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Unveiling and Mitigating Bias in Audio Visual Segmentation
Anonymous Authors

ABSTRACT
Community researchers have developed a range of advanced audio-
visual segmentation models aimed at improving the quality of
sounding objects’ masks. While masks created by these models
may initially appear plausible, they occasionally exhibit anomalies
with incorrect grounding logic. We attribute this to real-world in-
herent preferences and distributions as a simpler signal for learning
than the complex audio-visual grounding, which leads to the disre-
gard of important modality information. Generally, the anomalous
phenomena are often complex and cannot be directly observed
systematically. In this study, we made a pioneering effort with
the proper synthetic data to categorize and analyze phenomena
as two types “audio priming bias” and “visual prior” according to
the source of anomalies. For audio priming bias, to enhance au-
dio sensitivity to different intensities and semantics, a perception
module specifically for audio perceives the latent semantic infor-
mation and incorporates information into a limited set of queries,
namely active queries. Moreover, the interaction mechanism related
to such active queries in the transformer decoder is customized to
adapt to the need for interaction regulating among audio seman-
tics. For visual prior, multiple contrastive training strategies are
explored to optimize the model by incorporating a biased branch,
without even changing the structure of the model. During experi-
ments, observation demonstrates the presence and the impact that
has been produced by the biases of the existing model. Finally,
through experimental evaluation of AVS benchmarks, we demon-
strate the effectiveness of our methods in handling both types of
biases, achieving competitive performance across all three subsets.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Audio-Visual Segmentation, Multimodal Bias, Multimodal Learning

1 INTRODUCTION
In the real world, audio and visual are two closely related modalities
that provide fundamental perception in regular life, often applied
in forms such as videos. One classic task within the field of audio-
visual understanding is Audio-Visual Localization (AVL) [17, 36],
which enables the unsupervised localization of sounding objects
by utilizing sound as guidance. With the increasing demand for
stronger perceptual capabilities in autonomous driving [37, 48], and
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Figure 1: The illogical anomalies caused by biases. (a) Even
if each audio yields a satisfactory mask separately, the dom-
inance still exists when they overlap. (b) In training data,
the piano generally sounds. During testing, regardless of the
sound presented, the model still tends to prioritize the pi-
ano. These two phenomena of the illogical anomalies can
be categorized into “audio priming bias”, and “visual prior”,
which typically are simultaneously observed as a general
impediment in the AVS model.

embodied intelligence [13, 31], there is an urgent to establish finer
grounding beyond bounding boxes and heat maps between audio
and visual elements. Therefore, a new task called Audio-Visual
Segmentation (AVS) has emerged. It introduces a pixel-level, fine-
grained scene understanding, bringing novel challenges to the field
of audio-visual understanding. Furthermore, the performance of
AVS showcases the current ability of machines to understand and
integrate modalities in complex scenarios.

The existing works on AVS can be broadly categorized into
fusion-based [18, 22, 25, 28, 46] and prompt-based methods [10,
29, 30, 38] according to Wang et al. [38]. The former primarily
integrates audio and visual information at different stages to lo-
calize sounding objects, while the latter focuses on generating
effective audio prompts and further finetuning the visual foun-
dation model pre-trained on large segmentation datasets [20, 44].
Currently, prompt-based methods are the cutting-edge models in
this field, demonstrating exceptional performance. However, re-
searchers have observed illogical anomalies in these approaches
[38, 43]. As illustrated in Fig. 1, even when the mask of the object
seems plausible, two anomalous but interesting phenomena can be
observed. 1) The segmentation results after overlaying audio do not
align with the superimposition of masks guided by separate audios,
even when each audio yields a satisfactory mask. Instead, domi-
nance occurs. 2) Regardless of whether the piano produces sound,
the model usually tends to segment the piano. Phenomena like Fig.
1 have a wide impact on the current model, which makes analyzing
and addressing these phenomena an urgent work to improve the
grounding behavior.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Generally, the phenomena depicted on the left and right sides
of Fig. 1 are often coupled and cannot be directly observed individ-
ually. We manage to control the influencing factor with artificial
data, including volume, etc., and reasonably categorize phenomena
into two types of biases: “audio priming bias” and "visual prior”.
Specifically, “audio priming bias” refers to the phenomenon that
the model tends to focus on audio salient content but not whole
content. This bias is characterized by the model’s insensitivity to
audio of specific intensity or semantics and consequently the domi-
nance of certain semantic audio in multi-source scenarios. As for
“visual prior”, it refers to the phenomenon that the model may
directly segment the common-sounding objects. The most common
observed form of such bias is that regardless of the audio guidance
employed, the model consistently segments the whole or part of
certain objects. It is evident that both of these biases significantly
impact the behavior of the current AVS models.

To provide the community with a comprehensive solution to
address these biases, we adopt the divide-and-conquer thought.
For audio priming bias, we first introduce semantic-aware ac-
tive queries. These active queries contain rich latent semantic
information gathered by the perception module, enhancing the
sensitivity to audio cues. Furthermore, we employ a customized
interaction mechanism in the transformer decoder specially de-
signed to enhance the active queries and suppress the dormant ones
for better collaboration of specific audio semantics. As for visual
priors, we explore three types of contrastive debias strategies
without changing the structure of the model. Our findings indicate
that the soft and gradual debias strategy based on uncertainty yields
superior results across various AVS methods including ours.

Finally, through experimental evaluation of AVS benchmarks,
we demonstrate the effectiveness of our methods in handling both
types of biases, achieving highly competitive performance across
all three subsets. In summary, our contributions are threefold:

• We make a pioneering attempt to categorize the complex
phenomena into two types of bias: “audio priming bias” and
“visual prior” with necessary observation and analysis.

• For audio priming bias, we propose semantic-aware active
queries and customized interaction mechanisms to improve
the sensitivity and cooperation of complex audio scenarios.
Then, for visual prior, the novel debias strategies are utilized
to contrastively reorganize the distribution of logits.

• Experimental results reveal that the proposed method and
strategy effectively mitigate biases while achieving versatil-
ity and comparable performance.

2 RELATEDWORKS
2.1 Audio-Visual Segmentation
Before the emergence of AVS, traditional AVL tasks [17, 32, 36]
relied on unsupervised learning that used bounding boxes or coarse
heat maps for predicting the positions of sounding objects. However,
for applications such as autonomous driving [37, 48], and embod-
ied intelligence [13, 31], a more precisely multimodal grounding
task to localize sounding objects at a pixel level is required. This
is where AVS comes into the stage. The existing AVS approaches
can be broadly categorized into fusion-based [18, 22, 25, 28, 43, 46]
and prompt-based [10, 29, 38, 41]. The pioneering fusion-based

work [46] employs a multi-stage strategy to integrate audio with
multi-scale visual features. Building upon this, CATR [22] further
proposes a segmentation paradigm that combines both temporal
and fusion information. Taking the thought of bidirectional genera-
tion, Hao el al. [14] achieve a further boosting on the performance.
In contrast, prompt-based methods like AVSegFormer [10] and
GAVS [38] directly decode fused features using projected audio
queries. Notably, GAVS leverages rich visual information to achieve
a generalizable model in zero-shot and few-shot scenarios. More-
over, taking a holistic perspective, Yan et al. [41] present a general
framework for AVS and Ref-VOS [39] (Referring Video Object Seg-
mentation), which both are cross-model guided video segmentation.
However, previous AVS studies have primarily focused on achieving
better multimodal fusion and plausible masks from the framework
perspective, without delving into the challenges underlying the
establishment of reasonable grounding.

2.2 Bias in Cross-Model Guided Tasks
Due to the widespread interest in the Visual Question Answering
(VQA) task [3, 4], researchers have tackled two types of bias, namely
“visual priming bias” and “language prior”, as discussed in previ-
ous works [33, 42]. “Visual priming bias” was initially identified
by Antol et al. [4], where models tend to prioritize visually salient
content while disregarding the other context [12, 42]. Subsequently,
the issue of "language prior” has gained attention from researchers
[2, 33, 42], referring to the tendency of models to generate sta-
tistically common answers (e.g. the problem of green and yellow
banana). The approaches for addressing the aforementioned bias
can be broadly categorized into non-extra-based methods [5, 8, 33],
and extra-based methods, involving additional human supervision
[35, 40]. Different from extra-based methods, non-extra-based meth-
ods introduce a branch of the question-only model and conduct
joint training with the target VQAmodel by specific learning strate-
gies. Researchers have proposed several customized learning strate-
gies including sharing the same question encoder[33], blocking
the backpropagation of the question-only model [5], pretraining
question-only model [8]. Moreover, it has been discovered recently
that there is also a certain similarity between bias in VQA and
hallucination [21, 47] in the popular Multimodal Large Language
Model (MLLM).

However, the bias in AVS has never been explored by researchers
before. Here, we hold the holistic opinion that VQA and AVS, as
cross-model guided tasks, share certain similarities. VQA involves
obtaining answers to questions based on image cues, while AVS
involves obtaining masks from images based on audio cues. There-
fore, in simple terms, VQA can be understood as a symmetrical
problem to AVS in terms of modalities. So, the anomalous phenom-
ena observed in AVS can potentially be explained by the bias theory
present in VQA.

3 PROBLEM AND ANALYSIS
Based on the same thought of bias categories in VQA [42], we simi-
larly classify the phenomena of anomalies into two types, “audio
priming bias”, and “visual prior” in Fig. 1. The segmentation failure
cases observed in the previous model often tend to be a combination
of both biases.
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Figure 2: The illustration of audio priming bias. We have discovered that higher audio intensity results in stronger guiding
capabilities in the green block. Also, the audio with distinct semantic attributes is easier to learn and possesses stronger guiding
capabilities in the grey block. For instance, music has a greater guiding capability compared to human sound. Consequently,
the diverse guiding capabilities cause the phenomenon of dominance in the red block.

3.1 Audio Priming Bias
The phenomenon that the model tends to focus on audio salient
content but not whole content is called “audio priming bias”. Firstly,
through observation experiments involving manual intervention in
audio (detailed in the appendix), we have observed the phenomenon
of audio priming bias as illustrated in Fig. 2. Hence, the following
observations can be discerned. 1) Audio with different intensities
demonstrates varying guiding capability, as shown in Fig. 2 green
block. 2) When controlling other variables including volume, we
can observe a clear variance of the guiding capability by different
semantics through the box plot. 3) In cases where multiple audios
are simultaneously present, the overlaying of audio does not always
lead to separate related masks being superimposed. Instead, the
dominant of the audio appears as shown in Fig. 2 red block. There-
fore, we contend that the primary determinants of audio guiding
abilities are the intensity and semantic attributes of the audio.
Consequently, the diverse guiding capabilities give rise to the phe-
nomenon of dominance. Therefore, a well-designed mechanism is
demanded to alleviate audio priming bias.

3.2 Visual Prior
The phenomenon that themodel may directly segment the common-
sounding objects is called “visual prior”. Figure 4 reveals that, regard-
less of the audio provided, the AVS model consistently segments
the partial or entire region of the particular object. Since the piano
generally appears with a high sounding probability in the training
data, the model tends to segment once sees the piano. Statistically,
the occurrence frequency in [45] and the sounding probabil-
ity in Fig. 4 between different semantics are imbalanced in the
dataset. According to previous works [21, 23, 33], such preference
and distribution provide strong prior information and make the
model inclined to obtain statistically plausible results, rather than
achieving the desired challenging grounding behavior. Moreover,

due to the imbalance of inherent preference and distribution in the
real world, addressing visual prior becomes more significant.

4 METHODS
The overall pipeline for the AVS task is normally constructed by the
encoder-decoder structure in Fig. 3 involving an image encoder, a
pixel decoder, and a transformer decoder. Generally, the multimodal
information is fused and perceived in the transformer decoder [7, 10,
19, 22]. Therefore, the mitigation of audio priming bias requires
an enhancing mechanism in the transformer decoder, while the
mitigation of visual prior requires distribution reorganization after
acquiring the logits. Methodologically, on one hand, to enhance the
audio sensitivity and cooperation of different intensity and semantic
attributes, we introduce the semantic-aware active queries utilizing
a perception module and interaction enhancement mechanism.
On the other hand, multiple training strategies are explored to
contrastively optimize the debias model and reorganize the logits
without modifying the structure.

4.1 Preliminaries
Given an audio-visual video sequence, we first divide it into 𝑡 non-
overlapping audio and visual segment pairs with a length of 1𝑠 .

Visual. After the division, we extract visual representations
𝐹𝑉 ∈ R𝑡×𝑑𝑉 ×𝐻×𝑊 using a pre-trained Swin-base model [9]. The vi-
sual encoder is frozen and only tuned with two-layer MLP adapters.

Audio. Similarly, audio representations 𝐹𝐴 ∈ R𝑡×𝑑𝐴 is encoded
from VGGish [11, 15], where 𝑡 represents the duration of the audio
in seconds and matches the number of video frames. The audio
representations are extracted in advance by the frozen encoder.

Task.Given a datasetD = {𝐹 𝑖
𝑉
, 𝐹 𝑖

𝐴
,M𝑖

𝑔𝑡 }𝑛𝑖=1 consisting of triplets
of images 𝐹 𝑖

𝑉
∈ 𝐹𝑉 , audio 𝐹 𝑖𝐴 ∈ 𝐹𝐴and masksM𝑖

𝑔𝑡 ∈ M𝑔𝑡 , the AVS
task is to learn the mapping G(𝐹𝑉 , 𝐹𝐴) → M𝑔𝑡 .
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Figure 3: In conventional semantic segmentation, the learn-
able queries are solely responsible for generating regions.
However, in an ideal AVS model with a similar structure,
the learnable queries need to not only generate regions but
also perceive and regulate the interaction between audio
semantics. So, this mechanism is designed to enhance the un-
derstanding of latent semantics and improve the interaction
to only occur between semantic-aware active queries.

4.2 Semantic-Aware Active Queries
In transformer decoder of conventional semantic segmentation,
each learnable query (∈ R1×𝑑𝐴 among initialized learnable queries
𝑞 ∈ R𝑡×𝑁×𝑑𝐴 , where 𝑁 is the number of learnable queries in 1𝑠
interval) functions like a region proposal network [34] and has
the ability to generate mask proposals. These queries are simply
inherited by repeatedly adding audio features 𝐹𝐴 , in the AVS model
[10, 22, 38] as shown in the upper block in Fig. 2. However, in an
ideal AVS model, the learnable queries need to not only generate
regions but also perceive and regulate the interactions between
audio semantics adaptively.

To achieve the basic perception of audio semantics, we first
introduce the following perception module aiming to enhance sen-
sitivity to audio of various intensities and semantics. The logical
and straightforward approach is to employ a separately trained
projection Φ(·) module with an optimization objective for audio
alone to perform a coarse perception of latent audio semantics and
to finally project to a latent semantic mark Φ(𝐹𝐴) ∈ R𝑡×𝑁 with
padding of 0.

Φ(𝐹𝐴) = {1, 𝑥1, 𝑥2, ...}, (1)

𝑥𝑖 =

{
1 if 𝐹𝐴 ∈ 𝑖𝑡ℎ class or cluster,
0 otherwise.

(2)

Here, we use K-means, GaussianMixtureModels (GMMs), or BEATs
[6] to perform projection in both unsupervised and supervisedways.
So each audio segment will be assigned with 1 ≤ C ≤ 8 classes
or C = 1 clusters. The overall goal of a latent semantic mark is
a coarse filter to have a coarse and basic perception of the audio
semantics. The items encoded by 1 in Φ(𝐹𝐴) are termed active
marks, whereas those encoded by 0 in Φ(𝐹𝐴) are termed dormant
marks. The active or dormant states are relative and vary from
samples. Afterward, each audio segment will receive the latent
semantic marks Φ(𝐹𝐴) ∈ R𝑡×𝑁 based on the projection mentioned
above. Then the semantic-enhanced audio features are obtained by
element-wise product ⊙ with broadcast

𝐹 ′𝐴 = repeat(𝐹𝐴, 𝑁 ) ⊙ Φ(𝐹𝐴), (3)

where 𝐹 ′
𝐴

∈ R𝑡×𝑁×𝑑𝐴 is semantic-enhanced audio features. Fur-
thermore, we consistently encode the 0𝑡ℎ mark out of𝑁 as an active
mark shown in Eq. 1 to capture global audio semantic information.

Building upon the semantic-enhanced audio features, we carry
out self-attention SA(·) with the residual of initialized learnable
queries 𝑞 and obtain the semantic-aware queries 𝑞′ as

𝑞′ = SA(𝐹 ′𝐴, 𝐹
′
𝐴, 𝐹

′
𝐴) + 𝑞 = softmax

(
𝐹 ′𝐴𝐹

′
𝐴
𝑇
)
𝐹 ′𝐴 + 𝑞, (4)

where 𝑞′ ∈ R𝑡×𝑁×𝑑𝐴 is the semantic-aware queries. Here, to en-
hance conciseness, the equations in this paper for attention have
excluded projection and scaling factors. The semantic-aware queries
obtained are utilized as the learnable query inputs for the trans-
former decoder layers. Similarly, the queries in the same position
corresponding to latent semantic active marks are active queries 𝑞′𝑎 ,
while those corresponding to dormant marks are dormant queries
𝑞′
𝑑
, where {𝑞′} = {𝑞′𝑎} ∪ {𝑞′

𝑑
}. Moreover, the adequate number

of active queries 𝑞′𝑎 per segment is ensured in multiple ways and
please refer to the appendix for more details.

4.3 Enhancing Interaction within Active
Queries

After introducing active and dormant queries, we observed that
regions proposed by dormant queries are sometimes unnecessarily
optimized and backpropagated. It is clearly detrimental since dor-
mant queries do not contain adequate audio semantic information.
The widely used transformer decoder layer in per-mask segmenta-
tion consists of three modules to process learnable query features
𝑞 ∈ R𝑁×𝑡×𝑑𝐴 in the following order: a cross-attention CA(·), a self-
attention module SA(·), and a feed-forward network 𝐹𝐹𝑁 (·). For
the original transformer decoder, the interactions occur between all
learnable query features, and the same query can propose regions
of different semantics. Original cross-attention and self-attention
in 𝑙𝑡ℎ layer can be denoted as

𝑞𝑐𝑎(𝑙 ) = CA(𝑞 (𝑙−1) , 𝐹𝑉(𝑙 ) , 𝐹𝑉(𝑙 ) ) + 𝑞 (𝑙−1)

= softmax(m(𝑙−1) + 𝑞 (𝑙−1)𝐹𝑉(𝑙 ) )𝐹𝑉(𝑙 ) + 𝑞 (𝑙−1) , (5)
𝑞𝑠𝑎(𝑙 ) = SA(𝑞𝑐𝑎(𝑙 ) , 𝑞

𝑐𝑎
(𝑙 ) , 𝑞

𝑐𝑎
(𝑙 ) ) + 𝑞

𝑐𝑎
(𝑙 )

= softmax(𝑞𝑐𝑎(𝑙 )𝑞
𝑐𝑎
(𝑙 )

𝑇 ) + 𝑞𝑐𝑎(𝑙 ) , (6)

where 𝑙 is the layer index, 𝑞 (𝑙 ) refers to the query features corre-
sponding to the learnable queries 𝑞. 𝑞𝑐𝑎(𝑙 ) and 𝑞

𝑠𝑎
(𝑙 ) is the temporary
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Figure 4: Illustration of visual prior. (a) The model always tends to learn statistically plausible results, rather than achieve the
harder desired grounding behavior. Note: the bar chart uses blue to represent the proportion of the object being present in
the image and emitting sound, while the orange color represents the proportion of the object being present but not emitting
sound. As an example, since the piano generally appears with a high sounding probability in the training data, the model will
segment once sees the piano. (b) To deal with the visual prior, we introduce debias strategies through the idea of contrasting
the audio-visual model with the biased branch. (c) The ideal result is the mask without visual prior.

state after the cross-attention CA(·) and after self-attention SA(·)
respectively. Note, 𝐹𝑉(𝑙 ) are the image features under transforma-
tion, m(𝑙 ) is the masked attention introduced by Chen et al. [7].

However, we argue that audio interactions should only occur
between active queries related to perceived latent semantics. This
ensures that a specific set of active queries should only propose the
region of the same semantics.

𝑞𝑐𝑎𝑎 (𝑙 ) = CA(𝑞′𝑎 (𝑙−1) , 𝐹𝑉(𝑙 ) , 𝐹𝑉(𝑙 ) ) + 𝑞
′
𝑎 (𝑙−1) , (7)

𝑞𝑠𝑎𝑎 (𝑙 ) = SA(𝑞𝑐𝑎𝑎 (𝑙 ) , 𝑞
𝑐𝑎
𝑎 (𝑙 ) , 𝑞

𝑐𝑎
𝑎 (𝑙 ) ) + 𝑞𝑐𝑎𝑎 (𝑙 ) , (8)

where only active query features 𝑞′𝑎 (𝑙−1) are updated to 𝑞′𝑎 (𝑙 ) by
𝐹𝐹𝑁 (𝑞𝑠𝑎𝑎 (𝑙 ) ), and dormant query features 𝑞′

𝑑 (𝑙 ) , are masked during
backpropagation. Finally, based on the 𝑞′𝑎 (𝑙 ) in each layer, the mask
logits ∈ R𝑇×𝑁×𝐻×𝑊 and class logits ∈ R𝑇×𝑁×K are obtained,
where K is the number classes of semantics (K=1 for binary).

Following each transformer decoder layer, query matching aims
to determine which of the predicted regions fits the referred objects.
Therefore, we match the predicted regions from the active queries
and the ground truth regions by minimizing the matching cost

(M,M𝑔𝑡 ) = arg min
M∈M𝑞′𝑎

𝐶match
(
M𝑞′𝑎 ,M𝑔𝑡

)
, (9)

whereM𝑞′𝑎 are the regions proposed by 𝑞′𝑎 , andM𝑔𝑡 is the ground
truth of original image. M𝑞′𝑎 is calculated by multiplying mask
logits and class logits, so the cost 𝐶match evaluates the predicted
region in both mask and semantic level. In practice, we separately
compute the costs of mask and class logits and jointly optimize the
summation as 𝐶match. Then, the losses L are calculated in every

intermediate transformer decoder layer, and only the one in the
final layer is given a higher weight and used for inference.

Based on the method above, interactions related to active queries
are retained and enhanced, while interactions of dormant queries
are suppressed with a reduction of the computational workload.
Although this method slightly reduces the number of proposed
valid regions M𝑞′𝑎 , this trade-off is proven advantageous for better
cooperation between audio semantics in further experiments.

4.4 Contrastive Debias Strategy
To recognize bias and then avoid the biased region appearing along
with the referred region, it is a natural idea to introduce a new
biased branch and conduct joint training to the current AVS model
without modifying their structures. We first briefly bring up two
simple and direct methods and carry out analysis and experiment
for comparison. Subsequently, a well-designed uncertainty-based
strategy is proposed with competitive performance and versatility.
To maintain brevity, operations on 𝑙𝑜𝑔𝑖𝑡𝑠 in Sec. 4.4 are applied to
both mask logits and class logits separately.

To begin with, the simplest approach to reorganize the dis-
tribution is the direct logits ensemble strategy of separately
trained biased model G𝑏 (𝐹𝑉 ) → M𝑔𝑡 and vanilla AVS model
G(𝐹𝑉 , 𝐹𝐴) → M𝑔𝑡 , and subsequently merge their output logits
using simple operations such as weighted subtraction and multipli-
cation. As the second strategy, the bias-only strategy requires a
new objective of training by involving a bias-only branch with the
mapping of G𝑏 (𝐹𝑉 ) → M𝑔𝑡 and jointly optimize the overall model
with a bias-only branch. To obtain the debias logits, we simply
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compute an element-wise product ⊙ of the logits of G and G𝑏

𝑙𝑜𝑔𝑖𝑡𝑠 (Ḡ(𝐹𝑉 , 𝐹𝐴)) = 𝑙𝑜𝑔𝑖𝑡𝑠 (G(𝐹𝑉 , 𝐹𝐴))⊙𝜎 (𝑙𝑜𝑔𝑖𝑡𝑠 (G𝑏 (𝐹𝑉 ))), (10)

where Ḡ is the debias projection of the triplets D and 𝜎 is the
sigmoid function. The final optimization goal can be calculated
from the logits as

Lbias (G, 𝐹𝑉 , 𝐹𝐴,G𝑏 ) = L(Ḡ, 𝐹𝑉 , 𝐹𝐴) + L(G𝑏 , 𝐹𝑉 ), (11)

Based on the updated logits, the region of the man in Fig. 4 will be
given fewer logits and yield a greater loss than the original.

Although plausibly reorganizing the logits distribution, these
two methods demonstrate fluctuations in experiments and do not
consistently improve performance in popular methods. These is-
sues can be attributed to the hard and direct introduction of the
biased branch, which forces the network to learn from the large
distribution gap, resulting in fluctuations in gradient direction and
magnitude. To address this, we propose a soft and gradual strategy
by introducing audio uncertainty through Gaussian noise.

Our proposed uncertainty-based strategy provides a gradual
and soft way to estimate the biased output distribution. It does
not require multitask-like loss but involves contrast G𝑛 output
distributions derived from image and distorted audio inputs.We first
follow the idea of the forward diffusion process 𝑟 (𝐹𝐴(𝑇 ) | 𝐹𝐴(0) )
in image generation [16] to construct the distorted audio

𝑟

(
𝐹𝐴(𝜏 ) | 𝐹𝐴(𝜏−1)

)
= N

(
𝐹𝐴(𝜏 ) ;

√︁
1 − 𝛽𝐹𝐴(𝜏−1) , 𝛽I

)
,

𝑟

(
𝐹𝐴(𝑇 ) | 𝐹𝐴(0)

)
=

𝑇∏
𝜏=1

𝑟

(
𝐹𝐴(𝜏 ) | 𝐹𝐴(𝜏−1)

)
,

(12)

where 𝐹𝐴(0) denotes the original audio features without any noise
and 𝐼 refers to an identity matrix. We incrementally add a small
amount of Gaussian noise for 𝑇 steps. As step 𝜏 goes larger, the
amount of noise added in each step is controlled by 𝛽 . Finally, if
𝑇 → ∞, 𝐹𝐴(𝑇 ) will be completely distorted. Then, the final logits
are updated as

𝑙𝑜𝑔𝑖𝑡𝑠 (Ḡ(𝐹𝑉 , 𝐹𝐴)) =(𝛼 + 1)𝑙𝑜𝑔𝑖𝑡𝑠 (G(𝐹𝑉 , 𝐹𝐴))
− 𝛼𝑙𝑜𝑔𝑖𝑡𝑠 (G𝑛 (𝐹𝑉 , 𝐹𝐴(𝑇 ) )),

(13)

where larger 𝛼 values indicate a stronger amplification of differ-
ences between the two distributions (𝛼 = 0 reduces to regular logits).
During inference, 𝑇 → ∞, so 𝐹𝐴(𝑇 ) only contains Gaussian noise
for the biased branch. Based on such logits, the overall loss

Luncertainty = L(Ḡ, 𝐹𝑉 , 𝐹𝐴), (14)

is calculated by updated logits. Finally, the loss and mask result
will be calculated from the debias 𝑙𝑜𝑔𝑖𝑡𝑠 (Ḡ(𝐹𝑉 , 𝐹𝐴)). In summary,
replacing the hard bias-only branch with a gradually distorted audio
branch provides a soft and learnable transition for the model to
reorganize the distribution caused by visual prior.

4.5 Loss and Inference
Considering both masks and semantics, the overall loss L men-
tioned in Sec.4.4 is obtained within every intermediate transformer
decoder layer by mask loss L𝑚𝑎𝑠𝑘 [24] and class loss L𝑐𝑙𝑠 based

Figure 5: (a) The performance comparison of different meth-
ods on V1M under certain intensity conditions. Our method
brings more sensitivity to low-intensity scenarios. (b) The
performance comparison of differentmethods on ourCo-AVS
subsets. Our method has advantages in both performance
and robustness.

on the updated mask logits and class logits by debias strategy as

L = L𝑚𝑎𝑠𝑘 + 𝜆𝑐𝑙𝑠 · L𝑐𝑙𝑠 , (15)
L𝑚𝑎𝑠𝑘 = 𝜆𝑓 𝑜𝑐𝑎𝑙 · L𝑓 𝑜𝑐𝑎𝑙 + 𝜆𝑑𝑖𝑐𝑒 · L𝑑𝑖𝑐𝑒 , (16)

where L𝑚𝑎𝑠𝑘 is implemented by a combination of the dice loss
L𝑑𝑖𝑐𝑒 [29] and the focal loss L𝑓 𝑜𝑐𝑎𝑙 functions, and L𝑐𝑙𝑠 is imple-
mented by the cross-entropy loss.After adopting the active queries,
both losses L𝑚𝑎𝑠𝑘 ,L𝑐𝑙𝑠 are calculated and backpropagated within
the matched pairs of masks M from active queries and ground
truthM𝑔𝑡 . During inference, the overall logits ∈ R(K+1)×𝐻×𝑊 are
obtained by the multiplication of mask logits and class logits in the
last layer.

To address the shortcut effect resulting from easily learned re-
gions proposed by specific queries, we drop the relatively well-
learned pairs (M,M𝑔𝑡 ) under the probability of 𝑝 in the calculation
of L and empirical results show slight improvements.

5 EXPERIMENTS
5.1 Implementation Details
Dataset. Our proposed method is evaluated on the AVS Bench-
marks [46], which contains three subsets. Firstly, the single-source
subset (V1S) contains 4932 videos over 23 categories. In this subset,
only the first sampled frame is annotated. Secondly, the multi-
source subset (V1M) contains 424 videos that include two or more
sound sources and all sounding objects are visible in the frames.
Finally, the AVSBench-semantic (AVSS) subset, an extension of V1S
and V1M, contains 12,356 videos of 10𝑠 , differing from the 5𝑠 videos
in V1S and V1M. Additionally, to validate the cooperation perfor-
mance in complex audio scenarios, a small multi-source test set of
AVS called Co-AVS is created, containing 450 videos of 5𝑠 . Original
audio clips are replaced with synthesized audio clips of 6 different
levels intensities of each semantics, like the red block in Fig. 2.
Setting. We conduct training and evaluation using the VGGish
backbone pretrained on Youtube-8M [1] and Swin-base Transformer
backbone pretrained on semantic-ADE20K [44] by Mask2Former
[7]. The parameters 𝜆𝑓 𝑜𝑐𝑎𝑙 , 𝜆𝑑𝑖𝑐𝑒 , 𝜆𝑐𝑙𝑠 in the loss are set to 5, 5, 2, 1.
The AdamW optimizer is adopted with a learning rate of 1e-4 for
the visual encoder adapters and 1e-3 for other learnable parameters,
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Table 1: Comparison of performance on all three subsets of AVS-Benchmarks. The bold score is utilized to represent optimal
results. “-” refers to the methods that do not support the corresponding subsets. Except for specific references, the “strategy”
mentioned in the comparison refers to the uncertainty-based strategy that achieves the best outcomes.

Method Audio-backbone Visual-backbone V1S V1M AVSS
mIoU(%) F-score mIoU(%) F-score mIoU(%) F-score

AVSBench [46] VGGish PVT-v2 78.70 0.879 54.00 0.645 29.77 0.352
AVSC [26] VGGish PVT-v2 81.29 0.886 59.50 0.657 - -
AVS-BG [14] VGGish PVT-v2 81.71 0.904 55.10 0.668 - -
AQFormer [18] VGGish PVT-v2 81.60 0.894 61.10 0.721 - -
AuTR [28] VGGish Swin-Base 80.40 0.891 56.20 0.672 - -
BAVS [27] BEATs Swin-Base 82.68 0.898 59.63 0.659 - -
SAMA [29] VGGish ViT-Huge 81.53 0.886 63.14 0.691 - -
†CATR [22] VGGish PVT-v2 81.40 0.896 59.00 0.700 36.66 0.420
AV-SAM [30] ResNet18 ViT-Base 40.47 0.566 - - - -
AVSBG [14] VGGish PVT-v2 81.71 0.904 55.10 0.668 - -
GAVS [38] VGGish ViT-Base 80.06 0.902 63.70 0.774 - -
AVSegFormer [10] VGGish PVT-v2 82.06 0.899 58.36 0.693 32.80 0.385
MUTR [41] VGGish Video-Swin-Base 81.60 0.897 64.00 0.735 - -
Ours (w/o. strategy) VGGish Swin-base 82.92 0.928 66.12 0.792 41.93 0.476
Ours (w/. strategy) VGGish Swin-base 83.31 0.930 67.22 0.808 44.42 0.499
† CATR: To make a fair comparison, the results of CATR here are without supplemented annotation of the training set.

Table 2: Ablation study of the methods and strategies pro-
posed in this study on V1M.

Ablation mIoU(%) F-score
Ours 67.22 0.808
w/o. Contrastive debias strategy 66.12 0.792
w/o. Dropping dominant queries 65.95 0.790
w/o. Interaction enhancement 62.57 0.744
w/o. Active query of 0𝑡ℎ 62.36 0.743
w/o. Active queries 62.16 0.734

with 60 training epochs. 𝑁 and 𝑘 in Fig. 3 is set to 100 and 9. Drop
possibility 𝑝 in Sec. 4.5 and 𝛼 in Eq. 13 are set to 0.4 and 1 without
elaborate searching. 𝑇 related to the uncertainty level in Eq.12 are
set to 1000.
Metrics. To conduct a comprehensive evaluation of our model, we
carry out tests using mean Intersection over Union (mIoU) and
F-score as the performance metrics [10, 38, 46].

5.2 Results Comparison
When compared to methods that do not incorporate the designed
debias method, our method, which leverages methods for both bi-
ases, demonstrates strong competitiveness. As illustrated in Tab.
1, our method achieves comparable results across all V1S, V1M,
and AVSS subsets, showcasing performance improvements of up to
0.63%, 3.22%, 7.76% in mIoU, respectively. Even when considering
slight variations in the backbones used by different methods, our
approach consistently outperforms others. The limited improve-
ment observed in V1S can primarily be attributed to the constrained
manifestation of biases stemming from the singular and simplis-
tic nature of the data. However, we still believe that this does not
undermine our ability to demonstrate the effectiveness of our bias
handling techniques.

Furthermore, both quantitative performance in Fig. 5 and qualita-
tive analysis in Fig. 6 indicate that our model successfully alleviates

Table 3: The analysis of projection strategy to obtain
semantic-aware queries by class or cluster. The ablation of
𝑡𝑜𝑝𝐾 can also be regarded as the ablation of a fixed number
of active queries.

method filtering mIoU(%) F-score

Classification

𝜃 = 0.8 64.55 0.757
𝜃 = 0.6 66.36 0.783
𝜃 = 0.4 67.22 0.808
𝜃 = 0.2 64.52 0.740
𝑡𝑜𝑝𝐾 = 1 61.79 0.695
𝑡𝑜𝑝𝐾 = 3 64.49 0.742
𝑡𝑜𝑝𝐾 = 5 63.81 0.719

Clustering Kmeans 64.18 0.746
GMMs 64.57 0.742

None None 63.59 0.702

both biases mentioned before and our predicted masks exhibit su-
perior quality. Furthermore, due to the increased complexity of
synthesized audio scenarios in Co-AVS subset, achieving a lower
performance drop on synthesized audio necessitates better seman-
tic collaboration. As shown in Fig.5, our demonstrates stronger
robustness on complex audio scenarios.

5.3 Ablation Study
Overall ablation.We conduct an ablation experiment on the mod-
ule and the strategy designed for biases. In this experiment, we
progressively remove the modifications of each module in the set of
V1M. Through this process, we aimed to assess the impact of these
modifications on the segmentation results. As demonstrated in Tab.
2, the experiments indicate that the methods we designed for audio
priming bias and visual prior respectively achieved an increase of
3.96% and 1.10% in mIoU. Different modules have all achieved an
increase in both mIoU and F-score, reaching the design objectives.
The ablation study further indicates that the inclusion of active
queries alone does not directly result in a significant increase in
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Figure 6: Our model successfully alleviates both biases and our predicted masks exhibit superior quality than before.

Table 4: Ablation analysis and the versatility experiments of image-biased strategy on V1M. “↑” signifies a positive effect
achieved by employing the contrastive debiased strategy compared to the vanilla method, while “↓” indicates a negative effect.

Method Backbone Vanilla Logits ensemble Bias only Uncertainty based
mIoU (%) Fscore mIoU (%) Fscore mIoU (%) Fscore mIoU (%) Fscore

AVSbench [46] PVT-v2 54.00 0.645 54.12↑ 0.659↑ 53.43↓ 0.640↓ 54.81↑ 0.682↑
AVSegformer [10] PVT-v2 58.36 0.693 56.85↓ 0.662↓ 58.86↑ 0.687↓ 59.63↑ 0.718↑
GAVS [38] Swin-base 63.70 0.766 51.21↓ 0.738↓ 64.11↑ 0.788↑ 64.80↑ 0.784↑
Ours Swin-base 66.12 0.792 64.42↓ 0.795↑ 66.50↑ 0.797↑ 67.22↑ 0.808↑

performance. It necessitates the implementation of enhancement of
interaction, ultimately leading to a combined improvement of 3.76%.
This finding emphasizes the importance of enhancing interaction
in conjunction with active queries, as they aid the transformer
encoder in establishing audio-visual grounding.

Ablation on projection of Equation 2. The objective of pro-
jection is to map each audio clip to several classes or a cluster with
latent semantic information. Therefore, we naturally conducted ex-
periments using both supervised and unsupervised approaches. In
the supervised experiments, we employed Beats [6] for supervised
multi-class classification and used threshold 𝜃 or top𝐾 strategies
to roughly filter the samples with abstract semantic information
in Tab. 3. The results showed that the different settings in the
multi-classification do give an improvement of mIoU on V1M up to
67.22%. In the unsupervised experiments, we utilized the K-means
and Gaussian Mixture Model (GMM) with Expectation Maximiza-
tion for clustering, with the same number of clusters. Moreover, an
adequate number of active queries per sample is ensured here for
fairness. The results demonstrated that, regardless of supervised or
unsupervised approaches, introducing latent semantic information
along with active queries consistently improved performance, with
a maximum improvement of 3.63% in Tab. 3.

Mask of single active queries. Besides the quantitive results
in Tab. 2, it is qualitatively found that the masks generated by each
active query are consistent with their respective semantics, which
further validates the effectiveness of the semantic-aware active
queries in audio perception. Detailed qualitative results of cases are
provided in the appendix.

5.4 Versatility of Contrastive Debias Strategies
As general strategies, all three contrastive debias strategies are able
to reorganize the distribution of logits. To validate the versatility,
we not only applied the debias strategies in our framework but also
explored its application in other popular models, as shown in Tab.
4. The performance of the logits ensemble and bias-only strategy
fluctuates, achieving performance improvements only in certain
methods.When considering all four methods, the uncertainty-based
approach emerges as a superior solution due to its general im-
provement. Within our framework, it attained mIoU of 67.22% and
exhibited commendable training stability.

6 CONCLUSION
This study presents a novel and systematic exploration of the bias
issues existing in the previous AVS model. By defining and ana-
lyzing these biases as “audio priming bias” and “visual prior”, we
propose targeted solutions for each bias. For audio priming bias,
we introduce semantic-aware active queries that enhance the audio
sensitivity of intensity and semantics with a designed perception
module. Then further interaction of active queries is forced to col-
laborate on semantic understanding. For the visual prior, we employ
a contrastive debias strategy that improves the overall performance
of the model without modifying its structure. The meticulously
designed methods and comprehensive experiment across all three
subsets, demonstrate the superiority and versatility of our approach.
In summary, our work introduces a novel perspective within the
prevailing AVS network, opening up new possibilities for the future
development of cross-model guided segmentation.
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