 {35, 40, 50,100}

Table 3: SCOTUS (Document Classification), Comprehensive with e=3. Different pruning targets
induce different operating points.

Pruning targetand « TRR ERR Avg.

Edit data, a=15 .82 1.00 91
Edit data, o=20 .85 1.00 .93
Edit data, a=25 .83 1.00 91
Test data, =15 .96 73 .85
Test data, a=20 94 75 .85
Test data, =25 .93 .79 .86

Progressive, and Dynamic schedules, which defined in Sec. @]and Algorithmm Unless otherwise
noted, we use =20 for Comprehensive/Dynamic and a=25 for Progressive (chosen on validation
and fixed thereafter). On SCOTUS, Comprehensive attains perfect edit retention (ERR = 1.00)
while increasing TRR to 0.85, yielding a Avg. improvement of +-0.11 over GRACE. Dynamic fur-
ther lifts TRR to 0.87 with ERR = 0.94 (Avg. = 0.91, +0.09 over GRACE), indicating improved
generalization without sacrificing edit fidelity. In ZSRE |LEVY ET AL. (2017), CleanEdit improves
the TRR by +0.14 over GRACE and preserves near-perfect ERR (up to 1.00 in Dynamic), trans-
lating to an Avg. gain of +0.09. Although FT+Retrain Rolnick et al.|(2019) achieves high ERR on
both tasks, its TRR collapses, which is consistent with overfitting to edit data. In contrast, CleanEdit
trace a new Pareto frontier, aligned with the predicted elimination of harmful keys in Theorem 2}

4.3 STRATEGY KNOBS FOR DEPLOYMENT

4.3.1 CHOOSING AN EXECUTION SCHEDULE

In CleanEdit we propose three operating schedules: Comprehensive, Progressive, and Dynamic.
Table E] summarizes the three schedules on SCOTUS with e=3. For each schedule, we report the
default o, the resulting TRR (the ability to keep old knowledge) and ERR (the ability to learn new
knowledge), and a robust window in which performance remains qualitatively stable.

Comprehensive favors edit fidelity. ERR stays near one and TRR changes smoothly as « increases
and pruning becomes more conservative. Progressive emphasizes stability across blocks. TRR is
flat and ERR forms a gentle plateau. Dynamic balances the two goals by triggering maintenance
adaptively. It yields high TRR with moderate ERR. These behaviors are consistent with the Key-
Pruning rule in Eq. [§]and the elimination bound in Theorem

4.3.2 CHOOSING A PRUNING TARGET

Pruning can log bad events Zj, ; on the edit stream Degiis or on the test set Dy The target determines
the distribution under which Eq. [§]accumulates evidence and therefore sets the operating point of the
trade-off between TRR and ERR defined in Sec. We illustrate this using the Comprehensive
schedule with e=3 in Table[3l

Two Metrics in Tension. Edit-driven pruning retains almost all edits. ERR is essentially 1.00
and TRR settles in the mid-eighties across «. Test-driven pruning maximizes TRR. It reaches the
mid-nineties at smaller « and trades off ERR. Increasing « under test-driven pruning makes pruning
more conservative. ERR rises and TRR decreases slightly, which moves the model toward a more
balanced point.

Under review as a conference paper at ICLR 2026

Table 4: Effect of pruning threshold o at =3 on the Document Classification task. Numbers
are TRR / ERR / Avg. Per-schedule best operating point is bolded.

Comprehensive Progressive Dynamic
TRR ERR Avg. TRR ERR Avg. TRR ERR Avg.

100 .82 99 91 82 92 87 94 8 91
15 83 100 92 8 95 8 9 84 87
20 8 100 93 82 95 8 87 94 .92
25 83 100 92 82 95 89 90 84 87
30 82 99 91 8 9 8 90 92 91
35 .82 1.00 .91 82 92 87 8 93 91
40 82 9 91 8 9 8 88 93 091
50 82 9 91 82 95 8 &4 9 92
100 8 99 91 8 95 & 84 99 92
200 82 9 91 8 9 8 82 99 91

Practical guidance. When reliability of past edits is the priority, choose edit-driven pruning with
a € {20,25}. When generalization on unseen data is critical, choose test-driven pruning with
a € {20,25}. For a balanced default in streaming settings, use the Dynamic schedule defined in
Sec. 3.6 with o ~ 20 and monitor TRR and ERR as in Algorithm[I] These choices follow directly
from the pruning rule in Eq. the target distribution changes which keys accumulate evidence
faster, and Theorem refthm:sample explains the observed convergence of the operating point.

4.4 ABLATIONS VIA OPERATIONAL KNOBS

We study two knobs that govern deployment behavior: the pruning threshold « in the Key-Pruning
rule of Eq. [§] (with the optional anytime in Theorem [I)), and the routing radius ¢ that determines
when a key fires in Eq. [3| Both are selected on validation and then frozen for test.

4.4.1 EFFECT OF THE PRUNING THRESHOLD

We sweep « € {10, 15, 20, 25, 30, 35, 40, 50, 100, 200} for all three schedules at a fixed e=3. Table
[]shows consistent patterns with the decision rule in Eq. [§] Comprehensive favors edit fidelity: ERR
reaches the ceiling at =20 and TRR changes smoothly as pruning becomes more conservative.
Progressive is the most stable: TRR is nearly flat and ERR settles around 0.95. Dynamic exposes
a tunable trade-off: TRR is high at smaller o, and ERR rises as « increases. These trends match
the theory. Keys with bad-event rate p;, > p* are removed within the sample complexity stated in
Theorem [2| Beyond that point, enlarging o mainly delays further pruning and offers diminishing
returns for ERR, while small o can prune more aggressively and slightly reduce ERR.

4.4.2 EFFECT OF THE ROUTING RADIUS

We fix a=20 for the three schedules (Comprehensive, Progressive, Dynamic) and sweep ¢ €
{1073,1072,107%,1, 3,10, 100,1000}. Very small radii rarely trigger the adaptor, which keeps
TRR high but limits ERR [Hartvigsen et al.| (2023). Table [5] shows that a moderate radius per-
forms best: all three schedules peak at e=1, reaching TRR 0.97 and ERR 1.00. At e=3 (See
Appendix [C.Z), Comprehensive maintains ERR 1.00 with TRR 0.85, while Dynamic trades to
ERR 0.87 with TRR 0.94; Progressive becomes more conservative (TRR 0.83, ERR 0.94). Very
large radii broaden influence regions and introduce interference: at =10, Comprehensive keeps
ERR near 1.00 but TRR drops to 0.82, and Dynamic over-triggers so ERR falls to 0.20 even though
TRR remains high. These results recommend =1 as the default, with a robust window around
{0.1,1.0, 3.0} depending on the coverage—precision trade-off. Overall, TRR as a function of ¢ is
hump-shaped: it peaks around € =1 and deteriorates at larger radii. Small radii under-activate edits.
Mid-range radii strike the best balance between TRR and ERR. Very large radii enlarge the firing
regions and reduce TRR for Comprehensive and Progressive, while Dynamic produces many false
positives that harm ERR.

Under review as a conference paper at ICLR 2026

Table 5: Routing-radius summary at fixed o on SCOTUS. Best operating point is reported at e=1
for all schedules; the robust window lists nearby settings that preserve performance. Full sweeps

appear in Appendix

Schedule Optimal e* TRR@e* ERR@&* Robust window
Comprehensive 1.0 97 1.00 {0.1,1.0,3.0}
Progressive 1.0 97 1.00 {0.1,1.0}

Dynamic 1.0 97 1.00 {0.1,1.0,3.0}

4.4.3 EFFECT OF THE RETRY CAP R ax

We ablate the retry cap Rnax Of the bounded recycling queue (Eq. on SCOTUS using the
Dynamic schedule at =20 and e=3. We sweep Rax € {2,3,4,5,6} and report TRR on the test
distribution and ERR on the edit distribution. The results are shown in table [6}

Why R,..x=3 is the right operating point.
Table 6: Effect of retry cap R... on SCOTUS Moving from Rpax=2 t0 Rmax=3 closes most

under the Dynamic schedule (a=20, e=3). of the edit-retention gap while keeping TRR at

areasonable level. Larger caps bring only small

Ruax TRR ERR Avg. additiona}l gains in ERR aqd do not offset the
extra maintenance. In practice, the macro aver-

2 98 30 64 age Avg. improves sharply at Ry,ax=3 and then

3 .87 94 91 saturates.

4 92 .59 .76

5 88 .92 .90 . . .

6 93 94 94 Marginal utility and recommendation. Let

Avg(Rmax) denote the average retention rate
for CleanEdit to work at R,.x. In a FIFO
queue with a bounded-retry cap Ryax, ex-
pected replays therefore increase with R, .x, so wall-clock time rises near-linearly. Empirically,
the discrete marginal gain drops sharply after three retries: the finite difference from Ry.x = 2
to 3is (U(3) —U(2))/(3 —2) = 0.27, whereas the average per-retry gain from Ry,x = 3 to
6 is (U(6) — U(3))/(6 — 3) =~ 0.001. Thus beyond Ry.x = 3 the cost keeps increasing but
utility hardly improves. Therefore, we recommend R,.x = 3 as a practical default. It removes
the severe under-retention at R, ,x=2, achieves near-saturated AVG., and avoids the extra replays
and wall-time overhead that higher caps induce. This choice aligns with the design of CleanEdit:
preserve edits aggressively while keeping maintenance lightweight.

5 CONCLUSION

In this paper, we propose CleanEdit, a proactive and self-maintaining framework for lifelong model
editing that actively manages editing memory through a cycle of diagnosis, statistical decision-
making, and bounded data replay. CleanEdit adopts a principled maintenance loop that evaluates
the counterfactual impact of each edit, continuously detects and prunes harmful edits through three
schedules, and selectively preserves beneficial knowledge during sequential editing. To prevent
the loss of valuable information, the supervision signals from pruned edits are retained through a
bounded replay process, ensuring that useful knowledge is not discarded. Extensive experiments
on a wide range of sequential editing benchmarks demonstrate that our method significantly im-
proves model performance over 10%, enabling more effective integration of new knowledge while
retaining historical information. These findings highlight the importance of proactive memory man-
agement in lifelong model editing and provide new perspectives for developing more robust and
sustainable editing systems.

REFERENCES

Lola Le Breton, Quentin Fournier, John Xavier Morris, Mariam El Mezouar, and Sarath Chandar.
Neobert: A next generation BERT. Trans. Mach. Learn. Res., 2025, 2025. URL https://
openreview.net/forum?id=TJRyDi7mwH.

https://openreview.net/forum?id=TJRyDi7mwH
https://openreview.net/forum?id=TJRyDi7mwH

Under review as a conference paper at ICLR 2026

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 6491-6506.
Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021. EMNLP-MAIN.522.
URL https://doi.org/10.18653/v1/2021.emnlp-main.522.

Ilias Chalkidis, Tommaso Pasini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and
Anders Sggaard. Fairlex: A multilingual benchmark for evaluating fairness in legal text process-
ing. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 4389—4406. Association for Computational
Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.301. URL https://doi.org/10.
18653/v1/2022.acl-1long.301.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings,2016. URL http://arxiv.org/abs/
1510.00149.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with GRACE: lifelong model editing with discrete key-value adaptors. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
95b6e2ff961580e03clabb2a63a/l8l2-Abstract-Conference.html.

Steven R. Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, non-
parametric, nonasymptotic confidence sequences. The Annals of Statistics, 49(2), April 2021.
ISSN 0090-5364. doi: 10.1214/20-a0s1991. URL http://dx.doi.org/10.1214/
20-A0S1991.

Tianjie Ju, Yijin Chen, Xinwei Yuan, Zhuosheng Zhang, Wei Du, Yubin Zheng, and Gongshen
Liu. Investigating multi-hop factual shortcuts in knowledge editing of large language models.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 8987-9001. Association for Computational Linguis-
tics, 2024. doi: 10.18653/V1/2024. ACL-LONG.486. URL https://doi.org/10.18653/
v1/2024.acl-1long.486.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. CoRR, abs/1612.00796, 2016. URL http://arxiv.org/abs/
1612.00796.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. Trans. Assoc. Comput.
Linguistics, 7:452-466, 2019. doi: 10.1162/TACL_A_00276. URL https://doi.org/
10.1162/tacl_a_00276!l

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations in
bandits and in rl with a generative model, 2020. URL https://arxiv.org/abs/1911.
07676.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,

10

https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2022.acl-long.301
https://doi.org/10.18653/v1/2022.acl-long.301
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
http://dx.doi.org/10.1214/20-AOS1991
http://dx.doi.org/10.1214/20-AOS1991
https://doi.org/10.18653/v1/2024.acl-long.486
https://doi.org/10.18653/v1/2024.acl-long.486
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/1911.07676
https://arxiv.org/abs/1911.07676

Under review as a conference paper at ICLR 2026

USA, November 27-30, 1989], pp. 598—605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. In Roger Levy and Lucia Specia (eds.), Proceedings of the 21st Confer-
ence on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August
3-4, 2017, pp. 333-342. Association for Computational Linguistics, 2017. doi: 10.18653/V1/
K17-1034. URL https://doi.org/10.18653/v1/K17-1034.

Bill Yuchen Lin, Sida Wang, Xi Victoria Lin, Robin Jia, Lin Xiao, Xiang Ren, and Scott Yih. On
continual model refinement in out-of-distribution data streams. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pp. 3128-3139. Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.
ACL-LONG.223. URL https://doi.orqg/10.18653/v1/2022.acl-1long.223.

Ryan Martin. Regularized e-processes: anytime valid inference with knowledge-based efficiency
gains, 2025. URL https://arxiv.org/abs/2410.01427,

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associ-
ations in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurlPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/6£1d43d5a82a37e89b0665b33bf3al82-Abstract-Conference.htmll

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In /CLR. OpenReview.net, 2023. URL https://openreview.
net/forum?id=MkbcAHIYgyS.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022a. URL https://
openreview.net/forum?id=0DcZxeWfOPt.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
based model editing at scale. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 15817-15831. PMLR, 2022b. URL https://proceedings.mlr.
press/v162/mitchell22a.htmll

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pp. 5418-5426. Association for Computational
Linguistics, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.437. URL https://doi.org/
10.18653/v1/2020.emnlp-main.437.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Gregory Wayne.
Experience replay for continual learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
348-358, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
fa7cdfadlabaaf8370ebedad/alfflc3-Abstract.html.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
caelbaabaa’/68aed4ab993a8ad4f4faced—Abstract.html.

11

http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/2022.acl-long.223
https://arxiv.org/abs/2410.01427
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html

Under review as a conference paper at ICLR 2026

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey. ACM Comput. Surv., 57(3):59:1-59:37, 2025. doi:
10.1145/3698590. URL https://doi.org/10.1145/3698590.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-
indexed dynamic lora. In AAAI Conference on Artificial Intelligence, 2023. URL https:
//api.semanticscholar.org/CorpusID:266362196.

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large
language models: A survey. ACM Comput. Surv., 57(8):193:1-193:35, 2025. doi: 10.1145/
3716629. URL https://doi.org/10.1145/3716629.

A STATISTICAL RELIABILITY AND CONFIDENCE INTERVALS

A.1 METRICS AND NOTATION

Let Diese = { (4, ¥:) iy and Degies = {(x;, y5) ?‘;“1. With a task scoring function m(g,y) € [0, 1]

(0 or 1 boolean accuracy for classification, and calibrated F1 for QA) [Hartvigsen et al|(2023), we
report

e TNed

TRR = > m(foc(xi),yi), ERR = < > m(foc(z;),y;), AVG. = 5(TRR + ERR).

n, n
te .4 ed =1

Unless noted otherwise, results are averages over 5 independent random seeds.

A.2 INTERVAL ESTIMATION
For each metric and each seed, we compute sample-level bootstrap confidence intervals:

1. Resample (with replacement) from Dy or Degits to the original set size; compute the metric
on the resample.

2. Repeat B = 10,000 times to form an empirical distribution.
3. Report the 2.5% and 97.5% percentiles as a 95% CI.

We aggregate across seeds via a two-stage bootstrap: form per-seed Cls, then bootstrap over the 5
seed indices to obtain a CI for the seed-mean. This is robust in streaming and compatible with paired
tests.

A.3 PAIRED SIGNIFICANCE TESTS VS. BASELINES

To compare against GRACE |[Hartvigsen et al.| (2023)) and other baselines, we use paired procedures
that control shared variance at the (sample, seed) level:

 Paired permutation test: For each aligned (CleanEdit, GRACE) pair, compute the per-
(sample, seed) difference; randomly flip signs across 1k permutations; compute a two-sided
p-value.

* Paired bootstrap: Resample (with replacement) in the Cartesian product of samples and
seeds; report the CI of the mean difference.

We control FWER across multiple datasets, schedules, and thresholds using Holm—Bonferroni; un-
less noted, the significance level is a;=0.05.

B E-PROCESS BOUNDARIES, TYPE-I CONTROL, AND SAMPLE COMPLEXITY

This appendix expands the “optional anytime e-process guard” used with Theorems[TH2]in the main
text, including the construction of radg (¢, §) and the guarantees.

12

https://doi.org/10.1145/3698590
https://api.semanticscholar.org/CorpusID:266362196
https://api.semanticscholar.org/CorpusID:266362196
https://doi.org/10.1145/3716629

Under review as a conference paper at ICLR 2026

B.1 BAD-EVENT MODELING AND E-PROCESS CONSTRUCTION

For key k, define Z, , = H‘{H,ia) (xe,y¢) < 0} € {0,1} (Eq. EI); only activations of k are counted.
Let ny(t) be the activation count up to ¢ and Sy = ngt Z s

Beta—Binomial mixture e-value. For any ¢ > p*, define the likelihood ratio

St ’I’Lk(t)—St
q 1—g¢q
Ai(q,p*) = (*) (1 *> :
D —p

With prior ¢ ~ Beta(ag, Bo) (default ag=pFp=1), the mixture e-value

£ = / (g, p*) w(q) dg
q€(p*,1]

is a nonnegative supermartingale under the null p;, < p*. By Ville’s inequality,

P(sup& > (1;> < 0.

t>1

B.2 FROM E-VALUES TO AN ANYTIME RADIUS radg(¢, d)

Let py(t) = St /ni(t). We obtain an anytime upper bound by inverting the e-process:

~ c1(log 5 + loglog(e + ny(t))) c2(log 3 + loglog(e + ny(t)))
(s 0) = \/) G |

with constants ¢; € [1/2,1], c2 € [0,1/3] determined by the chosen e-process; one may also
numerically invert maxy<p+rada & < 1/0 to obtain a tighter bound.

B.3 TyYPE-I CONTROL
If pr, < p* and we prune only when p(t) — p* > rady (¢, 0), then by Ville’s inequality the proba-

bility of pruning at any time is at most § (anytime false-positive control), matching the main text’s
statement.

B.4 SAMPLE COMPLEXITY
We have covered the sample complexity in Theorem 2] If p;, > p* + A with A > 0, then as soon

as p(t) — p* = A > rady(t,), pruning occurs. Using the bound above, there exists a constant C
(dependent on the e-process) such that

1 1
EIOgE = radi(t,0) < 1A,

nk(t) < C
yielding pruning within O(A~2log(1/6)) activations wp. > 1 — §, consistent with Eq. @

13

Under review as a conference paper at ICLR 2026

Table 7: Effect of pruning threshold o at =3 on the Document Classification task. Numbers
are TRR, ERR, and Avg. Per-schedule best operating point is bolded.

Comprehensive Progressive Dynamic
TRR ERR Avg. TRR ERR Avg. TRR ERR Avg.

100 .82 99 91 82 92 87 94 8 91
15 83 100 92 8 95 8 9 84 87
20 8 100 93 82 95 8 87 94 .92
25 83 100 92 82 95 89 90 84 87
30 82 99 91 8 9 8 90 92 91
35 .82 1.00 .91 82 92 87 8 93 91
40 82 9 91 8 9 8 88 93 091
50 82 9 91 82 95 8 &4 9 92
100 8 99 91 8 95 & 84 99 92
200 82 9 91 8 9 8 82 99 91

B.5 EFFICIENT ONLINE COMPUTATION OF rad

Algorithm 2 Online computation of rady (¢,) via numerical inversion

Inputs: activations n, bad events .9, tolerance p*, risk §
1: p < S/n; search interval [0, min(1 — p*, 1)]
2: for binary search until numerical tolerance €,y do
midpoint r; set u < p* +r
4 compute & (u) (mixture integral; discretization acceptable)
5 if £, (u) < 1/0 then
6: move left
7
8
9

else
move right

: returnrad < r

C FuLL SWEEPS RESULTS

C.1 EFFECT OF DIFFERENT PRUNING THRESHOLD «

Table[7] We fix e=3 and sweep the pruning threshold a € {10, 15, 20, 25, 30, 35, 40, 50, 100, 200}
under three schedules—Comprehensive (C), Progressive (P), and Dynamic (D). We evaluate
the Document Classification task and report TRR, ERR, and their average; bold indicates the
per-schedule best operating point.

C.2 EFFECT OF DIFFERENT INITIAL €
Table 8] With a=20 fixed, we vary e € {0.001,0.01,0.1,1.0, 3.0,10.0,100.0, 1000.0} for three

schedules on the same task. We report ERR, TRR, and ERR-Total; “~" denotes configurations that
were not run.

D BOUNDED RECYCLING QUEUE—PROOFS AND ENGINEERING

This appendix supplies the details referenced as “bounded queue yields O(1) amortized mainte-
nance” and complements Eqs. [T2HI3]

D.1 DERIVING EQUATION NO.13

This is the mathematical proof for Eq. Let &7 be the set of distinct edited instances up to time
T, and 7‘; the cumulative number of retries of instance j by time ¢ (Eq. , with 7";- < Rpax. Then

14

Under review as a conference paper at ICLR 2026

Table 8: Epsilon ablation results (SCOTUS Document Classification; «=20).

Method Epsilon ERR TRR Avg
0.001 22 97 .60
0.01 47 97 72
0.1 1.00 97 .99
Comprehensive 1.0 1.00 97 .99
3.0 1.00 .85 93
10.0 .99 .82 91
100.0 .99 .82 91
1000.0 .99 .82 91
0.001 21 97 .59
0.01 37 97 .67
0.1 1.00 97 .99
Progressive 1.0 1.00 97 .99
3.0 .94 .83 .89
10.0 .94 .83 .89
100.0 - - -
1000.0 - - -
0.001 22 97 .60
0.01 47 97 72
0.1 1.00 .97 .99
Dynamic 1.0 1.00 97 .99
3.0 .87 .94 91
10.0 .20 .98 .59
100.0 17 .99 .58
1000.0 17 .99 .58

Z T? S Rmax |ST|
JEET

Let Nprunea(t) be the number of keys pruned by ¢, and Npenging(t) the number of currently failing
items waiting for a retry check. The queue length satisfies

|Qt| S Rmax Npruned (t) + Npending (t)7

yielding O(1) amortized time per maintenance trigger.

D.2 IMPLEMENTATION NOTES
* Queue policy: FIFO with optional source dedup to prevent blow-ups; add age-weighting
to avoid starvation.

* Minimal GRACE Hartvigsen et al.[(2023) edit: prioritize add—expand—split to re-
store correctness with minimal perturbation.

* Idempotence: if the dequeued item is already fixed by other updates, drop it without con-
suming the retry budget.

E DATA AND MODEL
This appendix expands the experimental setup from Sec. [4.1]

E.1 SCOTUS DOCUMENT CLASSIFICATION

o Splits: train (1946-1982), validation (rolling-window sampling), test (1982—-1991), edit
stream (1992-2009; each miss triggers an edit).
¢ Model: BERT-base (~120M)Breton et al.| (2025).

e Metrics: TRR on the test set, ERR on the cumulative edit set. TRR measures the retention
rate on test data, while the ERR measures the retention rate on edit data.

15

Under review as a conference paper at ICLR 2026

E.2 ZSRE AND NQ QUESTION ANSWERING

e Models: T5-small (~60M) Roberts et al.|(2020).
* Decoding: beam or top-p; post-processing (case/punctuation normalization).

* Scoring: F1/EM Hartvigsen et al.|(2023) mapped to s(x, y; f) € [0, 1]; adequacy threshold
a=0.9 (as in the main text).

F COMPLEXITY, IMPLEMENTATION, AND EXTENDED PSEUDOCODE

This appendix elaborates on implementation complexity and extends Algorithm [I] from the main
text.

F.1 TIME AND SPACE COMPLEXITY
* Retrieval: per layer ¢, nearest neighbor (Egs. [[H2). Brute force O(N,d); with ANN
(HNSW and IVF), expected O(log N;) depending on recall.

* Evidence logging: for each fired key, compute the task score and update a constant-time
counter; if recording counterfactual Ay, (Eq. H), add one suppressed forward (can share
caches).

» Maintenance: per-trigger scanning of active keys and queue operations; amortized O(1)
(App.[D).

* Memory: codebooks of size), Ny; per-key Cy, By, (n,S) statistics; ANN index over-
head is implementation-dependent.

F.2 PLUGGABLE LOGGING AND ANYTIME GUARD

Algorithm 3 Per-trigger evidence and guard (extends Algorithm

Inputs: fired key &, sample (2, y:), threshold a, risk §
1: compute s; <— $(z¢, ye; fo.c)s set Zy < W{s, < a}

update ny < ng + 1, Si < Sk + Zi +, and accumulate C},, By, per schedule
if counterfactual logging enabled then

compute/cache Ag(x¢, yt)
if anytime guard enabled then

compute rady(nk, Sk, d) (Alg.[2|or closed-form bound)

if pr, — p* > rady then

mark k as prunable

F.3 DYNAMIC TRIGGERING VIA E-PROCESS CHANGE DETECTION

Dynamic mode monitors 'ﬁ{T{t,]ﬁ{T{t. If an e-process detector crosses an anytime threshold, a
maintenance trigger fires; with safety margin v and bounded drift V7, the expected number of trig-
gers over horizon T scales as O(14Vr/~), matching the “avoids rapid toggling” claim in the main
text.

F.4 MULTI-KEY, MULTI-LAYER CONCURRENCY
If multiple layers fire on the same input, we use layer-wise independent accumulation with deferred

pruning: an input only updates counters; actual pruning is decided at triggers, layer by layer, in
parallel (with proper locking for index updates).

G FORMULA ELABORATIONS
Edited representation (Eq. El) as gated routing. Define a gate ¢(©) () € {0, 1} based on d* and

g,
RO () = g0 () -0 + (1 - gO(2)) - 1S (B D (a)).

16

Under review as a conference paper at ICLR 2026

Metric-anchored vs. counterfactual harm (Egs.[4,[5). A} quantifies loss difference from ablat-

ing k on a specific example, while H ,ga) forms a thresholded indicator Z}, ; for streaming decisions.
They are complementary: metric-anchored harm yields a lightweight, anytime-testable statistic; op-
tional Ay improves diagnostics (e.g., identifying neutral-but-redundant keys).

Regret bound intuition (Eq. [II). The policy is elimination-style: keys with p; > p* are re-
moved within O(A~2log(1/6)) activations (Theorem , while benign keys enjoy type-I control

(Theorem . The overall expected regret collects a finite “exploration” term plus a 6(\/?) stability
term.

H REPRODUCIBILITY CHECKLIST AND RAW TABLES

H.1 HARDWARE AND SOFTWARE ENVIRONMENT

Take conducting the SCOTUS-bert document classification with zsRE by Dynamic (CleanEdit)
a=20 as an example:

* GPUs: 1x NVIDIA A100 PCle 40GB.

* CPU: Intel Xeon Processor (Skylake, IBRS).

* RAM: 629GB system memory.

* Frameworks: PyTorch 2.4.1, Transformers 4.46.3, CUDA 12.4, Python 3.8.10.
* Random seeds: 42.

* Model: tomh/scotus-bert (BERT-based model with 120-million parameter).
 Editor: GRACE [Hartvigsen et al.|(2023)).

* Pruning: CleanEdit: Dynamic schedule with o, € = 3.0.

* Training parameters: batch_size=1, edit_lr=1.0, n_iter=100, max_n_edits=1000.

* Experiment duration: Approximately 2.5 hours.

I LIMITATIONS AND FUTURE WORK

Nonstationarity and drift. The anytime guard controls false alarms, but fixed p* and a can be-
come suboptimal under rapid drift. Adaptive thresholds and hierarchical guards are promising.

ANN retrieval bias. Imperfect recall in ANN can bias activation statistics. In practice, recheck
high-frequency keys with exact NN to calibrate.

Cross-layer interactions. We accumulate evidence per layer; in tightly coupled models, multi-key
interactions may require a joint (multivariate) guard.

Beyond QA and Classification. Extending s(-) to structured prediction or multimodal tasks may
need sequence- or region-level adequacy thresholds.

17

Under review as a conference paper at ICLR 2026

J GLOSSARY OF TERMS AND SYMBOLS

Table 9: Key symbols

Symbol Meaning

fo frozen backbone

c® layer-¢ codebook (key/value/radius)

kzga, vy), 55& key i’s components

i*,d* nearest index and distance (Egs. [12)

R® edited layer representation (Eq. D

Ak counterfactual harm (Eq.

H ,i“), Lyt metric-anchored harm and bad-event indicator (Eqs.
Ck, B counters used by the pruning rule (Eq.

« pruning-count threshold

p 6 tolerated bad-event rate and risk for the guard
radg(t,9) anytime radius (App.

Rinax retry cap for the queue (Eqgs. [12H13)
TRR/ERR test retention / edit retention (Sec. ml

Cross-reference summary (ensuring main-text pointers are satisfied):

“Statistical reliability (Cls, paired tests, bootstrap) follows AppendixA” — App. @
* “Optional anytime e-process guard” and related theorems — App.
* “Bounded recycling queue; O(1) amortized maintenance” — App.@

“Full sweeps appear in AppendixC” — App.

Optional further additions (placeholders reserved):

L. Multivariate guard for cross-layer keys—extend App.[B|with joint e-processes.
2. Key merge/dedup policies—extend App.[F] with merge thresholds and centroid updates.

3. Fine-grained error profiling—extend App. |[C| with confusion-style breakdowns (post-edit
regressions, overgeneralization, domain drift).

K ETHICS STATEMENT

K.1 THE USE oF LLM

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
we used OpenAl GPT-4o for writing polish. The model was prompted with “Help me polish this
paragraph, using a book-style expression.” The LLM was only employed for language refinement
and did not generate any novel content, experimental results, or analysis. All outputs were reviewed
and verified by the authors, who take full responsibility for the final manuscript.

K.2 LIMITATIONS AND SOCIAL IMPACT

CleanEdit maintains a memory of edits that may encode user-provided corrections. Care must be
taken when edits contain sensitive text. Memory growth is actively controlled, but deployment
should still budget for storage and retrieval. When the environment drifts adversarially, Dynamic
triggers may fire frequently; the retry cap prevents oscillation, yet sustained drift may require retun-
ing thresholds.

18

	Introduction
	Related Work
	Taxonomy and Adaptor-based Lifelong Editing
	Pruning for Stable Editing

	Method
	Preliminaries and Notation
	Per-Key Evidence: Counterfactual and Metric-Anchored Harm
	Anytime, Thresholded Evidence Pruning
	Online Decision-Theoretic View and Regret
	Bounded Recycling Queue
	Scheduling and Implementation

	Experiments
	Experiment Setup
	Main Results across Benchmarks
	Strategy Knobs for Deployment
	Choosing an Execution Schedule
	Choosing a Pruning Target

	Ablations via Operational Knobs
	Effect of the Pruning Threshold
	Effect of the Routing Radius
	Effect of the Retry Cap Rmax

	Conclusion
	Statistical Reliability and Confidence Intervals
	Metrics and Notation
	Interval Estimation
	Paired Significance Tests vs. Baselines

	e-Process Boundaries, Type-I Control, and Sample Complexity
	Bad-Event Modeling and e-Process Construction
	From e-Values to an Anytime Radius rad extunderscore k(t,delta)
	Type-I Control
	Sample Complexity
	Efficient Online Computation of rad

	Full Sweeps Results
	Effect of Different Pruning Threshold alpha
	Effect of Different Initial epsilon

	Bounded Recycling Queue—Proofs and Engineering
	Deriving Equation No.13
	Implementation Notes

	Data and Model
	SCOTUS Document Classification
	ZsRE and NQ Question Answering

	Complexity, Implementation, and Extended Pseudocode
	Time and Space Complexity
	Pluggable Logging and Anytime Guard
	Dynamic Triggering via e-Process Change Detection
	Multi-Key, Multi-Layer Concurrency

	Formula Elaborations
	Reproducibility Checklist and Raw Tables
	Hardware and Software Environment

	Limitations and Future Work
	Glossary of Terms and Symbols
	Ethics Statement
	The Use of LLM
	Limitations and Social Impact

