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Abstract

Graph contrastive learning algorithms have demonstrated remarkable success in various
applications such as node classification, link prediction, and graph clustering. However,
directly applying contrastive pairs and graph neural network (GNN) models to new tasks
or data has proven to be inconsistently effective. In this paper, we first adapt the ex-
pected calibration error (ECE) to the graph contrastive learning framework to assess the
quality of embeddings and their accuracy in downstream tasks. We identify miscalibration
issues in existing algorithms and propose a novel regularization method, Contrast-Reg,
to address these limitations. By ensuring node representations maintain similarity with a
random vector and that pseudo-negative representations, generated through shuffled node
features, remain dissimilar to the same random vector, Contrast-Reg guarantees that mini-
mizing the contrastive loss results in high-quality representations that improve accuracy in
downstream tasks, rather than overfitting specific spurious features. We provide both the-
oretical evidence and empirical experiments to support the effectiveness of Contrast-Reg,
demonstrating its ability to enhance generalizability and improve the performance of graph
contrastive algorithms with different similarity definitions across various downstream tasks.

1 Introduction

Graph structures are widely used to capture abundant information, such as hierarchical configurations and
community structures, present in data from various domains like social networks, e-commerce networks,
knowledge graphs, the World Wide Web, and semantic webs. By incorporating graph topology along with
node and edge attributes into machine learning frameworks, graph representation learning has demonstrated
remarkable success in numerous essential applications, such as node classification, link prediction, and graph
clustering. A large number of graph representation learning algorithms [Velickovic et al.| (2019); Peng et al.
(2020); |Tang et al.| (2015); |Perozzi et al.| (2014); |Grover & Leskovec| (2016)); Ahmed et al.| (2013)); |Cao et al.
(2015); |Qiu et al.| (2018); |Chen et al.| (2018)); Kipf & Welling| (2017)); Hamilton et al.| (2017)); |Velickovic et al.
(2018); Xu et al| (2019); |Qu et al.| (2019) have been proposed. Among them, many Tang et al.| (2015);
Perozzi et al.| (2014); |Grover & Leskovec| (2016)); [Hamilton et al. (2017)) are designed in an unsupervised
manner and utilize negative sampling” to learn node representations. This design shares similar ideas with
contrastive learning He et al.| (2020); |Tian et al.| (2020; |2019)); van den Oord et al.| (2018); [Hénaff et al.
(2019); |Belghazi et al.| (2018); [Hjelm et al.| (2019); Wu et al.| (2018)); Mikolov et al.| (2013); |Asano et al.
(2020); |Caron et al.| (2018); (Chen et al.| (2020), which contrasts” the similarities of the representations of
similar (or positive) node pairs against those of negative pairs. These algorithms employ noise contrastive
estimation loss (NCEloss), differing in their definition of node similarity (hence the design of contrastive
pairs) and the design of the encoder backbone. After getting the embeddings outputted by the graph
contrastive algorithms, these embeddings could be directly delivered to the downstream tasks. Although
graph contrastive algorithms have demonstrated strong performance in some downstream tasks, we have
discovered that directly applying contrastive pairs and GNN models, such as graph convolutional networks
(GCNs) [Kipf & Welling| (2017), to new tasks or data is not consistently effective (as shown in Section [6).
To address this issue, we first adapt the expected calibration error (ECE) to the graph contrastive learning
framework to assess the quality of the embeddings generated by the model, o(h, - h,), and their accuracy
in downstream tasks, acc(v,v’). We observe that the model learns certain spurious features that reduce the
loss but ultimately prove detrimental to downstream task performance when solely minimizing the NCE
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loss. Furthermore, we identify two factors that contribute to the model’s miscalibration: a) the expectation
of the prediction value for randomly sampled pairs, E(v,v")[o(hy - hy)], and b) the probability ¢* of v/,
sharing the same label as v in positive sampling. To address the miscalibration in existing graph contrastive
learning algorithms, we introduce a novel regularization method, denoted as Contrast-Reg. Contrast-
Reg employs a regularization vector r, which consists of a random vector with each entry within the range
(0,1]. By ensuring node representations maintain similarity with r and that pseudo-negative representations,
generated through shuffled node features, remain dissimilar to r, Contrast-Reg guarantees that minimizing
the contrastive loss results in high-quality representations that improve accuracy in downstream tasks, rather
than overfitting specific spurious features. We provide both theoretical evidence and empirical experiments
to support the effectiveness of Contrast-Reg. First, we derive a generalization bound for our contrastive GNN
framework, building upon the theoretical framework presented in[Saunshi et al.| (2019), and demonstrate that
Contrast-Reg contributes to a decrease in the upper bound. This result indicates that this term promotes
better alignment with the performance of downstream tasks while simultaneously minimizing the training
loss, thereby improving the generalizability of the representation. Furthermore, we design experiments to
examine the empirical performance of Contrast-Reg by formulating the graph contrastive learning framework
into four components: a similarity definition, a GNN encoder, a contrastive loss function, and a downstream
task. We apply Contrast-Reg to different compositions of these components and achieve superior results
across various compositions.

The main contributions of this paper can be summarized as follows:

o (Section 4.1) We identify limitations in existing graph contrastive learning algorithms when applying them
to new tasks or data, and adapt the expected calibration error (ECE) to assess the quality of embeddings
and their accuracy in downstream tasks.

e (Section 4.2) We propose a novel regularization method, Contrast-Reg, that addresses miscalibration
issues, ensuring that minimizing the contrastive loss results in high-quality representations and improved
accuracy in downstream tasks.

e (Section 4.2 & Section 5 & Section 6) We provide both theoretical evidence and empirical experiments
to support the effectiveness of Contrast-Reg, demonstrating its ability to improve generalizability and
achieve superior results across different components of the graph contrastive learning framework.

2 Related Work

Graph representation learning. Many graph representation learning models have been proposed.
Factorization-based models |Ahmed et al| (2013); [Cao et al.| (2015); Qiu et al. (2018) factorize an adja-
cency matrix to obtain node representations. Random walk-based models such as DeepWalk [Perozzi et al.
(2014) sample node sequences as the input to skip-gram models to compute the representation for each
node. Node2vec |Grover & Leskovec| (2016)) balances depth-first and breadth-first random walk when it sam-
ples node sequences. HARP |Chen et al.| (2018 compresses nodes into super-nodes to obtain a hierarchical
graph to provide hierarchical information to random walk. GNN models [Kipf & Welling (2017)); [Hamilton,
et al.| (2017); [Velickovic et al.| (2018)); Xu et al.| (2019); |Qu et al.| (2019); [Thomas et al.| (2023) have shown
great capability in capturing both graph topology and node/edge feature information. Most GNN mod-
els follow a neighborhood aggregation schema, in which each node receives and aggregates the information
from its neighbors in each GNN layer, i.e., for the k-th layer, Bf = aggregate(h?il,j € neighborhood(1)),

and h¥ :combine(hf,hf_l). This work employs GNN models as the backbone and tests the representation
across various downstream tasks, such as node classification, link prediction, and graph clustering.

Graph contrastive learning. Contrastive learning is a self-supervised learning method that learns rep-
resentations by contrasting positive pairs against negative pairs. Contrastive pairs can be constructed in
various ways for different types of data and tasks, such as multi-view Tian et al| (2020; 2019), target-to-
noise van den Oord et al.| (2018); [Hénaff et al.| (2019)), mutual information Belghazi et al. (2018); [Hjelm,
et al.| (2019), instance discrimination |Wu et al.| (2018]), context co-occurrence [Mikolov et al.| (2013), clus-
tering [Asano et al.| (2020); [Caron et al. (2018]), multiple data augmentation |Chen et al.| (2020)), known and
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novel pairs (2023), and contextually relevant Neclakantan et al| (2022)). Contrastive learning has
been successfully applied to numerous graph representation learning models, such as [Perozzi et al.| (2014]);
|Grover & Leskoved| (2016); Tang et al.| (2015)); [Velickovic et al.| (2019); [Peng et al.| (2020); [Hamilton et al.|
(2017); [You et al| (2020); [Qiu et al.| (2020); [Zeng et al,| (2021, to task subgraph instance discrimination
as a contrastive learning training objective and to leverage contrastive learning to empower graph neural
networks in learning node representations. We characterize different types of node-level similarity as follows:

e Structural similarity: Structural similarity can be captured from various perspectives. From a graph
theory viewpoint, GraphWave Donnat et al.| (2018)) leverages the diffusion of spectral graph wavelets to
capture structural similarity, while struc2vec |Ribeiro et al.| (2017) uses a hierarchy to measure node simi-
larity at different scales. From an induced subgraph perspective, GCC treats the induced
subgraphs of the same ego network as similar pairs and those from different ego networks as dissimilar
pairs. To capture community structure, vGraph [Sun et al. (2019) utilizes the high correlation between
community detection and node representations to incorporate more community structure information into
node representations. To capture global-local structure, DGI [Velickovic et al.| (2019) maximizes the mu-
tual information between node representations and graph representations to allow node representations
to contain more global information.

o Attribute similarity: Nodes with similar attributes are likely to have similar representations. GMI[Peng|
(2020) maximizes the mutual information between node attributes and high-level representations,
and [Hu et al.| (2020b) applies attribute masking to help capture domain-specific knowledge.

Given the above subgraph instance discrimination objective with GNN backbones, NCElosdGutmann &
Hyvérinen| (2012)); Dyer| (2014); [Mnih & Teh| (2012); |Tian et al,| (2020 2019)); van den Oord et al.| (2018));
Hénaff et al. (2019)); Belghazi et al| (2018); Hjelm et al. (2019); Wu et al.| (2018); Chen et al.| (2020); Yang|
et al.| (2020b) is applied to optimize the model’s parameters.

In this work, our focus is on graph contrastive learning. We will demonstrate why graph contrastive learning
does not always work in downstream tasks and propose a regularization term to improve the generalizability
of various graph contrastive learning algorithms.

Expected Calibration Error. Expected Calibration Error (ECE) is a metric employed
to quantify the calibration between confidence (largest predicted probability) and accuracy in a model.
Calibration refers to the consistency between a model’s predicted probabilities and the actual outcomes.
When a model is miscalibrated, its generalization to unseen data in supervised learning tasks is likely to
be poor Miiller et al| (2019)); Pereyra et al| (2017); |Guo et al| (2017); Zhang et al| (2018). We propose
using ECE to evaluate the quality of node embeddings generated by unsupervised graph contrastive learning
models. This calibration offers insights into addressing the challenge that applying graph contrastive learning
algorithms to downstream tasks does not always yield optimal results.

Regularization for graph representation learning. GraphAT [Feng et al| (2019) and BVAT
introduce adversarial perturbations % to the input data z as regularizers to obtain more
robust models. GraphSGAN Ding et al| (2018) generates fake input data in low-density regions by incorpo-
rating a generative adversarial network as a regularizer. P-reg[Yang et al.| (2020a)) leverages the smoothness
property in real-world graphs to enhance GNN models. Graphnorm |Cai et al. proposes a novel feature
normalization method. [Zhou et al.|(2021)) employs label propagation to adaptively integrate label smoothing
into GNN training. Han et al.| (2022)) use graphons as a surrogate to apply mixup techniques to graph data.

The above regularizers are designed for general representation generalizability, while Contrast-Reg is specif-
ically intended to address the miscalibration problem in the unsupervised graph contrastive learning opti-
mization process and its performance on downstream tasks. It is worth noting that Contrast-Reg could be
used in conjunction with the aforementioned regularization techniques.
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3 Preliminaries

We begin by introducing the concepts and foundations of graph contrastive learning (GCL). Let a graph
G = (V,&) be denoted, where V = vy,vs,--- ,v, and & represent the vertex set and edge set of G, and
the node feature vector of node v; be x;. Our objective is to learn node embeddings through unsupervised
graph contrastive learning and subsequently apply simple classifiers leveraging these embeddings for various
downstream tasks, such as node classification, link prediction, and graph clustering.

Graph contrastive learning Given a graph G with node features X = (21,22, - ,x,), the aim of graph
contrastive learning is to train an encoder f : (G, X) — R for all input data points v; € V with node feature
vector z; by constructing positive pairs (v;,v;") and negative pairs (v;, vy, , V7).

The encoder f is typically implemented using Graph Neural Networks (GNNs). Specifically, let h; represent
the output embedding of the encoder f for node v;, hgk) as the embedding at the k-th layer, and h? = z;.
The output of the encoder f is then iteratively defined as:

mgk) = Aggregate, ({hycil) 1V € N(Uz)})

h{¥) = RELU (Wk . Update (hgk—n? mg@)) , (1)

where N (v;) the set of nodes adjacent to v;, and Aggregate and Update are the aggregation and update
function of GNNs |Gilmer et al,| (2017)). h; is the last layer of hz(»k) for node v;.

Leveraging various types of similarity as pseudo subgraph instance discrimination labels, graph contrastive
learning constructs positive and negative pairs to train the embedding h; by optimizing the loss on these
pairs. The most commonly employed loss is the NCE loss:

M K
~ 1 _
Ence = M Z [ - IOgU(h?hj) + Z IOg a(h?hzj)] (2)
i=1 k=1
with M samples (vi,vj Wiyt Uy K)ij\il in empirical setting where o(+) is the sigmoid function.

Calibrating graph contrastive learning by the expected calibration error (ECE) Expected Cali-
bration error measures the degree to which the model output probabilities match ground-truth accuracies in
supervised tasks Naeini et al| (2015)); |Guo et al.|(2017)). It’s defined as the expectation of absolute difference
between the largest predicted probability (confidence) and its corresponding accuracy,

ECE = E(,.ves [Ip(v,v') — ace(v,v/)] )

In this paper, we extend the use of ECE to evaluate the quality of graph contrastive learning. Specifically,
we can compare the predicted probability of a positive pair (i.e., a pair of nodes with the same label) with
the true probability that the pair belongs to the same class. We can also compare the predicted probability
of a negative pair (i.e., a pair of nodes with different labels) with the true probability that the pair belongs
to different classes. By calculating the differences between the predicted and true probabilities for both
positive and negative pairs, we can quantify the overall miscalibration of the model and identify areas for
improvement. The formal definition is as follows. The largest predicted probability, p(v,v’), is determined
as

, o (hy - hy), (v,v") as positive pair
p(v,v') = , R (4)
1—o(hy - hy), (v,v") as negative pair

where h, and h, are the embeddings for the target node v and the selected sample v’, respectively, and o(+)
is the sigmoid function. The corresponding accuracy, acc(v,v’), is defined as follows:

(5)

, I(v,v"), (v,v") as positive pair
acc(v,v') = , p . .
1 —1I(v,0"), (v,v") as negative pair
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where I is an indicator function denoting whether v and v’ has the same label, the positive/negative pairs
are pseudo-labels for training the contrastive learning algorithm which may not equal to the true label. In
this case, when two nodes are selected as positive pairs, acc(v,v’) is equal to 1 if v" and v belong to the same
class and equal to 0 otherwise; when the two nodes are selected as negative pairs, acc(v,v’) =1 —I(v,v").

Using the ECE metric in this way allows us to evaluate the quality of the embeddings outputted by the
model (o(hy - hy)) and their accuracy in downstream tasks (acc(v,v’)), such as node classification. We can
improve the general performance and utility of graph contrastive learning algorithms by detecting regions of
miscalibration and developing novel techniques for enhancing calibration performance.

4 Methodology

To calibrate the model, we first adapt the expected calibration error (ECE) formula for the graph contrastive
learning setting (Section . In order to ensure that minimizing the contrastive loss leads to high-quality
representations that improve accuracy in downstream tasks, we propose a regularization term designed to
lower the ECE value and enhance the model’s generalizability (Section . We also provide theoretical
evidence to support the effectiveness of the proposed regularization term.

4.1 Empirical Calibration Reveals Limitations of Existing Graph Contrastive Learning Algorithms

To calibrate the existing graph contrastive learning algorithms, we measure the degree of calibration using
the expected calibration error (ECE) metric, which is defined by Equation

ECE =rT. < (1 — ]Eacc(vﬂ,:r):l[p(v, vQ_)]) qt (true positive)
/ = .-
+ Eacc(v,vQ_):O[p(vv ’U+” . (1 q ) (false pOSZt’M}@)
(6)
+r (Eacc(v,v’_)—l[p(vavl_)] -q (false negative)

+ (1 - Eacc(v,vl)zo[p(vy UL)}) : (1 - q_)> (true negatz've)7

where ¢+ and ¢~ are the probabilities that the node v’ has the same label as node v in positive and negative
sampling, respectively; r™ and r~ are the ratios of sampling positive and negative samples, with 7+ +r~ = 1.
In this study, we set 7+ =r~ = 0.5.

Building upon this formulation, we propose the following claim that takes into account the positive and
negative pair construction assumptions to analyze the potential issues that lead to the miscalibration between
the decrease in graph contrastive learning training loss and the degradation of downstream task performance.

Claim 4.1. Under the assumption that negative sampling is uniformly sampled, and positive sampling is
sampled based on the calculated distance between pairwise embeddings, ECE is positively correlated with the
expectation of the prediction value for randomly sampled pairs E, [0 (hy - hy)], and negatively correlated
with the probability q* of v/, having the same label as v in positive sampling.

We provide a thorough analysis of this claim in Appendix[A-I]} To investigate the changes in these two factors
and the ECE value over the process of minimizing the NCELoss (Equation , we conduct an illustrative
experiment with an existing graph contrastive learning algorithm and present the relevant values in Figure[I]
In Figure we show that as the NCELoss (red solid line) is minimized over the epochs, the expectation of
the prediction value for randomly sampled pairs E(v,v’)[o(h, - hv')] (blue dashed line) increases. Moreover,
Figure demonstrates the model’s challenge in identifying genuine positive pairs, with the probability ¢+
initially increasing before gradually declining (red solid line), and the ECE value first decreasing before rising
(blue dashed line). These findings suggest that, as the epochs progress, merely reducing the NCELoss is
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Figure 1: Calibrating Graph Contrastive Learning

insufficient to enhance the accuracy of downstream tasks. Our empirical calibration shows that the model
learns certain spurious features that reduce the loss but are ultimately harmful to downstream tasks when
solely minimizing the NCE loss. The above analysis emphasizes the need for graph contrastive learning
algorithms to effectively account for the relationships between learned embeddings and the accuracy of
downstream tasks. In the next section, we present our approach to mitigate the possible risks associated
with spurious feature learning in graph contrastive learning algorithms and show its effectiveness through a
number of experiments.

4.2 Proposed Regularization Term: Contrast-Reg

To ensure that minimizing the NCE loss aligns with downstream task accuracy, we propose a contrastive
regularization term, denoted as Contrast-Reg, given by:

Lreg=—E [log o(hfWr) + 1oga(—i~LlTWr)] , (7)
hoh

where r is a random vector uniformly sampled from (0, 1], W is a trainable parameter, and h is the noisy
feature generated by different data augmentation techniques, such as those used in |Chen et al.| (2020);
Velickovic et al.| (2019). In Section |5, we will discuss how we calculate the noisy features in the GNN setting.
In the following, we will introduce the impact of the Contrast-Reg on the ECE value and generalizability.

ECE decreases by incorporating Contrast-Reg We conducted an empirical study to examine the
impact of Contrast-Reg on the ECE value and investigate the two factors that cause miscalibration. Figure
shows that the expectation of the prediction value for randomly sampled pairs E, ,)[o(hy - )] with
Contrast-Reg increased much more slowly compared to the vanilla NCELoss (green solid line compared to the
red solid line). Figure presents the changes in positive sampling accuracy g™ over the epochs of the vanilla
NCELoss and NCELoss with Contrast-Reg, where Contrast-Reg helps ¢ increase, while ¢ trained by vanilla
NCELoss decreased after the initial increases. These two factors contribute to the different ECE changes in
the vanilla NCELoss and NCELoss with Contrast-Reg. The red dashed line indicates that the ECE value
increases after the initial decreases, while the green dashed line shows that the ECE value decreases slightly.
The comparison demonstrates that applying Contrast-Reg alleviates the miscalibration in representation
learning, ensuring that minimizing the contrastive loss results in high-quality representations with increased
accuracy in downstream tasks, rather than overfitting certain spurious features. We will provide a detailed
comparison of the impact on the ECE value between models with and without Contrast-Reg in Appendix
across different datasets.



Under review as submission to TMLR

1.00 0.50 0.86 0.50 SE+04 = Onax(M(f, ©)) wlo reg 8.00
vos By p 1117 with reg

— am‘(M(f ¢)) with reg

v By op iy I w/o reg

0.44 0.85 0.44 6E+04

easetonee censatsasenee steee

< L g o .q wnh reg 8 3 o

=075 SE, (ot b wioreg 038 3 +. 083 N 038 3 & 4E+04 40T

= o Y € « ECE w/o reg s =

B A, = q* wioreg S e o

063 ==Equloth, - b)) withreg g 37 0.82 = i 0.32 G2Broa I et 200

[ +ECE with reg . ECE with reg :

seeenssesesrsnacee i Teeasasess 0000 ttes e GARLS * o0t ot acss 2o s sestasess
0.50 0.26 0.80 0.26 0E+00 0.00
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Epoch Epoch Epoch
(a) Influence of Contrast-Reg on (b) Influence of Contrast-Reg on (c) Influence of Contrast-Reg on
+ 2

ECE and E(y,v[0(ho - hyr)] ECE and ¢ Omax(M(f,c)) and Ey,~p. | hil|

Figure 2: Effects of Contrast-Reg

Generalizability improves by incorporating Contrast-Reg In Section[6.3] we present empirical evi-
dence supporting the effectiveness of Contrast-Reg’s ability to enhance generalizability through an ablation
study. Furthermore, we analyze the impact of Contrast-Reg on the generalizability of graph contrastive
learning algorithms using the theoretical analysis tool developed by |Saunshi et al.[(2019). In Theorem [1} we
offer performance guarantees for the learned graph embeddings outputted by the GNN function class F = f
with the unsupervised loss function Lnce on the downstream average classification task Lsup*( f ). Detailed
settings can be found in Appendix Assume that f is bounded, i.e., ||h;]] < R with R > 0. Let ¢, ¢’ be
two classes sampled independently from latent classes C with distribution p. Let 7 = E. o2l (c =) be
the probability that ¢ and ¢/ come from the same class. Let £7...(f) be the NCELoss when negative samples
come from different classes. We have the following theorem.

Theorem 1. Vf € F, with probability at least 1 — ¢,
L8, (F) < L7ec(f) + Bs(f) + nGena, (8)

where Genyy = ¥R glog(o(—R?)) 1‘;%6 =0 (RRs(f) +R2\/1°g°> B =1, =1, and s(f) =
4\/]E(Uiv'uj)NDsim(viw'Uj) [(h?hi)ﬂ’

In Equation , Genys represents the generalization error in terms of Rademacher complexity and will
converge to 0 when the encoder function f is bounded and the number of samples M is sufficiently large.
The theorem above indicates that only when Ss(f)+nGenys converges to 0 as M increases, will the encoder
f = argminser Lee selected perform well in downstream tasks.

Next, we will analyze the impact of Contrast-Reg on the condition in the aforementioned theorem, Ss(f) +
nGenyy, by reformulating s(f) as follows:

S(f) :4\/E(Uiavj)NDsi7n(Uian) [h?hjhfhl]

:4\/Ec~p []qu‘,NDc [herijDe [hﬂhrf] th

<4\/]Ec~p {HM(ﬁ )y Eo, 2}’

The advantage of incorporating Contrast-Reg into graph contrastive learning lies in its ability to reduce both
the largest singular value of matrix M(f,¢) (omax(M(f,c))) and the expectation of the embedding norm
within the same class, E,,~p,[||h:]|?] (as illustrated in Figure [2c|). This reduction leads to a decrease in the
upper bound of s(f), ultimately yielding a lower value for the term Ss(f) 4+ nGenys compared to vanilla
graph contrastive learning. The reduction in this term promotes better alignment with the performance
of downstream tasks while simultaneously minimizing the training loss. Further experiments on the gener-
alizability of the Contrast-Reg approach can be found in Section and a more detailed explanation on
lowering the term s(f) is provided in Appendix

where M(f,c) = Eq,~p, [hihT].
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5 A Contrastive GNN Framework

In this section, we initially introduce the graph contrastive framework in Algorithm [I} Following that, we
provide two illustrative graph contrastive learning algorithms, each accompanied by its respective similarity
definition. In Section[6] we will conduct experiments using the graph contrastive learning framework to show-
case Contrast-Reg’s capability in addressing the miscalibration problem and enhancing various components
within the general graph contrastive learning framework.

The framework involves training a GNN model f for e epochs using a graph G = (V, £) and node attributes
X. Node representations obtained through f can be used as inputs for downstream tasks, and we employ
NCEloss as the contrastive loss in our framework. For each training epoch, we first select a seed node set C
for computing NCEloss by invoking the SeedSelect function (Line 3). We then call the Constrast function
(Line 4) to construct a positive sample and a negative sample for each node in C. The Constrast function
returns a set P of 3-tuples consisting of the representations for the seed nodes, the positive samples, and
the negative samples. We compute the training loss by adding NCEloss on P and the regularization loss
calculated by Contrast-Reg (Line 5) and update f by back-propagation (Line 6). As discussed in Section [4]
Contrast-Reg necessitates noisy features for contrastive regularization. In our contrastive GNN framework,
we generate these noisy features by shuffling node features among nodes, following the corruption function
employed in |Velickovic et al.| (2019). Different SeedSelect and Contrast functions are designed for various
node similarity definitions to select seed nodes that yield effective training results and generate appropriate
contrastive pairs for these seed nodes. In the following section, we present two examples of contrastive
GNN models for structure and attribute similarities, respectively. These examples are also utilized in our
experimental evaluation in Section [f]

Algorithm 2: ML

Parameter: Parameters of an (additional) GNN
layer g.
1 Function Contrast(C, G, X, f):
Let g(z;) be the representation of z; by
stacking g upon f;

Algorithm 1: Contrastive GNN Framework

Input: Graph G = (V,€), node attributes X, a
GNN model f:V — R¥, the number of
epochs e;

Output: A trained GNN model f;

N

initializehtfilllh;g pa;ameters; 3 Randomly pick a negative node z; from V
or epoc o e do for each z; € C;

C=SeedSelect(G, X, f, epoch); N - ;

P=Contrast(C, G, X, f); 4 return {(g(xl)’f(a?’)’f(xi ))}xieg’

loss = NCEloss(P) + Contrast-Reg(G, X, f); 5 end .

Back_propagation and update - 6 Function SeedSelect (G, X, f, epoch):
ond 7 return V;

8 end

5.1 Attribute Similarity

Models adopting attribute similarity assume that nodes with similar attributes should have similar repre-
sentations, ensuring that the attribute information is preserved. Hjelm et al.| (2019); Peng et al. (2020)
proposed contrastive pair designs to maximize the mutual information between low-level representations (in-
put features) and high-level representations (learned representations). Algorithm [2| presents our model, ML,
which adapts their multi-level representation design into our contrastive GNN framework. In Algorithm [2]
SeedSelect selects all nodes in a graph as seeds. Contrast uses the node z; itself as the positive node for
each seed node z;. However, in the returned 3-tuple, the representation of x; as the seed node differs from
the representation of x; as the positive node. The second element in the 3-tuple is x;’s representation f(z;),
while the first element is calculated by stacking an additional GNN layer g upon f. For negative nodes,
Contrast randomly samples a node in V for each seed node.

5.2 Structural Similarity

We provide an example model (LC') that captures the community structure inherent in graph data Newman
(2006). Since clustering is a common and effective method for detecting communities in a graph, we con-
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Algorithm 3: LC

Hyperparameter: R: curriculum update epochs; k: the number of candidate positive samples for seed node;
Function Contrast(C, G, X, f):
For x; € C, let N;© be the set of k nodes in {z; € Neighbor(x;)} with largest f(x:)" f(z;);
Randomly pick one positive node xj from ./\/i+ for each z; € C;
Randomly pick one negative node z; from V for each z; € C;
return {(f(z:). /(7). @)}, o
end
Function SeedSelect(G, X, f, epoch):
if epoch % R # 1 then

‘ return the same set of seed nodes C' as in the last epoch ;
end

O

P e FOTI®)
H(i) = =3 oy (pig log (pij)) for i € V;
return (L%J + 1)£|G| nodes with smallest H;
end

fori,j € V;

duct clustering in the node representation space to capture community structures. LC borrows the design
from [Huang et al.| (2019) and implements local clustering using the Contrast function, along with curriculum
learning through the SeedSelect function. We note that other methods, such as global clustering |Caron et al.
(2018)) and instance discrimination|Wu et al.| (2018, can also be adapted into our contrastive GNN framework
with different implementations of Contrast and SeedSelect. Algorithm [3] demonstrates the implementation
of Contrast and SeedSelect in LC. For each seed node xz;, Contrast generates a positive node :cj' from the
nodes that have the highest similarity scores with z;, and a negative node z; randomly sampled from V
(Lines 2-4). SeedSelect selects nodes with the smallest entropy to avoid high randomness and uncertainty
at the beginning of the training process. For every R epochs, SeedSelect gradually adds more nodes with
larger entropy to be computed in the contrastive loss as the epochs progress (Lines 11-13).

6 Experimental Results

We begin by introducing the experimental settings in Section Section presents the main results
across various downstream tasks. Moreover, we assess the benefits of Contrast-Reg through ablation studies.

6.1 Experiment Settings

Downstream tasks We commence our experimentation on three distinct downstream tasks, namely node
classification, graph clustering, and link prediction. The experimental procedure consists of two stages: first,
we utilize positive and negative contrastive pairs to train the GNN models in an unsupervised manner,
obtaining the node embeddings. Subsequently, we apply these embeddings to the downstream tasks by
integrating additional straightforward models. For example, we employ multiclass logistic regression for the
node classification, k-means for graph clustering, and a single MLP layer for link prediction. Moreover, we
conduct experiments in the pretrain-finetune paradigm, as this approach constitutes a significant component
of graph contrastive learning |Qiu et al.| (2020). We first employ a large graph to train the GNN models,
followed by finetuning such models and train a simple downstream classifier on a separate graph.

Datasets The datasets we employed encompass citation networks, web graphs, co-purchase networks, and
social networks. Comprehensive statistics for these datasets can be found in Appendix

Similarity definition We evaluate our proposed Contrast-Reg using two similarity definitions: (a) Algo-
rithm [3| captures structure similarity and is denoted as ours (LC), while (b) Algorithm [2| captures attribute
similarity and is denoted as ours (ML).
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Table 1: Downstream task: node classification

Algorithm Cora Citeseer Pubmed  ogbn-arxiv Wiki Computers Photo ogbn-products Reddit
GCN 81.54+0.68  71.25+0.67  79.26+0.38 71.74+0.29 72.40+0.95 79.82+2.04 88.75+1.99 75.64+0.21 94.02+0.05

node2vec  71.07+0.91  47.37+0.95 66.34+1.40 70.07+0.13 58.76+1.48  75.37+1.52  83.63+1.53 72.4940.10 93.26+0.04
DGI 81.90+0.84  71.85+0.37  76.89+0.53  69.66+0.18  63.70+1.43  64.92+1.93  77.19+2.60 77.00+0.21 94.14+0.03
GMI 80.95+0.65  71.11+0.15  77.97+1.04  68.36+0.19  63.35+1.03  79.27+1.64  87.08+1.23 75.5540.39 94.19+0.04
ours (LC) 82.33+0.41 72.88+0.39 79.33+0.59 69.94+0.11 69.19+1.13 81.98+1.52 87.59+1.50 76.96+0.34 94.43+0.03
ours (ML) 82.65+0.57 72.98+0.41 80.10+1.04 70.05+0.09 67.20+0.96 82.11+1.47 86.78+1.70 76.27+0.20 94.38+0.04

Table 2: Downstream task: graph clustering

Algorithm Cora Citeseer Wiki
Acc NMI F1 Acc NMI F1 Acc NMI F1
node2vec 61.78+0.30  44.47+0.21 62.65+0.26  39.5840.37  24.234+0.27  37.544+0.39  43.2940.58  37.394+0.52  36.3540.51
DGI 71.81+1.01  54.904+0.66 69.88+0.90 68.60+0.47 43.75+0.50 64.64+0.41 44.37+0.92 42.20+0.90 40.16+0.72
AGC 68.93+0.02 53.72+0.04 65.62+0.01 68.37+0.02 42.44+0.03 63.73+0.02 49.54+0.07 47.02+0.09 42.16+0.11
GMI 63.44+3.18  50.33+1.48  62.21+3.46  63.75+1.05  38.14+0.84  60.23+0.79  42.814+0.40  41.534+0.20  38.5240.22

ours (LC)  70.04+2.04 55.08+0.75 67.36+£2.17  67.90+0.74 43.63+0.57  64.21+0.60 50.12+0.96 49.70+0.49  43.74+0.97
ours (ML)  71.59+1.07 56.01+0.64 68.11+1.32 69.17+0.43 44.47+0.46 64.74+0.41 53.13+1.01 51.81+0.57 46.11+0.93

Training Details We employed full-batch training for Cora, Citeseer, Pubmed, ogbn-arxiv, Wiki, Com-
puters, and Photo, while utilizing stochastic mini-batch training for Reddit and ogbn-products. For Cora,
Citeseer, Pubmed, ogbn-arxiv, ogbn-products, and Reddit, we adhered to the standard dataset splits and
conducted 10 different runs with fixed random seeds ranging from 0 to 9. For Computers, Photo, and Wiki,
we randomly divided the train/validation/test sets, allocating 20/30/all remaining nodes per class, in ac-
cordance with the recommendations in [Shchur et al| (2018]). We measured performance across 25 (5x5)
different runs, comprising 5 random splits and 5 fixed-seed runs (from 0 to 4) for each random split. The
hyperparameter configurations can be found in Appendix [B]

6.2 Main Results

Our primary results involve comparing our proposed Contrast-Reg, along with the chosen similarity defini-
tions, against state-of-the-art algorithms across various downstream tasks.

6.2.1 Node Classification

We evaluated node classification performance on all datasets, utilizing both full-batch training and stochastic
mini-batch training. Our methods were compared with DGI [Velickovic et al.[(2019), GMI |Peng et al.| (2020)),
node2vec (Grover & Leskovec| (2016), and supervised GCN [Kipf & Welling| (2017). DGI and GMI represent
state-of-the-art algorithms in unsupervised graph contrastive learning. Node2vec is an exemplary algorithm
for random walk-based graph representation algorithms|Grover & Leskovec| (2016); Tang et al.| (2015)); [Perozzi
et al.|(2014)), while GCN is a classic semi-supervised GNN model. We report the performance of ours (LC) and
ours (ML), both utilizing Contrast-Reg. For full-batch training, the encoder is GCN, whereas for stochastic
training, the encoder is GraphSage |Hamilton et al.| (2017)) with GCN-aggregation. The encoder settings are
consistent with those in DGI and GMI. Table [I] presents the node classification accuracy, including standard
deviation. Our results show that our algorithms outperform in the majority of cases for both full-batch
training (on Cora, Citeseer, Pubmed, Computers, Photo, and Wiki) and stochastic training (on Reddit
and Ogbn-products). Remarkably, our unsupervised algorithms can even surpass the performance of the
supervised GCN.

6.2.2 Graph Clustering

We assessed clustering performance using three metrics: accuracy (Acc), normalized mutual information
(NMI), and Fl-macro (F1), following the work of [Xia et al. (2014). Higher values indicate better clustering
performance. We compared our methods with DGI, node2vec, GMI, and AGC |[Zhang et al. (2019)) on the
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Table 3: Downstream task: link prediction
Algorithm Cora Citeseer Pubmed Wiki

GCN-neg  92.40+0.51  92.27+40.90  97.2440.19  93.2740.31
node2vec 86.3340.87 79.60+1.58 81.7440.57 92.4140.35
DGI 93.6240.98 95.03+1.73 97.244+0.13 95.5540.35
GMI 91.3140.88 92.2340.80 95.1440.25 95.3040.29
ours (LC) 94.61+0.64 95.63+0.88 97.26+0.15 96.28+0.21

Table 4: Pretraining

Algorithm Reddit ogbn-products
No pretraining  90.44+1.62 84.69+0.79
DGI 92.09+1.05 86.37+0.19
GMI 92.13+1.16 86.14+0.16

ours (ML) 92.18+0.97 86.28+0.20
ours (LC) 92.5240.55 86.45+0.13

Cora, Citeseer, and Wiki datasets. AGC is a state-of-the-art graph clustering algorithm that leverages high-
order graph convolution for attribute graph clustering. For all models and datasets, we employed k-means
to cluster both the labels and representations of nodes. The clustering results of labels were considered as
the ground truth. To reduce dimensionality, we applied PCA to the representations before using k-means,
since high dimensionality can negatively impact clustering |(Chen| (2009)). The random seed setting for model
training was consistent with that in the node classification task. To minimize randomness, we set the
clustering random seed from 0 to 4 and computed the average result for each learned representation. Table 2]
presents improved results with and without PCA for each cell. Our algorithms, particularly ours (ML),
exhibited superior performance in all cases, demonstrating the effectiveness of Contrast-Reg. It is worth
noting that the superior results of ours (ML) compared to ours (LC) suggest that attributes play a crucial
role in clustering, as graph clustering is applied to attribute graphs.

6.2.3 Link Prediction

In order to circumvent the data linkage issue in link prediction, we employed an inductive setting for graph
representation learning. We randomly extracted induced subgraphs (comprising 85% of the edges) from each
original graph for training both the representation learning model and the link predictor, while reserving
the remaining edges for validation and testing (10% for the test edge set and 5% for the validation edge
set). We assessed performance across 25 (5x5) different runs, utilizing a fixed-seed random split scheme with
five distinct induced subgraphs and five fixed-seed runs (ranging from 0 to 4). We compared our model
with DGI, GMI, node2vec, and unsupervised GCN (GCN-neg in Table [3) on the Cora, Citeseer, Pubmed,
and Wiki datasets. It is important to note that we did not include the ML model in this experiment, as
it primarily focuses on node attributes. The results presented in Table [3] demonstrate that our algorithms
surpass the performance of state-of-the-art methods.

6.2.4 Pretraining

We further assessed the performance of Contrast-Reg in the context of the pretrain-finetune paradigm. For
the Reddit dataset, we naturally partitioned the data by time, pretraining the models using the first 20
days. We generated an induced subgraph based on the pretraining nodes and divided the remaining data
into three parts: the first part produced a new subgraph for fine-tuning the pre-trained model and training
the classifier, while the second and third parts were designated for validation and testing. For the ogbn-
products dataset, we split the data according to node ID, pretraining the models using a subgraph generated
by the initial 70% of the nodes. The data splitting scheme for the remaining data mirrored that of the Reddit
dataset. We conducted baseline experiments on DGI and GMI, employing the same GraphSAGE with GCN-
aggregation encoder as in our model. Table [4 reveals that pretraining the model facilitates convergence to a
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Table 5: Contrastive learning with and w/o Contrast-Reg

Algorithm Cora Wiki Computers Reddit

ML 73.2240.77 58.70+1.51 77.0842.48 94.3340.07
ML+#¢2-normalization  80.1440.92 61.83+1.36 80.8041.45 94.0740.19
ML+ Weight-decay 81.6540.42 63.67+1.47  79.0940.32 94.3440.06
ML+Contrast-Reg 82.65+0.57 67.2040.96 82.11+1.47 94.3840.04

LC 79.7340.75  65.14+1.48  79.80+1.49  94.42+40.03
LC+/3-normalization  81.094+0.59  63.96+0.64  80.73+1.36  94.20+0.06
LC+Weight-decay 81.94+0.44  65.17+1.34  81.89+1.58 94.4440.03
LC+Contrast-Reg 82.334+0.41 69.19+1.13 81.98+1.52 94.4340.03

more robust representation model with reduced variance, and Contrast-Reg can enhance the transferability
of the pre-trained model.

6.3 Discussion of Contrast-Reg

To evaluate the benefits of Contrast-Reg, we conduct experiments comparing it to two approaches, specif-
ically, ¢5-normalization and weight decay, on four networks from different domains, with a focus on node
classification task performance. It is important to note that some regularization techniques, such as those
mentioned in Section [2] are not explicitly designed to address the miscalibration problem. ¢s-normalization
Chen et al.| (2020)) mitigates the potential risk of the expectation of the prediction value for randomly sampled
pairs E(, ,n[o(v - v")] exploding by explicitly eliminating the embedding norm for each node’s embeddings
to tackle the miscalibration problem, while weight decay strives to achieve the same result by implicitly
restricting the gradient descent step length. Table [f] presents a comparison of the accuracy achieved by
different contrastive learning algorithms, ML and LC, when incorporating fs-normalization, weight de-
cay, and Contrast-Reg, as opposed to using the vanilla algorithms. The results indicate that integrating
{o-normalization, weight decay, and Contrast-Reg into graph contrastive learning algorithms improves the
accuracy of downstream tasks, suggesting that addressing miscalibration enhances the generalization of
learned embeddings for downstream tasks. However, the performance gains provided by Contrast-Reg ex-
ceed those of fy-normalization and weight decay. This implies that while alternative algorithms exist to
address miscalibration, Contrast-Reg emerges as the most effective method for improving the generalization
of learned embeddings for downstream tasks. It is crucial to acknowledge the existence of other algorithms
that may also contribute to mitigating the miscalibration problem, and further research is needed to explore
and compare their effectiveness.

Appendix[A.9) presents the ablation study of Contrast-Reg on the GAT backbone, illustrating that Contrast-
Reg consistently enhances graph contrastive learning performance across various backbones. In conclusion,
based on the experimental results, we determine that Contrast-Reg serves as an effective regularization
method for a general graph contrastive learning framework, encompassing similarity definition, GNN encoder
backbone, and downstream tasks.

7 Conclusions

In conclusion, graph contrastive learning algorithms have shown great potential in various applications, such
as node classification, link prediction, and graph clustering. However, the effectiveness of these algorithms
in new tasks or data can be inconsistent. By adapting the expected calibration error (ECE) to the graph
contrastive learning framework, we analyzed the shortcomings of existing algorithms and addressed the
issue of miscalibration. Our novel regularization method, Contrast-Reg, significantly enhances the quality
of embeddings and their performance in downstream tasks. Through theoretical evidence and empirical
experiments, we have demonstrated the effectiveness of Contrast-Reg in improving the generalizability of
graph contrastive learning algorithms. This research paves the way for the development of more robust and
reliable graph representation learning techniques, ultimately benefiting a wide range of applications across
various domains.
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Table 6: Impact of Contrast-Reg on ECE Value

Cora  Citeseer Pubmed

w/oreg (ML)  0.477 0.540 0.399
with reg (ML) 0.413  0.525  0.273
w/oreg (LC)  0.477 0.537 0.416
with reg (LC) 0.437  0.524  0.274

A Appendix

A.1 Calibrating the Existing Graph Contrastive Learning Algorithms

Considering that positive sampling is based on the calculated distance between pairwise embeddings, we can
express the following relationship:

IEacc(v v’ :1[]7( 71};)] = Eacc(v,v;):O[p(Ua Uzr)] = ]Etopk 0 (hy,hyr) [U(hf’u : hv’)] (9)

%)
Here, Eqopk o(h,-h,,) [0 (ho - her)] represents the expectation of the top k pairs (v,v"). When the loss converges,
]Etopk U(hv-h“/)[o'(h’v ) hv')} — 1

Furthermore, by considering the definition in Equation [4] and the fact that negative samples are uniformly
sampled, we can write:

Eacc(v,v/_):O[p(U7 UL)] = Eacc(v,v/_)zl[p(v7 UL)] =1- E(u,v’)[a(va U/)]- (10)
Thus, Equation [6] can be reformulated as:

ECE = 7"+(1 - QEtopk a(hv~hv/)[0(hv : hv/)Dqu +r (1 =2¢ )Elo(hy - ho)] +77q"

(11)

+ T+Etopk o(hy-hyr) [U(hv . h{u)]
When the loss converges, Eqopk o (h, .1, [0 (ho-h;,)] — 1, indicating that the ECE value is negatively correlated
with the probability ¢* of v/,. In addition, negative samples are uniformly sampled, so that ¢~ = 1/K,
where K represents the number of classes when K > 2. As a result, ECE is positively correlated with the
expectation of the confidence value for randomly sampled pairs E, o) [0 (A, hor)].

A.2 Contrast-Reg Benifits to Mitigate the Miscalibration in Graph Contrastive Learning

Figure [2a] and Figure 2] investigate the impact of Contrast-Reg on the ECE value for the Pubmed dataset
across epochs. In this section, we provide a comparison of the impact on ECE value when the loss converges
between models with and without Contrast-Reg, across various datasets and contrastive strategies in Table
[(l Table[6]demonstrates that, with Contrast-Reg, ECE values decrease for all tested datasets and contrastive
losses. The reduced ECE indicates that Contrast-Reg promotes better alignment with the performance of
downstream tasks while simultaneously minimizing the training loss, ensuring that minimizing the contrastive
loss with Contrast-Reg leads to high-quality representations.

A.3 Explanation of Contrast-Reg’s Impact on the Term s(f)

In this section, we provide an explanation for why Contrast-Reg leads to a decrease in the upper bound of
s(f). Firstly, we will prove that minimizing Eq. results in a decrease in Var(||h;||) when h7 Wr > ¢, as
stated in Theorem [2l Then, based on the assumption that models with lower Var(]|h;||) inherently favor
lower values of E[||h;||], both E,,~p, [||2:]|?] and o pmaz(M(f,c)) will decrease. Consequently, the upper bound
of s(f) decreases with the implementation of Contrast-Reg. In the subsequent proof, h; = f(x), and the
notations h; and f(z) may be used interchangeably for the sake of presentation clarity.

Theorem 2. Minimizing Eq. (@ induces the decrease in Var(||h;||) when hIWr > c.
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Proof. We minimize L,., by gradient descent with learning rate j.

0
mﬁ'rsg = —O'(—f(.’E)TWI')WI' (12)
The embedding of f(x) is updated as the following after adding L,eg:
f(@) « f(a) + B (o(=f(x) " Wr)Wr) (13)
Eq. shows that in every optimization step, f(x) extends by Bo(—f(x)TWr) ||Wr| along rg := H%:II'

If we do orthogonal decomposition for f(x) along rg and its unit orthogonal hyperplain II(ry), f(z) =
(f(2)Tro) ro + (f(2)T(rg)) H(rg). Thus we have

1@l =/ (F@)Tr0)” + (F(@) T (x0)) 2. (14)
The projection of f(z) along rg is f(z)Try = f(‘T‘BVTrTlW, while the projection of f(z) plus the Contrast-Reg
update along r is
T _ f(x)TWr B
(f(x) ro)reg vl * 1+ ef@TWr W

Note that (f(x)TH(ro))reg = f(x)T(ro).
Based on Lemma |l|and Eq. ,
when 8 ||[Wr|* <1 and f(z)Wr > 1.5, we have

var (|[(f@),.

) < Var (I @)]). (15)

Lemma 1. For a random variable X € [1.5,+00), a constant 7 € (0,1] and a constant c¢*, we have

Var <\/(X+ —_ +c2> < Var (\/X2—+c2) . (16)

l1+e

Proof. First, we consider

o) = o+ T = Vi

where h(x) is strictly decreasing in [zg, +00) and strictly increasing in (—o0, zg], and zg is the solution of
W(x) = %(9;) = 0. Thus, we can approximate the range of 2o € (0,1.5) by the fact that h’'(0)h'(1.5) < 0 for
all 7 and c*.

Thus, for z >y > 1.5,

\/(x—i— u )2+02—m<\/(y+

1+e®

p
1+6y)2+c2_</y2+02

and since (z + is monotonically increasing, we get

Ter)

T Yo .2 T V2 2 2 _ /o2 2
0<\/(x+1+e“') e \/(y+1+ey) tEVIE S VP e

When y > x > 1.5,

\/x2+c2\/y2+c2<\/(x+

AT SIS T 22
1+e$) +c \/(y+1+ey) + 2 <.
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Further, we assume that X and Y are i.i.d. random variables sampled from [1.5, 4+00),

Var <\/(X + : +7'6X )2 +02>
=3 xExy K\/(m LR \/(Y+ 1+Tey)2+c2>
:% X / (\/($+ 1 _:ex)z +c? — \/(y+ 1_{_L€y)2 +02) p(x)p(y)dzdy

<% x / (\/ﬂf2 +e =Y+ 02)2p(w)p(y)dxdy
=Var(v/ X2 + ¢?)

O
Remark 1. HI/VrH2 < 1, which is the condition of Eq. , s not difficult to satisfy, since the magnitude
of r could be tuned. In practice, r € (0,1] can fit in all our experiments.

Remark 2. The range of f(x)Twr in Theorem@ s not a tight bound for xqy in Lemma . Since when Eq. (@
converges, f(z)TWr is much larger than 1.5 for almost all the samples empirically, we prove the case for
f(z)Twr € [1.5, +00).

A.4 Comprehensive Explanation of Theorem [T} Notations and Proof

To formally analyze the behavior of contrastive learning, |Saunshi et al| (2019) introduce the following
concepts.

o Latent classes: Data are considered as drawn from latent classes C with distribution p. Further,
distribution D, is defined over feature space X that is associated with a class ¢ € C to measure the
relevance between = and c.

o Semantic similarity: Positive samples are drawn from the same latent classes, with distribution
Dyim (x,21) = Ecep [De(x)De(z)] (17)

while negative samples are drawn randomly from all possible data points, i.e., the marginal of Dg;;,,
as

Dneg(x_) = IEcEp [Dc(m_)] (18)

o Supervised tasks: Denote K as the number of negative samples. The object of the supervised task,
i.e., feature-label pair (z,¢), is sampled from

Dy(x,c) = D.(x)D7(c),

where D7 (c) = p(clc€ T), and T C C with |[T]| = K + 1.
Mean classifier W* is naturally imposed to bridge the gap between the representation learning
performance and linear separability of learn representations, as

Wi = pe = Epup, [f(2)].

o Empirical Rademacher complexity: Suppose F : X — [1,0]. Given a sample S,

Rs(F)=Eg [sup €Tf(8)] ,
fer

T

where € = (e1, -+ ,e,)" , with e; are independent random variables taking values uniformly from

{-1,+1}.
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In addition, the theoretical framework in [Saunshi et al.| (2019) makes an assumption: encoder f is bounded,
ie., maxgex ||f(2)|| < R?, RER.

To prove Theorem [I} we first list some key lemmas.

Lemma 2. Forall f € F,
1

Lowp(f) < 77—

(Lnee(f) —271log2). (19)

This bound connects contrastive representation learning algorithms and its supervised counterpart. This
lemma is achieved by Jensen’s inequality. The details are given in Appendix [A-6]

Lemma 3. With probability at least 1 — & over the set S, for all f € F,

£nce(f> S Ence(f) + GG’I’LM. (20)

This bound guarantees that the chosen f = argminger L . cannot be too much worse than f* =

argminser Lyce. The proof applies Rademacher complexity of the function class Mohri et al.| (2018]) and
vector-contraction inequality (2016). More details are given in Appendix

Lemma 4. £ (f) < 4s(f) + 2log2.

This bound is derived by the loss caused by both positive and negative pairs that come from the same class,
i.e., class collision. The proof uses Bernoulli’s inequality (details in Appendix |A.8).

Proof to Theorem [l Combining Lemma 2] and Lemma [3] we obtain with probability at least 1 — § over the
set S, for all f € F,

2 1
Egup(f) < ﬁ (»Cnce(f) + GenM) (21)
Then, we decompose Lyee = 7L (f) + (1 — 7)L7..(f), apply Lemma 4 to Eq. , and obtain the result
of Theorem [I] O

A.5 Contrastive Learning with NCEloss

The contrastive loss defined by [Saunshi et al.| (2019) is

Lun = E [(({f @) () = flaDHD]
(@@ ) ~Dyim,
(21_, a-”/‘})"’Dneg
where ¢ can be the hinge loss as ¢(v) = max{0,1+ max; {—v;}} or the logistic loss as ¢(v) =

log, (1 + ), exp(—v;)). And its supervised counterpart is defined as

L= B [({@ k=@ e}, |-

(xac)NDT(m,c)

A more powerful loss function, NCEloss, used in [Velickovic et al|(2019)); [Yang et al. (2020b)); Mnih & Teh|
(2012); Dyer| (2014), can be framed as

ane =
K
- LLE [logo(f(x)Tf(f)HZloga(f(x)Tf(mk))], (22)
x,T NDsimv —
(@] @)~ Dneg r=t
and its empirical counterpart with M samples (xi,:cj',xa; .- ,x;K)i]\il is given as
M K
Joppp— 1 Tfat 1 T f(x;; 2
nee=—7:3  |logo(f(z:) /(] >>+k2 ogo(—f (@) f(z;))|, (23)
=1 =1
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where o(-) is the sigmoid function.

For its supervised counterpart, it is exactly the cross entropy loss for the (K +1)-way multi-class classification
task:

Liup=— E [log o (f(2)" pe)+Hlogo(—f(2)" per) | #e]. (24)

(@.0)~Dr (z.0)

A.6 Proof of Lemma 2

First, we prove that £(f(zT),{f(z;)}) = —(logo(f(z)" f(=T)) + Zf; log(o(f(x)T f(z7))) is convex w.r.t.
f(x*),f(:c;),-~ ,f(zx). Consider that l1(z) = —logo(z) and f2(2) = —logo(—z) are both convex func-
tions since ¢/ > 0 and ¢§ > 0 for = € R. Given f(z) € R, 2" = f(x)Tf(:v+) and 2~ = f(z)Tf(z") are

affine transformation w.r.t. f(z*) and f(z~). Thus, when f(z) is fixed, ¢1(f(z")) = loga(f(m)Tf(:ﬁ)) and
L(f(z7)) = —loga(—f(x)Tf(x_)) are convex functions. As ¢; > 0 and ¢> > 0, we obtain 4(f(z™),{f(z;)}) =

—(logo(f(x)T f(z +Zf< log(o(f(x)" f(z7)))) is convex since non-negative weighted sums preserve convex-
ity Boyd & Vandenberghe (2014). By the definition of convexity,

Luce(f) = E+ e~ ~p2; EZ+NDC+; [Z(f($+)7 {f(mz_)})]

ZE'D(‘+ 17~DC_
> Bt - np2Bonn . [0 (@) {pic+, pr-)}]
= (1= 7) Ly (f) + Bt o pBonp_, [~logo(f(2)" pet) —logo(—f(2)" pe+)]
> (1= 7) Ll (f) + 27 log2

A.7 Generalization bound

Denote }
{f (2?7,, Ty, Ty, ’x;K) =
(F@o), f(=]), f(@0), - flaig)) If € F )

Let a5 = ho f, and its function class,
Q={g=hoflfeF}.

Denote z; = (xi,xzr,xfl, e ,I;K), suppose £ is bounded by B, then we can decompose h = %E o ¢. Then

we have q(z;) = %é(qﬁ(f(zz))), where

> f(xi)tf(mm)t> (25)

Lx) = — (10g0’(£€0) + Zlog O'(—J}i))) .

1=1

From Eq. , we know that ¢ : RUE+2)d _, RE+1
Then we will prove that h is L-Lipschitz by proving that ¢ and ¢ are both Lipschitz continuity. First,

f (i) T\ fa)e k=1, K
9¢(f(2:)) . 9¢(f(2:)) .
Fae 0 T, T
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If we assume 3¢ | f(za)? < R* and Y0, f(x:)? < R?,

d d
1] = Zﬂ +sz zp )i+ (K +1)) [

k=1 t=1

< V2(K +1)R? = \/2(K + )R

Combining ||J||, < ||J||z, we obtain that ¢ is \/2(K + 1)R-Lipschitz. Similarly, ¢ is v/ K + 1-Lipschitz.
Since we assume that the inner product of embedding is no more than R?. Thus, [ is bounded by B =
—(K + 1)log(o(—R?)). Above all, h is L-Lipschitz with L = M. Applying vector-contraction
inequalityMaurer| (2016]). We have

Eon(z1ym [S_UQ<U: (ho f)\8>] < \[LEUN{il}WH)dM [sup (o 7];\S>]~
fer feF

If we write it in Rademacher complexity manner, we have

2(K +1)R

Rs(Q) < B

Rs(F).

Applying generalization bounds based on Rademacher complexity |Mohri et al.| (2018) to ¢ € Q. For any
0 > 0, with the probability of at least 1 — g,

M 2R Q) log 3
s( 5
<7
-M z_: +3 2M
= + 1)RRs(F) log §
s 5
<L E .
-M — BM +3 2M
Thus for any f,
. 4(K +1)RRs(F) log 3
< :
ane(f) > ane(f) + M + 3B oM (26)

Let f = arg min e 7 Loee(f) and f* = argminfer Lce(f). By Hoeffding’s inequality, with probability of
1- 9
2

3

~ log 2
) < * [
[«nce(f ) > ['nce(f ) + B oM

(27)

Substituting f into Eq. , combining Lnee(f) < Lnee(f*) and applying union bound, with probability of
at most &

4 2
Loce(f) gince(f)Jr‘MWJr:%B\/logé +B\/log5

M M M
< Loee(f*) + W +4B lgﬁj (28)
< Loee(f) + W — 4(K + 1) log(o(—R?)) lgif

fails. Thus, with probability of at least 1 — ¢, Eq. holds.
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Table 7: GAT as encoder with and w/o Contrast-Reg

Algorithm Cora Wiki Computers

ML 76.90+1.20  69.02+1.89  78.47+2.60
ML~+Contrast-Reg  81.56+0.94 69.41+0.85 80.41+1.96
LC 74.30+1.10  61.55+1.89  73.27+5.98

LC+Contrast-Reg  80.87+0.96 69.92+0.80 80.28+2.09

A.8 Class collision loss

Let p; = |f(x)T f(x;)| and p = maX;eqo,1,... .k} Pi- Considering

Lrelf)=—E lloga(ﬂx)Tf(xo*» +3 loga(f(ff)Tf(xi)))]

=E

K
log(1 + e—f(a:)Tf(x;r)) n Zlog(l + ef(oc)Tfui))] (29)

< (K +1)E [log(1 + €”)] i
< (K +1)log2 + (K + 1)E[p]

Since x, :c(J{, xy, -, T are sampled i.i.d. from the same class,

E[p] = /P[p > z]dx = /(1 — (1= P[po > z])* da. (30)

Applying Bernoulli’s inequality, we have
Bl < (1= (1= (K + )Pl 2 i

= /(K—l— 1)P[po > z]dz

(31)
= (K + 1E[po]
= (K + DE[f(2)" f(x3)]]
< (K + DVE[(f(2)T f(x5))?.
Therefore,
Lrce(f) < (K +1)log2 + (K +1)s(f) (32)

A.9 Contrat-Reg Ablation Study on GAT Backbone

To showcase the efficacy of Contrast-Reg on graph contrastive learning performance with various backbones, we
conduct additional full-batch experiments using the Graph Attention Network (GAT) |Velickovic et al.| (2018]) as
the encoder backbone. The results, presented in Table [7] demonstrate that Contrast-Reg effectively calibrates the
contrastive model on the GAT backbone for node classification tasks across all three datasets. These results, in
conjunction with the full-batch Graph Convolutional Network (GCN) Kipf & Welling| (2017)) encoder and the mini-
batch GraphSAGE [Hamilton et al.| (2017) encoder used in Tables 1-5, highlight Contrast-Reg’s capacity to effectively
work with various encoder backbones, f, which is consistent with the analysis presented in Section

B Experiment details
Dataset statistics The dataset statistics is shown in Table [§

Hardware Configuration: The experiments are conducted on Linux servers installed with an Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20GHz, 256GB RAM and 8 NVIDIA 2080Ti GPUs.
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Table 8: Datasets

Dataset Node # Edge # Feature # Class #

Cora |Yang et al.| (2016 2,708 5,429 1,433 7
Citeseer |Yang et al.| (2016)) 3,327 4,732 3,703 6
Pubmed Yang et al.| (2016 19,717 44,338 500 3
ogbn-arxiv |Hu et al| 169,343 1,166,243 128 40
Wiki |Yang et al[ (2015) 2,405 17,981 4,973 3
Computers Shchur et al.[(2018) 13,381 245,778 767 10
Photo |Shchur et al.[(2018) 7,487 119,043 745 8

ogbn-products [Hu et al.| (2020a/ 2,449,029 61,859,140 100 47
Reddit |[Hamilton et al.| (2017 232,965 114,615,892 602 41

Software Configuration: Our models, as well as the DGI, GMI and GCN baselines, were implemented in
PyTorch Geometric [Fey & Lenssen| (2019)) version 1.4.3, DGL [Wang et al| (2019) version 0.5.1 with CUDA version
10.2, scikit-learn version 0.23.1 and Python 3.6. Our codes and datasets will be made available.
Hyper-parameters: For full batch training, we used 1-layer GCN as the encoder with prelu activation, for mini-
batch training, we used a 3-layer GCN with prelu activation. We conducted grid search of different learning rate
(from le-2, 5e-3, 3e-3, le-3, 5e-4, 3e-4, le-4) and curriculum settings (including learning rate decay and curriculum
rounds) on the fullbatch version. We used le-3 or 5e-4 as the learning rate; 10,10,15 or 10,10,25 as the fanouts and
1024 or 512 as the batch size for mini-batch training.
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