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ABSTRACT

Transformer-based language models generate responses by producing a series of
tokens in immediate succession: the (K + 1)th token is an outcome of manipulat-
ing K hidden vectors per layer, one vector per preceding token. What if instead
we were to let the model manipulate say, K + 10 hidden vectors, before it outputs
the (K + 1)th token? We operationalize this idea by performing training and in-
ference on language models with a (learnable) pause token, a sequence of which
is appended to the input prefix. We then delay extracting the model’s outputs until
the last pause token is seen, thereby allowing the model to process extra computa-
tion before committing to an answer. We empirically evaluate pause-training on
decoder-only models of 1B and 130M parameters with causal pretraining on C4,
and on downstream tasks covering reasoning, question-answering, general under-
standing and fact recall. Our main finding is that inference-time delays show gains
on our tasks when the model is both pretrained and finetuned with delays. For the
1B model, we witness gains on eight tasks, most prominently, a gain of 18% EM
score on the QA task of SQuAD, 8% on CommonSenseQA and 1% accuracy on
the reasoning task of GSM8k. Our work raises a range of conceptual and prac-
tical future research questions on making delayed next-token prediction a widely
applicable new paradigm.

1 INTRODUCTION

Transformer-based causal language models generate tokens one after the other in immediate succes-
sion. To generate the (K + 1)th token, the model consumes the K previous tokens, and proceeds
layer by layer, computing K intermediate vectors in each hidden layer. Each vector in itself is the
output of a module (consisting of self-attention and multi-layer-perceptrons) operating on the pre-
vious layer’s output vectors. However sophisticated this end-to-end process may be, it abides by a
peculiar constraint: the number of operations determining the next token is limited by the number
of tokens seen so far. Arguably, this was the most natural design choice when the Transformer was
first conceived by Vaswani et al. (2017). But in hindsight, one may wonder whether for some inputs,
the (K + 1)th token demands K + M Transformer operations in each layer (for M > 0), which
cannot be met by the arbitrarily constrained K operations per layer. This paper explores one way to
free the Transformer of this arbitrary per-layer computational constraint.

The approach we study is to append dummy tokens into a decoder-only model’s input, thereby de-
laying the model’s output. Specifically, we select a (learnable) pause token (denoted <pause>) and
append one or more copies of <pause> as a sequence to the input. We simply ignore the model’s cor-
responding outputs until the last <pause> token is seen, after which we begin extracting its response.

∗Work done in part as a Student Researcher at Google.
†Corresponding Authors
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Figure 1: Standard vs. pause-inference (and finetuning). We consider a downstream task where,
given a prefix, the decoder-only model (bidirectionally) attends to all of the prefix to generate its
target answer. The rounded squares denote one Transformer operation (a self-attention and MLP)
in a 2-layer Transformer. Any Ignore Output denotes that during inference, the corresponding out-
put token is not extracted and thus, not fed back autoregressively; during finetuning, this output
is not backpropagated through. The connecting lines denote some (not all) of the “computational
pathways” within the model. Specifically, we visualize only those pathways that begin at a specific
token in the prefix (here arbitrarily chosen to be “4 is”) and end at an output token (here arbitrarily
chosen to be “25+”). All differences between the two settings are highlighted in color. (a) In stan-
dard inference (finetuning), the model’s output is extracted immediately upon seeing the last prefix
token. (b) In pause-inference (and pause-finetuning), this is initiated only after appending a manu-
ally specified number of <pause> tokens. This introduces new computational pathways (the colored
lines) between the prefix token and the output token of interest.

Crucially, we consider injecting such delays not just at inference, but also during downstream fine-
tuning (see Fig 1) and pretraining (see Fig 2, which provides additional technical details).

A-priori, it is unclear what this simple change would bring about in practice. Optimistically, the
Transformer may take advantage of a “wider” computational pathway induced by the delay. A
more mundane outcome though would be that the model simply skips any delays introduced by the
<pause> tokens. After all, neither do the <pause> tokens provide any additional information during
inference, nor are there sufficiently many new parameters (barring the few embedding parameters
of the single <pause> token) that can encode any additional information from training data. Worse
still, these uninformative tokens may drown out informative signals, and hurt the model.

Partial answers to this question can be found in the literature, motivated somewhat differently. To un-
derstand where the benefits of chain-of-thought (Wei et al., 2022) come from, Lanham et al. (2023)
append dummy thoughts in the form of periods (‘...’), but only during inference. This, they report,
does not help. Presumably, an off-the-shelf model may not have learned to utilize the new compu-
tational pathways offered by the inference-time delay. Burtsev et al. (2020) learn with prepended
dummy tokens, with the orthogonal motivation of adding memory (rather than extending computa-
tion). They train with these tokens only on the target task, and observe minimal performance gains.

What then can we hope for when injecting (appended) delays on all stages of training and inference?
Our work empirically evaluates this, and other key questions that come up when training the Trans-
former with delays. For this, we study pause-training on a 1B and 130M parameter decoder-only
model, trained on C4 (Raffel et al., 2020) and finetuned on nine downstream tasks spanning extrac-
tive question answering, reasoning, general understanding and fact recall. In summary, we make the
following contributions:

(1) We pose the question of what happens if we delay a model’s answer generation, and how can we
execute these delays? We design one way: training with dummy <pause> tokens. Accordingly,
we design a pause-injected pretraining, downstream finetuning, and inference procedure.

(2) We find that on a variety of downstream tasks, training models with <pause> tokens during both
pretraining and downstream finetuning, exhibits clear gains compared to standard end-to-end
training and inference. Most notably, for the 1B model, in the SQuAD extractive question-
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answering task, this approach improves the exact match score by 18%. Similarly we observe
8% gains on the general understanding task of CommonSense QA and 1% accuracy gain on the
reasoning task of GSM8k over the standard model’s accuracy of 7.5%.

(3) On the flip side, when we introduce <pause> tokens only in the downstream finetuning stage (on
the standard pretrained model), we find that the gains show up in far fewer instances, and are
relatively mild. In some instances, we even find a clear drop in performance.

(4) We also conduct a series of key ablations: (a) We find that appending <pause> tokens is largely
better than prepending them, (b) perhaps unsurprisingly, for any downstream task, there is a
corresponding optimal number of <pause> tokens, and (c) when decreasing the number of
inference-time <pause> tokens, we find a graceful degradation of performance even though
pause-training does not explicitly train for such robustness.

Overall, our work explores the new paradigm of delayed next-token generation in Transformer mod-
els, and finds that there are benefits to this simple change, provided the change is implemented
both during pretraining and finetuning. Our preliminary step here inspires a variety of conceptual
and practical future research questions, ranging from understanding how Transformer delays work
mechanistically, to making pause-training more generally applicable for practice.

2 PRELIMINARIES

We briefly outline the next-token prediction process in a standard causal decoder-only language
model (details in §A). Consider a vocabulary V and an input p1:K ∈ VK of K tokens. Let f denote
a Transformer-based language model, from which we sample the next token as pK+1 ∼ f(p1:K). To
achieve this, internally, each layer l ∈ [1, L] of the Transformer produces an intermediate vector v(l)

k
corresponding to each input token. The next token, i.e., pK+1 is then sampled from a distribution
inferred from the last vector in the last layer, v(L)

K .

On a high level, each layer in the above process can be represented as a function T : RD×K →
RD×K . Its input is a matrix ofK vectors, V1:K = [v1, . . . ,vK ], and likewise, the output, V ′1:K . This
mapping itself involves two key (parameterized) modules. The first is the attention module ΦAttn

which takes as inputs two matrices Vkey, Vvalue ∈ RD×N (for any N ) and a “query” vector v ∈ RD
to produce an output vector in RD. This is followed by a feedforward module fFF : RD → RD.
Then, given the inputs vk, and given the layer-norm module ΦLN : RD → RD, the outputs v′k for
k ≤ K can be expressed as:

ak = ΦLN (ΦAttn(V1:k, V1:k,vk) + vk) (1)

v′k = ΦLN (ΦFF(ak) + ak) . (2)

Observe here that the kth output v′k is obtained by manipulating exactly the k previous hidden
embeddings in the same layer, V1:k.

3 PAUSE-TRAINING

In the current paradigm of language models, we compute exactly K embeddings v1, . . .vK in each
layer, before generating the (K+1)th token, pK+1. Our premise is that this limit ofK operations is
an arbitrary one. Instead, we wish to expend more than K operations towards producing the next to-
ken, pK+1. While something to this effect could be achieved by increasing the number of attention
heads in each layer, we are interested in an orthogonal approach that introduces hardly any parame-
ters into the network. The idea is to synthetically increase the input sequence length by appending
M dummy tokens to the input, thus delaying the model’s next response by M tokens of input. In
effect, this M -token-delay lets the model manipulate an additional set of M intermediate vectors
vK+1, . . . ,vK+M before committing to its next (output) token, pK+1. Intuitively, these vectors
could provide a richer representation of the input (e.g., by attending differently), thus resulting in a
better next token from the model. We visualize this in Figure 1.

3.1 LEARNING AND INFERENCE WITH THE <pause> TOKEN

A simple choice for the dummy tokens are special characters such as ‘.’ or ‘#’, as Lanham et al.
(2023) chose for inference. But to prevent the model from confounding the role of delays with the
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Figure 2: Standard vs. pause-pretraining. We consider pretraining based on causal language mod-
eling, where each token is predicted given all preceding tokens in the sequence, using unidirectional
self-attention. Here, we visualize the computational pathways beginning from the token “is” on the
input side of the decoder-only model, to a subsequent token “soccer” on the output side. Please see
Figure 1 for a guide on how to follow this visualization. (a) In standard pretraining, we compute the
model’s loss at each output token, and backpropagate through it. (b) In pause-pretraining, we insert
multiple copies of <pause> tokens at uniformly random locations in the input. However, we do not
apply a loss on the model to predict these tokens, as indicated by each corresponding Ignore Out-
put flags. This introduces new computational pathways connecting the input token and the output
token of interest.

role the above characters play in natural language, we choose a single <pause> token residing outside
of the standard vocabulary. To impose multi-token delays, we simply repeat this token. Building on
this core idea, below we discuss our specific techniques for pause-pretraining and pause-finetuning.

Pretraining with the <pause> token The sequences in our pretraining data do not come with an
annotation of which suffix constitutes the answer, since every input token also functions as a target
output. Thus, it is impossible to execute the simple delaying strategy of appending dummy tokens
before extracting the answer. Therefore, for a given pretraining sequence p1:N , we insert multiple
<pause> tokens (say Mpt many) at uniformly random locations to obtain a pause-injected sequence,
p̃1:N+Mpt

. We visualize this in Figure 2b. We then train the model with the standard next-token
prediction loss on this pause-injected sequence, while ignoring any loss term that corresponds to
predicting the pause tokens themselves. Formally, let Signore = {k : p̃k+1 = <pause>} denote the
positions where the next token is a <pause> token. Then, for the decoder-only language model f ,
the pause-training loss is given by:

LPausePT(f, p̃1:N+Mpt
) =

N+Mpt−1∑
k=1

k/∈Signore

LCE(p̃k+1, f(p̃1:k)), (3)

where LCE denotes the cross-entropy loss. Observe that the loss is skipped over indices in Signore.
The rationale is that, we only want to use the <pause> tokens as a way of enforcing a delay in
the model’s computation; demanding that the model itself produce these tokens, would only be a
pointless distraction. Finally, as is standard, we update the parameters of both the model and of all
the tokens, including those of the <pause> token. We term this pause-pretraining (Algorithm 1).

Finetuning with the <pause> token In downstream finetuning, we are given a prefix p1:N an-
notated with a target t1:T . Here, we append Mft copies of the <pause> token to p1:N , to cre-
ate our new prefix, p̃1:N+Mft

. We visualize how this introduces new computational pathways in
Figure 1. As before, we ignore the model’s outputs until the last <pause> token is seen. We
apply the standard next-token prediction loss on the target with the new prefix, thus minimizing∑T−1
k=0 LCE(tk+1, f([p1:N+Mft

, t1:k])), where [·] denotes the concatenation operation. Note that
for any given downstream task, we fix Mft to be the same across all inputs for that task. We again
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update both the parameters of the model, and that of the whole vocabulary, including the <pause>
token, as is standard. We term this pause-finetuning (Algorithm 2).

Pausing during inference During inference on the downstream task, we append Minf <pause>
tokens to the prefix and as always, we ignore the output of the model until the last <pause> token
(Figure 1). We term this pause-inference (Algorithm 3).

3.2 VARIANTS OF PAUSE-TRAINING

While pause tokens can be incorporated in either pretraining or finetuning, in our study, we will
consider all combinations of this. Our hope is to identify if there are any differences in how each
stage of pause-training affects inference-time performance. In total, we study four techniques:

1. Standard Pretraining and Standard Finetuning (StdPT StdFT).
2. Standard Pretraining and Pause-Finetuning (StdPT PauseFT): We train with <pause> tokens only

during downstream finetuning. If this technique helps, it would promise a practically viable
approach for pause-training off-the-shelf models.

3. Pause-Pretraining and Standard Finetuning (PausePT StdFT): Here we introduce <pause> tokens
during pretraining, but abandon it downstream. This is purely for analytical purposes (See §4.3).

4. Pause-Pretraining and Pause-Finetuning (PausePT PauseFT): We inject delays into both stages.

Unless stated otherwise, we use the same number of pauses at inference as finetuning (Minf = Mft).

4 EXPERIMENTS

Our main experiments broadly aim to address two questions:

(1) Does delaying the model computation via pausing help (hopefully, due to the wider computa-
tional flow), have no effect (since the tokens provide no new information, and substantially no
new parameters are added) or hurt (perhaps, by distracting the model with stray tokens)?

(2) If at all these delays have any effect, is there a difference in performance when we inject it into
the pretraining stage versus finetuning stage versus both?

4.1 EXPERIMENT SETUP

We consider decoder-only models of size 1B and 130M for our main experiments. For our ablations,
we stick to the 1B model. Both the standard and pause models are pretrained on the C4 English
mixture (Raffel et al., 2020), using the causal next token prediction objective for a total of 200B
tokens (slightly more than 1 epoch on C4). For pause-pretraining, we insert the <pause> token
randomly at 10% of the sequence length (2048) positions, and trim the now-longer sequence to its
original sequence length. We then conduct pause-pretraining and standard-pretraining for the same
number of total tokens (200B). We use a single <pause> token embedding, effectively increasing the
parameter count by 1024 (the token embedding size), a quantity that is dwarfed by the 1 billion total
parameter count (the token constitutes a 10−6 fraction of the model size).

Since we expect different downstream tasks to benefit from a different number of finetuning <pause>
tokens Mft, we run finetuning with Mft (and likewise Minf ) set to 10 and 50 and report the best of
these two for our consolidated results. However, we provide the values for both Mft ∈ {10, 50} in
Appendix E, in addition to a more finegrained ablation of this hyperparameter in Section 5. For all
the downstream finetuning experiments, we report mean and standard deviation over 5 runs (with the
randomness purely from the finetuning stage). We tune the learning rate and batch size for standard
end-to-end training, and use the best hyperparameter for all other training variants as well. We share
all the hyperparameters in Appendix H.

4.2 DOWNSTREAM DATASETS

We consider nine varied downstream tasks: (a) reasoning (GSM8k (Cobbe et al., 2021)), (b) ex-
tractive question answering (SQuAD (Rajpurkar et al., 2016), CoQA (Reddy et al., 2019)), (c) gen-
eral understanding (CommonSenseQA (Talmor et al., 2019), PhysicalIQA (Bisk et al., 2020)), (d)
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Figure 3: Downstream performance for a 1B model. Injecting delays in both stages of training
(PausePT PauseFT) outperforms the standard end-end training StdPT StdFT on our wide variety of
tasks (except HellaSwag). In contrast, introducing delays only in the finetuning stage provides only
lukewarm gains, and even hurts in GSM8k.

long term context recall (LAMBADA (Paperno et al., 2016)), (e) natural language inference (Hel-
laSwag (Zellers et al., 2019)), and (f) fact recall (WebQuestions (Berant et al., 2013), Natural Ques-
tions (Kwiatkowski et al., 2019)). HellaSwag and PhysicalIQA are scoring tasks. We note that our
implementation of CommonSenseQA is as a decoding task, and hence we report Exact Match (EM)
scores. Detailed dataset description is in Appendix G.

4.3 RESULTS: EFFECT OF PAUSE-TRAINING

We report the performance of the four approaches in §3.2 on all our downstream tasks for our 1B
model in Figure 3, and for our 130M model in Appendix B. We discuss zero-shot results in §D.

The benefit of pause-pretraining followed by pause-finetuning (PausePT PauseFT). Our first core
finding is that there are clear gains when <pause> tokens are introduced during both pretraining and
finetuning (PausePT PauseFT), across a majority of the tasks we consider. Overall, this outperforms
the standard baseline (StdPT StdFT) on eight tasks for the 1B model, and on six tasks for the 130M
model (Appendix Fig 5) albeit to varying extents. Most prominently, for the 1B model on the
SQuAD question-answering task, PausePT PauseFT improves over StdPT StdFT by an 18% EM
score. Similarly, we observe upto 8% gains on the general understanding task of CommonSenseQA.
On the reasoning task of GSM8k, PausePT PauseFT gives an accuracy of 8.5% compared to 7.5% of
the standard baseline. Similar gains are observed in other tasks like long-term context understanding
(LAMBADA) and also on fact recall tasks like WebQA and NaturalQuestion.

The lukewarm effect of pause-finetuning a standard-pretrained model (StdPT PauseFT).
In contrast to the above observations, introducing delays only during downstream finetuning
(StdPT PauseFT) gives mixed results. While there are gains on about 5 benchmarks, they are com-
paritively less. On the remaining, the performance mirrors (or is worse than) standard training.

Isolating the benefits of pause-pretraining independent of downstream delay (PausePT StdFT).
The gains in PausePT PauseFT may come not only from inference-time delays, but also from better
representations learned by pause-pretraining. To isolate the latter effect, we consider PausePT StdFT,
where we do not inject delays in the downstream task. Here the gains are clear only in two tasks
(CoQA and PhysicalIQA). Thus, we conclude that pause-pretraining improves the representation for
a few downstream tasks; conversely, in most tasks, the gains of PausePT PauseFT must come from
well-learned delayed computations executed at inference-time.

Filler characters as <pause>: For completeness, we also report results for inference on
StdPT StdFT models, delayed with 10 or 50 periods (‘.’). Corroborating the observations of Lanham
et al. (2023), we find no gains in doing this (Figure 4a).
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Figure 4: Key Ablations (§5): (a) We compare a pause-trained model vs. a standard model delayed
using a filler periods (‘...’). As in Lanham et al. (2023), the filler periods do not give any gains.
(b) There exists an optimal number of finetuning <pause> tokens (Mft) for a given downstream
dataset beyond which gains diminish. (c) and (d) We test the robustness of pause-trained models to
varying number of inference time <pause> tokens (setting Minf not equal to Mft), which exposes
the model to a serious test-time distribution shift. Pause-training degrades gracefully to shifts as
wide as Minf ∈ [5, 25] for Mft = 10 both for (c) PausePT PauseFT and (d) StdPT PauseFT.

Thus, to the core question of our exploration — whether delays help, hurt or do nothing at all — we
find that the answer depends on when these delays are introduced. Specifically, pause-pretraining
appears crucial for delays to help in downstream inference-time. We conjecture that a standard-
pretrained model has strong biases that prevent it from fully realizing the benefits of inference-time
delays e.g., standard pretraining biases the model to be “quick” in its computations.

Remark: As a concluding note, we remind the reader that the PausePT PauseFT model has a (de-
liberately injected) computational advantage compared to StdPT StdFT, during finetuning and in-
ference. However, there is no computational advantage during pause-pretraining since we equalize
the number of tokens seen. In fact, this only results in a slight statistical disadvantage: the pause-
pretrained model sees only 90% of the (meaningful) pretraining tokens that the standard model sees,
as the remaining 10% are dummy <pause> tokens.

5 ABLATIONS: WHERE AND HOW MANY <pause> TOKENS TO USE

NUMBER OF <pause> TOKENS DURING FINETUNING Recall that we append Mft copies of (the
same) <pause> token to the prefix during finetuning. We find that for each downstream dataset,
there is a corresponding optimal value of Mft. For example, on GSM8k, 10 <pause> tokens are
optimal with accuracy reducing to that of baseline as <pause> tokens are increased to 50 (See Fig-
ure 4b), while for SQuAD , 10 is sub-optimal (see Appendix E). Possibly, for each dataset, there
exists a certain threshold of <pause> tokens beyond which the self-attention mechanism becomes
overwhelmed.

ROBUSTNESS TO A VARYING NUMBER OF INFERENCE-TIME PAUSES So far, we have set the
inference-time delay to be the same as what was seen during finetuning (Minf = Mft). Next, we
examine what happens if we vary Minf during inference. Note that this presents a severe test-time
distribution shift as we provide no supervision for the model until the last <pause> token (the M th

ft
one) is seen. Thus the model may very well output garbage if we begin eliciting a response that is
either premature (Minf < Mft) or belated (Minf > Mft). Yet, in practice, we find a (somewhat)
graceful behavior.

First, PausePT PauseFT model is robust to a wide test-time shift in the number of <pause> tokens
(see Figure 4c and Appendix F): the performance remains above the baseline even if the inference-
time pause tokens are half that of training-time. This is desirable in case of real-time fluctuations
in computational constraints. Relatively, the StdPT PauseFT model (wherein we inject delays only
during finetuning) is even more more robust (see Fig 4d and also Appendix F).

Now, an ideal robustness criterion would be that, in the absence of any <pause> tokens, the pause-
finetuned model performs just as well as a standard-finetuned model. Unfortunately, this isn’t the
case for any of our models. In fact, for PausePT PauseFT, providing zero delay during inference
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breaks its performance spectacularly (Figure 4c and also Appendix F), even if the model behaves
reasonably with as few as 2 inference-time <pause> tokens. The design of zero-delay-robust pause-
trained models is thus an important question for future work.

APPENDING VS. PREPENDING PAUSES In our main experiments, we chose to append <pause>
tokens since it is the most natural format for a general setting e.g., in long-text-generation as in a
conversational agent, one would append <pause> tokens to the current text rather than deploying
the tokens all at once at the beginning of the conversation. Furthermore, when there is unidirec-
tional attention, prepending these tokens should make no difference. Nevertheless, in our down-
stream tasks which use bidirectional attention on the prefix, it makes sense to consider prepending
<pause> tokens. We investigate this in Table 2 in Appendix C. Most importantly, we find that, for
PausePT PauseFT, even prepending the <pause> token performs improves over standard end-to-end
training. However, appending is still the more optimal choice. This indicates that pause-pretraining
induces considerable biases in how readily the delays are used based on their positional embeddings.

6 DISCUSSION AND KEY OPEN QUESTIONS

Enhanced computational width. One hypothesis as to why Transformer delays can help is that it
increases expressivity by increasing the computational width. To produce the (K+ 1)th token, stan-
dard inference involves a computational depth of L (corresponding to the sequential computation
of L layers), and a computational width of K (corresponding to the parallel K computations per
layer). WithM <pause> tokens however, we performK+M parallel computations. We hypothesize
that this additional width helps certain downstream tasks. Take for example, comprehension-based
question-answering tasks. Here, having a greater number of attention units per layer, would per-
mit a finer distribution of attention across various parts of the supporting context (where the answer
resides). We speculate that this would allow the lower layers to extract more precise and diverse
representations, which a higher layer can more reliably aggregate to produce a final answer.

We formalize this in Theorem J.1 (stated informally below). Our key theoretical insight is that the
attention module can have a high “raw” parameter-count-based capacity, but low “implementation
capacity”: the number of operations implemented for a given input, which is bottlenecked by the
number of tokens. Pause tokens can help relieve this bottleneck and tap into the raw representational
capacity. We hope this preliminary result can inspire further discussions on how to formalize the
Transformer’s implementation capacity and differentiate it from the raw parameter count.

Theorem 6.1. (informal; see Theorem J.1) Assume that the attention module has sufficiently many
parameters (K) that it is much larger than the number of inputs tokens (L). Then there are tasks
that involve many independent computations N , where N > L (but N < K), such that a 2-layer
Transformer can implement the task if and only if it uses pause tokens.

Computational expansion along with parameter expansion. How do the gains offered by
<pause> tokens vary with parameter count? An immediate hypothesis would be that for smaller
models, delays become more beneficial as they provide a much-needed capacity increase in an oth-
erwise capacity-deprived model. But a preliminary comparison between our two model sizes sur-
prisingly suggests the opposite. Intuitively, we conjecture that a smaller model may simply not have
enough raw capacity to implement a variety of distinct computations to utilize the new pathways
introduced by <pause> tokens. This intuition is also echoed in Theorem 6.1 where smaller models
would break our assumption that parameter count K is large enough.

Computational expansion vs parameter expansion. There are trivial ways to extend the next-
token computation process, say via more attention heads or more layers. For a fixed inference-time
FLOPS budget, can these give similar gains as pause tokens? In Appendix I, we argue why this
is not the case — attaining similar gains requires significant parameter expansion and a significant
expansion of the FLOPS budget. Thus, it is both practically and theoretically remarkable that pause
tokens can yield gains despite negligible addition to the parameter count.

Pause-inference vs. Chain-of-Thought. It is worth contrasting the above computational advantage
with that enjoyed by chain-of-thought (CoT) prompting (Wei et al., 2022). Here, one prompts the
model to generate a long series of intermediate reasoning steps before producing the final answer.
Thus, CoT also corresponds to greater computational width, by way of delaying its final answer

8



Published as a conference paper at ICLR 2024

(albeit with meaningful tokens). However, CoT has a vital added advantage: it also increases the
computational depth to a significant extent (Feng et al., 2023, Theorem 3.3 and 3.4). In particular,
each (meaningful) delay token generated by CoT is autoregressively generated by the model. Thus,
if there are M such tokens and L layers, the final token arises out of roughly M · L sequentially
composed operations. Thus, CoT has a computational depth that is larger by a multiplicative factor
of M , compared to pause-inference. Finally, we note that one major advantange of CoT is that it
does not seem to require any special modifications in the pretraining objective.

7 RELATED WORK

MEMORY TOKENS Multiple works have proposed using dummy tokens as a ways of introducing
memory into the model. Closest to our work is Burtsev et al. (2020) who prepend these tokens
(rather than append them) and crucially, introduce them only during training and inference on the
target tasks. On smaller scratch-trained models (with parameter counts of 10M, 65M and 277M)
and a pretrained BERT model (109M), this reportedly gives minimal gains. This echoes our own
mixed results for the comparable StdPT PauseFT variant, and the fact that our smaller model shows
gains on fewer datasets. Orthogonally, Sukhbaatar et al. (2019) introduce a large set of “global”
memory tokens (of the order of ten million new parameters) across all layers. However, these are
independent of the input, and only act as keys and values (not as queries). For vision transformers
(ViTs), AdaTape (Xue et al., 2023) appends tokens from a learnt memory bank. Concurrent work in
ViTs (Darcet et al., 2023), use multiple different “register tokens” appended to the image patches. In
the context of recurrent networks, closest to us is Herel & Mikolov (2023) who train with “thinking”
tokens for extra compute for the target task and find small perplexity gains on reasoning tasks. Grave
et al. (2016) use a memory cache as a way to attend to past hidden vectors.

Adaptive Compute Transformers Adaptive compute methods provide users with flexibility in
inference time depending on the input to the model. Although adaptive compute is not the objective
of this paper (after all, we use the same number of pause tokens across all inputs), pause-inference
can be viewed as a potential basis for a future adaptive compute method. The Universal Transformer
(Dehghani et al., 2019) adaptively increases serial computations by repeating certain layers. Graves
(2017) explored a similar recurrence over hidden units in the context of RNNs. A future adaptive-
compute version of pause-inference would fall in a much less explored paradigm that varies the
number of input tokens, akin to AdaTape in ViTs (Xue et al., 2023).

We discuss other relevant works in detail in Appendix K.

8 CONCLUSION, LIMITATIONS AND FUTURE WORK

Pause-training takes a step beyond the paradigm of “immediate” next-token prediction in language
models. The key idea is to train models with (dummy) <pause> tokens so that the model can learn
to harness the additional inference-time computation. This can improve performance on a variety of
tasks, if we train with <pause> tokens both during pretraining and downstream finetuning.

However, by extension of the fact that every downstream task has an optimal number of <pause>
tokens, we do not claim that pause-training should benefit every downstream task. Some tasks
may simply be better off with zero <pause> tokens. The most important limitation though is that
the expense of pause-pretraining comes in the way of making this idea more widely accessible.
Consequently, we do not study how the gains generalize across more model sizes (beyond 1B and
130M), or to encoder-decoder architectures, or to other pretraining mixtures and objectives. Next,
while we have laid out some preliminary theory for why <pause> tokens may be beneficial, we leave
a rigorous understanding for future study. We also leave open a variety of follow-up algorithmic
questions: pause-training with multiple different <pause> tokens, better determining the number of
<pause> tokens (perhaps using model confidence), inducing robustness to shifts in delays, and so
on. But the most pressing next step would be to find ways to make delays helpful directly on a
standard pretrained model. Overall, we hope that our work opens up many avenues for theoretical
and practical work in the paradigm of delayed next-token prediction.

Acknowledgements: We would like to thank Kaifeng Lyu, Srinadh Bhojanapalli, Yongchao Zhou,
Nikunj Saunshi, and Seungyeon Kim for helping set up the initial codebase and for their guidance.
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A PRELIMINARIES: TRANSFORMER

Consider a vocabulary V and an input p1:K ∈ VK of K tokens, and an L-layer decoder-only
language model. The l’th layer of the Transformer produces one intermediate vector for each token
here, denoted by v

(l)
k ∈ RD for k = 1, . . . ,K. We first describe this operation before outlining the

end-to-end next-token generation process.

Consider a Transformer (Vaswani et al., 2017) block T (·) : RK×D → RK×D that operates over a
sequence of K intermediate vectors. The block is defined by H many sets of four matrices each,
W

(h)
query,W

(h)
key ,W

(h)
value and W (h)

out ,∈ RDattn×D (for h = 1, . . . H each denoting an attention head),
and a single parameterized feedforward module fFF : RD → RD. Let ΦLN : RD → RD denote the
layer-norm operation. Given the input vectors V1:K ∈ RD×K , the output V ′1:K of the Transformer
block T (·) can be expressed in the following steps. For all k ≤ K,

ak = Φ
(1)
LN

(
vk +

H∑
h=1

(W
(h)
out )T ·W (h)

valueV1:ksoftmax

(
(W

(h)
keyV1:k)TW

(h)
queryvk√

Dattn

))
(4)

v′k = Φ
(2)
LN (ΦFF(ak) + ak) . (5)

Here, the first step computes K different self-attention outputs by attending to all K input vectors,
while the second step individually processes each attention output via a feedforward network and
other normalization components to produce the final output of the block. Note that here we have
assumed a unidirectional attention mechanism; for a bidirectional mechanism over the whole K-
length prefix, one simply needs to replace V1:k with V1:K in the above computation.

Given this block, the Transformer generates the next token as follows. Let Φtoken : V → RD
and Φposition : N → RD denote the token-embedding and position-embedding layers. With an
abuse of notation, let the token unembedding layer be denoted as Φ−1

token, which maps from RD to
a probability vector in ∆|V|−1. Let T (l)(·) denote the lth Transformer layer. Then, the Transformer
commits the following operations in sequence to arrive at the (K + 1)th token.

v
(0)
k = Φtoken(pk) + Φposition(k) (6)

V
(l)
1:K = T (l)(V

(l−1)
1:K ),∀l ∈ [1, L] (7)

pK+1 ∼ Φ−1
token(v

(L)
K ). (8)

For a more detailed mathematical exposition of the Transformer model, we refer the reader to Thick-
stun (2021).

B ADDITIONAL DOWNSTREAM FINETUNING RESULTS

We first report the downstream finetuning performance for the 1B model in Table 1 (numbers cor-
responding to Figure 3 in §4.3). Further, in Figure 5 we report downstream performance on various
tasks for a 130M decoder-only model. Again we observe that PausePT PauseFT clearly outperforms
standard training baseline (StdPT StdFT) on GSM8k, CommonSenseQA, LAMBADA and on our
fact recall tasks like WebQA and NaturalQA. However, surprisingly, we do not observe gains on
SQuAD, in contrast to the gains observed in 1B model. Overall, we see an improvement in six tasks
for the smaller model (one of which is PhysicalIQA where the gain is minimal).

C PREPENDING VS APPENDING PAUSE TOKENS

In Section 5, we discussed the effect of prepending the pause token in comparison to the default
approach of appending them to the end of prefix. Table 2 compares the two approaches. As stated
before in Section 5, for the PausePT PauseFT training algorithm, we observe that prepending the
pause tokens still outperforms the baseline but is (slightly) worse than appending the pause tokens
on some benchmarks like GSM8k and SQuAD. For StdPT PauseFT however, we see mixed results
with equal number of wins and losses between the prepending and appending.
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Figure 5: Downstream performance of pause-training on a 130M decoder-only model. We
find on six out of our nine downstream tasks, the pause-pretrained and pause-finetuned model
(PausePT PauseFT) outperforms standard training (StdPT StdFT) on a 130M decoder-only model.
For example, on the reasoning task of GSM8k, we observe 3% gains in Rouge1 scores (we compare
Rouge1 as the final accuracy was too low to be meaningful for our 130M model). Similarly on the
general understanding task of CommonSenseQA, we observe upto 8% gains. We note here that we
solve CommonsenseQA as a decoding task and not rank classification task, and hence report the Ex-
act Match scores. We also highlight that while pause-trainined on the 1B model showed significant
gains on SQuAD, they disappear here.

Dataset Metric StdPT StdFT StdPT PauseFT PausePT StdFT PausePT PauseFT

10 50 10 50

GSM8k
Acc 7.5 ± 0.5 6.9 ± 1.0 6.5 ± 0.8 7.7 ± 0.5 8.5 ± 0.9 7.7 ± 0.3

Rouge1 42.3 ± 0.5 41.7 ± 0.7 41.2 ± 1.3 43.5 ± 0.1 44.2 ± 0.2 44.1 ± 0.2

SQuAD EM 36.4 ± 2.5 36.6 ± 2.2 40.2 ± 3.2 38.4 ± 2.9 51.7 ± 2.3 55.9 ± 1.0

CommonSense QA EM 26.9 ± 2.9 28.8 ± 2.8 28.7 ± 2.0 27.7 ± 2.7 34.8 ± 1.2 32.3 ± 0.8

LAMBADA EM 16.4 ± 1.7 18.4 ± 0.3 18.5 ± 0.6 13.7 ± 5.1 18.8 ± 0.1 18.5 ± 0.2

Web Questions EM 13.7 ± 2.1 9.0 ± 4.4 12.4 ± 2.6 15.0 ± 2.5 13.8 ± 3.7 16.0 ± 1.6

Natural Questions EM 23.6 ± 1.2 24.3 ± 1.4 23.9 ± 1.3 24.3 ± 7.5 24.9 ± 1.3 26.9 ± 0.4

CoQA F1 29.9 ± 1.0 30.7 ± 0.5 30.3 ± 0.5 31.1 ± 0.3 31.3 ± 1.1 31.6 ± 0.5

PhysicalIQA F1 73.3 ± 0.2 73.9 ± 0.2 74.0 ± 0.2 74.1 ± 0.2 74.1 ± 0.1 74.2 ± 0.2

HellaSwag F1 37.8 ± 0.1 37.9 ± 0.2 37.8 ± 0.2 37.9 ± 0.1 37.7 ± 0.2 37.8 ± 0.2

Table 1: Downstream performance on various tasks for the 1B decoder-only model. We observe
that PausePT PauseFT outperforms the standard training baseline on 8 out of the 9 tasks considered
in this work. See §4.3 and Figure 3 for further details.

D ZERO-SHOT EVALUATION

In §4.3, we showed the efficacy of pause-pretrained models when finetuned with pause tokens. How-
ever, we note that we witness gains even in the zero-shot setting, where the model is not finetuned.
In Figure 6, we compare the zero-shot accuracy of the standard pretrained 1B model with that of
pause-pretrained version. For the pause-pretrained model, we perform evaluation with 0, 10 and 50
<pause> tokens appended to the prefix. Observe that pause-pretraining gives some gains on tasks
like GSM8k and HellSwag. However, we note here the absolute value of our zero-shot accuracies
are quite low, as we experiment with a small 1B parameter model.
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Dataset Metric StdPT StdFT StdPT PauseFT PausePT PauseFT

Prepending Appending Prepending Appending

GSM8k Acc. 7.5 ± 0.5 8.0 ± 1.0 6.9 ± 1.0 8.0 ± 0.4 8.5 ± 0.9

SQuAD EM 36.4 ± 2.5 35.0 ± 1.5 40.2 ± 3.2 44.0 ± 3.2 55.9 ± 1.0

CommonQA EM 26.9 ± 2.9 31.0 ± 1.3 28.8 ± 1.5 34.5 ± 1.0 34.8 ± 1.2

Lambada EM 16.4 ± 1.7 17.8 ± 0.4 18.5 ± 0.6 18.0 ± 1.1 18.8 ± 0.1

PhysicalIQA F1 73.3 ± 0.2 74.0 ± 0.3 74.0 ± 0.3 74.2 ± 0.2 74.2 ± 0.2

NaturalQ EM 23.6 ± 1.2 24.1 ± 0.6 24.3 ± 1.4 25.7 ± 0.9 26.9 ± 0.4

Table 2: Prepending vs. appending the pause tokens (§5). We observe that prepending the pause
tokens still outperforms the standard training baseline of StdPT StdFT, but is suboptimal to append-
ing the <pause> tokens for PausePT PauseFT training algorithm. However, for StdPT PauseFT, both
have equal number wins and losses.
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Figure 6: Zero-shot evaluation of pause-pretrained models. Zero-shot inference with pause to-
kens on a pause-pretrained model gives gains on tasks like GSM8k and HellaSwag. However, we
note that our zero-shot accuracies are quite low, as we experiment with a small 1B parameter model.
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Figure 7: Varying finetuning delay: We examine the effect of varying the number <pause> tokens
used in downstream finetuning (Mft, §5) on the performance. Typically, we observe that there exists
an optimal number of <pause> tokens as expected for each dataset.

16



Published as a conference paper at ICLR 2024

0 2 5 10 25 50
Num Inference Pauses

0

10

20

30

40

50

EM

SQuAD:PausePTPauseFT,Mft = 10

0 2 5 10 25 50
Num Inference Pauses

0

10

20

30

40

50

EM

SQuAD:StdPTPauseFT,Mft = 10

0 2 5 10 25 50
Num Inference Pauses

0

10

20

30

40

50

EM

SQuAD:PausePTPauseFT,Mft = 50

0 2 5 10 25 50
Num Inference Pauses

0

10

20

30

40

50

EM

SQuAD:StdPTPauseFT,Mft = 50

StdPTStdFT

(a) SQuAD

0 2 5 10 25 50
Num Inference Pauses

2

4

6

8

Ac
cu
ra
cy

GSM8K:PausePTPauseFT,Mft = 10

0 2 5 10 25 50
Num Inference Pauses

2

4

6

8
Ac
cu
ra
cy

GSM8K:StdPTPauseFT,Mft = 10

0 2 5 10 25 50
Num Inference Pauses

2

4

6

8

Ac
cu
ra
cy

GSM8K:PausePTPauseFT,Mft = 50

0 2 5 10 25 50
Num Inference Pauses

2

4

6

8

Ac
cu
ra
cy

GSM8K:StdPTPauseFT,Mft = 50

StdPTStdFT

(b) GSM8k

0 2 5 10 25 50
Num Inference Pauses

20

25

30

35

EM

CommonSense:PausePTPauseFT,Mft = 10

0 2 5 10 25 50
Num Inference Pauses

20

25

30

35

EM

CommonSense:StdPTPauseFT,Mft = 10

0 2 5 10 25 50
Num Inference Pauses

20

25

30

35

EM
CommonSense:PausePTPauseFT,Mft = 50

0 2 5 10 25 50
Num Inference Pauses

20

25

30

35

EM

CommonSense:StdPTPauseFT,Mft = 50

StdPTStdFT

(c) CommonSenseQA

Figure 8: Varying inference-time delays: We test the robustness of pause-trained models to varying
number of inference time <pause> tokens (setting Minf not equal to Mft), which exposes the model
to a serious test-time distribution shift (§5). Pause-training degrades gracefully to shifts as wide as
Minf ∈ [5, 25] for Mft = 10 and Mft = 50 both for PausePT PauseFT and StdPT PauseFT, apart
from GSM8k wherein there is a drop for Mft = 50. In each row, the first and the third column
considers the PausePT PauseFT model for Mft set to 10 and 50, respectively. Likewise, the second
and the fourth column show the same for StdPT PauseFT model.

In Figure 7, we study the effect of varying the number of pause tokens used during downstream
finetuning (Mft) on the downstream performance. We refer the reader to §5 for further details.
Again we observe that there exists an optimal number of pause tokens to be used during downstream
finetuning, depending on the task.

F ROBUSTNESS TO VARYING NUMBER OF INFERENCE TIME PAUSES

Recall in §5 and Figure 4c we observed that pause-training is robust to using a different number
of inference time pauses compared to that used during finetuning (i.e. Minf 6= Mft). We present
additional results regarding the same in Figure 8a, Figure 8b and Figure 8c. Again, we observe that
the performance degrades gracefully for the pause-trained models, even with shifts that halve the
number of tokens seen. However, we still find a drastic drop in performance when no delay is given
during inference for the PausePT PauseFT model.
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Dataset Learning Rate Warmup Steps Finetuning Steps Batch Size

SQuAD 1.0E-04 100 10000 256

GSM8k 1.0E-04 200 20000 16

HellaSwag 5.0E-06 100 1000 16

PhysicalIQA 1.0E-06 50 600 32

CoQA 5.0E-05 75 3500 16

CommonSenseQA 5.0E-05 100 4000 16

LAMBADA 5.0E-05 40 2800 16

WebQuestions 5.0E-04 200 2000 16

NaturalQuestions 1.0E-04 100 5000 256

Table 3: Downstream finetuning hyperparameters for the 1B model.

G DOWNSTREAM DATASET DESCRIPTION

We finetune and evaluate the pretrained models (both standard and pause-pretrained) on the follow-
ing datasets:

1. GSM8k: A reasoning task with 8.5k grade school math word problems (Cobbe et al., 2021).

2. SQuAD V1: Reading-comprehension task based on Wikipedia (Rajpurkar et al., 2016).

3. CommonSenseQA: Requires different types of commonsense knowledge to choose the cor-
rect answer (Talmor et al., 2019). Our implementation of CommonSenseQA is as a decod-
ing task, and hence we report Exact Match (EM) scores.

4. LAMBADA: Text-understanding task requiring last-word prediction based on a long con-
text (Paperno et al., 2016).

5. Web Questions: A fact-recall dataset of commonly-asked questions on the web (Berant
et al., 2013).

6. PhysicalIQA: A physical commonsense reasoning dataset, which test the ability to under-
stand interactions with the world (Bisk et al., 2020).

7. Natural Questions: QA task which requires answering fact-based questions from Wikipedia
article pages (Kwiatkowski et al., 2019). Since we use the closed-book version of this
dataset (no access to helpful context), this is a fact-recall task.

8. HellaSwag: Next-sentence prediction task based on common-sense inference (Zellers et al.,
2019).

9. CoQA: Question-answering task based on a context (Reddy et al., 2019).

H HYPERPARAMETERS: DOWNSTREAM FINETUNING

We share all the hyperparameters for downstream finetuning in Table 3 (1B model) and Table 4
(130M model). We also provide the decoder-only architecture details for the two models considered
in this work in Table 5.
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Dataset Learning Rate Warmup Steps Finetuning Steps Batch Size

SQuAD 1.00E-04 400 40000 16

GSM8k 1.00E-04 75 7500 16

CommonSenseQA 5.00E-05 100 6000 16

LAMBADA 5.00E-05 40 1400 16

WebQuestions 5.00E-04 200 2000 16

NaturalQuestions 5.00E-04 100 5000 256

CoQA 1.00E-04 75 3500 16

PhysicalIQA 1.00E-06 50 600 32

HellaSwag 1.00E-06 100 1000 16

Table 4: Downstream finetuning hyperparameters for the 130M model.

Model 130M 1B

Parameters 136,237,056 1,345,085,440

Transformer Layers 12 24

Attention Heads 12 32

Embedding Dimension 768 2048

Hidden Dimension 3072 8092

Table 5: Architecture details for the models considered in this work

Algorithm 1: Pause-pretraining
Pretraining with Pause

Inputs: Pretraining dataset Dpt, decoder-only model fθ, number of <pause> tokens Mpt to
insert, pause token <pause>

p1:N ∼ Dpt /* Input Sequence from corpus */

p̃1:N+Mpt
= random insert(p1:N , <pause>,Mpt) /* Insert Mpt pause tokens randomly in the

original input sequence p1:N , extending its length by Mpt */

Signore = {k ∈ [0, N +Mpt − 1] : p̃k+1 = <pause>} /* Identify the set of positions where the

next token is <pause> */

LPausePT(fθ, p̃1:N+Mpt
) =

∑N+Mpt−1

k=1,k/∈Signore
LCE(p̃k+1, fθ(p̃1:k)) /* Next token prediction

error excludes targets which are pause (model isn’t made to learn to predict pause itself) */

θ = θ −∇θLPausePT(fθ, p̃1:N+Mpt
) /* Update the model */
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Algorithm 2: Pause-finetuning
Stage 2: Finetuning with Pause

Inputs: Downstream labeled dataset Dft, pretrained model fθ, number of <pause> tokens
Mft to insert, pause token <pause>

p1:N , t1:T ∼ Dft /* Sample prefix and target */

p̃1:N+Mft
= Concat[p1:N , [<pause>]×Mft] /* Append prefix and Mft pauses */

LPauseFT(fθ, p̃1:N+Mft
, t1:T ) =

∑T−1
k=0 LCE(tk+1, fθ(Concat[p̃1:N+Mft

, t1:k]) /* Next token

prediction error on targets */

θ = θ −∇θLPauseFT(fθ, p̃1:N+Mft
, t1:T )

Algorithm 3: Pause-inference
Stage 3: Inference with Pause

Inputs: Prefix p1:N , finetuned model fθ, number of <pause> tokens Minf to insert, Pause
token <pause>

p̃[1:N+Minf]
= [p1:N , [<pause>]×Minf] /* Append Minf pauses to prefix */

p̃N+Minf+1 ∼ fθ(p̃1:N+Minf
) /* Predict the next token in the sequence, and continue in an

auto-regressive fashion */
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I INFERENCE TIME COST OF PAUSE TOKENS

One way to assess the inference-time compute efficiency of a method is by estimating the number
of Floating Point Operations per Second (FLOPS) it requires. A related, but independent metric, is
the Wall Clock Time as it affects the latency of deployed systems. Below, we analyze how efficient
pause-inference is along these two metrics in this section. Broadly, we make two arguments:

1. Pause-inference offers a more FLOPS-efficient way of increasing performance, as com-
pared to other natural ways of expanding the number of attention operations in a Trans-
former, such as by adding layers or by adding attention heads.

2. Pause-inference is also wall-clock-efficient compared to the above techniques as it virtually
introduces no overhead. When compared to CoT, pause-inference provides a computation-
ally more granular and cheaper way to improve performance (although still upper-bounded
by CoT in terms of performance).

I.1 PAUSE TOKENS ALLOW FOR A MORE EFFICIENT USE OF FLOPS

We frame our FLOPS-efficiency analysis as follows. Consider introducing p pause tokens during
inference in a given Transformer. How many additional FLOPS does this require? If we spent the
same budget of additional FLOPS to introduce more attention operations via other techniques —
namely, via an appropriate number of additional layers or additional attention heads — would we
find a similar improvement in quality, in terms of metrics like accuracy?

Concretely, we use a running example of the 1B model used in this paper, whose architecture details
are provided in Table 5. Specifically, we have number of transformer layers as l = 24, input em-
bedding dimension as h = 2048, per attention head embedding dimension d = h/a, where a = 32
is the number of attention heads. We also anchor our analysis for input prompts with n = 100 to-
kens, which represents the average prompt length for many tasks considered in this work. For our
analysis, we rely on supporting lemmas deferred to Section I.2.1.

FLOPS-efficiency of p pause tokens vs k additional layers: In the context of the downstream
task of SQuAD, appending p = 10 pause tokens yields an 18% increase in EM score. Applying
these values (n = 100, p = 10) and l = 24 in the FLOPS-efficiency analysis of Theorem I.3, we can
deduce that if we were to allocate the same FLOPS budget to adding more layers to the Transformer
stack, we can at most add 2 layers. This enhancement corresponds to a modest 10% rise in parameter
count, expanding the model from a 1B parameter model to a 1.1B parameter model. However, in
practice, when scaling the parameter count, significant performance improvements (such an 18%
increase in EM score) are typically observed only when the parameter count is scaled by much
larger factors. Thus we argue that in this case, pause tokens provide a more inference-time-FLOPS-
efficient way of increasing performance. Conceptually, this underscores the fact that pause tokens
introduce an alternative dimension to representation capacity, distinct from the traditional approach
of scaling the parameter count.

Comparing FLOPS with increase in attention heads: In the standard Transformer implementa-
tion used in practice, when one increases the attention heads (a), although the number of attention
operations increases, the per-attention-head embedding dimension (d) proportionally gets reduced
to keep the overall embedding dimension constant (h). Thus, there is effectively no change in the
number of FLOPS. In contrast, adding pause tokens increases the number of attention operations,
while keeping the per-attention-head embedding dimension d constant. Therefore, for a fair com-
parison, we consider the case where we increase a, while keeping the per-attention-head dimension
d fixed (and we fix it to be equal to h).

Then, from our analysis in Theorem I.4 we have that for an input of length n = 100 and a = 32
attention heads, appending p = 10 pause tokens is equivalent to increasing the number of attention
heads by k = 3. However, increase the attention heads by 3 in the 1B model configuration adds only
48M parameters (we add Wq,Wk,Wv,Wproj ∈ Rh×h per additional attention head), bringing the
model to a parameter count of 1.048B from 1B. This, we argue cannot account for any significant
performance improvement equivalent to the improvements seen under pause-training proposed in
this paper.
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I.2 PAUSE TOKENS DO NOT ADD SEQUENTIAL COMPUTE

Comparing pause tokens with adding layers or attention heads Recall that <pause> tokens are
added as a part of the input prompt, where each token is processed in parallel. Thus, <pause> tokens
do not add extra serial computations. If there are sufficiently many parallel threads available, the wall
clock overhead from pause tokens would be a minimal percentage of the time required for standard
inference. However, in contrast, increasing the number of transformer layers increases the length of
sequential operations, causing the wall-clock time to increase proportionally to the fraction of layers
added. Note that adding attention heads should have a similar effect as adding pause tokens, as they
too introduce parallel, not sequential operations.

Comparison with Chain-of-Thought (CoT) prompting Recall that CoT involves auto-
regressively decoding a long sequence of tokens involved in the model’s reasoning. This requires
a significant wall clock time cost, proportional to O(pl), if p is the number of intermediate reason-
ing tokens and l is the number of layers. In stark contrast, pause tokens do not add extra wall-clock
time. Furthermore, CoT prompting offers little flexibility in how large p can be. Pause-inference on
the other hand, offers a more direct way for manipulating the number of pause-tokens (even if, in its
current version, this adaptivity is not robust beyond a point).

I.2.1 SUPPORTING LEMMAS FOR ESTIMATING FLOPS EFFICIENCY

In Lemma I.1, we present the facts about FLOPS required for basic vector and matrix calculations.
Subsequently, in Lemma I.2, we compute the overall FLOPS required for an end-to-end Transformer
computation. Finally, in Theorem I.3 and I.4, we derive how different kinds of parameter expan-
sions in the model compare to adding pause tokens, in terms of FLOPS efficiency. Specifically, The-
orem I.3 establishes the number of layers one needs to add to a model to realize the same number of
FLOPS as adding p pause tokens. Theorem I.4 presents a similar result for adding attention heads.
Lemma I.1. (FLOPS for vector and matrix calculations) The number of flops required to compute:

1. the dot product v1 · v2 where v1,v2 ∈ Rd is O(d).

2. the matrix multiplication M1 ·M2, where M1 ∈ Ra×b and M2 ∈ Rb×c, the FLOPS is
O(a× b× c).

Proof. For a dot product between v1 and v2, both of dimension d, the total number of FLOPS is
given by the sum of multiplications and additions required. Specifically, it involves dmultiplications
and d−1 additions, totaling to 2d−1 FLOPS. For the ease of calculation, we approximate this as 2d.

For a matrix multiplication of M1 ∈ Ra×b and M2 ∈ Rb×c, each element of the resulting matrix is
computed by taking the dot product of a row from M1 and a column from M2, which requires 2b
FLOPS . Since there are a× c such dot products to compute for the entire matrix multiplication, the
total FLOPS amount to (2b)× a× c. However, for simplicity, if we only consider the multiplicative
operations, the FLOPS reduce to a× b× c.

Lemma I.2. (FLOPS for one end-to-end Transformer computation) Consider an l layered decoder
only language model, where we denote input embedding dimension as h, number of attention heads
as a and per-attention-head embedding dimension as d. We assume feed-forward hidden dimension
to be 4h and finally let n denote the length of input sequence. Then the total FLOPS are given as:

F (n, h, d, a, l) = (4nadh+ 2an2d+ 8nh2)l (9)

We note that standard Transformer implementations assume d = h/a, i.e. the per-attention-head
embedding dimension decreases as the number of attention heads are increased. However, we treat
these are three independent hyperparameters for greater flexibility in our analysis.

Proof. Let us consider the various per-layer operations in a decoder-only model step-by-step and
count their FLOPS :

1. q, k, v vector computation: Given input token x ∈ Rh, for the query vector computation,
we have Qj = W j

q x∀j ∈ [1, a], where W j
q ∈ Rd×h. The same extends for key and value

vector computations. Thus total FLOPS required is 3nadh.
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2. Self-attention: GivenQ ∈ Rn×d andK ∈ Rn×d,QKT incurs n2d flops. The obtained α =

softmax(QK
T

√
d

) ∈ Rn×n is multiplied by V ∈ Rn×d, costing another n2d flops. Note that

for simplicity, we ignore that FLOPS from softmax or the division by
√
d operation as they

are negligible. Thus, the total FLOPS = a[n2d+ n2d] = 2an2d.

3. Combining multi-head-attention: The MHA projection matrix concatenates all the outputs
from individual attention heads above and projects them to output of dimension h. For
simplicity, we ignore the FLOPS from the skip connection as it adds only a relatively
minimal number. Thus total FLOPS = n× h× ad = nadh.

4. Feed-forward network: This adds another 8nh2 FLOPS . Again, for simplicity we ignore
the FLOPS from the skip connection.

Combining the FLOPS from each of the sub-parts above, we have:

FLOPS = (4nadh+ 2an2d+ 8nh2)l (10)

Theorem I.3. (FLOPS for adding k layers vs. p pause tokens) Consider a l layer decoder only
model, with h denoting the input embedding dimension and d denoting the per attention head em-
bedding dimension. Let n be the length of initial prompt. Then, under the assumption that hidden
embedding dimensions are much larger then the prompt sequence length and the appended pause
tokens i.e. d, h� n, p; the additional FLOPS from p pause tokens is less than that from k additional
layers of transformer if n > pl/k.

Proof. From Lemma I.2 we have that increase in FLOPS due to k additional transformer layer is
give by:

F∆l=k = F (n, h, a, l + k)− F (n, h, a, l)

F∆l=k = (4nadh+ 2an2d+ 8nh2)k (11)

Similarly, increase in FLOPS due to p pause tokens is given by:

F∆n=p = F (n+ p, h, a, l)− F (n, h, a, l)

F∆n=p = (4padh+ 2ad((n+ p)2 − n2) + 8ph2)l

F∆n=p = (4adh+ 2ad(2n+ p) + 8h2)pl (12)

Now,

F∆n=p < F∆l=k

=⇒ (2adh+ ad(2n+ p) + 4h2)pl < (2adh+ and+ 4h2)nk

=⇒ n >
(2adh+ ad(2n+ p) + 4h2)pl

(2adh+ and+ 4h2)k

=⇒ n >
pl

k
[assuming h, d� n, p] (13)

Next, we derive how many attention heads can be added, to be FLOP-equivalent to adding p pause to-
kens. Note that in the standard transformer implementation, increasing the attention heads decreases
the per attention head embedding dimension (i.e. d = h/a). In contrast, adding pause tokens, in-
creases the number of attention computations while keeping the per-attention-head dimension fixed.
Thus for a fair comparison, we consider a setting where we increase the number of attention heads,
while keeping the per-attention-head dimension fixed. Specifically, we consider the case where per
attention head embedding dimension is fixed to be the same of input embedding (i.e. d = h).
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Theorem I.4. (FLOPS for adding k attention heads vs p pause tokens) Consider a decoder only
language model, with the per-attention-head embedding dimension d, fixed to be same as the input
embedding dimension h. Let n be the length of initial prompt. Then under the assumption that
hidden embedding dimension is much larger then the prompt sequence length and the appended
pause tokens i.e. d, h � n, p; the additional FLOPS from p pause tokens is less than that from k

additional attention head, if n > (a+2)p
k .

Proof. From Lemma I.2, we have:

F (n, h, d, a, l) = (4anh2 + 2an2h+ 8nh2)l, where d = h. (14)

Now, increase in FLOPS due to k additional attention head is given by:

F∆a=k = F (n, h, a+ k, l)− F (n, h, a, l)

F∆a=k = (4knh2 + 2kn2h)l (15)

Similarly, increase in FLOPS due to p pause tokens is given by:

F∆n=p = F (n+ P, h, a, l)− F (n, h, a, l)

F∆n=p = (4aph2 + 2ah((n+ p)2 − n2) + 8ph2)l

F∆n=p = (4ah+ 2a(2n+ p) + 8h)phl (16)

Therefore, we have, for:

F∆n=p < F∆a=1

=⇒ (4ah+ 4an+ 2ap+ 8h)hpl < (4nh2 + 2n2h)lk

=⇒ ((2a+ 4)h+ 2an+ ap)p < (2h+ n)kn

=⇒ n >
(2a+ 4)h+ 2an+ ap

(2h+ n)k
· p

=⇒ n >
(a+ 2)p

k
, [assuming h, d� n, p] (17)

J THEORETICAL INTUITION

This section formalizes a broad class of problems where appending pause tokens during inference
can enhance expressivity and thus be helpful. Our formalization identifies two core insights:

1. Pause tokens can be critical to solve tasks that require a large number of independent par-
allel computations that exceed the number of input tokens. For example, consider a task
where the input is a sequence of L numbers v1, v2, . . . , vL, and the target is a polynomial
of the form (v1 +v2) · (v1 +v3) . . . (v5 +v2). If the number of addition operations required
(N) scales much larger than the total number of input tokens (L), (and so N = ω(L)) we
argue that (under some natural capacity constraints), standard inference fails as it is bottle-
necked in terms of its “implementational capacity”: it can conduct only O(L) operations
in parallel. Pause-inference however is relieved of this bottleneck.

2. The attention-feedforward block in any layer has “untapped” representational capacity —
that is independent of the input length — which pause-inference taps into. Specifically,
note that the attention-feedforward block can implement many different operations, one for
each intermediate vector it generates at each positional index. But crucially, the number
of possible such operations (say, K) scales with the parameter count of the block. This
quantity is independent of — and in practice, is much larger than — the input sequence
length. Unfortunately, standard inference can only help realize at most L such operations
(where L� K), while pause-inference can tap into K different such operations.
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Combining the above two insights, our main result stated informally is that, given a fixed (2-layer)
Transformer architecture, (a) if the underlying task requiresN parallel operations, whereN exceeds
the number of input tokens L, and (b) as long as N is not much larger than the parameter count K
of the attention-feedforward block, pause-inference can solve tasks that standard inference cannot.

We formalize the above insights in the form of assumptions stated in an abstract setting (in order to
be as general as possible). We emphasize that the crux of our argument lies within these assumptions
themselves, rather than the proof of our theorem. Thus, our main result here should be viewed as
identifying precisely what assumptions are required for pause-inference to help.

J.1 UNDERLYING TASK

We consider an abstract set of tasks that require a first step that involve multiple parallel operations,
following by a simple aggregation step to arrive at the solution:
Assumption J.1. (structure of the underlying task) Given the vocabulary space V , let ◦ be a
generic 2-ary operator on V . For an input sequence length L, consider a corresponding function
class FL that corresponds to all functions f : VL 7→ V that require applying N ◦ operations
independently following by a generic aggregation operation gaggr : VN → V:

FL =

{
f : VL 7→ V

∣∣∣∣∣∃i1, . . . iN , j1, . . . jN ∈ [1, L], (18)

f(v1, v2, . . . , vL) = gaggr
(

(vi1 ◦ vj1), (vi2 ◦ vj2), . . . , (viN ◦ vjN )︸ ︷︷ ︸
N independent ◦ operations.

)}
. (19)

Examples. This structure covers a broad range of examples.

• As a simple mathematical example, this covers learning polynomials of the form (x1 +x2)·
(x3 + x4) · (x1 + x3).

• As a natural language example, consider a multi-choice question-answer task with C
choices given along with E pieces of evidence in the context. One can then imagine that
each vi corresponds to a piece of evidence, and each vj a choice. We then requireN = C ·E
operations that compare each of the given choices against each of the given pieces of ev-
idence. A final aggregation step would select the choice for which there exists a piece of
evidence the most confidently corroborates the choice.

J.2 (TIGHT) UPPER BOUNDS ON THE TRANSFORMER CAPACITY

If the attention-feedforward module had, say, an infinite or exceedingly large capacity, the Trans-
former would be able to trivially express the solution to any task. It is only when these modules
have finite capacity — as they do in practice — that we expect additional operations introduced by
the pause tokens to be helpful. Correspondingly, we state this intuitive assumption as multiple “tight
upper bound” assumptions. Each assumption states that the modules in a Transformer can represent
objects of a certain complexity, but none any more complex than that.

Our first such assumption is in how much information can be represented by each intermediate
vector. Specifically, we assume that each vector can precisely capture one token in V along with the
positional index of the token (akin to positional embeddings injected into each token in practice).
The precise form by which this information is represented as a vector is abstracted away for our
discussion (e.g., it may be in one-hot form). Also note that our argument can be extended to settings
where each intermediate vector could potentially represent more tokens, we discuss this at the end
of the section.
Assumption J.2. (information bandwidth limit of intermediate Transformer operations) We as-
sume that the i’th intermediate vector in any given layer can be represented as (ui, i) ∈ V × N.

Next, we assume a finite limit on the class of functions that each intermediate Transformer operation
can represent. To state this, let u = ((u1, 1), (u2, 2), . . . , (uL, L)) be the outputs of an intermediate
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layer (corresponding to a L-length input sequence). For convenience, ignoring the residual and
layer-norm blocks, let the i’th output of the next layer be expressed as:

φFF(φAttn(u,u, (ui, i))) = (u′i, i) (20)

where the first two arguments represent the keys and values, and the third argument the query for
the i’th intermediate operation in the considered layer. Note that φFF and φAttn are parameterized
modules that can implement a finite set of functions. We assume what this set of functions consists
of:
Assumption J.3. (representational limits of intermediate Transformer operations) We assume that
for each index i ∈ N, φFF(φAttn(·, ·, (·, i)) can represent exactly one of two types of functions:

• A single ◦ operation. Specifically, we assume the self-attention operation can select two
indices as φAttn(u,u, (ui, i)) = (uν(i), uν′(i)), where ν, ν′ : N → N come from some
finite set of “index-selecting” functions P . We then assume φFF can implement ◦ as
φFF(uν(i), uν′(i)) = uν(i) ◦ uν′(i).

• The aggregating function gagg as φFF(φAttn(u,u, (ui, i))) = (gaggr(u1, . . . , uL), i).

We explain why the above sub-assumptions are both reasonable and can hold simultaneously. First,
we argue why it is reasonable that each intermediate Transformer operation can implement a limited
number of ◦ operations, but not any more. Assume that the model needs to represent u′35 = u1 ◦ u3.
This requires the model to pay attention to the query’s positional index 35, and then select the values
at two different positional indices 1 and 3. Selecting these two values can be implemented by 2
self-attention heads operating independently. A subsequent feedforward network can then operate
on a concatenated input (u1, u3). Crucially, implementing any further ◦ operations, would require
more attention heads. Thus, it is reasonable to assume a (tight) limit on the number of ◦ attention
operations.

Note that the above assumption can simultaneously hold with the assumption that the Transformer
operation can implement the aggregation function gaggr. This is because gaggr does not require
preferentially selecting any positional indices: all inputs are aggregated equally. Thus, we only need
a single self-attention head that applies equal weight to all the values.

The last and arguably most insightful assumption stipulates a tight upper limit on what the self-
attention module can represent. Specifically, observe that above we assume that the self-attention
module can implement a finite set of functions P , which help select “indices” ν(i) and ν′(i). We
assume that there is a limit to this set of index-selecting functions P . Our key insight is that this limit
is purely determined by the parameter count of the module, and is therefore independent of the input-
sequence-length, L. In practice, the size of the set P is much larger than the number of tokens L, and
thus corresponds to the untapped capacity in the model. This capacity is however bottlenecked by
the input length L, which determines how many operations in P are executed in standard inference.
Assumption J.4. (the “untapped” capacity of self-attention operation is independent of input
length) We assume that for some K � L, the self-attention module in each layer has at least
2K logK parameters, and can hence implement the index-selecting functions ν, ν′ : [K] → [K] to
be any of the KK many mappings possible. In other words, P = {1, 2, . . . ,K}{1,2,...,K}.

From our assumptions, we derive the following result on what pause-inference can implement,
which standard inference cannot, given a 2-layer Transformer (we discuss extensions to larger ar-
chitectures in a subsequent remark):
Theorem J.1. Under Assumptions J.1, J.2, J.3 and J.4, standard inference on a 2-layer Transformer
with no pause tokens can only represent the function class FN for N ≤ L, where N denotes the
number of parallel operations required by the function class, and L denotes the length of the input
sequence. In contrast, a 2-layer Transformer with N − L appended dummy tokens can represent
the function class FN for any large N ≥ L as long as N ≤ K, where K scales with the parameter
count of the self-attention module as in Assumption J.4.

The key insight is that the self-attention module has the representational capacity to implement
K different ◦ operations, a capacity that is independent of, and much larger than the number of
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input tokens. However the standard Transformer that sees only L tokens, only allows the model
to realize L of these. We hope this serves as a preliminary way of formalization the notion of the
“implementation capacity” of a Transformer vs. the notion of raw parameter capacity.

Proof. Under Assumption J.2 that each intermediate vector can only represent one token from V ,
the first layer in the Transformer will have to implement all the N ◦ operations to represent any
given f ∈ FL. Therefore, at the k’th index, the model would have to instantiate ν(i) = ik and
ν′(i) = jk (as defined in Assumption J.3), so that the corresponding Transformer operation can
compute vik ◦ vjk . However, by Assumption J.3 (which states that each intermediate Transformer
operation can implement only one ◦ operation) and by how standard inference in a Transformer is
defined (which allows only as many operations as there are input tokens), the first layer can only
compute at most L many ◦ operations. Hence, a Transformer with standard inference can only
represent FN for N ≤ L. On the other hand, from Assumption J.4, we know that the self-attention
operator can implement as many as K such operations, where K � L. Thus as long as N ≤ K,
with N − L dummy tokens, the Transformer can implement FN for N > L.

Remark J.2. (breaking the information bandwidth assumption) In Assumption J.2, recall that
we assume that in each intermediate vector, we are able to communicate precisely one token from
V . If this assumption were to break, then standard inference would be able to implement a larger
class of functions where N > L. However, it would still fall short of what pause inference can
do. Specifically, imagine that each layer passes on its computed output, and also all computed
outputs from the previous layer. Thus, if the intermediate vector can represent upto N/L tokens,
then the Transformer could divide the N required ◦ operations over N/L many layers, each layer
performing L operations in parallel. This would however be slower as it requires a series of N/L
computations. In contrast, pause-inference requires only 1 set of parallel computations, and also a
meagre information bandwidth of 1 token per intermediate vector.

Remark J.3. (recurrent depth) An alternative way to exploit the untapped capacity of the attention-
feedforward modules, is to repeat these operations sequentially along the depth of the model as done
in Dehghani et al. (2019). This strategy would be helpful in tasks that require recursion. However,
our class of problems do not involve recursion of any form. Thus, if these recurrent layers simply
repeat the same ◦ operations over and over, we may not enjoy any advantages. However, one may
argue that, perhaps repeating the same layers over and over somehow implements different oper-
ations in each repetition. In this case, we can make an argument similar to the previous remark.
Specifically, to fit a task that requires N parallel operations, we would need a model that has an in-
formation bandwidth of N/L, and applies a recurrence of N/L layers corresponding to N/L serial
operations to compute the desired function. This should again be contrasted with pause-inference
which requires only 1 set of parallel computations, and also a meagre information bandwidth of 1
token per intermediate vector.

K ADDITIONAL RELATED WORK

Input-only tokens. The idea of using tokens that occur only as an input has found its use in
various forms, most commonly as <cls> (Chang et al., 2023; Liu, 2019; Devlin et al., 2019), <sep>
or <mask> in BERT (Devlin et al., 2019) and in a line of work on adding memory to transformers
(Burtsev et al., 2020; Bulatov et al., 2022; Darcet et al., 2023).

Chain-of-thought (CoT) prompting and role of intermediate tokens. CoT prompting has been
shown to significantly improve the reasoning capabilities of large language models (Wei et al.,
2022; Nye et al., 2021; Lanchantin et al., 2023; Suzgun et al., 2023; Zelikman et al., 2022; Zhou
et al., 2023; Wang et al., 2023b; Yao et al., 2023). Consequently, there has been a surge of interest
in understanding the source of these CoT prompting gains. Feng et al. (2023); Merrill & Sabharwal
(2023) theoretically argue that CoT aids by increasing the computational expressivity of the Trans-
former. Other empirical works (Turpin et al., 2023; Wang et al., 2023a; Madaan & Yazdanbakhsh,
2022) have shown that the generated intermediate reasoning steps can be unfaithful, not represent-
ing the model’s true reasoning process. Wang et al. (2023a) empirically show that even incorrect
reasoning steps can preserve 80%− 90% of the performance gains. However, Lanham et al. (2023)
find that simply replacing the reasoning steps with filler tokens is unhelpful. As we argue, the model
needs to be primed to process such tokens to help its computation.
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Lightweight finetuning techniques. Pause-finetuning bears some resemblance to an orthogonal
line of work on lightweight finetuning and ensembling techniques (Liu et al., 2022; Li & Liang,
2021; Lester et al., 2021; Hambardzumyan et al., 2021; Qin & Eisner, 2021; Logeswaran et al.,
2020; Liu et al., 2021; Zhong et al., 2021; Schick & Schütze, 2021; Xue et al., 2022; Chang et al.,
2023). Lightweight finetuning is concerned with parameter-efficient techniques that do not update
the model’s weights, and instead update a series of multiple distinct learnable tokens (prepended
to the input). While pause-training uses a (single) learnable token too (appended to the input),
the goal and effects are significantly different. First, pause-training is not intended for parameter-
efficient finetuning. Infact, pause-training tunes slightly more parameters than standard finetuning.
Next, in terms of the effect, while pause-training hopes to outperform standard finetuning as it is
a less constrained technique, lightweight finetuning typically cannot, as it is a more constrained
technique. Finally, note that pause-training crucially benefits from introducing the <pause> tokens
during pretraining, while lightweight methods do not affect pretraining in any way.

Adaptive compute. In the literature, there are two major paradigms of adaptive compute. In the
cascading paradigm, one selects between models of varying sizes (Jitkrittum et al., 2023; Kusupati
et al., 2022; Devvrit et al., 2023). Another standard approach towards adaptive compute is layerwise
adaptive compute within a single model, called early-exiting (Schuster et al., 2022; Schwartz et al.,
2020; Eyzaguirre et al., 2021; Banino et al., 2021).

It is worth noting that while adaptiveness of the input token length (Xue et al., 2023) helps expand the
(parallel) computational width, early-exit/layer-recurrence type of methods help expand the (serial)
computational depth of the model. As formalized in Theorem J.1, the expanded computational width
is critical in a range of problems.
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