
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VALUE-ALIGNED WORLD MODEL REGULARIZATION
FOR MODEL-BASED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) aims to construct world models
for imagined interactions to enable efficient sampling. Based on training strat-
egy, current mainstream algorithms can be categorized into two types: maxi-
mum likelihood and value-aware world models. The former adopts structured
Recurrent/Transformer State-Space Models (RSSM/TSSM) to capture environ-
mental dynamics but may overlook task-relevant features. The latter focuses on
decision-critical states by minimizing one-step value evaluations, but it often ob-
tains sub-optimal performance and is difficult to scale. Recent work has attempted
to integrate these approaches by leveraging the strong priors of pre-trained large
models, though at the cost of increased computational complexity. In this work, we
focus on combining these two approaches with minimal modifications. We empiri-
cally demonstrate that the key to their integration lies in: RSSM/TSSM ensuring
the lower bound of the world model, while value awareness enhances the upper
bound. To this end, we introduce a value-alignment regularization term into the
maximum likelihood world model learning, promoting task-aware feature recon-
struction while modeling the stochastic dynamics. To stabilize training, we propose
a warm-up phase and an adaptive weight mechanism for value-representation bal-
ance. Extensive experiments across 46 environments from the Atari 100k and
DeepMind Control Suite benchmarks, covering both continuous and discrete action
control tasks with visual and proprioceptive vector inputs, show that our algorithm
consistently boosts existing MBRL methods performance and convergence speed
with minimal additional code and computational complexity.

1 INTRODUCTION

In recent years, deep reinforcement learning (DRL) has achieved remarkable progress across various
domains, including game playing(Vinyals et al., 2019), robotic control(Ju et al., 2022) and large
model fine-tuning(Guo et al., 2025), driven by trial-and-error mechanism. However, the extensive
samples required for training has limited DRL’s deployment in real-world applications. To address
this, model-based reinforcement learning (MBRL) has emerged as a promising solution, gaining
considerable attention within the research community. The core idea of MBRL is the introduction
of a world model, which, by modeling environment dynamics, reduces the need for frequent real
interactions and facilitates efficient sampling. Based on different world model training strategies,
current MBRL algorithms can be broadly classified into two types: maximum likelihood(Hafner
et al., 2019a; Burchi & Timofte, 2025) and value-aware world models(Farahmand et al., 2017;
Voelcker et al., 2022). The former adopts variational inference to directly model environment
dynamics with RSSM/TSSM, while the latter incorporates value functions to emphasize task-relevant
feature reconstruction. However, value-aware models have empirically struggled with suboptimal
performance and scaling challenges, leading mainstream algorithms to primarily adopt the maximum
likelihood approach, while the development of value-aware world models has progressed more slowly.

Dreamer(Hafner et al., 2019a; 2020; 2025), a pioneering work in maximum likelihood algorithms,
successfully applies MBRL across various domains. The training process consists of two key stages:
1) world model training and 2) behavior model training, as shown in Fig.1(a). During the world
model phase, the agent interacts with the real environment and trains the world model using collected
real trajectories. In the behavior model phase, the agent interacts solely with the learned world
model and trains the behavior model using imagined trajectories. By alternating between these two

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Classic maximum likelihood MBRL algorithm workflow and variants.

stages, Dreamer achieves strong performance with minimal real interaction and substantial virtual
imagination, significantly enhancing sampling efficiency. However, in this framework, the world
model and behavior model training are often independent, leading to a misalignment between their
objectives and causing task-relevant features to be overlooked. To address this, recent works, as
shown in Fig.1(b), have introduced the prior knowledge of pre-trained large models to guide the
world model’s focus on significant information. For example, (Zhang et al., 2025a) uses object
detection to prioritize decision-relevant target areas, while DreamVLA(Zhang et al., 2025b) enhances
spatial reconstruction through depth-based 3D knowledge and semantic segmentation. Although
incorporating pre-trained large models improves performance, the associated high computational
complexity limits training efficiency. Additionally, the misalignment between pre-trained models and
real environments poses risks to model performance.

From the above perspectives, we conclude two key limitations in current maximum likelihood world
model methods: 1) Redundancy of input states: In particular, visual inputs often contain substantial
redundancy and the maximum likelihood loss treats each pixel equally, which may hinder critical
information prediction. 2) Misalignment with task knowledge: Due to the misalignment between
training objectives, a good world model does not necessarily translate into a good policy. Therefore,
it is crucial to identify features with task-specific knowledge. For example, in DMC Control tasks,
accurately predicting pose is essential, while in Atari games, reconstructing the scene is more critical.
To this end, we propose Value-aligned World Model(as shown in Fig.1(c)), which bridges world
model and behavior model training through a value-alignment regularization term. On one hand, the
value network reflects the environment’s reward distribution, enabling the model to identify interest
regions with high value fluctuations and achieve task alignment. On the other hand, value alignment
term does not require additional prior knowledge or increase computational complexity, making it
more convenient and efficient for deployment compared to pre-trained large models.

Our Contribution. In this paper, we address the challenges of input redundancy and task misalign-
ment in current maximum likelihood world model algorithms. To this end, we propose Value-aligned
World Model, a novel and effective MBRL algorithm that bridges the gap between world model and
behavior model learning through value alignment. Specifically, we introduce a Value-alignment reg-
ularization term (Var) into the maximum likelihood world model optimization, allowing the world
model to not only focus on modeling environmental dynamics but also prioritize the reconstruction
of states with high value sensitivity. To ensure training stability, we design a warm-up phase and a
value-representation adaptive weight mechanism, which prevent instability during the early stages of
value learning and balance the maximum likelihood loss with the value-alignment regularization term,
respectively. In practice, we apply our approach to two classic methods, DreamerV3(Hafner et al.,
2025) and STORM(Zhang et al., 2023), and conduct extensive experiments across 26 environments
from the Atari 100k benchmark(Bellemare et al., 2013) and 20 environments from the DMC Control
benchmark(Tassa et al., 2018), covering both continuous and discrete action control tasks with visual
and proprioceptive vector inputs. The experimental results show that our algorithm significantly
improves the performance of existing MBRL baselines with faster convergence. Specifically, on the
Atari 100k benchmark, our algorithm improves DreamerV3’s average performance from 1.10 to 1.34
and its median performance from 0.58 to 1.00. This demonstrates that the proposed value-alignment
regularization term consistently enhances model performance across various environments, rather
than yielding large improvements in only a few extreme cases. Furthermore, our algorithm is best
viewed as a plug-and-play module, requiring only a few lines of code to integrate into existing
maximum likelihood methods, with minimal additional computational complexity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Generally, most mainstream MBRL algorithms follow a two-stage training process: world model
learning and behavior model learning. Depending on the strategy used to train the world model,
MBRL algorithms can be further categorized into two types:

Maximum likelihood world models (Seo et al., 2023; Micheli et al., 2024) aim to accurately
predict environmental dynamics from historical observations and actions, minimizing prediction
errors via maximum likelihood estimation. PlaNet(Hafner et al., 2019b) introduces the Recurrent
State-Space Model (RSSM), using recurrent neural networks (RNNs) and Variational Autoencoders
(VAE)(Kingma & Welling, 2013) to model the world in latent space. Dreamer(Hafner et al., 2019a)
builds on RSSM by incorporating an actor-critic framework that imagines behavior within the world
model. DreamerV2(Hafner et al., 2020) optimizes this approach by replacing Gaussian latents
with discrete categorical latents, improving stochastic dynamics representation. DreamerV3(Hafner
et al., 2025) introduces structural and training modifications, enabling stable learning across various
domains without hyperparameter tuning. Recent works have explored replacing RNN-based world
models with Transformer architectures, incorporating self-attention mechanisms. TWM(Robine et al.,
2023) proposes the Transformer State-Space Model (TSSM), treating states, actions, and rewards
as independent tokens for dynamic modeling, while STORM(Zhang et al., 2023) integrates states
and actions into a single token, enhancing training efficiency. More recently, DIAMOND(Alonso
et al., 2024) introduced diffusion models for precise visual detail prediction, and TWISTER(Burchi
& Timofte, 2025) applied Contrastive Predictive Coding in TSSM to model temporal dependencies.
Despite these advancements, maximum likelihood world models still struggle with misalignment
between the world model’s training objectives and the policy optimization goal. Additionally, the
need for each state precise prediction in maximum likelihood estimation limits the model’s ability to
effectively reconstruct task-relevant states, hindering its applicability in complex environments.

Value-aware world models, as the name suggests, aim to guide the world model with the value
function to minimize the one-step value estimation error. The concept of Value-Aware Model
Learning (VAML) was first introduced by (Farahmand et al., 2017), and IterVAML(Farahmand,
2018) was subsequently developed to iteratively optimize the policy and mitigate the "max-min"
issue inherent in VAML. VaGraM(Voelcker et al., 2022) further enhances VAML by introducing
Value-gradient weighted Model Learning, focusing the model on states that significantly influence
the policy. More recently, CVAML(Voelcker et al.) introduces a variance correction term to address
"overconfidence" in stochastic environments. While value-aware world models provide an intuitive
approach to address the misalignment issue inherent in maximum likelihood world models, the
instability of value estimation for out-of-distribution samples and the non-convexity of the VAML
loss function make these algorithms susceptible to local optima during training. This, in turn,
complicates their practical deployment and results in suboptimal performance compared to maximum
likelihood-based methods. Moreover, these algorithms have not demonstrated strong empirical
performance in complex, high-dimensional visual environments, such as Atari games.

Recent works have attempted to integrate these two approaches. For example, TEMPO(Yuan
et al., 2023) introduces a bi-level framework, adding a meta-weighting network atop the maximum-
likelihood model to generate sample weights that minimize task-aware model loss. While TEMPO
shows promising results, the bi-level structure significantly increases computational complexity, infer-
ence time, and resource consumption, making practical deployment challenging. Other approaches,
inspired by the rise of pre-trained large models, leverage their prior knowledge and generalization
capabilities to replace value functions for decision-sensitive reconstruction. PSP(Hutson et al., 2024)
incorporates a pre-trained segmentation model, enabling the world model to capture key environ-
mental features. (Zhang et al., 2025a) assigns higher optimization weights to decision-relevant
regions using object detection. DreamVLA(Zhang et al., 2025b) improves world model predictions
by integrating 3D knowledge and semantic segmentation. While pre-trained large models improve
performance, their high computational demands limit training efficiency. Additionally, the potential
misalignment between pre-trained models and tasks complicates effective world model optimization.

In this work, we aim to seamlessly integrate maximum likelihood and value-aware world model
learning with minimal modifications, building on existing algorithms. We introduce a value-alignment
regularization term into the maximum likelihood world model, directing the model’s focus to value-
sensitive regions. To balance the environmental dynamics prediction loss with value-alignment

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

regularization, we propose a warm-up phase and an adaptive weight mechanism to mitigate value
instability and avoid local optima, common in VAML. With minimal code changes, our algorithm
can be easily integrated into existing maximum likelihood MBRL methods.

3 PRELIMINARIES

Reinforcement Learning: We consider a Markov Decision Process (MDP)(Puterman, 1990) defined
as a tuple (S,A, r(s, a), P (s′|s, a), γ), where S and A represent the state and action spaces, r(s, a)
is the reward function, P (s′|s, a) denotes the state transition dynamics and γ ∈ (0, 1) is the discount
factor. The objective of reinforcement learning is to optimize the cumulative reward over time

Model-based Reinforcement Learning: MBRL introduces a world model α in the latent space
to represent the environment dynamics P (z′|z, a), where z denotes the latent state representation s
under a given encoder. We consider the MBRL paradigm of learning through imagination, which
involves three iteratively repeated phases: experience collection, world model learning, and policy
learning. Specifically, the agent learns the policy behavior entirely within the world model, with real
interaction trajectories used exclusively for world model training.

4 METHODS

In this section, we first explore the motivation for combining maximum likelihood world model and
value-aware world model, providing empirical insights into how these approaches mutually enhance
each other. Using DreamerV3(Hafner et al., 2025) as an example, we then demonstrate the integration
of the value-alignment regularization term into maximum likelihood world model optimization.

4.1 MOTIVATION FOR COMBINING MAXIMUM LIKELIHOOD AND VALUE-AWARE LEARNING

To integrate maximum likelihood and value-aware methods effectively, the first step is to analyze
the strengths and limitations of each approach. Starting with maximum likelihood world models,
which typically use RSSM/TSSM as the core architecture in latent space, these models leverage
structured variational inference to capture complex latent stochastic dynamics and generalize to
unseen distributions. However, in optimization, these models minimize the prediction error between
predictions and ground truth using maximum likelihood loss, without incorporating additional
priors or constraints. This becomes problematic when model capacity is limited or inputs are highly
redundant: it hampers the model’s ability to capture task-relevant features and misaligns the objectives
of world model training and policy optimization, ultimately reducing model performance.

Value-aware world models typically use standard RNNs to directly predict environmental dynamics.
Compared to RSSM/TSSM, these models lack the ability to capture stochastic events and complex
dynamics, often leading to local optima. In optimization, value functions guide the model to minimize
one-step value estimation errors while reducing prediction errors in environmental dynamics. This
constraint directs the model to focus on task-relevant features, addressing the misalignment issue.
However, due to their simplified architecture and the non-convex nature of the VAML loss(Voelcker
et al., 2022), these methods are difficult to implement and struggle to scale in complex environments.

Given the strengths and limitations, combining maximum likelihood and value-aware is a natural
progression. The maximum likelihood method, with RSSM/TSSM at its core, ensures a stable lower
bound, while value-aware learning enhances the upper bound. By integrating both architectural
strengths and optimization strategies, we can achieve substantial performance improvements.

Figure 2: Experimental results across different model sizes and input dimensions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

As shown in Fig.2, we conducted a series of experiments to empirically validate the above analysis.
Specifically, we compare the maximum likelihood algorithms, DreamerV3(Hafner et al., 2025)
and STORM(Zhang et al., 2023), with the value-aware algorithm, VaGraM(Voelcker et al., 2022),
as baselines within the Gopher and Krull visual games, which respectively evaluate the short-
term and long-term planning capabilities. Fig.2(a) presents results across different world model
capacities (input size: 64x64), with three settings: small (1M), medium (12M) and large (25M). The
results indicate that with a larger world model capacity, the model better captures environmental
dynamics. In this case, the world model can accurately reconstruct the next frame, with relatively
minor performance improvement from the value-alignment regularization. However, with a smaller
world model capacity, the model struggles to capture the dynamics, leading to a significant drop in
performance. In this scenario, introducing value-alignment regularization helps the world model
focus on reconstructing critical states, resulting in substantial performance improvements. Fig.2(b)
presents the results with different image input sizes (world model capacity: 12M), using three
configurations: 64x64, 96x96 and 128x128. The results demonstrate that as the input image size
increases, more redundant information is introduced, and the maximum likelihood loss struggles to
capture critical, task-relevant features, leading to performance degradation. However, the introduction
of value-alignment regularization significantly alleviates this issue.

These two experiments demonstrate that for typical maximum likelihood world model algorithms
(DreamerV3 and STORM), when model capacity is limited and input information is redundant, intro-
ducing value-alignment regularization to enhance task-awareness yields significant benefits. Across
all experiments conducted, we observe that the performance of the value-aware algorithm, VaGraM,
generally falls short compared to the maximum likelihood algorithms. This further underscores
that, in MBRL, a powerful world model architecture (RSSM/TSSM) guarantees the lower bound of
algorithm performance, while value-alignment awareness improves the upper bound, particularly in
challenging deployment scenarios.

4.2 VALUE-ALIGNED WORLD MODEL LEARNING

The world model aims to capture environmental dynamics and state representations, enabling the
imagination of future trajectories based on potential actions. Following DreamerV3(Hafner et al.,
2025), we implement the world model using a Recurrent State-Space Model, parameterized as α.
Specifically, given an image observation ot, we map it to a latent stochastic representation zt via an
encoder network, which is a VAE with categorical latents. A temporal sequence model then predicts
the next recurrent state ht based on the previous recurrent state ht−1, latent representation zt−1, and
action at−1. Finally, the model state st = {ht, zt}, formed by concatenating ht and zt, is used to
predict the environment reward rt, the episode continuation flag ct, and to reconstruct the input ot via
a decoder network. Specifically, the encoder and decoder use convolutional neural networks (CNNs)
for image inputs and multilayer perceptrons (MLPs) for vector inputs. The sequence model is based
on a recurrent neural networks (RNNs), while the dynamics, reward, and continuation predictors are
implemented as MLPs. The components of the RSSM-based world model are illustrated below:

RSSM


Sequence model: ht = fα(ht−1, zt−1, at−1)

Encoder Network: zt ∼ qα(zt|ht, ot)
Dynamics Predictor: z̃t ∼ pα(z̃t|ht)

Reward Predictor: r̃t ∼ pα(r̃t|st)
Continue Predictor: c̃t ∼ pα(c̃t|st)
Decoder Network: õt ∼ pα(õt|st)

(1)

World Model Loss Function: Given a batch size B and sequence length T , with input observations
o1:T , actions a1:T , rewards r1:T , and episode continuation flags c1:T , the world model is optimized
end-to-end by minimizing the following loss function:

Lworld =
1

B × T

B∑
b=1

T∑
t=1

[
Lpred + Ldyn + 1ts>104 · βvarLvar

]
(2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The prediction loss Lpred is computed using symlog squared loss to train the decoder network and
reward predictor, while logistic regression is applied to train the continuation predictor. The dynamics
loss Ldyn is used to train the sequence model by minimizing the KL divergence between the predicted
distribution pα(z̃t|ht) and the next encoder representation qα(zt|ht, ot). In practice, Ldyn utilizes the
stop gradient operator sg(·) to prevent backpropagation of gradients. Additionally, a representation
loss is introduced to encourage the encoder to learn more predictable state representations. To further
enhance focus on suboptimal parts of the dynamics, clipping is applied. These two loss components:
the prediction loss and dynamics loss, form the standard world model loss function in DreamerV3, as
follows, with βdyn = 0.5 and βrep = 0.1:

Lpred = −lnpα(ot|st)− lnpα(rt|st)− lncα(ot|st)
Ldyn = βdyn max

(
1,KL

[
sg(qϕ(zt|ht, ot)) || pϕ(z̃t|ht)

])
+ βreg max

(
1,KL

[
qϕ(zt|ht, ot) || sg(pϕ(z̃t|ht))

]) (3)

The value-alignment loss Lvar acts as a regularization term to guide the optimization of the standard
DreamerV3 world model, encouraging the model to focus on task-relevant, value-sensitive informa-
tion during reconstruction. Unlike traditional value-aware world models, which explicitly influence
the world model’s dynamic representation learning through one-step value estimation errors or
value-gradient weighting, we draw inspiration from perceptual loss in computer vision. We implicitly
inject value-awareness into the world model via value alignment. To enhance generalization and
mitigate the risk of local overfitting, we refrain from using the final sampled value scalar. Instead, we
leverage the intermediate distribution output by the value network in DreamerV3(Hafner et al., 2025),
applying KL divergence to enforce value alignment. Structurally, we follow the same design as the
dynamics loss Ldyn, introducing the stop gradient operator sg(·) to stabilize the training process. The
specific formulation is as follows:

Lvar = βdynKL
[
sg(Vθ(vt|st)) || Vθ(ṽt|s̃t)

]
+ βregKL

[
Vθ(vt|st) || sg(Vθ(ṽt|s̃t))

] (4)

Building on value-alignment loss Lvar, we further introduce an indicator function 1ts>104 and
an adaptive weight βvar to implement the warm-up phase and balance the trade-off between value
alignment and dynamic representation loss. Specifically, we designate the first 10,000 training steps
as the warm-up phase, during which value-alignment regularization is disabled to avoid training
instability caused by inaccurate early-stage value network evaluations. Equally important is balancing
the extent of value alignment with the dynamic representation loss, where the magnitude of the
dynamic representation loss indicates the similarity between model’s predictions and the real environ-
ment. We consider that value alignment is effective only when the world model’s predictions closely
match the real environment; if the gap is too large, value alignment may hinder learning. Therefore,
our design prioritizes dynamic representation loss, followed by value-alignment regularization. In
practice, we employ the inverse of the dynamic representation loss Ldyn as the adaptive weight
βvar. When the dynamic representation loss is large, indicating a significant discrepancy between
the model’s predictions and the ground truth, the weight of the value-alignment regularization is
reduced, focusing learning on improving dynamic representations. Conversely, when the dynamic
representation loss is small, suggesting that the model’s predictions are closely aligned with the
real environment, the weight of the value-alignment regularization increases, shifting focus toward
achieving value-awareness.

1ts>104 = 1 if training steps > 104, else 0

βvar = 1 / max
(
1, sg

(
KL

[
qϕ(zt|ht, ot) || pϕ(z̃t|ht)

])) (5)

4.3 AGENT BEHAVIOR LEARNING

Following DreamerV3(Hafner et al., 2025), both the critic and actor networks are trained using
imagined trajectories generated by the world model. For environment interaction, actions are selected
by sampling from the actor network without lookahead planning. In practice, both networks are
implemented as MLPs, parameterized by θ and ϕ, respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Critic Network: vt ∼ Vθ(vt|st) Actor Network: at ∼ πϕ(at|st) (6)

Critic Learning: In line with DreamerV3(Hafner et al., 2025), we estimate returns that incorporate
rewards beyond the prediction horizon by computing bootstrapped λ-returns, which combine both
predicted rewards and value estimates. The critic network is trained to predict the distribution of
these λ-return estimates Rλ

t by minimizing the maximum likelihood loss.

Lcritic =
1

B × T

B∑
b=1

T∑
t=1

−lnpθ(Rλ
T |st) Rλ

t = rt + γct
(
(1− λ)vt + λRλ

t+1

)
(7)

Actor Learning: The actor network maximizes cumulative rewards using the REINFORCE(Williams,
1992) algorithm, with an added policy entropy loss to ensure sufficient exploration.

Lactor =
1

B × T

B∑
b=1

T∑
t=1

−sg(Aλ
t)logπϕ(at|st)− ηH

[
πϕ(at|st)

]
(8)

Here, Aλ
t represents the advantage computed using normalized returns. To ensure stable learning, the

returns are scaled using the exponentially moving average of the 5th and 95th percentiles of the batch.

Aλ
t = (Rλ

t − Vθ(st))/max(1, S) S = EMA
(
Per(Rλ

t , 95)− Per(Rλ
t , 5), 0.99

)
(9)

5 EXPERIMENTS

5.1 BENCHMARKS AND BASELINES

To rigorously assess our method, we evaluate on the following two well-established benchmarks:

(1) The Atari 100k benchmark(Kaiser et al., 2019) consists of 26 Atari games with discrete action
controls, utilizing a budget of 400k environment frames, equivalent to approximately two hours of ac-
tual gameplay. Following (Burchi & Timofte, 2025), we choose RNN-based DreamerV3(Hafner et al.,
2025), transformer-based TWM(Robine et al., 2023), IRIS(Micheli et al., 2022) and STORM(Zhang
et al., 2023), as well as SimPLe(Kaiser et al., 2019), as baselines.

(2) The DeepMind Control Suite(Tassa et al., 2018) is divided into two components based on
input types. The Proprio Control part consists of 18 continuous action tasks with proprioceptive
vector inputs, using a budget of 500K environment steps. These tasks span classical control domains,
ranging from locomotion to robotic manipulation, and feature both dense and sparse reward scenes.
Following (Hafner et al., 2025), we select PPO(Schulman et al., 2017), DMPO(Abdolmaleki et al.,
2018), D4PG(Barth-Maron et al., 2018) and DreamerV3(Hafner et al., 2025) as baselines. The
Visual Control part comprises 20 continuous control tasks and a budget of 1M environment steps.
Following (Hafner et al., 2025), we choose PPO(Schulman et al., 2017), SAC(Haarnoja et al., 2018),
CURL(Laskin et al., 2020), DrQ-v2(Yarats et al., 2021) and DreamerV3(Hafner et al., 2025) as
baselines.

5.2 RESULTS ON ATARI 100K

Tab.1 presents the quantitative results of applying value-alignment regularization (Var) to Dream-
erV3(Hafner et al., 2025) and STORM(Zhang et al., 2023) on the Atari 100k benchmark, while Fig.5
shows the training curves. To ensure fair comparison, we retrained both DreamerV3 and STORM
using identical hyperparameters. Following previous work, we used human-normalized metrics to
evaluate performance across 26 games, comparing mean and median scores. The results demonstrate
consistent performance improvements: for DreamerV3, 24 out of 26 games showed improvements,
with the average score increasing from 1.10 to 1.34 and the median from 0.58 to 1.00. Similarly,
STORM improved in 24 games, with the average score rising from 1.14 to 1.36 and the median from
0.51 to 0.81. Notably, games such as KungFuMaster, Gopher, Qbert and Kangaroo, where small
target characters are crucial, exhibited particularly significant performance gains.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results on the Atari 100k benchmark. We show average scores over 5 seeds.
Game Random Human SimPLe TWM IRIS DreamerV3 DreamerV3+Var (our) STORM STORM+Var (our)

Alien 227.8 7127.7 616.9 674.6 420.0 875.88 1233.2(↑40.8%) 1054.3 1361.4(↑29.1%)
Amidar 5.8 1719.5 74.3 121.8 143.0 143.7 185.4(↑29.0%) 177.29 248.36(↑40.1%)
Assault 222.4 742.0 527.2 682.6 1524.4 843.7 981.38(↑16.3%) 715.9 752.55(↑5.1%)
Asterix 210.0 8503.3 1128.3 1116.6 853.6 1102.5 1162.6(↑5.5%) 1276.0 1535.0(↑20.3%)
BankHeist 14.2 753.1 34.2 466.7 53.1 1072.0 1121.2(↑4.6%) 1060.5 935.0(↓11.8%)
BattleZone 2360.0 37187.7 4031.2 5068.0 13074.0 11138.0 12750.0(↑14.5%) 7080.0 10140.0(↑43.2%)
Boxing 0.1 12.1 7.8 77.5 70.1 80.3 87.4(↑8.9%) 78.6 83.0(↑5.6%)
Breakout 1.7 30.5 16.4 20.0 83.7 25.3 45.6(↑79.9%) 20.88 26.43(↑26.6%)
ChopperCommand 811.0 7387.8 979.4 1697.4 1565.0 1438.0 1826.0(↑27.0%) 1768.0 1695.0(↓4.1%)
CrazyClimber 10780.5 35829.4 62583.6 71820.4 59324.2 89900.0 81720.0(↓9.1%) 47473.0 57335.0(↑20.8%)
DemonAttack 152.1 1971.0 208.1 350.2 2034.4 223.9 227.2(↑1.5%) 194.6 204.6(↑5.1%)
Freeway 0.0 29.6 16.7 24.3 31.1 30.2 31.6(↑4.6%) 29.7 32.0(↑7.8%)
Frostbite 65.2 4334.7 236.9 1475.6 259.1 1628.0 347.9(↓78.6%) 258.8 260.2(↑0.5%)
Gopher 257.6 2412.5 596.8 1674.8 2236.1 1683.9 2807.0(↑66.7%) 8551.0 13509.6(↑58.0%)
Hero 1027.0 30826.4 2656.6 7254.0 7037.4 4994.4 9360.6(↑87.4%) 12249.2 12574.0(↑2.7%)
Jamesbond 29.0 302.8 100.5 362.4 462.7 332.0 542.0(↑63.3%) 446.4 462.5(↑3.6%)
Kangaroo 52.0 3035.0 51.2 1240.0 838.2 1529.2 3650.4(↑138.7%) 1542.0 3322.6(↑115.4%)
Krull 1598.0 2665.5 2204.8 6349.2 6616.4 8364.8 9821.4(↑17.4%) 8360.1 8896.5(↑6.4%)
KungFuMaster 258.5 22736.3 14862.5 24554.6 21759.8 16375.0 21075.0(↑28.7%) 15760 26615.0(↑68.9%)
MsPacman 307.3 6951.6 1480.0 1588.4 999.1 1947.0 1749.5(↓10.1%) 1906.9 2417.3(↑26.8%)
Pong -20.7 14.6 12.8 18.8 14.6 19.1 19.8(↑4.0%) 20.6 20.2(↓1.9%)
PrivateEye 24.9 69571.3 35.0 86.6 100.0 2331.2 -115.6(↓104.9%) 414.4 2584.7(↑523%)
Qbert 163.9 13455 1288.8 3330.8 745.7 1223.5 2267.8(↑85.4%) 2912.5 4243.4(↑45.7%)
RoadRunner 11.5 7845.0 5640.6 9109.0 9614.6 9868.6 14704.0(↑49.0%) 11523.0 13999.0(↑21.5%)
Seaquest 68.4 42054.7 683.3 774.4 661.3 513.2 546.3(↑6.5%) 441.4 430.0(↓2.6%)
UpNDown 533.4 11693.2 3350.3 15981.7 3546.2 12679.2 18485.4(↑45.8%) 6406.4 8982.6(↑40.2%)

Superhuman (↑) 0 N/A 1 8 10 10 13(↑3) 9 12(↑3)
Mean (↑) 0.00 1.00 0.33 0.6 1.05 1.10 1.34(↑0.24) 1.14 1.36(↑0.22)
Median (↑) 0.00 1.00 0.13 0.51 0.29 0.58 1.00(↑0.42) 0.51 0.81(↑0.30)

5.3 RESULTS ON DEEPMIND CONTROL SUITE

Tab.2 presents the quantitative results of applying value-alignment regularization (Var) to Dream-
erV3(Hafner et al., 2025) on the DMC Suite benchmark. To ensure a fair comparison, DreamerV3
was retrained with identical hyperparameters for both input modalities. The results show consistent
performance improvements across continuous control tasks: with visual inputs, 15 out of 20 tasks
saw improvements, with the average score increasing from 792 to 827 and the median from 877 to
894; with vector inputs, performance improved in 13 out of 18 tasks, with the average score rising
from 805 to 817 and the median from 881 to 901. Fig.4 shows the training curves for the DMC
Suite benchmark. These results demonstrate that our approach accelerates the convergence of MBRL
algorithms, especially in tasks like Pendulum Swingup and Walker Walk.

Table 2: Quantitative results on the DMC suite benchmark. We show average scores over 5 seeds.
Task PPO SAC CURL DrQ-v2 DreamerV3 DreamerV3+Var PPO DDPG DMPO D4PG DreamerV3 DreamerV3+Var
Input types Visual Image Inputs Proprioceptive Inputs
Environment steps 1M 1M 1M 1M 1M 1M 500K 500K 500K 500K 500K 500K
Acrobot Swingup 3 4 4 166 314 367(↑16.7%) 6 100 103 124 261 295(↑13.1%)
Ball In Cup Catch 829 176 970 928 953 967(↑1.5%) 632 917 968 968 968 965(↓0.4%)
Cartpole Balance 516 937 980 992 998 999(↑0.08%) 523 997 999 999 997 999(↑0.2%)
Cartpole Balance Sparse 881 956 999 987 1000 1000(0.00%) 930 992 999 974 989 990(↑0.1%)
Cartpole Swingup 290 706 771 863 866 865(↓0.2%) 240 864 860 875 872 865(↓0.7%)
Cartpole Swingup Sparse 1 149 373 773 520 756(↑45.6%) 7 703 438 752 802 800(↓0.3%)
Cheetah Run 95 20 502 716 917 916(↓0.1%) 82 596 650 624 748 834(↑11.4%)
Finger Spin 118 291 880 862 520 602(↑15.7%) 18 775 769 823 536 537(↑0.2%)
Finger Turn Easy 253 200 340 525 888 914(↑3.0%) 281 499 620 612 889 892(↑0.3%)
Finger Turn Hard 79 94 231 247 895 885(↓1.0%) 106 313 495 421 975 977(↑0.2%)
Hopper Hop 0 0 164 221 325 336(↑3.3%) 0 36 68 80 236 238(↑1.0%)
Hopper Stand 4 5 777 903 938 933(↓0.5%) 3 484 549 762 862 910(↑5.5%)
Pendulum Swingup 1 592 413 843 807 812(↑0.6%) 1 767 834 759 805 852(↑5.8%)
Quadruped Run 88 54 149 450 782 824(↑5.4%) - - - - - -
Quadruped Walk 112 49 121 726 810 902(↑11.4%) - - - - - -
Reacher Easy 487 67 689 944 924 961(↑4.0%) 494 934 961 960 962 969(↑0.7%)
Reacher Hard 94 7 472 670 759 797(↑4.9%) 288 949 968 937 965 960(↓0.5%)
Walker Run 30 27 360 539 688 764(↑11.0%) 31 561 493 616 726 716(↓1.4%)
Walker Stand 161 143 486 978 983 985(↑0.2%) 159 965 975 947 967 976(↑0.9%)
Walker Walk 87 40 822 768 960 961(↑0.2%) 64 952 942 969 930 933(↑0.3%)
Task mean 206 226 525 705 792 827(↑4.4%) 215 689 705 733 805 817(↑1.5%)
Task median 94 81 479 770 877 894(↑1.9%) 94 771 801 792 881 901(↑2.3%)

5.4 VISUALIZATION AND ANALYSIS OF IMAGINED TRAJECTORIES

Fig.3 illustrates the visualization of imagined trajectories generated by the world model. The top two
rows show the imagined trajectories of STORM without value-alignment regularization, accompanied
by a heatmap of decoder network sensitivity. The next two rows display the imagined trajectories
with value-alignment regularization and a sensitivity heatmap after value-gradient weighting. The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

bottom row presents the ground truth. The visual results highlight the benefits of value alignment in
two key aspects: (1) Single-frame prediction: The original STORM(Zhang et al., 2023) algorithm
often suffers from target disappearance, blurring and hallucinations. After value alignment, the
weighted heatmap focuses more on foreground objects, avoiding irrelevant background features. (2)
Long-term sequence prediction: The original STORM algorithm experiences significant divergence
in later predictions due to accumulated errors. Value-alignment regularization, however, maintains
better temporal consistency across the sequence. (For long-sequence visualizations, see Fig.7.)

Figure 3: Imagined trajectories from the world model in KungFuMaster and Qbert games

5.5 ABLATION STUDY

We conduct an ablation study on the Atari 100k benchmark, using STORM as the baseline to evaluate
the proposed adaptive weight mechanism. For comparison, we use a static weight of 0.5 as a control.
Tab.3 presents the quantitative results across five environments: Alien, CrazyClimber, DemonAttack,
BankHeist, and BattleZone. The results show that introducing adaptive weights to balance dynamic
representation loss and value-alignment regularization improves world model optimization, stabilizes
training, and enhances model performance. The training curves are provided in Fig.6.

Table 3: Ablation study on the adaptive weighting.
Atari Games Alien CrazyClimber DemonAttack BankHeist BattleZone
STORM 1054.3 47473.0 194.6 1060.5 7080.0
STORM + static weight 987.9(↓6.3%) 55096.0(↑16.1%) 180.3(↓7.3%) 656(↓38.1%) 8480(↑19.8%)
STORM + adaptive weight 1361.4(↑29.1%) 57335.0(↑20.8%) 204.6(↑5.1%) 935.0(↓11.8%) 10140(↑43.2%)

We conduct tests on an NVIDIA 3090 GPU to evaluate the impact of value-alignment regularization on
GPU memory and runtime. Tab.4 summarizes the effects on computational resources and training time.
The results show that the computational overhead and training time introduced by value-alignment
regularization are minimal, making their impact negligible relative to the overall algorithmic cost.

Table 4: Ablation study on additional computational resources and runtime.
Methods DreamerV3 DreamerV3 + Var(our) STORM STORM + Var(our)
GPU Memory 4560MB 4626MB 5806MB 5864MB
total running time 15.89h 16.06h 5.91h 6.04h
Mean Score on Atari 100k 1.10 1.34 1.14 1.36

6 CONCLUSION

In this work, we integrate maximum likelihood and value-aware approaches in model-based rein-
forcement learning, enhancing task-relevant feature reconstruction by incorporating value-awareness
into maximum likelihood world model optimization. Specifically, we introduce a novel value-
aligned world model that ensures a stable lower bound through the RSSM/TSSM architecture, while
value-alignment regularization improves the upper bound. To stabilize training, we implement an
adaptive weighting mechanism to balance dynamic representation loss with value-alignment regular-
ization. Extensive experiments across 46 environments from the Atari 100k and DeepMind Control
Suite benchmarks show that our approach consistently improves the performance and convergence
speed of existing MBRL methods, with minimal additional complexity, particularly in complex,
high-dimensional environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
François Fleuret. Diffusion for world modeling: Visual details matter in atari. Advances in Neural
Information Processing Systems, 37:58757–58791, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

Maxime Burchi and Radu Timofte. Learning transformer-based world models with contrastive
predictive coding. arXiv preprint arXiv:2503.04416, 2025.

Amir-massoud Farahmand. Iterative value-aware model learning. Advances in Neural Information
Processing Systems, 31, 2018.

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function for
model-based reinforcement learning. In Artificial Intelligence and Statistics, pp. 1486–1494.
PMLR, 2017.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633–638, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, pp. 1–7, 2025.

Miles Hutson, Isaac Kauvar, and Nick Haber. Policy-shaped prediction: avoiding distractions in
model-based reinforcement learning. Advances in Neural Information Processing Systems, 37:
13124–13148, 2024.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/ioffe15.html.

Hao Ju, Rongshun Juan, Randy Gomez, Keisuke Nakamura, and Guangliang Li. Transferring policy
of deep reinforcement learning from simulation to reality for robotics. Nature Machine Intelligence,
4(12):1077–1087, 2022.

10

https://arxiv.org/abs/1607.06450
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International conference on machine learning, pp. 5639–5650.
PMLR, 2020.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551,
1989. doi: 10.1162/neco.1989.1.4.541.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models.
arXiv preprint arXiv:2209.00588, 2022.

Vincent Micheli, Eloi Alonso, and François Fleuret. Efficient world models with context-aware
tokenization. arXiv preprint arXiv:2406.19320, 2024.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models
are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter Abbeel.
Masked world models for visual control. In Conference on Robot Learning, pp. 1332–1344. PMLR,
2023.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Claas Voelcker, Victor Liao, Animesh Garg, and Amir-massoud Farahmand. Value gradient weighted
model-based reinforcement learning. arXiv preprint arXiv:2204.01464, 2022.

Claas A Voelcker, Anastasiia Pedan, Arash Ahmadian, Romina Abachi, Igor Gilitschenski, and
Amir-massoud Farahmand. Calibrated value-aware model learning with probabilistic environment
models. In Forty-second International Conference on Machine Learning.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Huining Yuan, Hongkun Dou, Xingyu Jiang, and Yue Deng. Task-aware world model learning with
meta weighting via bi-level optimization. Advances in Neural Information Processing Systems, 36:
54167–54186, 2023.

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.
2528–2535, 2010. doi: 10.1109/CVPR.2010.5539957.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
transformer based world models for reinforcement learning. Advances in Neural Information
Processing Systems, 36:27147–27166, 2023.

Weipu Zhang, Adam Jelley, Trevor McInroe, and Amos Storkey. Objects matter: object-centric
world models improve reinforcement learning in visually complex environments. arXiv preprint
arXiv:2501.16443, 2025a.

Wenyao Zhang, Hongsi Liu, Zekun Qi, Yunnan Wang, Xinqiang Yu, Jiazhao Zhang, Runpei Dong,
Jiawei He, He Wang, Zhizheng Zhang, et al. Dreamvla: a vision-language-action model dreamed
with comprehensive world knowledge. arXiv preprint arXiv:2507.04447, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TRAINING CURVES ACROSS VARIOUS BENCHMARKS

Figure 4: Training curve on DMC suite.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 5: Training curve on Atari 100k.

Figure 6: Training curve on static and adaptive weighting.

B LONG-TERM IMAGINED TRAJECTORIES

Figure 7: Long-term imagined trajectories from the world model in Qbert games.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C CODE AND DECLARATIONS

We implement our method on the Torch-version DreamerV3 code and official STORM code. For
detailed code implementation, please refer to the supplementary materials.In the Freeway environment
of Atari 100k, we applied the same trick as used in IRIS(Micheli et al., 2022).

In our work, the large language model is used solely for text refinement and grammar correction,
with no other applications.

D DETAILED MODEL STRUCTURE AND HYPERPARAMETER

D.1 STORM

The network architecture and parameters for the STORM model are consistent with those in (Zhang
et al., 2023). The specific architecture and parameters are detailed below.

Table 5: Image Encoder Architecture and Parameters: The image encoder takes an input image of
size 3 × 64 × 64 and consists of four convolutional blocks, followed by Flatten, Linear, and Reshape
layers. Each convolutional block is composed of a Conv layer, a BN layer, and a ReLU activation
function. The Conv layer (LeCun et al., 1989) has a kernel size of 4, a stride of 2, and a padding of
1. The BN layer (Ioffe & Szegedy, 2015) is used for batch normalization. The Flatten and Reshape
layers are used to adjust the tensor indexing.

Module Output Tensor Shape
Input: Environment Image (ot) 3 × 64 × 64

Convolutional Block 1 (Conv + BN + ReLU) 32 × 32 × 32
Convolutional Block 2 (Conv + BN + ReLU) 64 × 16 × 16
Convolutional Block 3 (Conv + BN + ReLU) 128 × 8 × 8
Convolutional Block 4 (Conv + BN + ReLU) 256 × 4 × 4

Flatten 4096
Linear 1024

Reshape 32 × 32
Output: distribution (Zt) 32 × 32

Table 6: Image Decoder Architecture and Parameters: The image decoder takes a 32 × 32 sampled
value, zt, as input. The network architecture consists of DeConv modules, which are composed of a
DeConv layer Zeiler et al. (2010), a BN layer, and a ReLU activation function. The DeConv layers
have a kernel size of 4, a stride of 2, and a padding of 1.

Module Output Tensor Shape
Input: Random Sample (zt) 32 × 32

Flatten 1024
Linear + BN + ReLU 4096

Reshape 256 × 4 × 4
DeConv Block 1 (DeConv + BN + ReLU) 128 × 8 × 8
DeConv Block 2 (DeConv + BN + ReLU) 64 × 16 × 16
DeConv Block 3 (DeConv + BN + ReLU) 32 × 32 × 32

DeConv 3 × 64 × 64
Output: Decoded Image (ôt) 3 × 64 × 64

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Action Mixer Architecture and Parameters: The Action mixer takes a 32 × 32 sampled value,
zt, and a A-dimensional action as input (where the action dimension varies from 3 to 18 depending
on the game). Concatenate merges the last dimension of the two tensors. D is the feature dimension
of the Transformer. LN denotes layer normalization Ba et al. (2016).

Module Output Tensor Shape
Input: Random Sample (zt), Action (at) 32 × 32, A

Reshape and concatenate 1024 + A
Linear + LN + ReLU D

Linear2 + LN2 D
Output: et D

Table 8: Positional Encoding Module: The Positional Encoding Module adds a learnable parameter
matrix, w1:T , to the input tensor, e1:T . The operation is represented as e1:T + w1:T , where the
sequence length is denoted by T and the feature dimension by D. The matrix w1:T has a shape of
T ×D. Following the addition, Layer Normalization (LN) is applied.

Module Output Tensor Shape
Input: e1:T T × D
Add + LN T × D
Output: x T × D

Table 9: Transformer Module

Module Sub-Module Output Tensor Shape
Input x T × D

MHSA

Multi-head self attention T × D
Linear + Dropout T × D

Residual T × D
LN T × D

FFN

Linear + ReLU T × 2D
Linear + Dropout T × D

Residual T × D
LN T × D

Output: h1:T T × D

Table 10: Transformer-Based Sequence Model Architecture and Parameters: The Positional encoding
module is defined in the Table 8 for Positional encoding module. The Transformer block module is
defined in the Table 9 for Transformer module.

Module Output Tensor Shape
Input: e1:T T × D

Positional encoding T × D
Transformer blocks ×K T × D

Output: h1:T T × D

Table 11: Other MLP Modules: This table details the architecture of other pure MLP modules.

Module Number of MLP Layers Input Dim Hidden Dim Output Dim
Dynamics head gDϕ 1 D / 1024

Reward predictor gRϕ 3 D D 255
Continuation predictor gCϕ 3 D D 1
Policy network πθ(at|st) 3 D D A
Critic network V ψ(st) 3 D D 255

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 12: STORM Network Hyperparameters.

Hyperparameter Symbol Value
Transformer layers K 2

Transformer feature dimension D 512
Transformer heads – 8
Dropout probability P 0.1

World model training batch size B1 16
World model training batch length T 64

Imagination batch size B2 1024
Imagination context length C 8

Imagination horizon L 16
Update world model every env step – 1

Update agent every env step – 1
Environment context length – 16

Gamma γ 0.985
Lambda λ 0.95

Entropy coefficient η 3× 10−4

Critic EMA decay σ 0.98
Optimizer – Adam

World model learning rate – 1.0× 10−4

World model gradient clipping – 1000
Actor-critic learning rate – 3.0× 10−5

Actor-critic gradient clipping – 100
Gray scale input – False
Frame stacking – False
Frame skipping – 4

Use of life information – True

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.2 DREAMERV3

The DreamerV3 network architecture and parameters remain consistent with those detailed in (Hafner
et al., 2025). Table13 are the hyperparameters.

Table 13: DreamerV3 Network Hyperparameters

Hyperparameter Value
Replay capacity 5× 106

Batch size 16
Batch length 64
Activation RMSNorm+SiLU
Learning rate 4× 10−5

Gradient clipping AGC(0.3)
Optimizer LaProp(ϵ = 10−20)
World Model reconstruction loss scale 1
World Model dynamics loss scale 1
World Model representation loss scale 0.1
World Model latent unimix 1%
World Model free nats 1
Actor-Critic imagination horizon 15
Actor-Critic riscount horizon 333
Actor-Critic return lambda 0.95
Critic loss scale 1
Critic replay loss scale 0.3
Critic EMA regularizer 1
Critic EMA decay 0.98
Actor loss scale 1
Actor entropy regularizer 1× 10−3

Actor unimix 1%
Actor RetNorm scale Per(R, 95)− Per(R, 5)
Actor RetNorm limit 1
Actor RetNorm decay 0.99

18

	Introduction
	Related work
	Preliminaries
	Methods
	Motivation for combining maximum likelihood and value-aware learning
	Value-aligned world model learning
	Agent behavior learning

	Experiments
	Benchmarks and Baselines
	Results on Atari 100k
	Results on DeepMind Control Suite
	Visualization and Analysis of Imagined Trajectories
	Ablation study

	Conclusion
	Training curves across various benchmarks
	Long-term imagined trajectories
	Code and Declarations
	Detailed model structure and hyperparameter
	STORM
	DreamerV3

