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ABSTRACT

Seemingly minor implementation details can significantly compromise bench-
mark validity. We demonstrate this through BEND (Benchmarking DNA Lan-
guage Models), where hardware-dependent hyperparameters — number of data
loading workers and buffer sizes — create spurious performance variations of up
to 4% for identical models. The problem stems from inadequate data shuffling in-
teracting with domain specific data characteristics. Experiments with three DNA
language models (HyenaDNA, DNABERT-2, ResNet-LM) show these artifacts
affect both absolute performance and relative model rankings. We propose a sim-
ple solution: pre-shuffling data before storage eliminates hardware dependencies
while maintaining efficiency. This work highlights how standard ML practices
can interact unexpectedly with domain-specific data characteristics, with broader
implications for benchmark design in specialized domains.

1 INTRODUCTION

Standardized benchmarks serve as the foundation for scientific progress in machine learning, en-
abling researchers to compare methods, track improvements, and identify promising research di-
rections. However, implementation of robust benchmarks that accurately reflect model capabilities
without being affected by incidental parameters of the benchmarking framework, while remaining
practical for widespread adoption, is challenging. Implementation details that appear benign can in-
troduce subtle biases, create dependencies on computational resources, or favour certain approaches
over others, ultimately compromising the benchmark’s ability to provide fair and meaningful com-
parisons.

These challenges are particularly acute in emerging domains, like genomics, where domain-specific
knowledge is scarce and benchmark design principles are still being established. The unique char-
acteristics of biological data, such as spatial dependencies, sequence overlap, and domain-specific
preprocessing requirements, can interact with standard machine learning practices in unexpected
ways. As DNA language models (LMs) gain prominence for tasks ranging from regulatory element
prediction to evolutionary analysis, the need for reliable evaluation frameworks becomes increas-
ingly critical.

BEND (Benchmarking DNA Language Models) Marin et al.| (2024) represents an important effort
to standardize evaluation in this domain, providing a comprehensive suite of supervised genomic
tasks, including CpG methylation prediction, histone modification annotation, chromatin accessi-
bility, gene finding, and enhancer annotation. Like many modern benchmarks, BEND employs
sophisticated data loading mechanisms to handle large-scale datasets efficiently, storing and stream-
ing DNA sequence embeddings through a two-level shuffling strategy operating on dataset shards
and sample buffers.

Here, we show that practical implementation choices made in BEND inadvertently influence bench-
mark results. The framework introduces dependencies on hardware-specific hyperparameters such
as the number of data loading workers and buffer sizes. When combined with the inherent charac-
teristics of genomic data, particularly the significant overlap between consecutive DNA sequence
samples, these choices can lead to inadequate data shuffling and biased training dynamics. The
choice of these parameters will likely correlate with the computational resources available to the
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researchers and the dimension of embeddings of the model being evaluated. As a consequence, the
results of BEND are biased to favour better resourced researchers, and introduce complex biases
towards different model architectures.

We demonstrate that a simple pre-shuffling approach can eliminate these dependencies without
changing BEND implementation details, while maintaining or improving performance across all
tasks.

Our work contributes to the broader conversation about benchmark design best practices by provid-
ing a concrete example of how following a simple best practice avoids implementation artifacts that
compromise evaluation validity. This discussion is particularly relevant as machine learning expands
into specialized domains, where standard practices may interact with domain-specific characteristics
in unforeseen ways.

2 BACKGROUND

2.1 BEND TASKS AND DATASETS

BEND evaluates the understanding of Language Models (LMs) of different DNA functional ele-
ments on a set of seven supervised and unsupervised tasks. Annotation data, used to extract DNA
sequences from a reference genome, is provided for each task as .bed file, paired with the ground
truth labels of the task. To evaluate a LM model on a specific task, the model embeds the task’s DNA
sequences, and the produced embeddings are evaluated. To allow for evaluation across LMs with
different context window sizes, the length of the DNA sequences depends on the task configurations
and the specific annotation, and DNA sequences that are longer than the LM’s context window are
split into chunks of a size supported by the model.

Unsupervised tasks are non-coding variant effect prediction for expression and disease in which
single nucleotide mutations are classified as having an effect or not. Evaluation of the LM model
is zero-shot and involves computing the cosine distance between the embeddings of the variant
nucleotide and its reference nucleotide. The computed score is then compared to the ground truth
labels.

Supervised tasks are CpG methylation, histone annotation, chromatin accessibility, gene finding
and enhancer annotation, and involve finetuning a task specific LM prediction head with the remain-
der of the LM frozen. Each supervised task’s data, except for enhancer annotation, is grouped by
chromosome, sorted by the sequence start position, and split into train, validation, and test sets. The
data of the enhancer annotation task is randomly shuffled and evaluated using cross-validation. The
following steps summarise the supervised task pipeline:

1. Embedding generation. DNA sequences are extracted from a reference genome and em-
bedded using the LM to evaluate.

2. Training the downstream model. The generated embeddings, paired with the relative
labels, are used to train the downstream model in a supervised fashion.

3. Evaluation of the downstream model. The downstream model processes the embedded
DNA sequences of the test split and the model predictions are compared to the ground truth.

Hence, benchmark results are determined by the downstream model performance, which is depen-
dent on the given input data: the LM embeddings. The assumption is that the more the LM under-
stands DNA, the more informative its embeddings are, and hence the better the downstream model
performance is. The following section explains how, in the BEND implementation, this assumption
does not hold.

2.2 WEBDATASET FOR STORING, LOADING AND SHUFFLING EMBEDDINGS

All supervised tasks annotations, except for the enhancer annotation task, are stored in genomic
order, that is to say, they are grouped by chromosome and sorted by the position of the starting
basepair of the DNA sequence. Epigenetic marks, such as CpG methylation, typically exhibit a
distance-dependent correlation structure. Furthermore, any data samples closer than the task-specific
sample DNA sequence length will contain overlapping DNA sequences. That is to say, genomic data
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Figure 1: Pipeline for generating and storing and loading DNA sequences’ embeddings using the
WebDataset (Aizman et al.l [2020) framework. First DNA sequences are sequentially embedded
using the LM and stored into shards. Shards are assigned to workers and the number of workers is
defined by hyperparameter. Workers load the embeddings from the shards into a buffer, which size
is also a hyperparameter. Batches are created by randomly sampling embeddings from the buffer.

stored in genomic order is expected to exhibit large autocorrelation. Training on a datastream with
high autocorrelation has a decremental effect on a stochastic optimisation algorithms, including
AdamW (Loshchilov & Hutter, 2019), the optimiser used by BEND for finetuning the prediction
heads. Shuffling breaks any correlations that would arise from data in genomic order and increases
batch variety.

As the trunk of the evaluated LM is frozen, in order to avoid computing the same embeddings
for each epoch, BEND computes the embeddings once and uses the WebDataset (Aizman et al.,
2020) frameworkﬂ to store, load and shuffle them from disk storage. WebDataset efficiently stores
and iterates through a large dataset, without loading the entire dataset into RAM memory. This is
achieved by storing the embeddings into .zar files called shards; when needed, it is possible to load
batches of embeddings by reading shards and their content sequentially. Training data shuffling can
be performed at three levels: shuffling sequences annotations before generating the embeddings,
shuffling shards, and locally shuffling samples using a buffer.

Figure [I] shows the pipeline for storing, loading and shuffling the embeddings. In the BEND imple-
mentation, there is no shuffling step before storing data into shards. Shards themselves are implicitly
shuffled when creating the dataloaders El Hence, explicit shuffling is performed using a buffer, the
size of which is a hyperparameter, where samples are shuffled before dividing them into batches.
One shard is assigned to a single worker and each worker has its own buffer. Thus, the buffer shuf-
fles only samples of the shards assigned to the worker. As the buffer loads samples into memory,
the available memory is a bottleneck to increasing the buffer size. In BEND, the gene finding task
uses only one worker and a buffer size of 1000 for 4783 training samples, leading to loading and
shuffling one fifth of the training dataset before collecting it into batches of 64 samples. On the other
hand, the CpG methylation task has a single worker and a buffer size of 200, which are not sufficient
for shuffling a significant fraction of a training split of 959039 samples.

The order in which data are accessed is implicitly determined by the buffer size and another hyper-
parameter, the number of dataloaders. Figure [2] helps to understand sample access patterns across
the entire dataset (first row) and the first batch (second row) for a number of representative sce-
narios. Specifically, No shuffle, BEND (1 worker), BEND (max workers), Pre-shuffle (1 worker),
pre-shuffle (max workers) and Shuffle.

No Shuffle and shuffle are hypothetical cases in which data is accessed sequentially, or at random, as
listed in the annotation files. In case of no shuffle, as shown in the first row, the first sample to be
access has index 0, the second sample to be access has index 1, and so on. Thus, the first batch of
size 256, will contain the first 256 samples. In shuffle, any sequence in the dataset could be accessed
at any point, thus the first batch will contain a random distribution of sample indexes.

Uhttps://github.com/webdataset/webdataset
*BEND implementation of WebDataset dataloaders:
https://github.com/frederikkemarin/BEND/blob/main/bend/utils/data_downstream.py
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Figure 2: Impact of different approaches on the reading order of the histone modification task se-
quences: No shuffle, BEND (1 worker), BEND (max workers), Pre-shuffle (1 worker), pre-shuffle
(max workers), Shuffle. The top row shows the impact of dataloaders in the sequences’ access pat-
terns across the entire dataset. The second row shows the impact of pre-shuffling on batch variety in
terms of sample indexes. Different shards are depicted by different colours.

BEND and pre-shuffle illustrate the case in which WebDataset is used to load the histone modifi-
cation embeddings using one or the maximum number of workers, which in this case is 9 as there
are 9 shards. When using only 1 worker, shards are accessed one at a time, and read sequentially.
Having multiple workers leads to composing multiple batches in parallel. Consequently, compared
to BEND (1 worker), BEND (max workers) improves sample variety between sequential batches,
but it fails to affect sample variety within batches (see also[A.T).

Pre-shuffling allows to store samples from any part of the dataset in any shard. In the pre-shuffle
case, changes in the number of workers will only have an effect on performance. Indeed, as seen
in the second row, pre-shuffling increases with-in batch variety and makes sample variety across
consecutive batches independent of the number of workers.

In summary, in the BEND implementation shuffling is dictated solely by the buffer size and the
number of dataloaders, failing to thoroughly shuffle the data. In addition, the buffer size and the
number of dataloaders greatly vary between task configurations, and will be further dependent on
the available computational resources.

2.3  OUR CONTRIBUTIONS

We add the missing step to the BEND pipeline: shuffling data annotations, to which we will refer as
pre-shuffle.

We demonstrate the impacts on performance of the choice of number of workers and buffer size on
the HyenaDNA-tiny-1k (Nguyen et al.} [2023) model by:

» Comparison of results from the gene finding task with a buffer of size 0, instead of a buffer
size of 1000 samples.

» Comparison of the results of the histone modification task using one worker, instead of 9
workers.

* Comparison of the results of the CpG methylation task using 15 workers, which is the
number of training shards, instead of 1 worker.

Finally, we evaluate the impact of pre-shuffling the CpG methylation task data on two additional
LM architectures, DNABERT-2 (Zhou et al.,[2023) and ResNet-LM, a baseline model proposed by

Marin et al| (2024).,

3 RESULTS AND DISCUSSION

3.1 IMPACT OF HYPERPARMETERS

Table [T] demonstrates the impact of hyperparameters (number of workers and buffer size) on the
benchmark results of the same model, HyenaDNA-tiny-1k (Nguyen et al.} [2023).
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Table 1: Test results of HyenaDNA-tiny-1k (Nguyen et al., [2023) on the CpG methylation and
histone modification tasks using the minimum (1) and maximum amount of workers (with workers
number equal to the shard numbers). Additionally, the HyenaDNA-tiny-1k was tested on the gene
finding task using a buffer size of 1000 samples and without using the buffer.

CpG methylation Histone modification Gene finding
(AUROC) (AUROC) MCO)
Max workers | 1 worker Max workers | 1 worker 1000 size | No buffer
buffer
BEND 0.878 0.868 0.766 0.756 0.115 0.076
Pre-shuffle  0.901 0.900 0.772 0.771 0.120 0.116
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Figure 3: Training loss, validation loss and validation performance curves of the HyenaDNA-tiny-1k
model on the CpG methylation task using three different approaches: pre-shuffle, BEND (1 worker)
and BEND (max workers).

In both the CpG methylation and histone modification tasks, using a single worker decreases perfor-
mance by 1% compared to using 15 and 9 workers, respectively.

Similarly, not using a buffer to shuffle samples before dividing them into batches leads to a loss of
~ 4% in performance on the gene finding task.

Pre-shuffling achieves comparable results independently of the hyperparameters (number of workers
and buffer size) used.

3.2 CPG METHYLATION TASK GREATLY BENEFITS FROM SHUFFLING

The performance of BEND against pre-shuffling is comparable in the histone modification, as uses
the max workers by default, and gene finding tasks, as the buffer size is set to 1000 by default. A
comparison between BEND and pre-shuffle across tasks, using the default BEND hyperparameters
is shown in the Appendix Figure 5]

However, using the default number of workers, which is 1, pre-shuffling increases the CpG methy-
lation performance by 4% compared to BEND. Figure [3| shows the impact of pre-shuffling on the
training loss, validation loss, and validation performance across epochs.

The reasons for this increase in performance could be the high autocorrelation in the DNA sequences
of the CpG methylation task. For each task, we computed how many consecutive sequences overlap
and the median percentage of overlapping length (see Appendix Table 3). In the CpG methyla-
tion task 51.9% of consecutive sequences overlap by at least one nucleotide. The median of the
overlapping length is of 449 nucleotides, equal to 87.7% of the entire sequence length.
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Table 2: Test results (AUROC) of the CpG methylation task using HyenaDNA-tiny-1k (Nguyen
et al.,[2023)), DNABERT-2|Zhou et al.|(2023), ResNet-LM (Marin et al.,[2024) models.

HyenaDNA-tiny-1k DNABERT-2 ResNet-LM
BEND 0.868 0.893 0.890
Pre-shuffled 0.900 0.910 0.919

CpG Methylation
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Figure 4: Validation performance of the HyenaDNA-tiny-1k (Nguyen et al., 2023), DNABERT-2
(Zhou et al.} 2023)) and the ResNet-LM (Marin et al.,|2024) on the CpG methylation task, with and
without pre-shuffling the annotation data.

To verify that the increase in performance on the CpG methylation is not unique to the HyenaDNA
architecture, we replicated the experiment on DNABERT-2 [Zhou et al.| (2023) and ResNet-LM,
a baseline model proposed with BEND (Marin et al., [2024). The experiment confirms that pre-
shuffling annotation data of the CpG methylation task increases performance across different un-
derlying model architectures (Table [2). Furthermore, when running the task without pre-shuffling,
DNABERT-2 (Zhou et al.} [2023) and ResNet-LM (Marin et al.l [2024) models achieve compara-
ble results, and both perform better than HyeanDNA-tiny-1k by about 2%. After pre-shuffling,
ResNet-LM (Marin et al.|[2024) becomes the best performing model, with an almost 1% increase in
performance over DNABERT-2 and 2% increase over HyenaDNA-tiny- 1k.

Shuffling in BEND is dependent on hyperparameters that are chosen based on the available re-
sources, leading to complex biases. For example, buffer size is correlated to the available memory
size and the LM embedding size. Hence, with fixed available memory, researcher would decrease
the buffer size when benchmarking larger models which have embeddings occupying more memory
individually, and with fewer samples loaded in the buffer results would be suboptimal. Conversely
researchers could prioritise increasing the number of workers for larger models, as it is slower to
load larger embeddings, leading to better performances.

4 CONCLUSION

We have demonstrated that hyperparameters that are often chosen based on computational resources,
such as number of workers and buffer size, inadvertently affect benchmarking results. This is due to
the BEND implementation for on-the-fly shuffling of the input data during prediction head finetuning
being sensitive to the choice of these hyperparameters.

While we show that models independent of backbone architecture benefit from proper shuffling, with
performance increases of up to 4%, these increases are not uniform. In fact, evaluating three dissim-
ilar LM architectures (HyenaDNA-tiny-1k, DNABERT-2 and ResNet-LM) on the CpG methylation
task leads to different conclusions when comparing proper and improper shuffling.

Finally, we have shown that pre-shuffling the data is a simple fix for disentangling benchmark per-
formance from hardware-specific hyperparameters. We hope this paper provides a practical exam-
ple highlighting the difficulty of properly implementing benchmarking frameworks, the need for
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apprechiating domain specific knowledge and best practice, and more broadly the importance of
following best practices and the unintended consequences when they are not respected.
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A APPENDIX

Task Pct.  of overlap- Median pct. of shared Weighted pct. of overlap-
ping sequences nucleotides ping nucleotides

Histone 17.03 19.92 3.39

modification

Gene finding 7.09 12.39 0.88

Enhancer 1.75 49.27 0.86

annotation

CpG 51.88 87.70 45.50

methylation

Chromatin 28.29 20.31 5.75

accessibility

Table 3: For each task, pct. of consecutive overlapping DNA sequences, median pct. of shared
nucleotide across overlapping sequences and a weighted pct. computed by multiplying the previous
percentage types.

A.1 IMPACT OF DATALOADERS AND BUFFER ON DATA ACCESS ORDER

Figure [6] shows histone modification task data access order using different approaches: No shuffle,
BEND (1 worker, no buffer), BEND (max workers, max buffer), pre-shuffle (1 worker, no buffer) and
shuffle. All approaches, except for BEND (max workers, max buffer) are explained in Section [2.2]
The BEND (max workers, max buffer) includes the use of the WebDataset (Aizman et al., [2020)
buffer of size equal to the number of samples in a shard, which in the case of BEND is 50,000. As
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Figure 5: Comparison on all tasks of the BEND (Marin et al.} [2024) pipeline with and without pre-
shuffling using the HyenaDNA-tiny-1k (Nguyen et al.l [2023)) model. For the enhancer annotation
task, it is displayed the mean performance across folds and the standard deviation.
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Figure 6: Impact of different approaches on the reading order of the histone modification task se-
quences: No shuffle, BEND (1 worker, no buffer), BEND (max workers, max buffer), Pre-shuffle
(1 worker, no buffer), Shuffle. The first row shows the impact of dataloaders and buffer in the se-
quences’ access patterns across the entire dataset. The second row shows the batch variety, in terms
of sample indexes, of the first ten batches. Finally, the third row shows the batch variety of the last
ten batches. Different shards are depicted by different colours.
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seen in the second row of the BEND (max workers, max buffer) approach, initially, only samples at
the beginning of the shard are accessed, as batches are composed while samples are loaded into the
buffer. However, over time, more samples are loaded than accessed, filling the buffer. This leads to
batches having samples from any part of the shard, as seen in the plot in the last row.
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