Under review as a conference paper at ICLR 2026

TD-M(PC)?>: IMPROVING TEMPORAL DIFFERENCE
MPC THROUGH POLICY CONSTRAINT

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) algorithms that integrate model pre-
dictive control with learned value or policy priors have shown great potential
to solve complex continuous control problems. However, existing practice re-
lies on online planning to collect high-quality data, resulting in value learning
that is entirely dependent on off-policy experiences. Contrary to the belief that
value learned from model-free policy iteration within this framework is suffi-
ciently accurate and expressive, we found that severe value overestimation bias
occurs, especially in high-dimensional tasks. Through both theoretical analysis
and empirical evaluations, we identify that this overestimation stems from a struc-
tural policy mismatch: the divergence between the exploration policy induced
by the model-based planner and the exploitation policy evaluated by the value
prior. To improve value learning, we emphasize conservatism that mitigates out-
of-distribution queries. The proposed method, TD-M(PC)?, addresses this by ap-
plying a soft-constrained policy update—a minimalist yet effective solution that
can be seamlessly integrated into the existing plan-based MBRL pipeline without
incurring additional computational overhead. Extensive experiments demonstrate
that the proposed approach improves performance over baselines by large mar-
gins, particularly in 61-DoF humanoid control tasks.

1 INTRODUCTION

Model-Based Reinforcement Learning (MBRL) leverages an explicit model of the environment’s
dynamics to achieve both high asymptotic performance and strong sample efficiency across a va-
riety of sequential decision-making problems (Littman & Moore, |1996; Janner et al., |2019; (Chua
et al., 2018 |Schrittwieser et al., |2020). In continuous control domains, a particularly popular in-
stantiation of MBRL is plan-based MBRL, where a trajectory optimizer, most often sampling-based
Model Predictive Control (MPC), uses the learned model to perform short-horizon rollouts (Sikchi
et al.| [2022; Hansen et al.| [2022). These methods incorporate a value prior acquired through RL
methods as the terminal cost, enabling the planner to focus computational effort on near-term predic-
tions while relying on the value function to estimate long-term returns beyond the planning horizon.
This hybrid strategy not only reduces the planner’s sensitivity to corresponding model error over
long horizons but also accelerates exploration by rapidly covering the state space through parallel
trajectory sampling (Lowrey et al., [2018)).

Ideally, a value prior that accurately evaluates a near-optimal policy is required to provide an unbi-
ased objective for the MPC planner. A natural choice is to learn this prior via model-free actor—critic
methods (Sutton & Barto, 2018) as in TD-MPC (Hansen et al.l [2022)). While the online planner is
leveraged for exploration and data collection, a nominal policy (exploitation policy) and the cor-
responding value prior are iteratively learned through policy iteration. However, this introduces a
mismatch between exploration and exploitation policies. Thus, value learning must contend with
heterogeneous experience, which causes an extreme form of the off-policy issue. This raises the
critical question: Can plan-based MBRL algorithms effectively exploit such data for value learning,
especially in high-dimensional environments?

Despite strong performance on low- and medium-dimensional benchmarks, state-of-the-art
plan-based MBRL methods may struggle in high-dimensional tasks (Sferrazza et al.l|2024). Through
theoretical and empirical evidence, we identify persistent value overestimation that originates from

Under review as a conference paper at ICLR 2026

off-policy exploration as a core bottleneck. Under the scope of approximate policy iteration
(API) (Sutton & Bartol 2018; [Munos|, 2003), the structural policy mismatch inherently compounds
with approximation errors. Such divergence leads to a distribution shift, making the value function
bootstrapped on out-of-distribution actions. Consequently, the approximation error accumulates
over iterations, and value overestimation is left unfixed and enlarged. Although related to the clas-
sical off-policy issue in model-free RL (Thrun & Schwartz, |2014; Sutton & Bartol [2018; |Fujimoto
et al., 2018 |[Van Hasselt et al., 2018)), this particular case is more problematic and resembles the dis-
tribution shift issue in offline RL literature (Levine et al., 2020; Fujimoto et al.,|2019)): the behavior
policy remains misaligned with the nominal policy over practical training time.

To address these challenges, we introduce Temporal Difference Learning for Model Predictive
Control with Policy Constraint, TD-M(PC)2, a simple but effective extension of the TD-MPC frame-
work that better exploits fully off-policy data collected from online planning. By incorporating a
distribution-constrained conservative policy update, TD-M(PC)? learns a policy prior that remains
close to the behavior policy, thereby mitigating out-of-distribution queries that exacerbate value
approximation errors. Practically, TD-M(PC)? can be implemented atop TD-MPC2 |Hansen et al.
(2023) with fewer than ten lines of modification and introduces negligible additional computational
overhead. We evaluated our method on the DeepMind Control Suite (Tassa et al., 2018) and Hu-
manoidBench (Sferrazza et al.,[2024), where it achieved over a 100% improvement compared to the
baseline on high-dimensional humanoid control tasks. The contribution of this paper can be summa-
rized as follows: 1) We uncover and quantify a previously overlooked value overestimation issue in
plan-based MBRL and demonstrate theoretically how this issue could be a bottleneck for continuous
control problems with a high-dimensional state-action space. 2) We propose a simple yet efficient
algorithm within the plan-based MBRL framework that addresses the value overestimation; 3) We
demonstrate the superiority of our method on diverse high-dimensional continuous control tasks.

2 PRELIMINARIES

Continuous control problems can be defined as a Markov decision process (MDP) (Bellman), |1957)
represented by tuple M = (S, A, p, po, T,7), with state space S, action space A, transition of states
p(s'|s, a), initial state distribution pg, reward function (s, a) and discount factor v € (0, 1]. Under
the assumption of infinite horizon, the objective is to learn a optimal policy 7* that maximizes

discounted cumulative reward J(7) = E = {Zf:o ~tr(s¢, ae)|, where 77 is a trajectory sampled

from policy 7 : S — A(A), A(.A) denotes a distribution over the action space.

The actor—critic framework combines policy and value learning by maintaining an explicit policy
(the actor) alongside a state—action value function (the critic) (Sutton & Barto) 2018). This setup
allows an agent to improve a target policy using evaluations derived from off-policy data. In par-
ticular, they can by considered as approximate policy iteration (API) (Munos} 2003; /Agarwal et al.,
2019) that aiming at acquiring an approximation Q(s, a) of the optimal state—action value function
Q*(s,a) = E - [E2207!7¢|so = s,a0 = a. It proceeds by iteratively solving policy evaluation
QF = argming ||Q—7™ Q|| and policy improvement 741 = arg max, EsEq-[Q" (s, a)], where
the Bellman operator is given by:

TﬂkQ(sv (l) =r+ aEs/NpHs,a),a’NTrk('\s’)[Q(Slv a/)] (D

Model-based RL explicitly leverages knowledge about the dynamics by learning a latent world
model and searching for the optimal policy within that model. Then, the resulting planner policy
is leveraged for exploration to collect high-quality data. However, planner performance at con-
vergence could be compromised by compounding model error (Bhardwaj et al., 2020b). Thus,
a widely adopted practice is to perform short-horizon planning with a value function V(s) =
Eqr(s)[Q(s,a)] as the terminal cost. A closed-loop control policy is acquired through trajec-
tory optimization methods such as Model Predictive Path Integral (MPPI) (Williams et al., 2016
2017). At each time step, parameters p* and ¢* of a multivariate Gaussian are iteratively optimized

Under review as a conference paper at ICLR 2026

to maximize the expected return:

‘u*’ 0’* = arg HJ%XE(at,at+17~~7at+H)~N(M,0’2) [G(St)]

t) = Z V'r(snyan) + 77V (sem) 2

st spp1 = d(se, ar)

where the update rule of the parameters ;1,0 € R¥>*™ can be interpreted as solving a stochastic
optimal control problem via mirror gradient descent (Okada & Taniguchil 2018} |Chua et al., [2018).
We conclude the full pipeline of the inference-time planning in the Appendix. Under a receding-
horizon scheme, only the first action a; ~ A (u;f ;07 21) of the planned trajectory is executed, and
the subsequent planning horizon is warm-started by shifting the optimized mean p} .z forward.

Notation. We consider model-based RL (MBRL) with a planner that executes an H-step looka-
head policy in the environment (Chua et al. 2018} [Sikchi et al., [2022; [Hansen et al., [2022). We
denote this planner policy by wg (with H as planning horizon), and a nominal policy by 7 with
corresponding value functions V'™ and Q™ (Sutton & Barto} [2018)). The policy iteration is indexed
with a subscript,e.g., 73, and 7, stands for the nominal policy and the planner policy at iteration k.
The interaction under 7 j, appends transitions to a replay buffer D. We denote 1 for the behavior
policy that induces the data distribution in D; in practice, p is the mixture over historical planner
policies recorded in the buffer (i.e., the off-policy data-generating process).

3 ADDRESSING VALUE OVERESTIMATION IN PLAN-BASED MBRL

In this section, we demonstrate that value overestimation, driven by a policy mismatch between
the MPC planner’s H-step lookahead policy 7y and the nominal policy used in value learning m,
could be a bottleneck for plan-based MBRL. First, we analyze how value-approximation error af-
fects planning quality under approximate policy iteration. Next, we empirically validate that value
overestimation persists and even amplifies over iterations due to out-of-distribution bootstrapping.
Finally, we provide a theoretical explanation of value overestimation and its relation to policy mis-
match, motivating our conservative exploitation remedy.

3.1 VALUE APPROXIMATION AND PLANNER PERFORMANCE

Balancing model error and value error is crucial in MBRL. The effectiveness of MPC planners
in approximating near-optimal solutions to the infinite-horizon MDP largely relies on a value that
accurately reflects the optimal policy’s long-term performance, especially considering that we fa-
vor short-horizon planning to ensure computation efficiency. Given that the value prior is typically
learned via actor-critic methods, we quantify this dependency within the framework of approxi-
mate policy iteration (API). Specifically, Theorem quantifies the suboptimality introduced by
finite-horizon planning in the presence of approximation errors. A detailed proof is provided in
Appendix

Theorem 3.1 (Planner Performance Bound). Assume at the k-th iteration, the nominal policy Ty,
is acquired through API and the resulting planner pollcy is wh k. Denote € as the approxima-

tion error |V, — V™ || of the learned value function V. Also denote approximation error (w.rt.
TV-divergence) for dynamics model p as €,, = maxs o Dy (p(-|se, ar)||p(-|Se, ar)), planner sub-
optimality as €,. Finally, assume the reward function r is bounded by [0, Ry.] and Vs upper
bounded by V., then the performance of wp . is bounded w.r.t. the optimal policy as:

. . 2 ek 7T+
limsup |V* — V™H+| < limsu {C emp, H,y) + 22 4 L~ L 2¢ } 3)
k~>oop | | k~>oop 1—- ’YH (* PY) 2 (1 - 7)2 r
while C' is defined as:
H-1
Clém, H,Y) = Rax Y V'tem + 7 HemVinar €)
t=0

Under review as a conference paper at ICLR 2026

Hopper Stand (4-DoF) Dog Trot (36-DoF) H1hand Run (61-DoF) Hlhand Slide (61-DoF)

Baseline (1my)

TD-M(PC)? (Ours) Baseline (my +m)

Training lterations (x10°) Training Iterations (x10°) Training Iterations (x10°) Training lterations (x10°)

True Value ---- Function Estimation

Figure 1: Measuring overestimation bias in the value estimates of TD-MPC2. We estimate the
true value through Monte Carlo sampling. Specifically, we calculate the average discounted return
over 100 episodes following the nominal policy 7. The results are averaged over three seeds with
UTD=1; The first row shows value estimates of vanilla TD-MPC2 with all data collected by the
planner policy 7g; The second row shows TD-MPC2 with a probability of 0.5 to use the nominal
policy 7 for exploration; The third row shows value error of the proposed method with conservative
exploitation. This suggests that the value overestimation is rooted in a mismatch between the explo-
ration and exploitation policies.

Notably, Theorem [3.1] indicates that the planning procedure allows 7 to mitigate its reliance on
value accuracy by at least a factor of v~ compared to a greedy policyﬂ If we assume model
error and planner suboptimality are insignificant or less important (e.g., short planning horizon),
then converging value approximation error, €, guarantees converging planning performance. This
begs an obvious question: As task complexity increases, particularly in environments with a high-
dimensional state-action space, does the current framework yield a small value approximation error
in practice?

3.2 EMPIRICAL EVIDENCE FOR VALUE OVERESTIMATION

While value approximation error is negligible in low-dimensional tasks, it could still be significant
for complex tasks with a high-dimensional state-action space. The first row of Figure [T]illustrates
value approximation error Eq .., [V (s0) — V7 (s0)] of TD-MPC2 in four distinct continuous control
tasks from DMControl (Tassa et al.,[2018)) and HumanoidBench (Sferrazza et al., 2024), where the
function estimation is given by V = E,[Q]: Hopper—-Stand (4 € R%, © € R'5, 15% error),
Dog-Trot (A € R38, O € R?23,231% error), h1hand-run-v0 (4 € R8, O € R%!, 2159%
error), hlhand-slide-v0 (A € RS, O € R'5!, 746% error). More examples can be found
in Figure [/] Notably, even though the planner performs poorly and collects trajectories with low
return, value overestimation can still be large. This suggests that the approximation error is not
due to overfitting high-value data generated by the planner, but rather an off-policy issue (Thrun
& Schwartz, [2014; |Sutton & Bartol 2018}, [Fujimoto et al., [2018)) that bootstrapping, off-policy, and
function approximation forms a troublesome “deadly triad” (Van Hasselt et al.,[2018]). In this case,
Theorem [3.1] will no longer guarantee good performance for 7.

Intuitively, approximation error arises when the behavior policy diverges from the nominal policy
being evaluated by the value function. The planner, with full access to the learned model, yields a
policy that behaves distinctly and potentially is superior to the nominal policy. This fully off-policy
setting incurs an apparent distribution shift. Consequently, the function approximation error remains
unfixed and increases as the value function is repeatedly queried with out-of-distribution data during
bootstrapping.

To verify that this distribution shift drives value overestimation, we conduct a comparative experi-
ment. We consider a variant of TD-MPC?2 that periodically injects rollouts collected by the current
nominal policy, 7, into the replay buffer. Then we evaluate the value overestimation bias of this
variant against the baseline. By mixing a fraction of on-policy data with the planner’s off-policy tra-

'See detailed explanation in Appendix

Under review as a conference paper at ICLR 2026

jectories, we relax the distribution shift and expect a corresponding reduction in approximation error.
The empirical observation in Figure[Tjmeets our expectation, as value overestimation is significantly
reduced on high-dimensional humanoid tasks.

3.3 ERROR ACCUMULATION

While the policy mismatch in TD-MPC delays the correction of value overestimation bias, one
might expect that, given sufficient training, the agent would eventually visit overestimated regions
and rectify the errors. Indeed, when the scale of value overestimation is large enough, the planner
policy 7 can also be approximately considered as a greedy policy of the value prior. Thus, it will
explore the regions assigned erroneous large values more frequently until the value function corrects
itself. For a low-dimensional task, this aligns with empirical observation. However, we argue that
this self-correction could be difficult because value approximation errors not only propagate across
states (Fujimoto et al., 2018)) but also accumulate through policy iteration, making it highly trouble-
some for complex, high-dimensional tasks. We first quantify approximation error accumulation in
the following theorem.

Theorem 3.2 (TD-MPC Error Accumulation). Assume 7 g, outperforms y, with performance gap
Ok = ||[V™H+F — V™ ||o. Denote value approximation error €y, model error €, y, planner sub-
optimality €, as defined before. Also let the reward function v be bounded by [0, R4y, then the
following uniform bound of the performance gap holds:

1
o < T [2C(Gm,k71;Ha Y) + ep -1+ (1 +v7)k_1 +

2y(1+ "1

Mek, 1} (5)
L=~

where C'is defined in equation equation[d} We defer the complete proof to Appendix|[B.8|

Note that the upper bound is quite loose due to the usage of the infinity norm. Nonetheless, the direct
takeaway of Theorem [3.2]is that we can always expect a relatively large performance gap between
the H-step lookahead policy and the nominal policy due to the accumulating approximation error.
Consequently, a large value gap also indicates a larger policy mismatch.

Theorem 3.3 (Distribution shift). Given policies w,7' € 11 : S — A(A), suppose the reward
is upper bounded by R, then we have the TV-divergence of two visitation distributions lower
bounded by the performance gap as follows. Proof can be found in Appendix[B.4

’ 1 - ’
Drv (™ (s,) [p (s,)) 2 5 | J7 = T | ©)

max

As a result of a value error, the region corresponding to the nominal policy 7 is underrepresented in
the buffer, exacerbating the distributional shift rather than resolving it. Consequently, the enlarging
distribution shift also leads to an extrapolation error of the value function, leaving a non-converging
approximation error. Further discussion on the Theorems can be found in Appendix [E]

Extrapolation errors had been well articulated in offline RL studies (Kumar et al., 2019} |Peng et al.,
2019; [Levine et al.,|2020). For model-free algorithms in online RL where exploration and exploita-
tion policies align closely, with stabilizing methods applied to value learning (Fujimoto et al., 2018;
Anschel et al., 2017 [Lan et al.l 2020), the overestimation is expected to be prevented, and even
underestimation could take place (Hasselt, 2010). However, the policy mismatch brought by the
planner largely affects value learning and distinguishes it from model-free off-policy learning.

To summarize, although the H-step lookahead policy is theoretically less sensitive to value approx-
imation errors, a substantial amount of them are introduced and accumulate over training time due to
policy mismatch. As a result, naively applying standard actor-critic methods fails to fully exploit the
potential of combining model-based optimization and temporal-difference learning. These findings
motivate our solution for better value learning.

4 IMPROVING VALUE LEARNING IN MBRL THROUGH A MINIMALIST
APPROACH

To improve value learning in plan-based MBRL, we must address the challenge of exploiting
planner-generated off-policy data. One natural remedy is to actively mitigate distribution shift by

Under review as a conference paper at ICLR 2026

incorporating the nominal policy into data collection (e.g., the method presented in Section [3.2).
However, it empirically demands a large fraction of nominal policy rollouts to eliminate overesti-
mation, which hinders the performance by reducing the planner’s contribution. An alternative is to
impose constraints on the planner itself, ensuring the exploration policy remains close to the prior,
as in previous works (Sikchi et al.| [2022; |Grill et al.,|2020). Yet this approach may stifle exploration
in trajectory space. In contrast, we aim to enhance the exploitation of off-policy data with minimal
effort. Inspired by recent progress in offline RL, where fully off-policy data is effectively leveraged
via conservative updates, we consider integrating conservatism to leverage planner-collected off-
policy data efficiently. In the following sections, we present TD-M(PC)?, a framework that marries
model-based exploration with conservative exploitation.

Core Components. We jointly learn encoder z = h(s, e), latent dynamics z’ = d(z, a, €), reward
function # = R(z,a,e), nominal policy ¢ = 7(z,e), and action value function § = Q(z7 a,e) ~
Q7 (z,a,e). where z is the latent state representation and e is a learnable task embedding. Ac-
cordingly, we efficiently perform inference-time planning in the latent state-space. Specifically,
h,d, R, Q are jointly trained through the following loss:

(s,a,7,5")o: 1

L= E [ivt(d(zt,at,@—sg(h(s;»n%+cE<m,n>+cE<qt,qt>)}, ™
t=0

where the target ¢, is generated by bootstrapping nominal policy 7 (refer to Equation (9)), and sg
is the stop-gradient operator. 7 is a stochastic Tanh-Gaussian policy trained with the maximum Q
objective in a model-free manner. During inference, 7 selects actions at the terminal state, resulting

in value estimation as V(2,4 ;1) = Eq,, pron(zerm.e) [Q(zt101, ar s, €)]-

Policy Iteration with Reduced OOD Query. To limit out-of-distribution queries during boot-
strapping, while avoiding overly pessimistic value collapse Nakamoto et al.|(2024), we adopt a soft,
state-conditional divergence constraint to the behavior policy p (the mixture that induces the replay
buffer D), together with standard off-policy evaluation. At iteration k, we update the policy by

Tt € argmax By [Eun(oQu(s,0) = 8D) (-1 9))]. ®)

where D is a divergence (e.g., forward/reverse Kullback-Leibler divergence) and dp is the empirical
state distribution in replay. This BRAC-style (Wu et al.l 2019) objective keeps 71 close to the
data support while still improving expected action values, in contrast to trust-region methods that
constrain KL(741 || 7%) between successive policies (Schulman, 20155 /Abdolmaleki et al., [2018)).
For evaluation, we apply the off-policy Bellman operator under the target policy 7 and fit Q41
from transitions sampled off-policy from D:

(Tﬂk Q) (57 a) = T(S7 a) + IEs’r\zp(-\s,a) Ea’wﬂk(»\s’) [Q(S/a a/)] . 9

While the framework permits different divergence measures, we adopt a pragmatic instantiation
prioritizing performance and simplicity. At a higher level, we consider the reverse KL-divergence
as the measurement. In practice, we do not maintain a density estimate for the behavior policy,
but store the mean and standard deviation for 7 j, (multi-variant Gaussian) alongside the standard
transition. We leverage a surrogate objective Ex ., p[log T x| as the lower bound of log .

To be noticed, unlike offline RL, exploration is essential under our setting, and overly conservative
or excessive constraints could harm performance. Thus, we further provide design choices to enable
“optimistic-conservatism”. First, similar to practices in MaxEnt-RL (Haarnoja et al., 2018} [2017)
we add entropy regularization to policy learning. Besides this widely adopted approach, we further
loosen the constraint by not enforcing the conservative term until the running percentile .S, (Eq.
exceeds a certain threshold SEI The overall policy loss yields the following.
Lr=— IE [Q(s,a)/Sq+ Blogplals))S, —alogm(als)], (10)

s,u~B,a~m

Sq = EMA (max{Per(Q, 95) — Per(Q, 5), 1}, &) (11)
where we follow (Hansen et al.,[2022; [2023)) to scale the training loss by S, of the value function to
improve stability. We summarize the overall pipeline as Algorithm|T]

*More intuition and empirical analysis on this hyperparameter can be found in Appendix[D]

Under review as a conference paper at ICLR 2026

Average 13 Tasks Walk Reach Hurdle Crawl
1000 1000 12000 1000 1000

1
8
@
8
g
1
g
o
g
8

2
8
2
2
8
2
8
Fy
2
8

IS
8
3
N
8
3
5
8
IS
8
8

4000 /.’\,._
2000 200 /W 200
e

Maze Stand Run Sit Simple Sit Hard
1000 1000 1000 1000 1000

Episode Return
@
8
8

S
8
8
8

°
°
°
°
°

800 800 800 800 800
600 600 600 600 600

400 400 400 400 400

200 f ;; 200 200 200 /-——_,,f 200

Episode Return

Balance Simple Balance Hard Stair Slide Pole
1000 1000 1000 1000 1000

800 800 800 800 800

600 600 600 600 600

400 400 400 400 400

200 200 200 200 200

Episode Return

OOvO 0.5 1.0 15 2.0 OD.U 0.5 ‘13 15 2.0 OO.D 0.5 B 1.0 15 2.0 DO 0 0.5 1.0 15 2.0 DD 0 0.5 1.0 15 2.0
Environment steps (x10°) Environment steps (x10°) Environment steps (x10°) Environment steps (x10°) Environment steps (x10°)

— SAC DreamerV3 —— TD-MPC2 —— TD-M(PC)?

Figure 2: Performance on Humanoid-Bench Locomotion Suite. We report mean evaluation per-
formance (Average episode return) and 95% ClIs across 14 humanoid locomotion tasks. We omit
Reach-v0 in the average result due to the distinct reward scale.

Through experimental evaluation, we seek to Average 23 Tasks Average 7 High:Dim Tasks
answer the following key questions: How well
does our approach perform on continuous con-
trol tasks, especially in environments of high-
dimensional state-action space? Does our
method reduce value approximation error and
achieve accurate policy evaluation? Which
component is critical to performance?

Episode Return
Episode Return

Environment steps (x10°) Environment steps (x10°)

—— SAC = TD-MPC2 =—— TD-M(PC)*

Benchmarks. We evaluate our method across

diverse tasks from HumanoidBench |Sferrazzal . .
et al (2024) and the DeepMind Control Suite Figure 3: Performance on DM Control suite. We

(DMControl) [Tassa et al] (2018). Humanoid- report mean evaluation performance and 95% Cls
Bench is a standardized suite for humanoid ©Ver 3 seeds. Left: Average performance on all
control. We test all 14 locomotion tasks in 1,6 task§; Right: Average performance on 7 high-
hlhand-v0 locomotion suite, which requires dimensional tasks

whole-body control of a humanoid robot with dexterous hands and a 61-dimensional action
space. Additionally, we benchmark our method on 23 tasks from DMControl, including 7 high-
dimensional tasks: dog (36-DoF) and humanoid (21-DoF).

Baselines. We mainly compare our method against TD-MPC2 (Hansen et al.,|2023)) and Soft Actor-
Critic (Haarnoja et al.| 2018)). For Humanoidbench, we also include popular model-free and model-
based algorithms, PPO (Schulman et all 2017, DreamerV3 (Hafner et al.l 2023). We leverage the
implementation of SAC and PPO from StableBaseline3 (Raffin et al. 2021). We report baseline
results on HumanoidBench from author-provided scoresﬂ We implement TD-M(PC)? on top of the
official repository of TD—MPC2E| in PyTorch, ensuring all model architectures are identical for a fair
comparison. Due to the space limit, please refer to Section D] for further details.

4.1 IMPROVED VALUE LEARNING

We first assess the value overestimation bias of the proposed method using the same evaluation
procedure as described in Section 3.2} As illustrated in the third row of Figure [} our method

*https://github.com/carlosferrazza/humanoid-bench
*nttps://github.com/nicklashansen/tdmpc2

https://github.com/carlosferrazza/humanoid-bench
https://github.com/nicklashansen/tdmpc2

Under review as a conference paper at ICLR 2026

Dog trot Run Dog trot Run

1000
800 A/ 800
Ny
600 600
400 400
200 200 /
Vi oz
00 02 04 06 08 10 00 05 10 15 20 00 02 04 06 08 10 00 05 10 15 20

Environment steps (x106) Environment steps (x106) Environment steps (x106) Environment steps (x106)
—— TD-M(PC)? TDMPC-BC TDMPC-BC-mean TD-M(PC)? B=w B=0.05

(@ (b)

Episode Return
Episode Return

Figure 4: Ablation study. (a) Different regularization formulation yield close performance(b) Pro-
posed method is not sensitive to (3.

enables the learned value function to align better with the truth of the ground, reducing persistent
bias in the estimation of values. This empirical result justifies our theoretical analysis. Moreover,
the improvement in value accuracy is especially significant for high-dimensional humanoid tasks,
where the baseline yields a persistent and non-converging bias. We will show that this improvement
in value learning ultimately results in improved performance of the resulting H-step look-ahead

policy.

4.2 BENCHMARK PERFORMANCE

We conducted our experiments across three random seeds for DMControl and five random seeds for
HumanoidBench, with a total of 2M environmental steps and an up-to-date ratio (UTD) of one. We
adopt the same settings for shared hyperparameters reported in the TD-MPC2 paper for our algo-
rithm without task-specific tuning. A comprehensive list of hyperparameter settings for reproducibil-
ity and transparency in Table [l For HumanoidBench, as demonstrated in Figure 2] our method
consistently outperforms the baseline by a large margin for most tasks. In general, TD-M(PC)?
tends to act with caution, while the baseline demonstrates an exaggerated motion corresponding to
its overestimated value. Consequently, significant improvements are achieved in locomotion tasks,
where the humanoid benefits more from performing stable and consistent motions.

We also evaluate our approach on some of the most challenging tasks in the DMControl suite, as
in Figure [3] with comprehensive training curves presented in Figure [f] and Figure 5] On average,
our method slightly outperforms the baseline. Notably, significant improvements are observed in
three dog tasks, whereas the performance on Humanoid tasks, which feature a slightly smaller
action space, remains comparable to the baseline. Complete training curve on DMControl and task
visualization can be found in Section [El

4.3 ABLATION STUDY

To decide which formulation is the most suitable to address conservatism in policy learning, we
compared the log-likelihood objective TD-M (PC) 2 to the behavior clone objective TDMPC-BC
and behavior clone with respect to the mean of the behavior policyTDMPC-BC-mean. The log-
likelihood objective shows the best performance in Figurefla] While the BC objective is theoretically
equivalent to the log-likelihood objective, it is less stable in practice. We also studied different ways
to introduce conservatism, such as advantage-weighted regression (Peng et al.,[2019).

To access sensitivity to 3, we evaluate two variants of TD-M(PC)?: a mildly regularized version
with 8 = 0.05 and an extremely conservative variant that directly applies behavior cloning (BC) for
policy updates beta = oo. These variants are tested on two high-dimensional continuous control
tasks. As shown in Figure [4b] all three variants achieve similar performance, suggesting that the
framework is not sensitive to 5. Notably, the BC variant performs nearly on par with the others de-
spite the actor only imitating stale planner behavior. This indicates that reducing out-of-distribution
actions is a key factor. Due to limited space, we postpone more ablation results on other design
choices in Section[El

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Model-based RL. Recent advances in MBRL aim to balance scalability and adaptability by integrat-
ing strengths from both model-free and model-based paradigms. Dyna-Q Sutton| (1991) considers
using simulated rollouts from a learned model to augment real-world experience, often referred to
as “background planning” [Hamrick et al.[(2020). Janner et al.| (2019) provides a theoretical guaran-
tee of monotonic policy improvement with model-generated data. |[Katsigiannis & Ramzan|(2017);
Hafner et al.| (2020; 2023)) further introduce latent world models for high-dimensional tasks, e.g.,
visual control. Planning algorithms such as Model Predictive Control (MPC) and Monte Carlo Tree
Search (MCTS) can explicitly exploit model knowledge to acquire a superior control policy. Planner
is critical to policy learning, it can be applied to high-quality data acquisition |[Lowrey et al.| (2018));
Hansen et al.| (2022)), inference-time planning (Chua et al.| (2018)); Hafner et al.| (2019), or provide
expert learning signal [Schrittwieser et al.| (2020); [Bhardwa;j et al.| (2020b)); |Ye et al.| (2021); Wang
et al.[(2024)). |Schrittwieser et al.| (2020) achieves trust-region policy improvement through combin-
ing MCTS with policy and value prior |Grill et al.[(2020). Contrary to this, we do not rely on expert
iteration |Ye et al.| (2021); [Wang et al.| (2025) for policy improvement, but leverage past behavior
policy to enforce conservatism and improve exploitation.

Off-policy Learning and Value Approximation Error The combination of off-policy learning,
boostrapping, and function approximation is often associated with value overestimation bias (Sutton
et al.,[2016; [Van Hasselt et al.,[2018)). Prior work has extensively studied such a phenomenon in the
context of model-free RL (Anschel et al., [2017; |Lan et al.| |2020; [Moskovitz et al.,[2021)). Still, off-
policy algorithms can be highly sensitive to distribution shifts when data-collection policy diverges
far from the target policy and bootstrapping errors compound over time (Kumar et al., 2019). Recent
studies in offline RL have taken a huge leap in learning from complete off-policy demonstrations.
(Kumar et al.| 2020) avoids erroneously overestimating unseen actions by penalizing high-value
OOD estimation. In order to avoid extrapolation error, prior work also considered constraint policy
toward the behavior policy through weighted behavior cloning (Peng et al., 2019} [Fujimoto et al.,
2019) or policy regularization (Fujimoto & Gu, [2021; |Kumar et al., 2019). Alternatively, Kostrikov
et al.| (2021); [Hansen-Estruch et al.|(2023)) adopt in-sample learning that do not bootstrap an explicit
policy during critic training, thereby avoiding OOD query.

MPC with Value Prior Incorporating value prior into the MPC controller reduces its dependency
on an imperfect model and has been widely applied in continuous control (Lowrey et al., [2018]).
Bhardwaj et al.| (2020bja) studies the connection between MPC and entropy regularized RL, en-
hancing Q-learning accuracy by using model information to calculate value target. [Sikchi et al.
(2022); |[Hansen et al.| (2022) leverages a value prior learned through model-free RL to approximate
the performance of the optimal policy. Building upon this, TD-MPC2 (Hansen et al., [2023)) intro-
duces crucial design choices tailored for continuous control tasks, effectively reducing compound
model errors and improving learning stability. Due to the decoupled exploration and exploitation,
off-policy issues in MBRL can be more severe than model-free algorithms. [Hansen et al.| (2022);
Wang et al.|(2025)) demonstrate that the nominal policy can be significantly worse than the planner.

6 CONCLUSIONS

In this work, we identify a fundamental bottleneck in plan-based model-based reinforcement learn-
ing (MBRL): persistent value overestimation arising from a structural policy mismatch between the
MPC planner’s lookahead policy and the nominal actor. To address this limitation, we proposed TD-
M(PC)?, a simple but effective Plan-based MBRL algorithm with a distribution-constrained policy
update. The proposed method significantly reduces out-of-distribution queries, curbing overestima-
tion and restoring stable planning performance. Our approach can be seamlessly integrated into the
existing framework, requires negligible extra computation, but significantly improves baseline per-
formance, especially on challenging 61-dof humanoid locomotion tasks, demonstrating its practical
effectiveness and ease of integration.

Under review as a conference paper at ICLR 2026

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International conference on machine learning, pp. 176—185.
PMLR, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679—
684, 1957.

DP Bertsekas. Neuro-dynamic programming. Athena Scientific, 1996.

Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. Blending mpc & value function approxi-
mation for efficient reinforcement learning. arXiv preprint arXiv:2012.05909, 2020a.

Mohak Bhardwaj, Ankur Handa, Dieter Fox, and Byron Boots. Information theoretic model predic-
tive g-learning. In Learning for Dynamics and Control, pp. 840-850. PMLR, 2020b.

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A Rupam Mahmood, and Martha White.
Greedification operators for policy optimization: Investigating forward and reverse kl diver-
gences. Journal of Machine Learning Research, 23(253):1-79, 2022.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In
International Conference on Machine Learning, pp. 3769-3778. PMLR, 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352-1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555-2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

10

Under review as a conference paper at ICLR 2026

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv: 2301.04104, 2023.

Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Wither-
spoon, Thomas Anthony, Lars Buesing, Petar Velickovi¢, and Théophane Weber. On the role of
planning in model-based deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Hado Hasselt. Double g-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran
Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/
paper/2010/fi1e/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Stamos Katsigiannis and Naecem Ramzan. Dreamer: A database for emotion recognition through
eeg and ecg signals from wireless low-cost off-the-shelf devices. IEEE journal of biomedical and
health informatics, 22(1):98-107, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. Advances in neural information processing systems,
32,2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191,
2020.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin g-learning: Controlling
the estimation bias of g-learning. arXiv preprint arXiv:2002.06487, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

M Littman and A Moore. Reinforcement learning: A survey, journal of artificial intelligence re-
search 4, 1996.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Rebecca Roelofs, Benjamin Sapp,
Brandyn White, Aleksandra Faust, Shimon Whiteson, et al. Imitation is not enough: Robustify-
ing imitation with reinforcement learning for challenging driving scenarios. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 7553-7560. IEEE, 2023.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

11

https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf

Under review as a conference paper at ICLR 2026

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tacti-
cal optimism and pessimism for deep reinforcement learning. Advances in Neural Information
Processing Systems, 34:12849-12863, 2021.

Rémi Munos. Error bounds for approximate policy iteration. In /CML, volume 3, pp. 560-567.
Citeseer, 2003.

Rémi Munos. Performance bounds in I_p-norm for approximate value iteration. SIAM journal on
control and optimization, 46(2):541-561, 2007.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Masashi Okada and Tadahiro Taniguchi. Acceleration of gradient-based path integral method for
efficient optimal and inverse optimal control. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3013-3020. IEEE, 2018.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline r1? arXiv preprint arXiv:2406.09329, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of machine
learning research, 22(268):1-8, 2021.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2004.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
g0, chess and shogi by planning with a learned model. Nature, 588(7839):604—609, 2020.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv
preprint arXiv:2403.10506, 2024.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622—1633. PMLR, 2022.

Satinder P Singh and Richard C Yee. An upper bound on the loss from approximate optimal-value
functions. Machine Learning, 16:227-233, 1994.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160-163, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem

of off-policy temporal-difference learning. Journal of Machine Learning Research, 17(73):1-29,
2016.

12

Under review as a conference paper at ICLR 2026

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 connectionist models summer school, pp. 255-263. Psychol-
ogy Press, 2014.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero v2: Mastering
discrete and continuous control with limited data. arXiv preprint arXiv:2403.00564, 2024.

Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, and Xuguang Lan. Bootstrapped model
predictive control. arXiv preprint arXiv:2503.18871, 2025.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE international conference
on robotics and automation (ICRA), pp. 1433-1440. 1IEEE, 2016.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE international conference on robotics and automation (ICRA), pp. 1714-1721. 1EEE,
2017.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476-25488, 2021.

13

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We used large language models (ChatGPT and Grammarly APP) only for writing assistance (gram-
mar, wording, and minor stylistic edits) on draft text. The model was not used for research ideation,
data collection, dataset labeling, code generation, experiment design, or analysis. All technical con-
tent is authored and verified by human authors. We accept full responsibility for all content in this

paper.

B THEORY AND PROOF

B.1 USEFUL LEMMA

Lemma B.1. |Singh & Yee|(1994) Suppose Ty1 is 1-step greedy policy of value function Vi Denote
V* as the optimal value function, if there exists € such that ||V* — Vi||eo < &k, we can bound the

value loss of T by:
27k

A Al e e AL (12)
L=y

Lemma B.2. |Bertsekas|(1996) Suppose {1} is a policy sequence generated by approximate policy
iteration (API), then the maximum norm of value loss can be bounded as:

limsup ||[V* — V|5 < 5 lim sup Ve = V™ |loo (13)
k— o0 k—o0

2y
(1—=7)
Lemma B.3. |Sikchi et al.|(2022) Denote approximation error for dynamics model p as €,, =
maxs q DTV(p(~|st,at)H[)(~|st,at)).A Denote €, as the suboptimality incurred in H-step looka-
head optimization such that J* — J < €, Let V be an approximate value function such that

[V* = Voo < & Also let the reward function v is bounded by [0, Rya] and V be bounded by
[0, Vinax]- Then, the performance of the H-step lookahead policy can be bounded as:

« 2 €
R L s H 2 H}
T =TS g |Clem Hoy) 4 49" (14)
while C' is defined as:
H-1
C(Gm, H, ’Y) - Rmax Z ’YttGm + "YHHEmV;nax (15)
t=0

B.2 PROOF OF THEOREM

Theorem B.4 (Distribution shift). Given policies w, 7' € I1 : S — A(A), suppose reward is upper
bounded by Ry, then we have TV-divergence of two visitation distributions lower bounded by the
performance gap as:

’ 1 - ’
Dry (0™ (s,0)|p™ (s.0)) 2 5|7 = 7| (16)

max

Proof. From the definition of expected return, we have the following inequality,
T = 7] = [Za(p7 (s, @) = p" (5,0))r(s, a)]
= [SeEs,a (07 (s,) = p" (s,0))r(s, a)l
S Rmaxztzs,a7t|pﬁ(8a Cl) - pﬂl (57 a)l
= 2Rmax2t’ytDTV (PW (8, a’) ||p7r' (87 (L))

Thus, it is trivial to derive the inequality. O

14

Under review as a conference paper at ICLR 2026

Corollary B.5 (Policy divergence). Given policies m,7' € Tl : S — A(A), suppose reward is
upper bounded by R, then we have policy divergence lower bounded by performance gap as:

1—7)? :
max Dry (7' (als)||7(als)) > (21%7’Y)|JTr —J"| (17)

Proof. Using Lemma B.1 and Lemma B.2 from Janner et al.| (2019), we can relate the visitation
divergence to the policy divergence:

Drv (pf (s, a)llpf (s,a)) < Drv (pf (s)|lpy (s)) + max Drv (pf (als)[|pf (als))
< (t+ 1) max Dry (m(als)|[7(als))
Given Lemma|[B.4} we have:
|J7 = J™ | < 2Ry (1 + t) max Dy (7(als)||7' (als))

< 2Rmax
T (=)

max Dry (7(als)||7’ (als))
O
Theorem B.6. Suppose 7y, is 1-step greedy policy of value function Vi. Denote V* as the optimal

value function, if there exists € such that for any k, || V=V lloo < € we can bound the performance
of my by:

29(1++2
limsup ||[V* — V™1 || < limsup L@/S)e (18)
Proof. Directly combining [B.T|and[B.2]
2 N
IV =V oo < =2V = Vil
-
2y ~
—|V* =V,
< 2 - Vil
. 2y 2y . N
limsup ||[V* — V7Tk+1 < —(—— +1)limsup ||V}, — V™
2y(1+4?)
3 Ck
(1=2)
O

Theorem B.7 (Theorem 3.1). Assume at the k-th iteration, the nominal policy Ty, is acquired through
API and the resulting planner policy is Ty i. Denote €y as the approximation error Vi = V™|
of the learned value function V. Also denote approximation error (w.r.t. TV-divergence) for dynam-
ics model p as €, = maxs o Drv (p(-|st, a)||p(:|st, ar)), planner sub-optimality as €,. Finally,
assume the reward function r is bounded by [0, Ryuq,] and Vs upper bounded by V., then the
performance of wy i, is bounded w.r.t. the optimal policy as:

2 H(q1 2
limsup |[V* — Vx| §limsup17H[C’(em,k,H,’y)+€p7’k+ T+)ek} (19)
0

k—o00 k—oo - 2 (1 - 7)2
while C'is defined as:
H-1
Clém, H,Y) = Ruax Y V'tem + 7 HewVinar (20)
t=0

15

Under review as a conference paper at ICLR 2026

Proof. Denote the planner policy (H -step lookahead policy) as 7z, which is acquired through plan-
ning with terminal value V. We define 7 as a trajectory sampled by the optimal policy 7*, and 7
as a trajectory sampled by 7y under the true dynamics. We do not consider approximation error
for the reward function since knowledge of the reward function can be guaranteed in most training
cases. Following the deduction in Theorem 1 of LOOPSikchi et al.| (2022), we can have the H-step
policy suboptimality bound through the following key steps:

V*(s0) = V™5 (s0) = Eru [S9'7 (50, a0) + 77V (sm)] — Es [EVtT(Sta ar) + 'YHVk(SH)}
< Epe {Z y'r(se ar) + VHVk(SH)} —Ez [Z V'r(se ar) + 'YHVk(sH)}
+77E, {V*(SH) - Vk(SH)} —77E; {V*(SH) - Vk(SH)}
+97E: [V (sm) — V™ (sp)]
2

€p,k H * >
< Clem i, H,~) + 25 VE_T, Oo}
_177H[(€mpes Hy) + =5 + 7l ll

Due to the suboptimality, we always have V™2 < V*. Leveraging the value error bound for API
given by Munos|(2007), we further bound €, with approximation error as:

2
limsup |[V* — V7#:k| < lim sup oA [C(emyk,H,’y) + % +AH| V= VT + ’YHGk}
Y

k—o00 k—o0 -
. 2 €pk ’YH(]. + 2)
< limsu [Ce JH o)+ 22 L e]
e e
This indicates that, given identical conditions, a small approximation error implies that V™# will be
close to the optimal value V*. O

Similar to LOOP, we compare performance bounds between the H-step lookahead policy and the
1-step greedy policy (Notice that in API, 7, iteration can be seen as a 1-step greedy policy of
V. if we assume the policy improvement step is optimal). With Lemma we show how value
approximation error influences greedy policy performance. Based on Theorem and Theorem
we conclude that the test-time planning enables 7 j, to reduce its performance dependency on
value accuracy by at least a factor of v/ ~! compared to the greedy policy 7y, 11, providing a general
sense of superiority introduce by the planner.

Theorem B.8 (TD-MPC Error Propagation). Assume g j, outperforms my, with performance gap

O = ||V™H+ — V™| . Denote value approximation error € = ||‘A/;C — V™ ||, approximated
dynamics holds model error €, , planner sub-optimality is €, . Also let the reward function v
is bounded by [0, Ryuy] and Vi._1 be bounded by [0, V.|, then the following uniform bound of
performance gap holds:
1 29y(1 4 ~H-1
o < v 2C(€m k-1, H,7) + €pp—1 + (L + 77)dp_1 + 7(1_77)%—1 (21
where C'is defined as equation

Proof. Denote the planner policy (H -step lookahead policy) as 7, which is acquired through plan-
ning with terminal value V. We do not consider approximation error for the reward function since
knowledge of the reward function can be guaranteed in most training cases. At k-th iteration, denote
#* as the trajectory sampled by the planner policy; 7% as trajectory sampled by optimal planner
leveraging real dynamics model; 7™* as a trajectory sampled by nominal policy 7y, (all trajectories
are sampled in the environment rather than under approximate dynamics model). For simplicity,

in this proof stands for %17 " if not specified.

VTIk (50) = V™ (50) = Bar [Sy'r(se,a0) + 7T VTk (sy)] — V™ (s0)
= E.;_k [Evtr(st, (Zt) + 'YHVmC (SH)] -V (SO)
A B [V (517) = V™ (s17)]

16

Under review as a conference paper at ICLR 2026

Particularly, we have:

Esr[Sv'7 (50, ar) + 7T V™ (s)] = V™ (s0)
= B [Sy'7 (s, a0) + 7" Vaoa(sm)] + 7" Ear [V (s1) = Vi1 (su)] = V™ (s0)
< Ernt [£9'7 (545 a0) + 9" Vima (sm)] = Earr [S9'r(50, a¢) + 7 Viea ()
+ Eoit [Sy'r (st ar) + 7T Vit (s1)] + Y7 Esi [V (s11) — Vit (sm)] — V™ (s0)
< B[Sy (s, ar) + v Vo1 (s15)] — Baeo1 [Sr (56, ar) + YT Vie1(sy)]
+ Eoit [Sy'r(st,a0) + 7T Vot (s20)] + VP Eak [V (517) = Vit (520
= V7Tt (s0) + [V (s0) — V™ (s0)]
The second step is due to the definition of 7#~!

71 = arg max K, [Sv'r(ss, ar) + WHVk_l(sH)]

We use Theorem 1 in[Sikchi et al.| (2022)) for the first row to bind them by model error and planner
sub-optimality.

B it [SY'7 (st ae) + v Vo1 (sm)] = Besr [S9'1(st, ar) + 77 Vio1(sm)] < 2C(emn—1, H,7) + €pr
where C(€m k-1, H,7) is the same as defined in Theorem|[B.7}

For the second row, since we want to construct a bound related to ||V ™#.#=1 — VV™-1||_ Under this
orientation, we first show that:

Eze-1[S9'1 (st ae) + v Vi1 (sm)] + Y Ear [V™ (i) — Vi1 (sm)]

= Bee1 [Syr(se, ar) + YTV (sp)] + T Eax s Vi1 (su) = VTR (s1)]
+AIB [V (sp) = V™1 (sg)] + YHEBar [V (s51) + Vi1 (sm)]

= V41 (50) + T Banar Vo1 (s1) = V™ (510)] + 7T Bana [V (s5) = VIR (5]
AT B [V (51) = VT ()] + 7 Bax [V (s1) — Vieoa (s)]

Sequentially, we combine the inequalities above:

Ear [2v07(s¢, a0) + YTV (sg)] — V™ (s0)

< 2C(emp—1,H,7) + p—1 + 277 €1
VTR (50) = V1 (50) 4+ YT Epes [V (spr) — VI (s))]
AT B [V (si) = VT (sm)] + [V (s0) — V™ (s0)]

We can have a rough bound on the second line by (1 + y)d§,_;. With Lemma 6.1 in Bertsekas
(1996)), we can bound the final line as:

VB [V (s5) = VT (sm)] + [V (s0) = V™ (s0)] < (1 +97) T~ k1

Combining all the inequalities and leveraging the contraction property, we get the final bound for
the performance gap:

2y(1 4 A1
—~H 20 (emi—1, H,7) + €p g1+ (L+ 7)1 + 7(1—’Yv)

Vﬂ'H,k(SO) . VAU (30) < 1 €h1

Thus, we can easily arrive at the final result. O

17

Under review as a conference paper at ICLR 2026

C EXTENSIVE RELATED WORKS

Model-based RL. The core of model-based reinforcement learning is how to leverage the world
model to recover a performant policy. Recent advances aim to balance scalability and adaptability
by integrating strengths from both model-free and model-based paradigms. Dyna-Q [Sutton| (1991)
considers using simulated rollouts from a learned model to augment real-world experience, often re-
ferred to as “background planning” [Hamrick et al.[{(2020). Janner et al.|(2019) provides a theoretical
guarantee of monotonic policy improvement with model-generated data. [Katsigiannis & Ramzan
(2017);\Hatner et al.| (2020; 2023) further introduce latent world models for high-dimensional tasks,
e.g., visual control. Planning algorithms such as Model Predictive Control (MPC) and Monte Carlo
Tree Search (MCTS) can explicitly exploit model knowledge to acquire a superior control policy.
Planner is critical to policy learning, it constantly interacts with other components through high-
quality data acquisition |[Lowrey et al.| (2018)); [Hansen et al.| (2022), inference-time planning (Chua
et al.| (2018)); Hafner et al.| (2019)), or provides expert learning signal |Schrittwieser et al.| (2020);
Bhardwaj et al.| (2020b)); |Ye et al.| (2021); [Wang et al.[(2024)). [Schrittwieser et al.| (2020) achieves
trust-region policy optimization through combining MCTS with policy and value prior |(Grill et al.
(2020). Following this line of work, [Ye et al.| (2021); Wang et al.| (2024} [2025) leverages expert
iteration to provide up-to-date planner policy and value estimation as a learning target. Contrary to
these methods, we do not rely on expert iteration for policy improvement, but leverage past behavior
policy to enforce conservatism.

Off-policy Learning and Value Approximation Error The combination of off-policy learning,
boostrapping, and function approximation is often associated with value overestimation bias [Sutton
et al.[(2016); |Van Hasselt et al.| (2018) and has been a long-standing problem in DRL. Prior work
has extensively studied such a phenomenon in the context of model-free RL |Anschel et al.| (2017);
Lan et al.| (2020); Moskovitz et al.[(2021). Still, off-policy algorithms can be highly sensitive to
distributional shifts when data-collection policy diverges far from target policy, leading to instability
and poor generalization as bootstrapping errors compound over time [Kumar et al.| (2019). Extrapo-
lation errors have been well articulated in offline RL studies|Kumar et al.|(2019); Peng et al.|(2019));
Levine et al,| (2020), addressing this issue enables algorithms to learn from complete off-policy
demonstrations. Such an issue appears when the value function is queried with out-of-distribution
(OOD) state-action pairs. Then, temporal difference methods propagate generalization errors it-
eratively, causing the value estimation to deviate further. Many methods are proposed to resolve
this by addressing conservatism, such as in-distribution learning Kostrikov et al.| (2021)); Garg et al.
(2023)), conservative evaluation [Kumar et al.| (2020), weighted imitation |Peng et al.| (2019); |[Nair
et al.| (2020); Hansen-Estruch et al.| (2023)), or behavior regularization |[Fujimoto & Gul (2021); [Lu
et al. (2023)).

While the training dataset is fixed in offline RL, exploration is critical in online RL. For model-
free algorithms where exploration and exploitation policies align closely, with stabilizing methods
applied to value learning [Fujimoto et al.| (2018); |Anschel et al.| (2017), such value overestimation
bias is expected to be fixed since the corresponding policy tends to visit these overestimated regions.
And in cases such that the remedy to value learning is conservative enough, e.g., taking the minimum
value of an ensemble of value functions, even underestimation could take place[Hasselt|(2010); Lan
et al. (2020). However, as demonstrated in the usage of online planning distinguishes it from
the issue encountered in model-free off-policy learning.

MPC with Value Prior Incorporating value prior into the MPC controller reduces its dependency
on an imperfect model. POLO Lowrey et al| (2018)) uses a value prior as the terminal cost func-
tion in an MPPI planner to efficiently search the trajectory space; it also maintains an ensemble of
value functions to track uncertainties and promote optimistic exploration. [Bhardwaj et al.|(2020bza)
studies the connection between MPC and entropy regularized RL, enhancing Q-learning accuracy
by using model information to calculate the value target. |Sikchi et al.| (2022); Hansen et al.| (2022)
leverages a value prior learned through model-free RL to approximate the performance of the op-
timal policy. Building upon this, TD-MPC2 |Hansen et al.|(2023)) introduces crucial design choices
tailored for continuous control tasks, effectively reducing compound model errors and improving
learning stability. Due to the decoupled exploration and exploitation, off-policy issues in policy-
based MBRL can be more severe than model-free algorithms. Hansen et al.| (2022); Wang et al.
(2025) observed that the nominal policy is significantly worse than the planner policy in perfor-

18

Under review as a conference paper at ICLR 2026

Algorithm 1 TD-M(PC)?

Require: 6, v, enc, ¢, ¢', P, o, 3, p, ¥
Initialize policy network 7y, latent world model dy,, encoder enc, and value functions Q4, Q¢ by
pertaining on uniformly sampled data
for each training step do
if collect data then
Planning by Algorithm[2} a ~ = P(enc(s), w9, Qg d,7).
Environment step: r, s’, done = env.step(a)
Add (s, a, p,r,s") to buffer B.
end if
Sample trajectories { (s, at, pit, ¢, St+1)o0:m) ~ B
Model Update
Calculate TD target by bootstrapping g
Update dy, enc, Qg4 by equation
Constrained Policy Update
Calculate policy loss by equation [I0]and update 6
Polyak update ¢, = p¢; + (1 — p)¢s, i = 1,2

end for
return 6, ¢, P
Algorithm 2 MPPI

Require: zg, 7, Q(z,a),d, \,y, N, N;, H
Initialize x° as concat{p[: —1], 0}, initialize o
for iteration i=0, 1, ..., I do

Sample N action traj. from len. H from A (u;; 021)
Sample N, action traj. by rollout 7 in latent dynamics d
Collect all trajectories T
Rollout and estimate discounted returns
for All traj. j =1,...,N + N, do
R; =0
for step t=0, 1, ..., H-1 do
Zt+1, Tt = d(Zt, at)
Rj = R]' + ’ytrt
end for
Rj =R; +v"Q(zp,m(2m))
end for
Update 1 and o
Select top-K trajectories {71,...,TK }
exp(ARy)

SK | exp(ARy)

Update parameters p'+ = XK wpri, o' = \/SE wp. (1 — pit1)?2
end for

return N (u!; (o)1)

)

Calculate score wy, =

mance, |Wang et al.| (2025) attributes this to the low efficiency of policy learning. However, we
argue that while exploitation is surely Sikchi et al.|(2022));|Argenson & Dulac-Arnold|(2020) tackles
this policy divergence by mixing action sequences proposed by the policy prior with randomly sam-
pled trajectories into MPPI. In comparison, our method effectively addresses overestimation without
compromising the planner.

D DESIGN CHOICES AND IMPLEMENTATION DETAILS

D.1 ALGORITHM FORMULATION

19

Under review as a conference paper at ICLR 2026

To further elaborate on the design choices, we present the general formulation of constrained policy
iteration, followed by a detailed discussion of its implementation and interaction with other critical
components within TD-MPC.

Given the behavior policy u(+|s) = X5 jwr T k(-|s) (following the notation in|Peng et al.[(2019)),
Conservative policy improvement step can be interpreted as finding a solution in the trust region near
. The optimal solution of problem equation[§]is the combination of behavior policy and Boltzmann
distribution, with partition function Z(s) and Lagrangian multiplier /:

w*(als) = %u(ab)exp(lQ(s,a)), Z(s) = /Qu(a|s) exp(%Q(s,a)) (22)

Z(s 153

In principle, the training objective can be formulated using either the reverse KL-divergence (RKL)
Dk (m||n*), or forward KL-divergence (FKL) Dy, (p*||7). For online off-policy setting, beyond
its well-known “’zero-avoiding” behavior, prior studies |Chan et al.| (2022) have shown that FKL
encourages mode-covering but does not guarantee policy improvement, often leading to degraded
performance, especially under large entropy regularization. In[E] we show that FKL could mitigate
the value overestimation problem for high-dimensional tasks but may lead to training instability.

Based on these observations, we choose RKL style policy learning [Fujimoto & Gul(2021)). Instead of
directly calculating the log-likelihood of j, we maximize [E,/z[log 1/’ as its lower bound. Such a
surrogate greatly simplifies the calculation. Specifically, the policy improvement step can be realized
as follows to leverage a sequence of transitions:

H

Tk4+1 < argminE{s,a',At}o:Hf1~B |: Z /\tEatNW(~|zt) [- Qﬂk (Zt; at)/sq + log(ﬂ(at‘zt))
g t=0
(23)

— 3. action log (gt (at))/sq]}’

dmax

20 = h(SO), 2+l = d('Zta ag)

Notably, we denote a’o.y_1 as the behavior action sampled from the buffer. Thus, unlike
dreamer [Katsigiannis & Ramzan|(2017), we do not actually roll out 7 and leverage simulated expe-
rience during training. We also scale the training loss by a moving percentile S; < (Qmax — Qmin)
of the value function to improve stability.

S, = EMA (max{Per(Q, 95) — Per(Q, 5), 1}, £) (24)

Conservative Threshold s We notice that overly addressing policy constraints during the initial
stage sometimes results in failure to escape from the local minima. Thus, we maintain a moving
percentile S, for the Q function as in[Hansen et al.|(2022;[2023) and leverage an adaptive curriculum

on 3:
B:{O, it S, <s

(3, otherwise

The intuition behind this scheduler is that a small S; could be an indicator of the initial training
phase. Also, decreasing S, indicates a stable or non-improving performance where exploration
is required. While one may argue that other deliberately designed curricula could be more ef-
fective, we find that this straightforward setting is sufficient. For exploration-intensive tasks like
humanoid-run in DMControl, this curriculum allows approximately 100k environment steps at
the beginning without constraints enforced on the nominal policy. Empirically, the "free-explore”
stage could incur a certain degree of value overestimation, but it will soon be rectified once the con-
servative term takes effect. For most tasks with denser reward signals, its impact on performance is
minimal. But carefully tuned s yields better performance Section [E]

Conservative Coefficient We found scale § properly with action dimensionality, as the sparsity
of high-dimensional space leads to a more severe distribution shift. We suggest 5 ”il—‘ is a good
choice that balances performance on both low- and high-dimensional tasks. The repo?taéd result in
the main paper applied this scaling, as the conservatism coefficient is technically %.

20

Under review as a conference paper at ICLR 2026

We have the same training objective as TD-MPC2 when it comes to the dynamics model, reward
model, value function, and encoder:

(s,a,r,8")o:H

L= E [iﬂ/t(cd-|d(z,a,e)—sg(h(s;))|%—|—c,,~CE(ft7rt)+cq~CE(cjt,qt))}
t=0

(25)

Where the reward function and value function’s output are discretized and updated with cross-
entropy loss given their targets.

In addition, we disclose implementation distinctions for baseline variants used in section[d.3] We di-
rectly update the policy for the behavior cloning version (5 = co) by maximizing the log-likelihood
term. Following [Hansen et al.|(2022;[2023), we introduce a moving percentile S to scale the mag-
nitude of the loss:

Ly =EsBEqor(|s)logp(a | s)/ max(1,S) (26)

D.2 IMPLEMENTATION DETAILS

Table[T]lists the full hyperparameter settings for our training procedure, planner, actor (nominal pol-
icy), critic, and network architectures. To prevent the planner’s rollout distribution from collapsing
to a deterministic policy—and to improve numerical stability—we constrain its action-noise stan-
dard deviation to lie within [Min Planner_Std, Max Planner_Std]. Importantly, the planner in
Algorithm [2| combines Model Predictive Path Integral control (MPPI) (Williams et al., [2016)) with
the Cross-Entropy Method (CEM) (Rubinstein & Kroese, [2004), using a top-K selection mecha-
nism: 5% of trajectories follow the nominal policy 7, while the remainder are derived from planner
sampling, allows the planner to diverge far from the nominal policy 7.

All model components—dynamics and reward model, encoder, actor, and critic—are implemented
as three-layer MLPs with Mish activations and LayerNorm. Consistent with TD-MPC2 Hansen
et al.| (2023)), we apply SimNorm to the latent state representations. We optimize all networks using
Adam (Kingma & Bal 2014) with gradient clipping. Experiments were run on a single NVIDIA
RTX A6000 GPU paired with an AMD EPYC 7513 32-Core CPU. For 2 M environment steps and
UTD=1, each training session completes in approximately 38.5 hours, with a minimal fluctuation
across environments. The proposed algorithm does require more storage compared to TD-MPC2,
but we consider that insignificant. Since we store the mean and std of the planner policy, whose addi-
tional budget is of the same scale as the action storage and smaller than the observation storage. For
a replay buffer of 1M steps and state-based observation, the extra memory requirement is 0.01 GB
(from 0.03 to 0.04GB) for DM Control tasks and 0.6 GB (from 0.8 to 1.4GB) for HumanoidBench,
which is far from a heavy burden.

E DISCUSSIONS AND ADDITIONAL RESULTS

Average Dog Stand Dog Trot Dog Walk

Episode Return

Dog Run Humanoid Stand Humanoid Walk Humanoid Run

Episode Return

G0 o5 1o 15 2000 o5 To 15 2000 o5 1o 15 2040 o5 10 15 20
Environment steps (x10°) Environment steps (x10°) Environment steps (x10%) Environment steps (x10°)
—— SAC —— TDMPC2 TD-M(PC)?

Figure 5: Performance on DM Control suite (7 High-dimensional tasks). Average episode return
of our method and baselines. We report mean evaluation performance and 95% Cls across 7 high-
dimensional continuous control tasks.

Besides the training curves on 23 DMControl tasks (Figure [6] and Figure [5), we provide further

discussions and empirical results on value approximation error, different methods to enforce conser-
vatism, and additional ablations.

21

Under review as a conference paper at ICLR 2026

Table 1: Hyperparameter settings. We directly apply settings in|{Hansen et al.| (2023) for the shared
hyperparameters without further tuning. We share the same setting across all tasks demonstrated

before.

Hyperparameter Value
Training

Learning rate 3x107*
Batch size 256
Buffer size 1.000-000
Sampling Uniform
Reward loss coefficient (c) 0.1
Value loss coefficient (cq) 0.1
Consistency loss coefficient (cq) 20
Discount factor (vy) 0.99
Target network update rate 0.5
Gradient Clipping Norm 20
Optimizer Adam
Up-to-data (UTD) 1
Planner

MPPI Iterations 6
Number of samples 512
Number of elites 64
Number policy rollouts 24
horizon 3
Minimum planner std 0.05
Maximum planner std 2
Temperature (\) 0.5
Actor

Minimum policy log std -10
Maximum policy log std 2
Entropy coefficient («) 1x107*
Prior constraint coefficient (3) 1.0
Scale Threshold (s) 2.0
Critic

Q functions Esemble 5
Number of bins 101
Minimum value -10
Maximum value 10
Architecture(SM)

Encoder layers 2
Encoder dimension 256
Hidden layer dimension 512
Latent space dimension 512
Task embedding dimension 96

Q function drop out 0.01
Activation Mish
Normalization LayerNorm
SimNorm dimension 8

Value Approximation Error In Section [3.1] we illustrated value overestimation by comparing
the true value with the value function’s estimate. The true value is approximated using Monte Carlo
sampling as %Eﬁ;l [R(7])], where 77 is trajectory following the nominal policy 7. Unlike the
approach to demonstrate overestimation in |Fujimoto et al.| (2018)) that averages over states drawn
i.i.d. from the buffer, we sample all trajectories starting from the initial state sg ~ pg. Accordingly,
the function estimation is calculated by averaging the action value following 7 at the initial state as

Egnpo,amn(-|s)[Q(5,a)]. We argue that this approach more effectively illustrates the overestimation

22

Under review as a conference paper at ICLR 2026

Average Acrobot Swingup Cartpole Balance Sparse Cartpole Swingup Sparse Cheetah Run Cheetah Run Backwards

Episode Return

Environment steps (x10%)

Cheetah Run Front Cup Catch Cup Spin Dog Run Dog Stand Dog Trot
o0 o2 o4 o8 ds 1060 oz oa 0s 0 1000 02 o4 G5 08 1060 o2 0+ 0s o8 1000 02 o4 U5 08 1040 oz 0+ o8 08 10
Dog Walk Finger Turn Hard Fish Swim Hopper Hop Hopper Stand Humanoid Run
Humanoid Stand Humanoid Walk Pendulum Swingup Quadruped Walk Reacher Hard Walker Run

Environment steps (x10°) Environment steps (x10%) Environment steps (x10°) Environment steps (x10%) Environment steps (x10%) Environment steps (x10°)

—— SAC —— TD-MPC2 —— TD-M(PC)?

Figure 6: Performance on DMControl suite. Average episode return of our method and baselines.
We report mean evaluation performance and 95% ClIs across 16 low- or medium-dimensional and 7
high-dimensional continuous control tasks within 1M environment steps.

JoSartpole Swingup Sparse (1-DoF) Hopper Stand (4-DoF) Cheetah Run (6-DoF) Walker Run (6-DoF)

150

100

Value

50

0

200 Quadruped Walk (12-DoF) Dog Trot (36-DoF) Hlhand Run (61-DoF) H1lhand Slide (61-DoF)

150

100

Value

50

0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Training Iterations (x10°) Training Iterations (x10°) Training Iterations (x10°) Training Iterations (x10°)

True Value —— Function Estimation

Figure 7: TD-MPC2 value estimation bias. We visualize value overestimation across a diverse
range of tasks from DMControl or Humanoidbench. Overestimation bias scales with the action
dimension of the environment predictably.

phenomenon, since value approximation errors propagate through TD learning and accumulate at the
initial state [Sutton & Barto| (2018), making overestimation more pronounced and easier to observe.
Additional evaluations on the value overestimation bias on low- and medium-dimensional tasks can
be found in Figure[7]

Planning horizon We compare the approximation error between TD-MPC2 with a planning hori-
zon of 1 and a horizon of 3 using h1hand-run-v0 task. As shown in Figure[T0| while both ver-
sions exhibit significant overestimation bias, the patterns of error growth differ. Over 2M training
steps, the error in the horizon-1 version grows nearly linearly, showing no clear trend of conver-
gence. In contrast, although the horizon-3 version initially accumulates errors more rapidly, its error
growth rate gradually decreases over time.

23

Under review as a conference paper at ICLR 2026

We further justify our theoretical results pverage 2 ks
through an ablation study on the planning hori- = — e
zon. By combining Theorem B.T|and Theorem

we know that 7 ’s dependency on value

error is scaled by a factor of % rela-

tive to the greedy policy’s dependency on value
error. Consequently, given the same V, we ex-
pect the performance gap between the H-step
lookahead policy mg , and the greedy policy .
T,+1 to be smaller in the early stages of train- " environment steps (<109
ing, which aligns with the lower approximation

error initially observed. However, according to Figure 8: Exploration policy formulation. Av-
Theorem 3.2} shorter horizons amplify the error erage performance on two high-dimensional hu-
accumulation term, resulting in a faster growth manoid tasks. Report mean and 95% Cls across 3
rate. Therefore, this empirical observation fur- random seeds.

ther supports our theoretical analysis.

Episode Return

Exploration policy In addition to the discus-

sion in Section[3.2] we compare the performance of TD-MPC2 with different exploration strategy in
Figure[8} a) Baseline (77): vanilla TD-MPC2, solely leveraging planner policy 7 for exploration
b) Baseline (7): TD-MPC2 solely leveraging nominal policy 7 for exploration, equivalent to SAC at
training, only leverage planner for test-time inference; c) Baseline (mg + m): TD-MPC2 with 50%
trajectories collected through the nominal policy 7;

Conservative Threshold We consider evaluating different choices of s. Empirically, the algo-
rithm is not sensitive to s for most cases except for humanoid-run. As shown in Section [E] the larger
s performs better. This might be due to the task’s spare reward signal in the initial stage. It requires
a better exploration to get the humanoid up in the first place. Still, the main results are evaluated
with a fixed s = 2. Results are reported over 3 seeds at 1M environment steps.

Table 2: Ablation on conservative threshold s
Task dog-trot humanoid-run hlhand-slide = hlhand-run

s=2 866.2+19.7 241.9438.5 492.9493.1 503.9+231.1
s =10 831.2+64.1 424.7+35.0 435.3+41.8 228.2+38.2

Conservative Policy Learning Offline RL
algorithms aim to stabilize the learning pro-
cess and improve policy performance by care-
fully handling unseen data. However, we ar-
gue that not all offline RL methods are well-
suited for the TD-MPC setting. We empirically :
found that the FKL algorithm performs worse §.
than the bc-constrained RKL policy learning)
despite the theoretical equivalence. In Figure

Dog Trot Run

Episode Return

[IT} AWAC-MPC refers to the variant that em- T cironmentsteps 0 " Enronment steps (100
ploys AWAC Nair et al.| (2020) for constrained T TPMRe T ARG TToRe T ARG
policy iteration. (a) DMContorl (b) HumaniodBench

Its implementation is based on [CORL. These
findings are aligned with Park et al.| (2024)),
which demonstrates the advantage of bc-
constrained policy learning over AWR/AWAC
due to the encouragement of mode-seeking.

Figure 9: Constraining the planner. Increas-
ing the percentage of trajectories proposed by
the policy prior improves data efficiency in high-
dimensional tasks.

Moreover, we do not recommend employing conservative Q-learning methods [Kumar et al.| (2020).
Such methods are designed to penalize the Q-values of out-of-distribution (OOD) actions, ensur-
ing that the agent remains within the boundaries of the training data. While this helps to prevent

24

https://github.com/tinkoff-ai/CORL

Under review as a conference paper at ICLR 2026

H=1 H=3
200 1000 Run
175
150 c 800
E
PREY g 600
2 10)
> e
75 8 400
50 u':.lL
200
25
DOO 0‘5 1‘0 1‘.5 2.0 0.0 0.‘5 1‘0 15 2.0 OODD 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Iterations (x10°) Training lterations (x10°) Environment steps (x10°6)
True Value —— Function Estimation — H=3 — H=1
(a) Value Estimation (b) Performance

Figure 10: TD-MPC2 ablation results of horizon at h1hand-run-v0. (a) Value estimation error
with different planning horizons; (b) Episode return with different horizons. The variant with a
longer horizon shows a convergent error growth pattern.

overestimation, it may introduce a significant drawback: a consistent underestimation of the overall
Q-value function. This underestimation not only affects out-of-distribution data but also reduces the
scale of the Q-values overall [Nakamoto et al. (2024). As a result, value-guided planning becomes
excessively cautious, disincentivizing the selection of novel actions outside the buffer. This overly
conservative behavior severely limits the agent’s ability to explore, which, however, is a key aspect
of online reinforcement learning. We favor TD3-BCFujimoto & Gu| (2021) or BC-SACLu et al.
(2023) style algorithm for this particular problem setting.

Regularizing the Planner Since policy mis-

match between the online planning and the

nominal policy (actor) leads to value approxi- 1000 Dog trot
mation error, one straightforward solution is to
ensure the planner policy stays close to the ac-
tor. LOOP |Sikchi et al.|(2022) proposes Actua-
tor Regularized Control (ARC), which modifies
the original MPPI sampling by mixing a por-
tion of actor-proposed trajectories. For the TD-
MPC pipeline, a small percentage of mixture no
longer ensures a shifted distribution due to the
top-K mechanism. To study the effectiveness of
this “forward regularization”, we increased this Figure 11: Constrained policy update through
ratio from 5% to 75%, while other components AWAC. Mean and 95% Cls across 3 random seeds
remain the same as TD-MPC2. This variant is on high-dimensional tasks.

referred to as "ARC75”. As shown in Figure [0}

this method also significantly boosts performance on high-dimensional control tasks.

3
3
S

600

Episode Return
8
8

S
8

o

°
°

0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Environment steps (x10°) Environment steps (x10°)

TD-M(PC)2 —— AWAC-MPC

Model Bias In addition to direct OOD query, model biasKumar et al.| (2019) is also considered
an essential source of extrapolation error for offline RL: Due to a limited number of transitions
contained in the training dataset, TD-target does not strictly reflect an estimation of real transitions.
For an online off-policy problem, the problem is not critical since the buffer is continuously updated.

F LIMITATIONS AND FUTURE WORKS

This paper primarily focuses on single-task state-space RL problems. It would be interesting to
evaluate the generalizability of our method on visual RL and multi-task RL settings. Moreover, we
are interested in further studying our method under deployment-efficient settings Matsushima et al.
(2020) to facilitate real-world applications.

25

Under review as a conference paper at ICLR 2026

run-vo

slide-v0

i

crawl-v0

I

Figure 12: Task Visualization. We demonstrate trajectories generated by our method on 6 tasks
across two benchmarks (DMControl and HumanoidBench) as qualitative results; tasks are listed
as follows: Hopper-stand (4 € R?%), Humanoid-run (4 € R?Y), Dog-run (A € R39),
h%{land—run—vo (A € R, hlhand-slide-v0 (4 € R%), hihand-crawl-v0 (4 €
R°Y).

26

	Introduction
	Preliminaries
	Addressing Value Overestimation in Plan-Based MBRL
	Value Approximation and Planner Performance
	Empirical Evidence for Value Overestimation
	Error Accumulation

	Improving Value Learning in MBRL through A Minimalist Approach
	Improved Value Learning
	Benchmark Performance
	Ablation Study

	Related Work
	Conclusions
	LLM Usage Disclosure
	Theory and Proof
	Useful Lemma
	Proof of Theorem

	Extensive Related Works
	Design Choices and Implementation Details
	Algorithm Formulation
	Implementation Details

	Discussions and Additional Results
	Limitations and Future Works

