
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TD-M(PC)2: IMPROVING TEMPORAL DIFFERENCE
MPC THROUGH POLICY CONSTRAINT

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) algorithms that integrate model pre-
dictive control with learned value or policy priors have shown great potential
to solve complex continuous control problems. However, existing practice re-
lies on online planning to collect high-quality data, resulting in value learning
that is entirely dependent on off-policy experiences. Contrary to the belief that
value learned from model-free policy iteration within this framework is suffi-
ciently accurate and expressive, we found that severe value overestimation bias
occurs, especially in high-dimensional tasks. Through both theoretical analysis
and empirical evaluations, we identify that this overestimation stems from a struc-
tural policy mismatch: the divergence between the exploration policy induced
by the model-based planner and the exploitation policy evaluated by the value
prior. To improve value learning, we emphasize conservatism that mitigates out-
of-distribution queries. The proposed method, TD-M(PC)2, addresses this by ap-
plying a soft-constrained policy update—a minimalist yet effective solution that
can be seamlessly integrated into the existing plan-based MBRL pipeline without
incurring additional computational overhead. Extensive experiments demonstrate
that the proposed approach improves performance over baselines by large mar-
gins, particularly in 61-DoF humanoid control tasks.

1 INTRODUCTION

Model-Based Reinforcement Learning (MBRL) leverages an explicit model of the environment’s
dynamics to achieve both high asymptotic performance and strong sample efficiency across a va-
riety of sequential decision-making problems (Littman & Moore, 1996; Janner et al., 2019; Chua
et al., 2018; Schrittwieser et al., 2020). In continuous control domains, a particularly popular in-
stantiation of MBRL is plan-based MBRL, where a trajectory optimizer, most often sampling-based
Model Predictive Control (MPC), uses the learned model to perform short-horizon rollouts (Sikchi
et al., 2022; Hansen et al., 2022). These methods incorporate a value prior acquired through RL
methods as the terminal cost, enabling the planner to focus computational effort on near-term predic-
tions while relying on the value function to estimate long-term returns beyond the planning horizon.
This hybrid strategy not only reduces the planner’s sensitivity to corresponding model error over
long horizons but also accelerates exploration by rapidly covering the state space through parallel
trajectory sampling (Lowrey et al., 2018).

Ideally, a value prior that accurately evaluates a near-optimal policy is required to provide an unbi-
ased objective for the MPC planner. A natural choice is to learn this prior via model-free actor–critic
methods (Sutton & Barto, 2018) as in TD-MPC (Hansen et al., 2022). While the online planner is
leveraged for exploration and data collection, a nominal policy (exploitation policy) and the cor-
responding value prior are iteratively learned through policy iteration. However, this introduces a
mismatch between exploration and exploitation policies. Thus, value learning must contend with
heterogeneous experience, which causes an extreme form of the off-policy issue. This raises the
critical question: Can plan-based MBRL algorithms effectively exploit such data for value learning,
especially in high-dimensional environments?

Despite strong performance on low- and medium-dimensional benchmarks, state-of-the-art
plan-based MBRL methods may struggle in high-dimensional tasks (Sferrazza et al., 2024). Through
theoretical and empirical evidence, we identify persistent value overestimation that originates from

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

off-policy exploration as a core bottleneck. Under the scope of approximate policy iteration
(API) (Sutton & Barto, 2018; Munos, 2003), the structural policy mismatch inherently compounds
with approximation errors. Such divergence leads to a distribution shift, making the value function
bootstrapped on out-of-distribution actions. Consequently, the approximation error accumulates
over iterations, and value overestimation is left unfixed and enlarged. Although related to the clas-
sical off-policy issue in model-free RL (Thrun & Schwartz, 2014; Sutton & Barto, 2018; Fujimoto
et al., 2018; Van Hasselt et al., 2018), this particular case is more problematic and resembles the dis-
tribution shift issue in offline RL literature (Levine et al., 2020; Fujimoto et al., 2019): the behavior
policy remains misaligned with the nominal policy over practical training time.

To address these challenges, we introduce Temporal Difference Learning for Model Predictive
Control with Policy Constraint, TD-M(PC)2, a simple but effective extension of the TD-MPC frame-
work that better exploits fully off-policy data collected from online planning. By incorporating a
distribution-constrained conservative policy update, TD-M(PC)2 learns a policy prior that remains
close to the behavior policy, thereby mitigating out-of-distribution queries that exacerbate value
approximation errors. Practically, TD-M(PC)2 can be implemented atop TD-MPC2 Hansen et al.
(2023) with fewer than ten lines of modification and introduces negligible additional computational
overhead. We evaluated our method on the DeepMind Control Suite (Tassa et al., 2018) and Hu-
manoidBench (Sferrazza et al., 2024), where it achieved over a 100% improvement compared to the
baseline on high-dimensional humanoid control tasks. The contribution of this paper can be summa-
rized as follows: 1) We uncover and quantify a previously overlooked value overestimation issue in
plan-based MBRL and demonstrate theoretically how this issue could be a bottleneck for continuous
control problems with a high-dimensional state-action space. 2) We propose a simple yet efficient
algorithm within the plan-based MBRL framework that addresses the value overestimation; 3) We
demonstrate the superiority of our method on diverse high-dimensional continuous control tasks.

2 PRELIMINARIES

Continuous control problems can be defined as a Markov decision process (MDP) (Bellman, 1957)
represented by tupleM = (S,A, ρ, ρ0, r, γ), with state space S, action spaceA, transition of states
ρ(s′|s, a), initial state distribution ρ0, reward function r(s, a) and discount factor γ ∈ (0, 1]. Under
the assumption of infinite horizon, the objective is to learn a optimal policy π∗ that maximizes
discounted cumulative reward J(π) = Eτπ

[∑T
t=0 γ

tr(st, at)
]
, where τπ is a trajectory sampled

from policy π : S → ∆(A), ∆(A) denotes a distribution over the action space.

The actor–critic framework combines policy and value learning by maintaining an explicit policy
(the actor) alongside a state–action value function (the critic) (Sutton & Barto, 2018). This setup
allows an agent to improve a target policy using evaluations derived from off-policy data. In par-
ticular, they can by considered as approximate policy iteration (API) (Munos, 2003; Agarwal et al.,
2019) that aiming at acquiring an approximation Q̂(s, a) of the optimal state–action value function
Q∗(s, a) = Eτπ∗ [Σ∞

t=0γ
trt|s0 = s, a0 = a]. It proceeds by iteratively solving policy evaluation

Qk = argminQ ∥Q−T πkQ∥ and policy improvement πk+1 = argmaxπ EsEa∼π[Qk(s, a)], where
the Bellman operator is given by:

T πkQ(s, a) = r + αEs′∼p(·|s,a),a′∼πk(·|s′)[Q(s′, a′)] (1)

Model-based RL explicitly leverages knowledge about the dynamics by learning a latent world
model and searching for the optimal policy within that model. Then, the resulting planner policy
is leveraged for exploration to collect high-quality data. However, planner performance at con-
vergence could be compromised by compounding model error (Bhardwaj et al., 2020b). Thus,
a widely adopted practice is to perform short-horizon planning with a value function V̂ (s) =
Ea∼π(·|s)[Q(s, a)] as the terminal cost. A closed-loop control policy is acquired through trajec-
tory optimization methods such as Model Predictive Path Integral (MPPI) (Williams et al., 2016;
2017). At each time step, parameters µ∗ and σ∗ of a multivariate Gaussian are iteratively optimized

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to maximize the expected return:

µ∗, σ∗ = argmax
µ,σ

E(at,at+1,...,at+H)∼N (µ,σ2)[G(st)]

G(st) =

H−1∑
h=t

γhr(sh, ah) + γH V̂ (st+H)

s.t. st+1 = d(st, at)

(2)

where the update rule of the parameters µ, σ ∈ RH×m can be interpreted as solving a stochastic
optimal control problem via mirror gradient descent (Okada & Taniguchi, 2018; Chua et al., 2018).
We conclude the full pipeline of the inference-time planning in the Appendix. Under a receding-
horizon scheme, only the first action at ∼ N

(
µ∗
t ;σ

∗
t
2I
)

of the planned trajectory is executed, and
the subsequent planning horizon is warm-started by shifting the optimized mean µ∗

t+1:H forward.

Notation. We consider model-based RL (MBRL) with a planner that executes an H-step looka-
head policy in the environment (Chua et al., 2018; Sikchi et al., 2022; Hansen et al., 2022). We
denote this planner policy by πH (with H as planning horizon), and a nominal policy by π with
corresponding value functions V π and Qπ (Sutton & Barto, 2018). The policy iteration is indexed
with a subscript,e.g., πk and πH,k stands for the nominal policy and the planner policy at iteration k.
The interaction under πH,k appends transitions to a replay buffer D. We denote µ for the behavior
policy that induces the data distribution in D; in practice, µ is the mixture over historical planner
policies recorded in the buffer (i.e., the off-policy data-generating process).

3 ADDRESSING VALUE OVERESTIMATION IN PLAN-BASED MBRL

In this section, we demonstrate that value overestimation, driven by a policy mismatch between
the MPC planner’s H-step lookahead policy πH and the nominal policy used in value learning π,
could be a bottleneck for plan-based MBRL. First, we analyze how value-approximation error af-
fects planning quality under approximate policy iteration. Next, we empirically validate that value
overestimation persists and even amplifies over iterations due to out-of-distribution bootstrapping.
Finally, we provide a theoretical explanation of value overestimation and its relation to policy mis-
match, motivating our conservative exploitation remedy.

3.1 VALUE APPROXIMATION AND PLANNER PERFORMANCE

Balancing model error and value error is crucial in MBRL. The effectiveness of MPC planners
in approximating near-optimal solutions to the infinite-horizon MDP largely relies on a value that
accurately reflects the optimal policy’s long-term performance, especially considering that we fa-
vor short-horizon planning to ensure computation efficiency. Given that the value prior is typically
learned via actor-critic methods, we quantify this dependency within the framework of approxi-
mate policy iteration (API). Specifically, Theorem 3.1 quantifies the suboptimality introduced by
finite-horizon planning in the presence of approximation errors. A detailed proof is provided in
Appendix B.7.
Theorem 3.1 (Planner Performance Bound). Assume at the k-th iteration, the nominal policy πk
is acquired through API and the resulting planner policy is πH,k. Denote ϵk as the approxima-
tion error ∥V̂k − V πk∥∞ of the learned value function V̂ . Also denote approximation error (w.r.t.
TV-divergence) for dynamics model ρ̂ as ϵm = maxs,aDTV (ρ(·|st, at)∥ρ̂(·|st, at)), planner sub-
optimality as ϵp. Finally, assume the reward function r is bounded by [0, Rmax] and V̂ is upper
bounded by Vmax, then the performance of πH,k is bounded w.r.t. the optimal policy as:

lim sup
k→∞

|V ∗ − V πH,k | ≤ lim sup
k→∞

2

1− γH
[
C(ϵm,k, H, γ) +

ϵp,k
2

+
γH(1 + γ2)

(1− γ)2
ϵk

]
(3)

while C is defined as:

C(ϵm, H, γ) = Rmax

H−1∑
t=0

γttϵm + γHHϵmVmax (4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

25

50

75

100

125

150

175

200

Ba
se

lin
e 

(
H
)

Hopper Stand (4-DoF)

0

25

50

75

100

125

150

175

200
Dog Trot (36-DoF)

0

25

50

75

100

125

150

175

200
H1hand Run (61-DoF)

0

25

50

75

100

125

150

175

200
H1hand Slide (61-DoF)

0

25

50

75

100

125

150

175

200

Ba
se

lin
e 

(
H

+
)

0

25

50

75

100

125

150

175

200

0

25

50

75

100

125

150

175

200

0

25

50

75

100

125

150

175

200

0.0 0.2 0.4 0.6 0.8 1.0

Training Iterations (x10 )
0

25

50

75

100

125

150

175

200

TD
-M

(P
C)

2  
(O

ur
s)

0.0 0.2 0.4 0.6 0.8 1.0

Training Iterations (x10 )
0

25

50

75

100

125

150

175

200

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Training Iterations (x10 )
0

25

50

75

100

125

150

175

200

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Training Iterations (x10 )
0

25

50

75

100

125

150

175

200

True Value Function Estimation

Figure 1: Measuring overestimation bias in the value estimates of TD-MPC2. We estimate the
true value through Monte Carlo sampling. Specifically, we calculate the average discounted return
over 100 episodes following the nominal policy π. The results are averaged over three seeds with
UTD=1; The first row shows value estimates of vanilla TD-MPC2 with all data collected by the
planner policy πH ; The second row shows TD-MPC2 with a probability of 0.5 to use the nominal
policy π for exploration; The third row shows value error of the proposed method with conservative
exploitation. This suggests that the value overestimation is rooted in a mismatch between the explo-
ration and exploitation policies.

Notably, Theorem 3.1 indicates that the planning procedure allows πH to mitigate its reliance on
value accuracy by at least a factor of γH−1 compared to a greedy policy.1 If we assume model
error and planner suboptimality are insignificant or less important (e.g., short planning horizon),
then converging value approximation error, ϵk, guarantees converging planning performance. This
begs an obvious question: As task complexity increases, particularly in environments with a high-
dimensional state-action space, does the current framework yield a small value approximation error
in practice?

3.2 EMPIRICAL EVIDENCE FOR VALUE OVERESTIMATION

While value approximation error is negligible in low-dimensional tasks, it could still be significant
for complex tasks with a high-dimensional state-action space. The first row of Figure 1 illustrates
value approximation error Es0∼ρ0 [V̂ (s0)−V π(s0)] of TD-MPC2 in four distinct continuous control
tasks from DMControl (Tassa et al., 2018) and HumanoidBench (Sferrazza et al., 2024), where the
function estimation is given by V̂ = Eπ[Q̂]: Hopper-Stand (A ∈ R4, O ∈ R15, 15% error),
Dog-Trot (A ∈ R38, O ∈ R223, 231% error), h1hand-run-v0 (A ∈ R61, O ∈ R151, 2159%
error), h1hand-slide-v0 (A ∈ R61, O ∈ R151, 746% error). More examples can be found
in Figure 7. Notably, even though the planner performs poorly and collects trajectories with low
return, value overestimation can still be large. This suggests that the approximation error is not
due to overfitting high-value data generated by the planner, but rather an off-policy issue (Thrun
& Schwartz, 2014; Sutton & Barto, 2018; Fujimoto et al., 2018) that bootstrapping, off-policy, and
function approximation forms a troublesome ”deadly triad” (Van Hasselt et al., 2018). In this case,
Theorem 3.1 will no longer guarantee good performance for πH .

Intuitively, approximation error arises when the behavior policy diverges from the nominal policy
being evaluated by the value function. The planner, with full access to the learned model, yields a
policy that behaves distinctly and potentially is superior to the nominal policy. This fully off-policy
setting incurs an apparent distribution shift. Consequently, the function approximation error remains
unfixed and increases as the value function is repeatedly queried with out-of-distribution data during
bootstrapping.

To verify that this distribution shift drives value overestimation, we conduct a comparative experi-
ment. We consider a variant of TD-MPC2 that periodically injects rollouts collected by the current
nominal policy, π, into the replay buffer. Then we evaluate the value overestimation bias of this
variant against the baseline. By mixing a fraction of on-policy data with the planner’s off-policy tra-

1See detailed explanation in Appendix B.6

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

jectories, we relax the distribution shift and expect a corresponding reduction in approximation error.
The empirical observation in Figure 1 meets our expectation, as value overestimation is significantly
reduced on high-dimensional humanoid tasks.

3.3 ERROR ACCUMULATION

While the policy mismatch in TD-MPC delays the correction of value overestimation bias, one
might expect that, given sufficient training, the agent would eventually visit overestimated regions
and rectify the errors. Indeed, when the scale of value overestimation is large enough, the planner
policy πH can also be approximately considered as a greedy policy of the value prior. Thus, it will
explore the regions assigned erroneous large values more frequently until the value function corrects
itself. For a low-dimensional task, this aligns with empirical observation. However, we argue that
this self-correction could be difficult because value approximation errors not only propagate across
states (Fujimoto et al., 2018) but also accumulate through policy iteration, making it highly trouble-
some for complex, high-dimensional tasks. We first quantify approximation error accumulation in
the following theorem.
Theorem 3.2 (TD-MPC Error Accumulation). Assume πH,k outperforms πk with performance gap
δk = ∥V πH,k − V πk∥∞. Denote value approximation error ϵk, model error ϵm,k, planner sub-
optimality ϵp as defined before. Also let the reward function r be bounded by [0, Rmax], then the
following uniform bound of the performance gap holds:

δk ≤
1

1− γH
[
2C(ϵm,k−1, H, γ) + ϵp,k−1 + (1 + γH)δk−1 +

2γ(1 + γH−1)

1− γ
ϵk−1

]
(5)

where C is defined in equation equation 4. We defer the complete proof to Appendix B.8.

Note that the upper bound is quite loose due to the usage of the infinity norm. Nonetheless, the direct
takeaway of Theorem 3.2 is that we can always expect a relatively large performance gap between
the H-step lookahead policy and the nominal policy due to the accumulating approximation error.
Consequently, a large value gap also indicates a larger policy mismatch.
Theorem 3.3 (Distribution shift). Given policies π, π′ ∈ Π : S → ∆(A), suppose the reward
is upper bounded by Rmax, then we have the TV-divergence of two visitation distributions lower
bounded by the performance gap as follows. Proof can be found in Appendix B.4.

DTV (p
π(s, a)∥pπ

′
(s, a)) ≥ 1− γ

2Rmax
|Jπ − Jπ

′
| (6)

As a result of a value error, the region corresponding to the nominal policy π is underrepresented in
the buffer, exacerbating the distributional shift rather than resolving it. Consequently, the enlarging
distribution shift also leads to an extrapolation error of the value function, leaving a non-converging
approximation error. Further discussion on the Theorems can be found in Appendix E.

Extrapolation errors had been well articulated in offline RL studies (Kumar et al., 2019; Peng et al.,
2019; Levine et al., 2020). For model-free algorithms in online RL where exploration and exploita-
tion policies align closely, with stabilizing methods applied to value learning (Fujimoto et al., 2018;
Anschel et al., 2017; Lan et al., 2020), the overestimation is expected to be prevented, and even
underestimation could take place (Hasselt, 2010). However, the policy mismatch brought by the
planner largely affects value learning and distinguishes it from model-free off-policy learning.

To summarize, although theH-step lookahead policy is theoretically less sensitive to value approx-
imation errors, a substantial amount of them are introduced and accumulate over training time due to
policy mismatch. As a result, naively applying standard actor-critic methods fails to fully exploit the
potential of combining model-based optimization and temporal-difference learning. These findings
motivate our solution for better value learning.

4 IMPROVING VALUE LEARNING IN MBRL THROUGH A MINIMALIST
APPROACH

To improve value learning in plan-based MBRL, we must address the challenge of exploiting
planner-generated off-policy data. One natural remedy is to actively mitigate distribution shift by

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

incorporating the nominal policy into data collection (e.g., the method presented in Section 3.2).
However, it empirically demands a large fraction of nominal policy rollouts to eliminate overesti-
mation, which hinders the performance by reducing the planner’s contribution. An alternative is to
impose constraints on the planner itself, ensuring the exploration policy remains close to the prior,
as in previous works (Sikchi et al., 2022; Grill et al., 2020). Yet this approach may stifle exploration
in trajectory space. In contrast, we aim to enhance the exploitation of off-policy data with minimal
effort. Inspired by recent progress in offline RL, where fully off-policy data is effectively leveraged
via conservative updates, we consider integrating conservatism to leverage planner-collected off-
policy data efficiently. In the following sections, we present TD-M(PC)2, a framework that marries
model-based exploration with conservative exploitation.

Core Components. We jointly learn encoder z = h(s, e), latent dynamics z′ = d(z, a, e), reward
function r̂ = R(z, a, e), nominal policy â = π(z, e), and action value function q̂ = Q̂(z, a, e) ≈
Qπ(z, a, e). where z is the latent state representation and e is a learnable task embedding. Ac-
cordingly, we efficiently perform inference-time planning in the latent state-space. Specifically,
h, d,R,Q are jointly trained through the following loss:

L .
= E

(s,a,r,s′)0:H

[ H∑
t=0

γt
(
∥d(zt, at, e)− sg(h(s′t))∥22 + CE(r̂t, rt) + CE(q̂t, qt)

)]
, (7)

where the target qt is generated by bootstrapping nominal policy π (refer to Equation (9)), and sg
is the stop-gradient operator. π is a stochastic Tanh-Gaussian policy trained with the maximum Q
objective in a model-free manner. During inference, π selects actions at the terminal state, resulting
in value estimation as V̂ (zt+H) = Eat+H∼π(zt+H ,e)[Q̂(zt+H , at+H , e)].

Policy Iteration with Reduced OOD Query. To limit out-of-distribution queries during boot-
strapping, while avoiding overly pessimistic value collapse Nakamoto et al. (2024), we adopt a soft,
state-conditional divergence constraint to the behavior policy µ (the mixture that induces the replay
buffer D), together with standard off-policy evaluation. At iteration k, we update the policy by

πk+1 ∈ argmax
π

Es∼dD
[
Ea∼π(·|s)Qk(s, a) − β D

(
π(· | s) ∥µ(· | s)

)]
, (8)

whereD is a divergence (e.g., forward/reverse Kullback–Leibler divergence) and dD is the empirical
state distribution in replay. This BRAC-style (Wu et al., 2019) objective keeps πk+1 close to the
data support while still improving expected action values, in contrast to trust-region methods that
constrain KL(πk+1 ∥πk) between successive policies (Schulman, 2015; Abdolmaleki et al., 2018).
For evaluation, we apply the off-policy Bellman operator under the target policy πk and fit Qk+1

from transitions sampled off-policy from D:(
T πkQ

)
(s, a) = r(s, a) + γ Es′∼ρ(·|s,a) Ea′∼πk(·|s′)

[
Q(s′, a′)

]
. (9)

While the framework permits different divergence measures, we adopt a pragmatic instantiation
prioritizing performance and simplicity. At a higher level, we consider the reverse KL-divergence
as the measurement. In practice, we do not maintain a density estimate for the behavior policy,
but store the mean and standard deviation for πH,k (multi-variant Gaussian) alongside the standard
transition. We leverage a surrogate objective Eπ̄H∼D[log π̄H ] as the lower bound of logµ.

To be noticed, unlike offline RL, exploration is essential under our setting, and overly conservative
or excessive constraints could harm performance. Thus, we further provide design choices to enable
”optimistic-conservatism”. First, similar to practices in MaxEnt-RL (Haarnoja et al., 2018; 2017)
we add entropy regularization to policy learning. Besides this widely adopted approach, we further
loosen the constraint by not enforcing the conservative term until the running percentile Sq (Eq. 11)
exceeds a certain threshold s.2 The overall policy loss yields the following.

Lπ = − E
s,µ∼B,a∼π

[Q(s, a)/Sq + β logµ(a|s)/Sq − α log π(a|s)] , (10)

Sq = EMA (max{Per(Q, 95)− Per(Q, 5), 1}, ξ) (11)
where we follow (Hansen et al., 2022; 2023) to scale the training loss by Sq of the value function to
improve stability. We summarize the overall pipeline as Algorithm 1.

2More intuition and empirical analysis on this hyperparameter can be found in Appendix D

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Performance on Humanoid-Bench Locomotion Suite. We report mean evaluation per-
formance (Average episode return) and 95% CIs across 14 humanoid locomotion tasks. We omit
Reach-v0 in the average result due to the distinct reward scale.

Environment steps (x10 )
0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Average 23 Tasks

Environment steps (x10 )
0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Average 7 High-Dim Tasks

SAC TD-MPC2 TD-M(PC)2

Figure 3: Performance on DMControl suite. We
report mean evaluation performance and 95% CIs
over 3 seeds. Left: Average performance on all
16 tasks; Right: Average performance on 7 high-
dimensional tasks

Through experimental evaluation, we seek to
answer the following key questions: How well
does our approach perform on continuous con-
trol tasks, especially in environments of high-
dimensional state-action space? Does our
method reduce value approximation error and
achieve accurate policy evaluation? Which
component is critical to performance?

Benchmarks. We evaluate our method across
diverse tasks from HumanoidBench Sferrazza
et al. (2024) and the DeepMind Control Suite
(DMControl) Tassa et al. (2018). Humanoid-
Bench is a standardized suite for humanoid
control. We test all 14 locomotion tasks in
h1hand-v0 locomotion suite, which requires
whole-body control of a humanoid robot with dexterous hands and a 61-dimensional action
space. Additionally, we benchmark our method on 23 tasks from DMControl, including 7 high-
dimensional tasks: dog (36-DoF) and humanoid (21-DoF).

Baselines. We mainly compare our method against TD-MPC2 (Hansen et al., 2023) and Soft Actor-
Critic (Haarnoja et al., 2018). For Humanoidbench, we also include popular model-free and model-
based algorithms, PPO (Schulman et al., 2017), DreamerV3 (Hafner et al., 2023). We leverage the
implementation of SAC and PPO from StableBaseline3 (Raffin et al., 2021). We report baseline
results on HumanoidBench from author-provided scores.3 We implement TD-M(PC)2 on top of the
official repository of TD-MPC24 in PyTorch, ensuring all model architectures are identical for a fair
comparison. Due to the space limit, please refer to Section D for further details.

4.1 IMPROVED VALUE LEARNING

We first assess the value overestimation bias of the proposed method using the same evaluation
procedure as described in Section 3.2. As illustrated in the third row of Figure 1, our method

3https://github.com/carlosferrazza/humanoid-bench
4https://github.com/nicklashansen/tdmpc2

7

https://github.com/carlosferrazza/humanoid-bench
https://github.com/nicklashansen/tdmpc2


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Dog trot

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

Run

TD-M(PC)2 TDMPC-BC TDMPC-BC-mean

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Dog trot

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

Run

TD-M(PC)2 = = 0.05

(b)

Figure 4: Ablation study. (a) Different regularization formulation yield close performance(b) Pro-
posed method is not sensitive to β.

enables the learned value function to align better with the truth of the ground, reducing persistent
bias in the estimation of values. This empirical result justifies our theoretical analysis. Moreover,
the improvement in value accuracy is especially significant for high-dimensional humanoid tasks,
where the baseline yields a persistent and non-converging bias. We will show that this improvement
in value learning ultimately results in improved performance of the resulting H-step look-ahead
policy.

4.2 BENCHMARK PERFORMANCE

We conducted our experiments across three random seeds for DMControl and five random seeds for
HumanoidBench, with a total of 2M environmental steps and an up-to-date ratio (UTD) of one. We
adopt the same settings for shared hyperparameters reported in the TD-MPC2 paper for our algo-
rithm without task-specific tuning. A comprehensive list of hyperparameter settings for reproducibil-
ity and transparency in Table 1. For HumanoidBench, as demonstrated in Figure 2, our method
consistently outperforms the baseline by a large margin for most tasks. In general, TD-M(PC)2
tends to act with caution, while the baseline demonstrates an exaggerated motion corresponding to
its overestimated value. Consequently, significant improvements are achieved in locomotion tasks,
where the humanoid benefits more from performing stable and consistent motions.

We also evaluate our approach on some of the most challenging tasks in the DMControl suite, as
in Figure 3, with comprehensive training curves presented in Figure 6 and Figure 5. On average,
our method slightly outperforms the baseline. Notably, significant improvements are observed in
three dog tasks, whereas the performance on Humanoid tasks, which feature a slightly smaller
action space, remains comparable to the baseline. Complete training curve on DMControl and task
visualization can be found in Section E.

4.3 ABLATION STUDY

To decide which formulation is the most suitable to address conservatism in policy learning, we
compared the log-likelihood objective TD-M(PC)2 to the behavior clone objective TDMPC-BC
and behavior clone with respect to the mean of the behavior policyTDMPC-BC-mean. The log-
likelihood objective shows the best performance in Figure 4a. While the BC objective is theoretically
equivalent to the log-likelihood objective, it is less stable in practice. We also studied different ways
to introduce conservatism, such as advantage-weighted regression (Peng et al., 2019).

To access sensitivity to β, we evaluate two variants of TD-M(PC)2: a mildly regularized version
with β = 0.05 and an extremely conservative variant that directly applies behavior cloning (BC) for
policy updates beta = ∞. These variants are tested on two high-dimensional continuous control
tasks. As shown in Figure 4b, all three variants achieve similar performance, suggesting that the
framework is not sensitive to β. Notably, the BC variant performs nearly on par with the others de-
spite the actor only imitating stale planner behavior. This indicates that reducing out-of-distribution
actions is a key factor. Due to limited space, we postpone more ablation results on other design
choices in Section E.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Model-based RL. Recent advances in MBRL aim to balance scalability and adaptability by integrat-
ing strengths from both model-free and model-based paradigms. Dyna-Q Sutton (1991) considers
using simulated rollouts from a learned model to augment real-world experience, often referred to
as ”background planning” Hamrick et al. (2020). Janner et al. (2019) provides a theoretical guaran-
tee of monotonic policy improvement with model-generated data. Katsigiannis & Ramzan (2017);
Hafner et al. (2020; 2023) further introduce latent world models for high-dimensional tasks, e.g.,
visual control. Planning algorithms such as Model Predictive Control (MPC) and Monte Carlo Tree
Search (MCTS) can explicitly exploit model knowledge to acquire a superior control policy. Planner
is critical to policy learning, it can be applied to high-quality data acquisition Lowrey et al. (2018);
Hansen et al. (2022), inference-time planning Chua et al. (2018); Hafner et al. (2019), or provide
expert learning signal Schrittwieser et al. (2020); Bhardwaj et al. (2020b); Ye et al. (2021); Wang
et al. (2024). Schrittwieser et al. (2020) achieves trust-region policy improvement through combin-
ing MCTS with policy and value prior Grill et al. (2020). Contrary to this, we do not rely on expert
iteration Ye et al. (2021); Wang et al. (2025) for policy improvement, but leverage past behavior
policy to enforce conservatism and improve exploitation.

Off-policy Learning and Value Approximation Error The combination of off-policy learning,
boostrapping, and function approximation is often associated with value overestimation bias (Sutton
et al., 2016; Van Hasselt et al., 2018). Prior work has extensively studied such a phenomenon in the
context of model-free RL (Anschel et al., 2017; Lan et al., 2020; Moskovitz et al., 2021). Still, off-
policy algorithms can be highly sensitive to distribution shifts when data-collection policy diverges
far from the target policy and bootstrapping errors compound over time (Kumar et al., 2019). Recent
studies in offline RL have taken a huge leap in learning from complete off-policy demonstrations.
(Kumar et al., 2020) avoids erroneously overestimating unseen actions by penalizing high-value
OOD estimation. In order to avoid extrapolation error, prior work also considered constraint policy
toward the behavior policy through weighted behavior cloning (Peng et al., 2019; Fujimoto et al.,
2019) or policy regularization (Fujimoto & Gu, 2021; Kumar et al., 2019). Alternatively, Kostrikov
et al. (2021); Hansen-Estruch et al. (2023) adopt in-sample learning that do not bootstrap an explicit
policy during critic training, thereby avoiding OOD query.

MPC with Value Prior Incorporating value prior into the MPC controller reduces its dependency
on an imperfect model and has been widely applied in continuous control (Lowrey et al., 2018).
Bhardwaj et al. (2020b;a) studies the connection between MPC and entropy regularized RL, en-
hancing Q-learning accuracy by using model information to calculate value target. Sikchi et al.
(2022); Hansen et al. (2022) leverages a value prior learned through model-free RL to approximate
the performance of the optimal policy. Building upon this, TD-MPC2 (Hansen et al., 2023) intro-
duces crucial design choices tailored for continuous control tasks, effectively reducing compound
model errors and improving learning stability. Due to the decoupled exploration and exploitation,
off-policy issues in MBRL can be more severe than model-free algorithms. Hansen et al. (2022);
Wang et al. (2025) demonstrate that the nominal policy can be significantly worse than the planner.

6 CONCLUSIONS

In this work, we identify a fundamental bottleneck in plan-based model-based reinforcement learn-
ing (MBRL): persistent value overestimation arising from a structural policy mismatch between the
MPC planner’s lookahead policy and the nominal actor. To address this limitation, we proposed TD-
M(PC)2, a simple but effective Plan-based MBRL algorithm with a distribution-constrained policy
update. The proposed method significantly reduces out-of-distribution queries, curbing overestima-
tion and restoring stable planning performance. Our approach can be seamlessly integrated into the
existing framework, requires negligible extra computation, but significantly improves baseline per-
formance, especially on challenging 61-dof humanoid locomotion tasks, demonstrating its practical
effectiveness and ease of integration.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International conference on machine learning, pp. 176–185.
PMLR, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679–
684, 1957.

DP Bertsekas. Neuro-dynamic programming. Athena Scientific, 1996.

Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. Blending mpc & value function approxi-
mation for efficient reinforcement learning. arXiv preprint arXiv:2012.05909, 2020a.

Mohak Bhardwaj, Ankur Handa, Dieter Fox, and Byron Boots. Information theoretic model predic-
tive q-learning. In Learning for Dynamics and Control, pp. 840–850. PMLR, 2020b.

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A Rupam Mahmood, and Martha White.
Greedification operators for policy optimization: Investigating forward and reverse kl diver-
gences. Journal of Machine Learning Research, 23(253):1–79, 2022.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In
International Conference on Machine Learning, pp. 3769–3778. PMLR, 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv: 2301.04104, 2023.

Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Wither-
spoon, Thomas Anthony, Lars Buesing, Petar Veličković, and Théophane Weber. On the role of
planning in model-based deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran
Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/
paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Stamos Katsigiannis and Naeem Ramzan. Dreamer: A database for emotion recognition through
eeg and ecg signals from wireless low-cost off-the-shelf devices. IEEE journal of biomedical and
health informatics, 22(1):98–107, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
the estimation bias of q-learning. arXiv preprint arXiv:2002.06487, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

M Littman and A Moore. Reinforcement learning: A survey, journal of artificial intelligence re-
search 4, 1996.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Rebecca Roelofs, Benjamin Sapp,
Brandyn White, Aleksandra Faust, Shimon Whiteson, et al. Imitation is not enough: Robustify-
ing imitation with reinforcement learning for challenging driving scenarios. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 7553–7560. IEEE, 2023.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

11

https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tacti-
cal optimism and pessimism for deep reinforcement learning. Advances in Neural Information
Processing Systems, 34:12849–12863, 2021.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pp. 560–567.
Citeseer, 2003.

Rémi Munos. Performance bounds in l p-norm for approximate value iteration. SIAM journal on
control and optimization, 46(2):541–561, 2007.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Masashi Okada and Tadahiro Taniguchi. Acceleration of gradient-based path integral method for
efficient optimal and inverse optimal control. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3013–3020. IEEE, 2018.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? arXiv preprint arXiv:2406.09329, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of machine
learning research, 22(268):1–8, 2021.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2004.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv
preprint arXiv:2403.10506, 2024.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622–1633. PMLR, 2022.

Satinder P Singh and Richard C Yee. An upper bound on the loss from approximate optimal-value
functions. Machine Learning, 16:227–233, 1994.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. Journal of Machine Learning Research, 17(73):1–29,
2016.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 connectionist models summer school, pp. 255–263. Psychol-
ogy Press, 2014.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero v2: Mastering
discrete and continuous control with limited data. arXiv preprint arXiv:2403.00564, 2024.

Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, and Xuguang Lan. Bootstrapped model
predictive control. arXiv preprint arXiv:2503.18871, 2025.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE international conference
on robotics and automation (ICRA), pp. 1433–1440. IEEE, 2016.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE international conference on robotics and automation (ICRA), pp. 1714–1721. IEEE,
2017.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We used large language models (ChatGPT and Grammarly APP) only for writing assistance (gram-
mar, wording, and minor stylistic edits) on draft text. The model was not used for research ideation,
data collection, dataset labeling, code generation, experiment design, or analysis. All technical con-
tent is authored and verified by human authors. We accept full responsibility for all content in this
paper.

B THEORY AND PROOF

B.1 USEFUL LEMMA

Lemma B.1. Singh & Yee (1994) Suppose πk+1 is 1-step greedy policy of value function V̂k. Denote
V ∗ as the optimal value function, if there exists ϵ such that ∥V ∗ − V̂k∥∞ ≤ ξk, we can bound the
value loss of π by:

V ∗ − V πk+1 ≤ 2γξk
1− γ

(12)

Lemma B.2. Bertsekas (1996) Suppose {πk} is a policy sequence generated by approximate policy
iteration (API), then the maximum norm of value loss can be bounded as:

lim sup
k→∞

∥V ∗ − V πk∥∞ ≤
2γ

(1− γ)2
lim sup
k→∞

∥V̂k − V πk∥∞ (13)

Lemma B.3. Sikchi et al. (2022) Denote approximation error for dynamics model ρ̂ as ϵm =
maxs,aDTV (ρ(·|st, at)∥ρ̂(·|st, at)). Denote ϵp as the suboptimality incurred in H-step looka-
head optimization such that J∗ − Ĵ ≤ ϵp. Let V̂ be an approximate value function such that
∥V ∗ − V̂ ∥∞ ≤ ξ. Also let the reward function r is bounded by [0, Rmax] and V̂ be bounded by
[0, Vmax]. Then, the performance of the H-step lookahead policy can be bounded as:

Jπ
∗
− JπH ≤ 2

1− γH
[
C(ϵm, H, γ) +

ϵp
2

+ γHξ
]

(14)

while C is defined as:

C(ϵm, H, γ) = Rmax

H−1∑
t=0

γttϵm + γHHϵmVmax (15)

B.2 PROOF OF THEOREM

Theorem B.4 (Distribution shift). Given policies π, π′ ∈ Π : S → ∆(A), suppose reward is upper
bounded by Rmax, then we have TV-divergence of two visitation distributions lower bounded by the
performance gap as:

DTV (p
π(s, a)∥pπ

′
(s, a)) ≥ 1− γ

2Rmax
|Jπ − Jπ

′
| (16)

Proof. From the definition of expected return, we have the following inequality,

|Jπ − Jπ
′
| = |Σs(pπ(s, a)− pπ

′
(s, a))r(s, a)|

= |ΣtΣs,aγt(pπ(s, a)− pπ
′
(s, a))r(s, a)|

≤ RmaxΣtΣs,aγ
t|pπ(s, a)− pπ

′
(s, a)|

= 2RmaxΣtγ
tDTV (p

π(s, a)∥pπ
′
(s, a))

Thus, it is trivial to derive the inequality.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Corollary B.5 (Policy divergence). Given policies π, π′ ∈ Π : S → ∆(A), suppose reward is
upper bounded by Rmax, then we have policy divergence lower bounded by performance gap as:

max
s
DTV (π′(a|s)∥π(a|s)) ≥ (1− γ)2

2Rmax
|Jπ − Jπ

′
| (17)

Proof. Using Lemma B.1 and Lemma B.2 from Janner et al. (2019), we can relate the visitation
divergence to the policy divergence:

DTV (p
π
t (s, a)∥pπ

′

t (s, a)) ≤ DTV (p
π
t (s)∥pπ

′

t (s)) + max
s
DTV (p

π
t (a|s)∥pπ

′

t (a|s))

≤ (t+ 1)max
s
DTV (π(a|s)∥π′(a|s))

Given Lemma B.4, we have:

|Jπ − Jπ
′
| ≤ 2RmaxΣtγ

t(1 + t)max
s
DTV (π(a|s)∥π′(a|s))

≤ 2Rmax

(1− γ)2
max
s
DTV (π(a|s)∥π′(a|s))

Theorem B.6. Suppose πk+1 is 1-step greedy policy of value function V̂k. Denote V ∗ as the optimal
value function, if there exists ϵ such that for any k, ∥V̂k−V πk∥∞ ≤ ϵ, we can bound the performance
of πV̂ by:

lim sup
k→∞

∥V ∗ − V πk+1∥∞ ≤ lim sup
k→∞

2γ(1 + γ2)ϵ

(1− γ)3
(18)

Proof. Directly combining B.1 and B.2.

∥V ∗ − V πk+1∥∞ ≤
2γ

1− γ
∥V ∗ − V̂k∥∞

≤ 2γ

1− γ
∥V ∗ − V̂k∥∞

lim sup
k→∞

∥V ∗ − V πk+1∥∞ ≤
2γ

1− γ
(

2γ

(1− γ)2
+ 1) lim sup

k→∞
∥V̂k − V πk∥∞

≤ 2γ(1 + γ2)

(1− γ)3
ϵk

Theorem B.7 (Theorem 3.1). Assume at the k-th iteration, the nominal policy πk is acquired through
API and the resulting planner policy is πH,k. Denote ϵk as the approximation error ∥V̂k − V πk∥∞
of the learned value function V̂ . Also denote approximation error (w.r.t. TV-divergence) for dynam-
ics model ρ̂ as ϵm = maxs,aDTV (ρ(·|st, at)∥ρ̂(·|st, at)), planner sub-optimality as ϵp. Finally,
assume the reward function r is bounded by [0, Rmax] and V̂ is upper bounded by Vmax, then the
performance of πH,k is bounded w.r.t. the optimal policy as:

lim sup
k→∞

|V ∗ − V πH,k | ≤ lim sup
k→∞

2

1− γH
[
C(ϵm,k, H, γ) +

ϵp,k
2

+
γH(1 + γ2)

(1− γ)2
ϵk

]
(19)

while C is defined as:

C(ϵm, H, γ) = Rmax

H−1∑
t=0

γttϵm + γHHϵmVmax (20)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Denote the planner policy (H-step lookahead policy) as πH , which is acquired through plan-
ning with terminal value V̂ . We define τ∗ as a trajectory sampled by the optimal policy π∗, and τ̂
as a trajectory sampled by πH under the true dynamics. We do not consider approximation error
for the reward function since knowledge of the reward function can be guaranteed in most training
cases. Following the deduction in Theorem 1 of LOOPSikchi et al. (2022), we can have the H-step
policy suboptimality bound through the following key steps:

V ∗(s0)− V πH,k(s0) = Eτ∗
[
Σγtr(st, at) + γHV ∗(sH)

]
− Eτ̂

[
Σγtr(st, at) + γH V̂k(sH)

]
≤ Eτ∗

[∑
γtr(st, at) + γH V̂k(sH)

]
− Eτ̂

[∑
γtr(st, at) + γH V̂k(sH)

]
+ γHEτ∗

[
V ∗(sH)− V̂k(sH)

]
− γHEτ̂

[
V ∗(sH)− V̂k(sH)

]
+ γHEτ̂ [V ∗(sH)− V πH,k(sH)]

≤ 2

1− γH
[
C(ϵm,k, H, γ) +

ϵp,k
2

+ γH∥V ∗ − V̂k∥∞
]

Due to the suboptimality, we always have V πH ≤ V ∗. Leveraging the value error bound for API
given by Munos (2007), we further bound ϵv with approximation error as:

lim sup
k→∞

|V ∗ − V πH,k | ≤ lim sup
k→∞

2

1− γH
[
C(ϵm,k, H, γ) +

ϵp,
2

+ γH∥V ∗ − V πk∥∞ + γHϵk

]
≤ lim sup

k→∞

2

1− γH
[
C(ϵm,k, H, γ) +

ϵp,k
2

+
γH(1 + γ2)

(1− γ)2
ϵk

]
This indicates that, given identical conditions, a small approximation error implies that V πH will be
close to the optimal value V ∗.

Similar to LOOP, we compare performance bounds between the H-step lookahead policy and the
1-step greedy policy (Notice that in API, πk+1 iteration can be seen as a 1-step greedy policy of
V̂k if we assume the policy improvement step is optimal). With Lemma B.1, we show how value
approximation error influences greedy policy performance. Based on Theorem B.6 and Theorem
B.7, we conclude that the test-time planning enables πH,k to reduce its performance dependency on
value accuracy by at least a factor of γH−1 compared to the greedy policy πk+1, providing a general
sense of superiority introduce by the planner.

Theorem B.8 (TD-MPC Error Propagation). Assume πH,k outperforms πk with performance gap
δk = ∥V πH,k − V πk∥∞. Denote value approximation error ϵk = ∥V̂k − V πk∥∞, approximated
dynamics holds model error ϵm,k, planner sub-optimality is ϵp,k. Also let the reward function r
is bounded by [0, Rmax] and V̂k−1 be bounded by [0, Vmax], then the following uniform bound of
performance gap holds:

δk ≤
1

1− γH

[
2C(ϵm,k−1, H, γ) + ϵp,k−1 + (1 + γH)δk−1 +

2γ(1 + γH−1)

1− γ
ϵk−1

]
(21)

where C is defined as equation 15.

Proof. Denote the planner policy (H-step lookahead policy) as πH , which is acquired through plan-
ning with terminal value V̂ . We do not consider approximation error for the reward function since
knowledge of the reward function can be guaranteed in most training cases. At k-th iteration, denote
τ̂k as the trajectory sampled by the planner policy; τk as trajectory sampled by optimal planner
leveraging real dynamics model; τπk as a trajectory sampled by nominal policy πk (all trajectories
are sampled in the environment rather than under approximate dynamics model). For simplicity, Σ
in this proof stands for ΣH−1

t=0 if not specified.

V πH,k(s0)− V πk(s0) = Eτ̂k

[
Σγtr(st, at) + γHV πH,k(sH)

]
− V πk(s0)

= Eτ̂k

[
Σγtr(st, at) + γHV πk(sH)

]
− V πk(s0)

+ γHEτ̂k [V πH,k(sH)− V πk(sH)]

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Particularly, we have:

Eτ̂k [Σγtr(st, at) + γHV πk(sH)]− V πk(s0)

= Eτ̂k [Σγtr(st, at) + γH V̂k−1(sH)] + γHEτ̂k [V πk(sH)− V̂k−1(sH)]− V πk(s0)

≤ Eτk−1 [Σγtr(st, at) + γH V̂k−1(sH)]− Eτ̂k−1 [Σγtr(st, at) + γH V̂k−1(sH)]

+ Eτ̂k−1 [Σγtr(st, at) + γH V̂k−1(sH)] + γHEτ̂k [V πk(sH)− V̂k−1(sH)]− V πk(s0)

≤ Eτk−1 [Σγtr(st, at) + γH V̂k−1(sH)]− Eτ̂k−1 [Σγtr(st, at) + γH V̂k−1(sH)]

+ Eτ̂k−1 [Σγtr(st, at) + γH V̂k−1(sH)] + γHEτ̂k [V πk(sH)− V̂k−1(sH)]

− V πk−1(s0) + [V πk−1(s0)− V πk(s0)]

The second step is due to the definition of τk−1:

τk−1 = argmax
τ

Eτ [Σγtr(st, at) + γH V̂k−1(sH)]

We use Theorem 1 in Sikchi et al. (2022) for the first row to bind them by model error and planner
sub-optimality.

Eτk−1 [Σγtr(st, at) + γH V̂k−1(sH)]− Eτ̂k−1 [Σγtr(st, at) + γH V̂k−1(sH)] ≤ 2C(ϵm,k−1, H, γ) + ϵp,k−1

where C(ϵm,k−1, H, γ) is the same as defined in Theorem B.7.

For the second row, since we want to construct a bound related to ∥V πH,k−1 − V πk−1∥. Under this
orientation, we first show that:

Eτ̂k−1 [Σγtr(st, at) + γH V̂k−1(sH)] + γHEτ̂k [V πk(sH)− V̂k−1(sH)]

= Eτ̂k−1 [Σγtr(st, at) + γHV πH,k−1(sH)] + γHEτ̂k−1 [V̂k−1(sH)− V πH,k−1(sH)]

+ γHEτ̂k [V πk(sH)− V πk−1(sH)] + γHEτ̂k [V πk−1(sH) + V̂k−1(sH)]

= V πH,k−1(s0) + γHEτ̂k−1 [V̂k−1(sH)− V πk−1(sH)] + γHEτ̂k−1 [V πk−1(sH)− V πH,k−1(sH)]

+ γHEτ̂k [V πk(sH)− V πk−1(sH)] + γHEτ̂k [V πk−1(sH)− V̂k−1(sH)]

Sequentially, we combine the inequalities above:

Eτ̂k [Σγtr(st, at) + γHV πk(sH)]− V πk(s0)

≤ 2C(ϵm,k−1, H, γ) + ϵp,k−1 + 2γHϵk−1

+V πH,k−1(s0)− V πk−1(s0) + γHEτ̂k−1 [V πk−1(sH)− V πH,k−1(sH)]

+γHEτ̂k [V πk(sH)− V πk−1(sH)] + [V πk−1(s0)− V πk(s0)]

We can have a rough bound on the second line by (1 + γH)δk−1. With Lemma 6.1 in Bertsekas
(1996), we can bound the final line as:

γHEτ̂k [V πk(sH)− V πk−1(sH)] + [V πk−1(s0)− V πk(s0)] ≤ (1 + γH)
2γ

1− γ
ϵk−1

Combining all the inequalities and leveraging the contraction property, we get the final bound for
the performance gap:

V πH,k(s0)− V πk(s0) ≤
1

1− γH

[
2C(ϵm,k−1, H, γ) + ϵp,k−1 + (1 + γH)δk−1 +

2γ(1 + γH−1)

1− γ
ϵk−1

]
Thus, we can easily arrive at the final result.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C EXTENSIVE RELATED WORKS

Model-based RL. The core of model-based reinforcement learning is how to leverage the world
model to recover a performant policy. Recent advances aim to balance scalability and adaptability
by integrating strengths from both model-free and model-based paradigms. Dyna-Q Sutton (1991)
considers using simulated rollouts from a learned model to augment real-world experience, often re-
ferred to as ”background planning” Hamrick et al. (2020). Janner et al. (2019) provides a theoretical
guarantee of monotonic policy improvement with model-generated data. Katsigiannis & Ramzan
(2017); Hafner et al. (2020; 2023) further introduce latent world models for high-dimensional tasks,
e.g., visual control. Planning algorithms such as Model Predictive Control (MPC) and Monte Carlo
Tree Search (MCTS) can explicitly exploit model knowledge to acquire a superior control policy.
Planner is critical to policy learning, it constantly interacts with other components through high-
quality data acquisition Lowrey et al. (2018); Hansen et al. (2022), inference-time planning Chua
et al. (2018); Hafner et al. (2019), or provides expert learning signal Schrittwieser et al. (2020);
Bhardwaj et al. (2020b); Ye et al. (2021); Wang et al. (2024). Schrittwieser et al. (2020) achieves
trust-region policy optimization through combining MCTS with policy and value prior Grill et al.
(2020). Following this line of work, Ye et al. (2021); Wang et al. (2024; 2025) leverages expert
iteration to provide up-to-date planner policy and value estimation as a learning target. Contrary to
these methods, we do not rely on expert iteration for policy improvement, but leverage past behavior
policy to enforce conservatism.

Off-policy Learning and Value Approximation Error The combination of off-policy learning,
boostrapping, and function approximation is often associated with value overestimation bias Sutton
et al. (2016); Van Hasselt et al. (2018) and has been a long-standing problem in DRL. Prior work
has extensively studied such a phenomenon in the context of model-free RL Anschel et al. (2017);
Lan et al. (2020); Moskovitz et al. (2021). Still, off-policy algorithms can be highly sensitive to
distributional shifts when data-collection policy diverges far from target policy, leading to instability
and poor generalization as bootstrapping errors compound over time Kumar et al. (2019). Extrapo-
lation errors have been well articulated in offline RL studies Kumar et al. (2019); Peng et al. (2019);
Levine et al. (2020), addressing this issue enables algorithms to learn from complete off-policy
demonstrations. Such an issue appears when the value function is queried with out-of-distribution
(OOD) state-action pairs. Then, temporal difference methods propagate generalization errors it-
eratively, causing the value estimation to deviate further. Many methods are proposed to resolve
this by addressing conservatism, such as in-distribution learning Kostrikov et al. (2021); Garg et al.
(2023), conservative evaluation Kumar et al. (2020), weighted imitation Peng et al. (2019); Nair
et al. (2020); Hansen-Estruch et al. (2023), or behavior regularization Fujimoto & Gu (2021); Lu
et al. (2023).

While the training dataset is fixed in offline RL, exploration is critical in online RL. For model-
free algorithms where exploration and exploitation policies align closely, with stabilizing methods
applied to value learning Fujimoto et al. (2018); Anschel et al. (2017), such value overestimation
bias is expected to be fixed since the corresponding policy tends to visit these overestimated regions.
And in cases such that the remedy to value learning is conservative enough, e.g., taking the minimum
value of an ensemble of value functions, even underestimation could take place Hasselt (2010); Lan
et al. (2020). However, as demonstrated in 3.2, the usage of online planning distinguishes it from
the issue encountered in model-free off-policy learning.

MPC with Value Prior Incorporating value prior into the MPC controller reduces its dependency
on an imperfect model. POLO Lowrey et al. (2018) uses a value prior as the terminal cost func-
tion in an MPPI planner to efficiently search the trajectory space; it also maintains an ensemble of
value functions to track uncertainties and promote optimistic exploration. Bhardwaj et al. (2020b;a)
studies the connection between MPC and entropy regularized RL, enhancing Q-learning accuracy
by using model information to calculate the value target. Sikchi et al. (2022); Hansen et al. (2022)
leverages a value prior learned through model-free RL to approximate the performance of the op-
timal policy. Building upon this, TD-MPC2 Hansen et al. (2023) introduces crucial design choices
tailored for continuous control tasks, effectively reducing compound model errors and improving
learning stability. Due to the decoupled exploration and exploitation, off-policy issues in policy-
based MBRL can be more severe than model-free algorithms. Hansen et al. (2022); Wang et al.
(2025) observed that the nominal policy is significantly worse than the planner policy in perfor-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 TD-M(PC)2

Require: θ, ψ, enc, ϕ, ϕ′, P , α, β, ρ, γ
Initialize policy network πθ, latent world model dψ , encoder enc, and value functions Qϕ, Qϕ′ by
pertaining on uniformly sampled data
for each training step do

if collect data then
Planning by Algorithm 2: a ∼ µ = P (enc(s), πθ, Qϕ, d, γ).
Environment step: r, s′, done = env.step(a)
Add (s, a, µ, r, s′) to buffer B.

end if
Sample trajectories {(st, at, µt, rt, st+1)0:H} ∼ B
# Model Update
Calculate TD target by bootstrapping πθ
Update dψ , enc, Qϕ by equation 7
# Constrained Policy Update
Calculate policy loss by equation 10 and update θ
Polyak update ϕ′i = ρϕ′i + (1− ρ)ϕi, i = 1, 2

end for
return θ, ϕ, P

Algorithm 2 MPPI
Require: z0, π, Q(z, a), d, λ, γ, N , Nπ , H

Initialize µ0 as concat{p[: −1],0}, initialize σ0

for iteration i=0, 1, ..., I do
Sample N action traj. from len. H from N (µi;σ

2
i I)

Sample Nπ action traj. by rollout π in latent dynamics d
Collect all trajectories τ
# Rollout and estimate discounted returns
for All traj. j = 1, . . . , N +Nπ do
Rj = 0
for step t=0, 1, ..., H-1 do
zt+1, rt = d(zt, at)
Rj = Rj + γtrt

end for
Rj = Rj + γHQ(zH , π(zH))

end for
# Update µ and σ
Select top-K trajectories {τ1, . . . , τK}
Calculate score ωk = exp(λRk)

ΣK
i=1 exp(λRk)

Update parameters µi+1 = ΣKi=1ωkτk, σi+1 =
√
ΣKi=1ωk(τk − µi+1)2

end for
return N (µI ; (σI)2I)

mance, Wang et al. (2025) attributes this to the low efficiency of policy learning. However, we
argue that while exploitation is surely Sikchi et al. (2022); Argenson & Dulac-Arnold (2020) tackles
this policy divergence by mixing action sequences proposed by the policy prior with randomly sam-
pled trajectories into MPPI. In comparison, our method effectively addresses overestimation without
compromising the planner.

D DESIGN CHOICES AND IMPLEMENTATION DETAILS

D.1 ALGORITHM FORMULATION

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To further elaborate on the design choices, we present the general formulation of constrained policy
iteration, followed by a detailed discussion of its implementation and interaction with other critical
components within TD-MPC.

Given the behavior policy µ(·|s) = ΣKk=0ωkπH,k(·|s) (following the notation in Peng et al. (2019)),
Conservative policy improvement step can be interpreted as finding a solution in the trust region near
µ. The optimal solution of problem equation 8 is the combination of behavior policy and Boltzmann
distribution, with partition function Z(s) and Lagrangian multiplier β:

µ∗(a|s) := 1

Z(s)
µ(a|s) exp( 1

β
Q(s, a)), Z(s) :=

∫
a

µ(a|s) exp( 1
β
Q(s, a)) (22)

In principle, the training objective can be formulated using either the reverse KL-divergence (RKL)
DKL(π∥µ∗), or forward KL-divergence (FKL) DKL(µ

∗∥π). For online off-policy setting, beyond
its well-known ”zero-avoiding” behavior, prior studies Chan et al. (2022) have shown that FKL
encourages mode-covering but does not guarantee policy improvement, often leading to degraded
performance, especially under large entropy regularization. In E, we show that FKL could mitigate
the value overestimation problem for high-dimensional tasks but may lead to training instability.

Based on these observations, we choose RKL style policy learning Fujimoto & Gu (2021). Instead of
directly calculating the log-likelihood of µ, we maximize Eµ′∼B[logµ

′] as its lower bound. Such a
surrogate greatly simplifies the calculation. Specifically, the policy improvement step can be realized
as follows to leverage a sequence of transitions:

πk+1 ← argmin
π

E{s,a′,µ}0:H−1∼B

[ H∑
t=0

λtEat∼π(·|zt)
[
−Qπk(zt, at)/Sq + α log(π(at|zt))

− β · daction

dmax
log(µt (at))/Sq

]]
,

z0 = h(s0), zt+1 = d(zt, a
′
t)

(23)

Notably, we denote a′0:H−1 as the behavior action sampled from the buffer. Thus, unlike
dreamer Katsigiannis & Ramzan (2017), we do not actually roll out π and leverage simulated expe-
rience during training. We also scale the training loss by a moving percentile Sq ≤ (Qmax − Qmin)
of the value function to improve stability.

Sq = EMA (max{Per(Q, 95)− Per(Q, 5), 1}, ξ) (24)

Conservative Threshold s We notice that overly addressing policy constraints during the initial
stage sometimes results in failure to escape from the local minima. Thus, we maintain a moving
percentile Sq for the Q function as in Hansen et al. (2022; 2023) and leverage an adaptive curriculum
on β:

β =

{
0, if Sq < s

β, otherwise

The intuition behind this scheduler is that a small Sq could be an indicator of the initial training
phase. Also, decreasing Sq indicates a stable or non-improving performance where exploration
is required. While one may argue that other deliberately designed curricula could be more ef-
fective, we find that this straightforward setting is sufficient. For exploration-intensive tasks like
humanoid-run in DMControl, this curriculum allows approximately 100k environment steps at
the beginning without constraints enforced on the nominal policy. Empirically, the ”free-explore”
stage could incur a certain degree of value overestimation, but it will soon be rectified once the con-
servative term takes effect. For most tasks with denser reward signals, its impact on performance is
minimal. But carefully tuned s yields better performance Section E.

Conservative Coefficient We found scale β properly with action dimensionality, as the sparsity
of high-dimensional space leads to a more severe distribution shift. We suggest β ∝ daction

dmax
is a good

choice that balances performance on both low- and high-dimensional tasks. The reported result in
the main paper applied this scaling, as the conservatism coefficient is technically β daction

dmax
.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We have the same training objective as TD-MPC2 when it comes to the dynamics model, reward
model, value function, and encoder:

L = E
(s,a,r,s′)0:H

[ H∑
t=0

γt
(
cd · ∥d(z, a, e)− sg(h(s′t))∥22 + cr · CE(r̂t, rt) + cq · CE(q̂t, qt)

)]
(25)

Where the reward function and value function’s output are discretized and updated with cross-
entropy loss given their targets.

In addition, we disclose implementation distinctions for baseline variants used in section 4.3. We di-
rectly update the policy for the behavior cloning version (β =∞) by maximizing the log-likelihood
term. Following Hansen et al. (2022; 2023), we introduce a moving percentile S to scale the mag-
nitude of the loss:

Lπ = Es∼BEa∼π(·|s) log µ(a | s)/max(1, S) (26)

D.2 IMPLEMENTATION DETAILS

Table 1 lists the full hyperparameter settings for our training procedure, planner, actor (nominal pol-
icy), critic, and network architectures. To prevent the planner’s rollout distribution from collapsing
to a deterministic policy—and to improve numerical stability—we constrain its action-noise stan-
dard deviation to lie within [Min Planner Std, Max Planner Std]. Importantly, the planner in
Algorithm 2 combines Model Predictive Path Integral control (MPPI) (Williams et al., 2016) with
the Cross-Entropy Method (CEM) (Rubinstein & Kroese, 2004), using a top-K selection mecha-
nism: 5% of trajectories follow the nominal policy π, while the remainder are derived from planner
sampling, allows the planner to diverge far from the nominal policy π.

All model components—dynamics and reward model, encoder, actor, and critic—are implemented
as three-layer MLPs with Mish activations and LayerNorm. Consistent with TD-MPC2 Hansen
et al. (2023), we apply SimNorm to the latent state representations. We optimize all networks using
Adam (Kingma & Ba, 2014) with gradient clipping. Experiments were run on a single NVIDIA
RTX A6000 GPU paired with an AMD EPYC 7513 32-Core CPU. For 2 M environment steps and
UTD=1, each training session completes in approximately 38.5 hours, with a minimal fluctuation
across environments. The proposed algorithm does require more storage compared to TD-MPC2,
but we consider that insignificant. Since we store the mean and std of the planner policy, whose addi-
tional budget is of the same scale as the action storage and smaller than the observation storage. For
a replay buffer of 1M steps and state-based observation, the extra memory requirement is 0.01 GB
(from 0.03 to 0.04GB) for DMControl tasks and 0.6 GB (from 0.8 to 1.4GB) for HumanoidBench,
which is far from a heavy burden.

E DISCUSSIONS AND ADDITIONAL RESULTS

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Average Dog Stand Dog Trot Dog Walk

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Dog Run

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

Humanoid Stand

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

Humanoid Walk

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

Humanoid Run

SAC TDMPC2 TD-M(PC)2

Figure 5: Performance on DMControl suite (7 High-dimensional tasks). Average episode return
of our method and baselines. We report mean evaluation performance and 95% CIs across 7 high-
dimensional continuous control tasks.

Besides the training curves on 23 DMControl tasks (Figure 6 and Figure 5), we provide further
discussions and empirical results on value approximation error, different methods to enforce conser-
vatism, and additional ablations.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 1: Hyperparameter settings. We directly apply settings in Hansen et al. (2023) for the shared
hyperparameters without further tuning. We share the same setting across all tasks demonstrated
before.

Hyperparameter Value

Training

Learning rate 3× 10−4

Batch size 256
Buffer size 1 000 000
Sampling Uniform
Reward loss coefficient (cr) 0.1
Value loss coefficient (cq) 0.1
Consistency loss coefficient (cd) 20
Discount factor (γ) 0.99
Target network update rate 0.5
Gradient Clipping Norm 20
Optimizer Adam
Up-to-data (UTD) 1

Planner

MPPI Iterations 6
Number of samples 512
Number of elites 64
Number policy rollouts 24
horizon 3
Minimum planner std 0.05
Maximum planner std 2
Temperature (λ) 0.5

Actor

Minimum policy log std -10
Maximum policy log std 2
Entropy coefficient (α) 1× 10−4

Prior constraint coefficient (β) 1.0
Scale Threshold (s) 2.0

Critic

Q functions Esemble 5
Number of bins 101
Minimum value -10
Maximum value 10

Architecture(5M)

Encoder layers 2
Encoder dimension 256
Hidden layer dimension 512
Latent space dimension 512
Task embedding dimension 96
Q function drop out 0.01
Activation Mish
Normalization LayerNorm
SimNorm dimension 8

Value Approximation Error In Section 3.1, we illustrated value overestimation by comparing
the true value with the value function’s estimate. The true value is approximated using Monte Carlo
sampling as 1

NΣNn=1 [R(τ
π
n )], where τπn is trajectory following the nominal policy π. Unlike the

approach to demonstrate overestimation in Fujimoto et al. (2018) that averages over states drawn
i.i.d. from the buffer, we sample all trajectories starting from the initial state s0 ∼ ρ0. Accordingly,
the function estimation is calculated by averaging the action value following π at the initial state as
Es∼ρ0,a∼π(·|s)[Q̂(s, a)]. We argue that this approach more effectively illustrates the overestimation

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Environment steps (x10 )
0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Average

0.0 0.2 0.4 0.6 0.8 1.0

Acrobot Swingup

0.0 0.2 0.4 0.6 0.8 1.0

Cartpole Balance Sparse

0.0 0.2 0.4 0.6 0.8 1.0

Cartpole Swingup Sparse

0.0 0.2 0.4 0.6 0.8 1.0

Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0

Cheetah Run Backwards

0.0 0.2 0.4 0.6 0.8 1.0

Cheetah Run Front

0.0 0.2 0.4 0.6 0.8 1.0

Cup Catch

0.0 0.2 0.4 0.6 0.8 1.0

Cup Spin

0.0 0.2 0.4 0.6 0.8 1.0

Dog Run

0.0 0.2 0.4 0.6 0.8 1.0

Dog Stand

0.0 0.2 0.4 0.6 0.8 1.0

Dog Trot

0.0 0.2 0.4 0.6 0.8 1.0

Dog Walk

0.0 0.2 0.4 0.6 0.8 1.0

Finger Turn Hard

0.0 0.2 0.4 0.6 0.8 1.0

Fish Swim

0.0 0.2 0.4 0.6 0.8 1.0

Hopper Hop

0.0 0.2 0.4 0.6 0.8 1.0

Hopper Stand

0.0 0.2 0.4 0.6 0.8 1.0

Humanoid Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

Humanoid Stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

Humanoid Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

Pendulum Swingup

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

Reacher Hard

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (x10 )

Walker Run

SAC TD-MPC2 TD-M(PC)2

Figure 6: Performance on DMControl suite. Average episode return of our method and baselines.
We report mean evaluation performance and 95% CIs across 16 low- or medium-dimensional and 7
high-dimensional continuous control tasks within 1M environment steps.

0

50

100

150

200

Va
lu

e

Cartpole Swingup Sparse (1-DoF) Hopper Stand (4-DoF) Cheetah Run (6-DoF) Walker Run (6-DoF)

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations (x10 )

0

50

100

150

200

Va
lu

e

Quadruped Walk (12-DoF)

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations (x10 )

Dog Trot (36-DoF)

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations (x10 )

H1hand Run (61-DoF)

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations (x10 )

H1hand Slide (61-DoF)

True Value Function Estimation

Figure 7: TD-MPC2 value estimation bias. We visualize value overestimation across a diverse
range of tasks from DMControl or Humanoidbench. Overestimation bias scales with the action
dimension of the environment predictably.

phenomenon, since value approximation errors propagate through TD learning and accumulate at the
initial state Sutton & Barto (2018), making overestimation more pronounced and easier to observe.
Additional evaluations on the value overestimation bias on low- and medium-dimensional tasks can
be found in Figure 7.

Planning horizon We compare the approximation error between TD-MPC2 with a planning hori-
zon of 1 and a horizon of 3 using h1hand-run-v0 task. As shown in Figure 10, while both ver-
sions exhibit significant overestimation bias, the patterns of error growth differ. Over 2M training
steps, the error in the horizon-1 version grows nearly linearly, showing no clear trend of conver-
gence. In contrast, although the horizon-3 version initially accumulates errors more rapidly, its error
growth rate gradually decreases over time.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Average 2 Tasks
Baseline ( H)
Baseline ( )

Baseline ( H + )
TD-M(PC)2

Figure 8: Exploration policy formulation. Av-
erage performance on two high-dimensional hu-
manoid tasks. Report mean and 95% CIs across 3
random seeds.

We further justify our theoretical results
through an ablation study on the planning hori-
zon. By combining Theorem B.1 and Theorem
B.3, we know that πH ’s dependency on value
error is scaled by a factor of γH−1(1−γ)

(1−γH)
rela-

tive to the greedy policy’s dependency on value
error. Consequently, given the same V̂ , we ex-
pect the performance gap between the H-step
lookahead policy πH,k and the greedy policy
πk+1 to be smaller in the early stages of train-
ing, which aligns with the lower approximation
error initially observed. However, according to
Theorem 3.2, shorter horizons amplify the error
accumulation term, resulting in a faster growth
rate. Therefore, this empirical observation fur-
ther supports our theoretical analysis.

Exploration policy In addition to the discus-
sion in Section 3.2, we compare the performance of TD-MPC2 with different exploration strategy in
Figure 8: a) Baseline (πH ): vanilla TD-MPC2, solely leveraging planner policy πH for exploration
b) Baseline (π): TD-MPC2 solely leveraging nominal policy π for exploration, equivalent to SAC at
training, only leverage planner for test-time inference; c) Baseline (πH + π): TD-MPC2 with 50%
trajectories collected through the nominal policy π;

Conservative Threshold We consider evaluating different choices of s. Empirically, the algo-
rithm is not sensitive to s for most cases except for humanoid-run. As shown in Section E, the larger
s performs better. This might be due to the task’s spare reward signal in the initial stage. It requires
a better exploration to get the humanoid up in the first place. Still, the main results are evaluated
with a fixed s = 2. Results are reported over 3 seeds at 1M environment steps.

Table 2: Ablation on conservative threshold s
Task dog-trot humanoid-run h1hand-slide h1hand-run

s = 2 866.2±19.7 241.9±38.5 492.9±93.1 503.9±231.1
s = 10 831.2±64.1 424.7±35.0 435.3±41.8 228.2±38.2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Dog Trot

TD-MPC2 ARC75

(a) DMContorl

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Run

TD-MPC2 ARC75

(b) HumaniodBench

Figure 9: Constraining the planner. Increas-
ing the percentage of trajectories proposed by
the policy prior improves data efficiency in high-
dimensional tasks.

Conservative Policy Learning Offline RL
algorithms aim to stabilize the learning pro-
cess and improve policy performance by care-
fully handling unseen data. However, we ar-
gue that not all offline RL methods are well-
suited for the TD-MPC setting. We empirically
found that the FKL algorithm performs worse
than the bc-constrained RKL policy learning
despite the theoretical equivalence. In Figure
11, AWAC-MPC refers to the variant that em-
ploys AWAC Nair et al. (2020) for constrained
policy iteration.

Its implementation is based on CORL. These
findings are aligned with Park et al. (2024),
which demonstrates the advantage of bc-
constrained policy learning over AWR/AWAC
due to the encouragement of mode-seeking.

Moreover, we do not recommend employing conservative Q-learning methods Kumar et al. (2020).
Such methods are designed to penalize the Q-values of out-of-distribution (OOD) actions, ensur-
ing that the agent remains within the boundaries of the training data. While this helps to prevent

24

https://github.com/tinkoff-ai/CORL


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
Training Iterations (x10 )

0

25

50

75

100

125

150

175

200

Va
lu

e

H=1

0.0 0.5 1.0 1.5 2.0
Training Iterations (x10 )

H=3

True Value Function Estimation

(a) Value Estimation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Run

H = 3 H = 1

(b) Performance

Figure 10: TD-MPC2 ablation results of horizon at h1hand-run-v0. (a) Value estimation error
with different planning horizons; (b) Episode return with different horizons. The variant with a
longer horizon shows a convergent error growth pattern.

overestimation, it may introduce a significant drawback: a consistent underestimation of the overall
Q-value function. This underestimation not only affects out-of-distribution data but also reduces the
scale of the Q-values overall Nakamoto et al. (2024). As a result, value-guided planning becomes
excessively cautious, disincentivizing the selection of novel actions outside the buffer. This overly
conservative behavior severely limits the agent’s ability to explore, which, however, is a key aspect
of online reinforcement learning. We favor TD3-BCFujimoto & Gu (2021) or BC-SACLu et al.
(2023) style algorithm for this particular problem setting.

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Dog trot

0.0 0.5 1.0 1.5 2.0
Environment steps (x10 )

Run

TD-M(PC)2 AWAC-MPC

Figure 11: Constrained policy update through
AWAC. Mean and 95% CIs across 3 random seeds
on high-dimensional tasks.

Regularizing the Planner Since policy mis-
match between the online planning and the
nominal policy (actor) leads to value approxi-
mation error, one straightforward solution is to
ensure the planner policy stays close to the ac-
tor. LOOP Sikchi et al. (2022) proposes Actua-
tor Regularized Control (ARC), which modifies
the original MPPI sampling by mixing a por-
tion of actor-proposed trajectories. For the TD-
MPC pipeline, a small percentage of mixture no
longer ensures a shifted distribution due to the
top-K mechanism. To study the effectiveness of
this ”forward regularization”, we increased this
ratio from 5% to 75%, while other components
remain the same as TD-MPC2. This variant is
referred to as ”ARC75”. As shown in Figure 9,
this method also significantly boosts performance on high-dimensional control tasks.

Model Bias In addition to direct OOD query, model biasKumar et al. (2019) is also considered
an essential source of extrapolation error for offline RL: Due to a limited number of transitions
contained in the training dataset, TD-target does not strictly reflect an estimation of real transitions.
For an online off-policy problem, the problem is not critical since the buffer is continuously updated.

F LIMITATIONS AND FUTURE WORKS

This paper primarily focuses on single-task state-space RL problems. It would be interesting to
evaluate the generalizability of our method on visual RL and multi-task RL settings. Moreover, we
are interested in further studying our method under deployment-efficient settings Matsushima et al.
(2020) to facilitate real-world applications.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 12: Task Visualization. We demonstrate trajectories generated by our method on 6 tasks
across two benchmarks (DMControl and HumanoidBench) as qualitative results; tasks are listed
as follows: Hopper-stand (A ∈ R4), Humanoid-run (A ∈ R21), Dog-run (A ∈ R36),
h1hand-run-v0 (A ∈ R61), h1hand-slide-v0 (A ∈ R61), h1hand-crawl-v0 (A ∈
R61).

26


	Introduction
	Preliminaries
	Addressing Value Overestimation in Plan-Based MBRL
	Value Approximation and Planner Performance
	Empirical Evidence for Value Overestimation
	Error Accumulation

	Improving Value Learning in MBRL through A Minimalist Approach
	Improved Value Learning
	Benchmark Performance
	Ablation Study

	Related Work
	Conclusions
	LLM Usage Disclosure
	Theory and Proof
	Useful Lemma
	Proof of Theorem

	Extensive Related Works
	Design Choices and Implementation Details
	Algorithm Formulation
	Implementation Details

	Discussions and Additional Results
	Limitations and Future Works

