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Abstract

We consider gap-dependent regret bounds for episodic MDPs. We show that the
Monotonic Value Propagation (MVP) algorithm (Zhang et al. [2024]) achieves a
variance-aware gap-dependent regret bound of

Õ

¨

˝

¨

˝

ÿ

∆hps,aqą0

H2 logK ^ Varc
max

∆hps, aq
`

ÿ

∆hps,aq“0

H2 ^ Varc
max

∆min
` SAH4pS _ Hq

˛

‚logK

˛

‚,

where H is the planning horizon, S is the number of states, A is the number of
actions, K is the number of episodes, and Õ hides poly logpS,A,H, 1{∆min, 1{δq

terms. Here, ∆hps, aq “ V ˚
h paq ´ Q˚

hps, aq represents the suboptimality gap
and ∆min :“ min∆hps,aqą0 ∆hps, aq. The term Varc

max denotes the maximum
conditional total variance, calculated as the maximum over all pπ, h, sq tuples of
the expected total variance under policy π conditioned on trajectories visiting state
s at step h. Varc

max characterizes the maximum randomness encountered when
learning any ph, sq pair. Our result stems from a novel analysis of the weighted
sum of the suboptimality gap and can be potentially adapted for other algorithms.
To complement the study, we establish a lower bound of

Ω

¨

˝

ÿ

∆hps,aqą0

H2 ^ Varc
max

∆hps, aq
¨ logK

˛

‚,

demonstrating the necessity of dependence on Varc
max even when the maximum

unconditional total variance (without conditioning on ph, sq) approaches zero.

1 Introduction

Reinforcement learning (RL, Sutton et al. [1998]) is an interactive decision-making problem where
an agent gains information from an unknown environment through taking actions, with the goal

˚Work done while Shulun Chen was visiting the University of Washington.
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of maximizing the total reward. RL has a wide range of applications, such as robotics and control
[Lillicrap et al., 2015], games [Silver et al., 2016], finance [Nevmyvaka et al., 2006], healthcare [Liu
et al., 2017], and recommendation systems [Chen et al., 2019].

The most canonical setting in RL is episodic learning in tabular Markov decision processes (MDPs),
where the agent interacts with the MDP for K episodes, each episode allowing exactly H steps
taken. Under this setting, we choose cumulative regret as the performance criteria, which should
scale sublinearly with K to indicate that the agent is making progress by shortening the performance
difference between the policy πk played in episode k and the optimal policy π˚. Most work [Azar
et al., 2017, Jin et al., 2018, Dann et al., 2019, Zhang et al., 2020, 2021a] in this topic focused on
minimax regret that is the worst-case guarantee for the algorithms over all the MDPs. Typically,
these minimax regret bounds have main order terms scaling with

?
K.

The MDPs in practice often enjoy benign structures, so the above-mentioned algorithms may per-
form far better than their worst-case guarantees. Consequently, problem-dependent regret bounds
are of great interest. Variance-dependent regret bounds [Talebi and Maillard, 2018, Zanette and
Brunskill, 2019, Zhou et al., 2023, Zhang et al., 2024] are informative when the MDP is near-
deterministic. This type of regret bounds have main order terms scaling with

?
Var ¨ K where Var

is a symbol for some variance quantity (might be different across different works). For deterministic
MDPs and MDPs such that V ˚

h psq “ V ˚
h ps1q for any h, s, s1, Var “ 0.

Meanwhile, gap-dependent regret bounds [Simchowitz and Jamieson, 2019, Yang et al., 2021, Dann
et al., 2021, Xu et al., 2021, Zheng et al., 2024] are especially favored when for every h, s, the
optimal value V ˚

h psq is better than other suboptimal values Q˚
hps, aq by a margin. Formally, let

∆hps, aq :“ V ˚
h psq ´ Q˚

hps, aq and ∆min :“ mint∆hps, aq | ph, s, aq P rHs ˆ S ˆ A,∆hps, aq ą

0u, then a typical gap-dependent regret bound is

rO

¨

˝

¨

˝

ÿ

ph,s,aqPZsub

1

∆hps, aq
`

|Zopt|

∆min
` polypH,S,Aq

˛

‚polypHq ¨ logK

˛

‚, (1)

where Zsub is the set of all suboptimal ph, s, aq tuples, Zopt
2 is the set of all optimal ph, s, aq tuples,

and rO hides poly logpS,A,H, 1{∆min, 1{δq terms. When K is large enough, gap-dependent regrets
grow much slower than minimax and variance-dependent (when Var ą 0) regrets.

A natural yet fundamental question about problem-dependent regrets is:

What is the tightest problem-dependent regret while considering both variance and gap?

If such a regret outperforms variance-only-dependent and gap-only-dependent regrets asymptoti-
cally (as T Ñ 8) while also being nearly minimax optimal, it is actually best-of-three-worlds!

To address the above problem, there are two factors that can be improved in previous gap-dependent
regrets. First is the dependence on variance quantities. Only Simchowitz and Jamieson [2019],
Zheng et al. [2024] contain variance-dependent terms in their gap-dependent regrets, while their
variance quantities are defined as the maximum per-step variance, Q˚ ď H2. This quantity is first
defined in Zanette and Brunskill [2019], and all of them use HQ˚ as an almost-sure upper bound
on variances. This upper bound can be substantially larger than an expected total variance (such as
Definitions 5 and 6 in Zhou et al. [2023]). From this side, a tighter dependence on an expected total
variance can improve the regret.

Second is the dependence on H . Specifically, when compared under the time-inhomogeneous set-
ting, the polypHq factors in Equation (1) are H3, H6, H5, and H5 in Simchowitz and Jamieson
[2019], Yang et al. [2021], Xu et al. [2021], Zheng et al. [2024], respectively. Simchowitz and
Jamieson [2019] provides a lower bound of Ω

´

ř

s,a H
2{∆1ps, aq

¯

, which indicates the chance of
shaving out extra H dependence.

Our contributions. We analyze the gap-dependent regret of the Monotonic Value Propagation
(MVP, Zhang et al. [2024] version) algorithm, which is a model-based algorithm already proven to
be near-optimal in the sense of minimax and variance-only-dependent regrets. After careful analysis,

2Xu et al. [2021] used a more fine-grained notion named Zmul instead.
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we show that the gap-dependent regret depends on a variance quantity Varc
max ď HQ˚, and the

worst-case dependency on H is H2. We improve the above-mentioned two factors simultaneously.
Formally, with probability at least 1 ´ δ, the regret in K episodes by MVP is bounded as

rO

¨

˝

¨

˝

ÿ

ph,s,aqPZsub

H2 logK ^ Varc
max

∆hps, aq
`

pH2 ^ Varc
maxq|Zopt|

∆min
` SAH4pS _ Hq

˛

‚logK

˛

‚.

(2)

To the best of our knowledge, we are the first to incorporate a tighter variance quantity into gap-
dependent regrets, and the worst-case dependency of H2 in gap-dependent terms is also the state-
of-the-art (see Table 1).

To complement our upper bound, we provide a lower bound (see Theorem 3) of

Ω

¨

˝

ÿ

ph,s,aqPZsub

H2 ^ Varc
max

∆hps, aq
¨ logK

˛

‚.

With this lower bound, we show that the first term in the upper bound (2) is tight (modulo log terms).
This implies that (i) It is necessary to introduce the conditional total variance (see Definition 2) to
derive a variance-aware gap-dependent bound. In comparison, the unconditional total variance (see
Definition 1) is sufficient for variance-aware minimax bounds (e.g., Zhou et al. [2023]); (ii) When
the first term in (2) dominates, the order of H cannot be improved.

Technical novelty. We propose a new variance metric to describe the upper bound of regret in
gap-dependent MDPs. Our version of variance metric considers the conditional total variance to
allow for some states with small visiting probability to accumulate a large regret over the whole
training progress.

To derive a tighter regret bound using our new metric, we utilize a novel analysis which reweighs the
suboptimality gaps. Our approach does not require the clipping and recursion method in Simchowitz
and Jamieson [2019] for the main bound; instead, we directly prove that a certain weight sum over
all suboptimality gaps times the visitation counts is bounded by a lower-order term of visitation
counts, and establish a congregated upper bound of all visitation counts. We believe our approach is
novel and reveals fundamental facts about suboptimality gaps.

We also propose a more refined version of clipping for optimal actions. Our version of clipping
utilizes the new conditional variance metric while also providing an OpH2q worst case bound for
∆min-dependent terms.

Finally, we prove that the ∆hps, aq terms in our upper bound match the lower bound modulo log
factors. The construction is based on a reduction to Bernoulli bandits. A key insight is that low-
frequency states, though often neglected in deriving minimax regret bounds, can still contribute
substantially to regret in gap-dependent bounds.

Paper overview. In Section 2, we introduce previous research about gap-dependent regret bound.
In Section 3, we list the basic concepts of MDPs and define the conditional variance. In Section 4,
we describe the MVP algorithm and provide a proof sketch of the gap-dependent regret upper bound.
We conclude our paper in Section 5 with a matching lower bound.

2 Related works

Gap-dependent regrets and sample complexities. Research on gap-dependent regrets originates
from multi-armed bandits, which are special MDPs with H “ S “ 1. Auer et al. [2002] showed a
ř

aPZsub
logK{∆paq type regret when running an UCB algorithm on MABs. Bubeck et al. [2012]

proposed algorithms achieving a
ř

aPZsub
p∆paq ` logp1{εq{∆paqq bounded regret given knowledge

of the maximum reward maxa rpaq as well as a lower bound ε ą 0 of ∆.

Aside from the works studying finite-horizon tabular MDPs mentioned in Section 1, there is a line of
work under the setting of gap-dependent regrets for infinite-horizon tabular MDPs [Auer and Ortner,
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Algorithm Gap-dependent Regret Variance-
dependent Minimax Optimal

StrongEuler
[Simchowitz and Jamieson, 2019]

rOppp
ř

h,s,a HQ˚
{p∆hps, aq _ ∆minq ` SAH4

pS _ Hqq ¨ logKq Yes (HQ˚)
Yes ( rOp

?
H3SAKq)

rOpp
ř

ph,s,aqPZsub
H3

{∆hps, aq ` |Zopt|H
3
{∆min ` SAH4

pS _ Hqq logKq No
Q-learning (UCB-H)
[Yang et al., 2021]

rOpH6SA{∆min ¨ logKq No No ( rOp
?
H5SAKq)

[Jin et al., 2018]
AMB

[Xu et al., 2021]
rOpp

ř

ph,s,aqPZsub
H5

{∆hps, aq ` |Zmul|H
5
{∆minq logK ` SAH2

q No Not Provided

UCB-Advantage
[Zheng et al., 2024]

rOppHQ˚
` HqH2SA{∆min ¨ logK ` S2AH9

¨ log2 Kq Yes (HQ˚) Yes ( rOp
?
H3SAKq)

[Zhang et al., 2020]
Q-EarlySettled-Advantage

[Zheng et al., 2024]
rOppHQ˚

` H2
qH2SA{∆min ¨ logK ` SAH7

¨ log2 Kq Yes (HQ˚) Yes ( rOp
?
H3SAKq)

[Li et al., 2021]
MVP

This work
rOpp

ř

ph,s,aqPZsub
pH2 logK ^ Varc

maxq{∆hps, aq ` |Zopt|pH
2

^ Varc
maxq{∆min ` SAH4

pS _ Hqq logKq Yes (H2
^ Varc

max) Yes ( rOp
?
H3SAKq)

[Zhang et al., 2024]

Lower Bound
This work Ωpp

ř

ph,s,aqPZsub
pH2

^ Varc
maxq{∆hps, aq ¨ logKq - -

Table 1: Comparison between different algorithms and their gap-dependent regrets for time-
inhomogeneous MDPs. The result in Simchowitz and Jamieson [2019] is scaled accordingly as
it originally studied time-homogeneous MDPs. Variance-dependence: whether the gap-dependent
regret is also variance-dependent. Varc

max ď HQ˚, so dependence on H2^Varc
max is tighter. Min-

imax Optimal: whether the analyzed algorithm achieves a rOp
?
H3SAKq (main order) minimax

regret. Xu et al. [2021] did not provide such a guarantee.

2006, Tewari and Bartlett, 2007, Auer et al., 2008, Ok et al., 2018], while in these works, the gaps
are usually defined as the difference between policies instead of actions. Recently, gap-dependent
regrets have been studied for risk-sensitive RL [Fei and Xu, 2022], linear/general function classes
[He et al., 2021, Papini et al., 2021, Velegkas et al., 2022], and Markov games [Dou et al., 2022].

Gap-dependent sample complexities under online [Jonsson et al., 2020, Marjani and Proutiere, 2020,
Al Marjani et al., 2021, Wagenmaker et al., 2022b, Tirinzoni et al., 2022, Wagenmaker and Jamieson,
2022, Tirinzoni et al., 2023] and offline [Wang et al., 2022, Nguyen-Tang et al., 2023] RL setting
are also widely studied.

Minimax optimal regrets. Under the setting of time-inhomogeneous MDPs, algorithms achieving
a high-probability regret upper bound of rOp

?
H3SAKq are (nearly) minimax optimal. There have

been many works with this guarantee while optimizing the lower order terms: Azar et al. [2017],
Osband and Van Roy [2017], Zanette and Brunskill [2019], Simchowitz and Jamieson [2019], Zhang
and Ji [2019], Zhang et al. [2020, 2021a], Ménard et al. [2021], Li et al. [2021], Xiong et al.
[2022], Zhou et al. [2023], Zhang et al. [2024]. Notably, Zhang et al. [2024] derived the tightest
rOp

?
H3SAK ^ HKq regret up to logarithm factors.

Variance-dependent regrets. Talebi and Maillard [2018] studied variance-dependent regrets for
infinite horizon learning under strong assumptions on ergodicity of the MDPs. Zanette and Brunskill
[2019] defined and incorporated the maximum per-step conditional variance, Q˚, and first proved
a rOp

?
HQ˚ ¨ SAKq regret for the finite-horizon setting. Zhou et al. [2023], Zhang et al. [2024]

proved regrets depending on expected total variances (see our Definition 2 for one of their quantities)
that are more fine-grained than the coarse HQ˚ upper bound. Variance-dependent regrets have also
been studied for bandits [Zhang et al., 2021b, Zhou et al., 2021, Kim et al., 2022, Dai et al., 2022].

Other problem-dependent regrets. Under infinite-horizon setting, Bartlett and Tewari [2012],
Fruit et al. [2018] studied regrets depending on the span of the optimal value function. There are
works studying first-order regrets, whose main order terms depend on value functions: Jin et al.
[2020], Wagenmaker et al. [2022a], Huang et al. [2023].

3 Preliminaries

Notations. For any event E , let 1tEu be the indicator function of E . For any set X , we use ∆X to
denote the probability simplex over X . For any positive integer n, we denote rns :“ t1, 2, . . . , nu.
Õ, Ω̃,À hide poly logpS,A,H, 1{∆min, 1{δq factors.

Finite-horizon MDPs and trajectories. A finite-horizon MDP is described by a tuple M “

pS,A, H, P,R, µq. S is the finite state space with size S and A is the finite action space with
size A. H is the planning horizon. For any ps, a, hq P S ˆ A ˆ rHs, Ps,a,h P ∆S is the transition

4



function and Rs,a,h P ∆r0,Hs is the reward distribution with mean rh : S ˆ A Ñ r0, Hs. µ P ∆S

is the initial state distribution. A trajectory ts1, a1, r
1
1, s2, a2, r

1
2, ¨ ¨ ¨ , sH , aH , r1

Hu is sampled with
s1 „ µ, sh`1 „ Psh,ah,h, r

1
h „ Rsh,ah,h where ah can be chosen arbitrarily.

Unlike most common settings, we relax the standard assumption that Rs,a,h P ∆r0,1s (uniformly
bounded reward) and instead assume a bounded total reward setting (Assumption 1). Problems
under this setting can contain a spike in reward and are therefore harder than standard problems.

Assumption 1 (Bounded total reward). We assume that
řH

h“1 r
1
h ď H for any possible trajectory.

Policies. A history-independent deterministic policy π chooses an action based on the current state
and time step. Formally, π “ tπhuhPrHs where πh : S Ñ A maps a state to an action. Any trajectory
sampled by π satisfies ah “ πhpshq. For any random variable X related to a trajectory, we denote
EπrXs and VπrXs as the expectation and variance of X when the trajectory is sampled under π.

Value functions and Q-functions. Given π, we define its value function and Q-function as

V π
h psq :“ Eπ

«

H
ÿ

t“h

rt

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

, Qπ
hps, aq :“ Eπ

«

H
ÿ

t“h

rt

ˇ

ˇ

ˇ

ˇ

ˇ

psh, ahq “ ps, aq

ff

.

It is easy to verify that Qπ
hps, aq “ rhps, aq ` Ps,a,hV

π
h`1. We define V π

0 :“ Es„µrV π
1 psqs as the

expected total reward when executing policy π.

Learning objective. Episodic RL on MDPs proceeds for a total of K episodes. At the beginning
of episode k, the learner chooses a policy πk and uses it to sample a trajectory.

We aim to maximize V π
0 . Using dynamic programming, we can find a policy π˚ maximizing all

Qπ
hps, aq simultaneously, and we denote V ˚ :“ V π˚

, Q˚ :“ Qπ˚

.

Performance is evaluated by the cumulative regret:

RegretpKq :“
K
ÿ

k“1

´

V ˚
0 ´ V πk

0

¯

.

Gap quantities. The suboptimality gap is defined as follows:

∆hps, aq :“ V ˚
h psq ´ Q˚

hps, aq.

The sets of optimal and suboptimal actions are defined as

Zopt “ tps, a, hq P S ˆ A ˆ rHs : ∆hps, aq “ 0u, Zsub “ S ˆ A ˆ rHszZopt.

The minimum gap ∆min “ minps,a,hqPZsub
∆hps, aq is the smallest positive gap. WLOG, we only

consider MDPs with nonempty Zsub.

Variance quantities. The variance at each ps, a, hq tuple [Zanette and Brunskill, 2019, Sim-
chowitz and Jamieson, 2019] is defined as

Var˚
hps, aq :“ Vr„Rs,a,h,s

1
„Ps,a,hrr ` V ˚

h`1ps1qs.

The maximum per-step conditional variance is defined as Q˚ :“ maxh,s,a Var
˚
hps, aq. Previous

works including Zheng et al. [2024] use HQ˚ which could be as large as H3 in their variance-
dependent terms.

The maximum unconditional total variance has been introduced in prior works [Zhou et al., 2023,
Zhang et al., 2024] when studying variance-dependent regret bounds for MDPs.

Definition 1 (Maximum unconditional total variance).

Varmax :“ max
π

Eπ

«

H
ÿ

h“1

Var˚
hpsh, ahq

ff

.

5



These works showed that Varmax À mintHQ˚, H2u and incorporated it in the main order terms
of variance-only-dependent regrets for better results. However, as we will discuss in Theorem 3,
variance-aware gap-dependent regrets must scale with separate variance quantities for each ps, hq

pair, even for those hard to visit. Thus, the quantity should be conditioned on ps, hq. We propose the
following quantity as the maximum conditional total variance:
Definition 2 (Maximum conditional total variance).

Varc
max :“ max

π,s,h
Eπ

«

H
ÿ

h1“1

Var˚
h1 psh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

.

Remark 1. The maximum conditional total variance is novel in literature, as in variance-only-
dependent works, Varmax is a better quantity, while in previous variance-aware gap-dependent
works, researchers did not develop better approaches other than bounding total variance by HQ˚.
By definition, Varc

max ď HQ˚, and our final results will scale with mintVarc
max, H

2u after careful
analysis, which can improve the dependency on H by one order.

4 Main Results

4.1 Algorithm Overview: MVP

Monotonic Value Propagation (MVP, Appendix B) is a representative [Zhang et al., 2021a, Zhou
et al., 2023, Zhang et al., 2024] model-based optimistic algorithm which maintains upper bounds of
V ˚ and Q˚, namely V k and Qk, in each episode. The rollout policy πk picks the action that max-
imizes Qk

hps, ¨q at each step and updates the upper bounds using Bellman equation with empirical
estimates of reward and transitions:

Qhps, aq Ð r̂hps, aq ` Es„P̂s,a,hVh`1ps, aq ` bhps, aq, Vhpsq Ð max
a

Qhps, aq.

Here bhps, aq is a bonus term ensuring that Qh, Vh are upper bounds of Q˚
h, V

˚
h (“optimism”) with

high probability. For the proof of optimism, interested readers can refer to Zhang et al. [2021a].

4.2 Gap-dependent Upper Bound

Now, we present the main result of this work – a gap-dependent regret upper bound ensured by
MVP. For the formal version, please refer to Appendix C.
Theorem 2 (Gap-dependent upper bound). There exists universal constants c1, c2, c3 such that, for
any MDP instance, any episode number K, and δ ą 0, MVP (Algorithm 1) attains the following
regret bound with probability at least 1 ´ δ:

RegretpKq À

¨

˝

ÿ

ph,s,aqPZsub

H2 logK ^ Varc
max

∆hps, aq
`

pH2 ^ Varc
maxq|Zopt|

∆min
` SAH4pS _ Hq

˛

‚logK.

Remark 2. This bound contains a new notion of maximum conditional total variance (Defini-
tion 2). Since this definition requires us to condition on any possible state, Varc

max can be as
large as ΘpH3q. However, Varc

max is bounded by Hmaxs,a,htVar˚
hps, a, hqu, so this term is still

no worse than previous OpHQ˚q bounds. Furthermore, there is a sufficient condition to make
Varc

max “ OpH2 logp1{δqq: for any policy π and ps, a, hq P S ˆ A ˆ rHs, the state-action pair
ps, aq is not reachable at step h if we sample the trajectory under π, or it is visited with probability
at least δ. We can even generalize this concept to exclude the states that are difficult to reach from
the definition of Varc

max. We omit this approach for simplicity.

The H2 term in H2 ^ Varc
max is derived by conditioning on the event where all trajectories have

bounded total variance to avoid the dependence on Varc
max when it is large.

Our lower bound (Theorem 3) shows that Varc
max cannot be replaced by Varmax (Definition 2), a

quantity used by previous variance-only-dependent works. Intuitively, Varmax can be very small as
long as all states with large variance have small visiting probability, but those states can accumulate
a total regret of order Var˚

hps, aq{∆hps, aq that cannot be bounded by Varmax. The leading term
matches with the lower bound modulo log factors. Furthermore, Simchowitz and Jamieson [2019]
has shown that a ∆min-dependent term is unavoidable for UCB-based algorithms. Our coefficient
of the ∆min term is also improved to worst case OpH2q, better than previous worst-case factors of
HQ˚ [Simchowitz and Jamieson, 2019] and H3Q˚ [Zheng et al., 2024].
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4.3 Proof Sketch

We present the high-level ideas in the proof for Theorem 2 here, deferring the details to Appendix C.
We assume the optimistic condition holds (see Lemma 9).

Regret decomposition. Following Simchowitz and Jamieson [2019], we define

Ek
hps, aq :“ Qk

hps, aq ´ pRhps, aq ` Es1
„Ps,a,hrV k

h`1ps1qsq (3)

as the surplus at ps, a, h, kq P S ˆ A ˆ rHs ˆ rKs. Standard analysis show the regret bound

RegretpKq À E

«

K
ÿ

k“1

H
ÿ

h“1

Ek
hps, aq

ff

.

Analyzing gaps and surpluses. Suppose that the algorithm takes action a at state s at episode k,
stage h. By optimism, Qk

hps, aq must be at least V ˚
h psq “ Q˚

hps, aq ` ∆hps, aq, so we have

Ek
hps, aq ` Es1

„Ps,a,hrV k
h`1ps1q ´ V ˚

h`1ps1qs ě ∆hps, aq.

By recursively expanding the V term, we have

∆hps, aq ď Eπk

«

H
ÿ

h1“h

Ek
hps, aq

ˇ

ˇ

ˇ

ˇ

ˇ

psh1 , ah1 q “ ps, aq

ff

. (4)

That is, if the expectation of future surpluses is small, then the algorithm will avoid actions with
large suboptimality gap.

The analysis of Ek
h shows that (see Lemma 16)

Ek
hps, aq À

d

Var˚
hps, aqι

nk
hps, aq

`
ÿ

h1ěh

Eπk

«

SHι

nk
hpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

loooooooooooooooooomoooooooooooooooooon

low order terms

.

We consider the restrictions of nk
hps, aq when ∆hps, aq ą 0. If the lower bound Equation (4) wrote

∆hps, aq À Ek
hps, aq, then nk

hps, aq À Var˚
hps, aqι{∆hps, aq2, which would directly provide a

regret bound. However, Equation (4) contains the sum all future surpluses, so we cannot directly
apply this method.

We will circumvent this problem by adding Equation (4) over all k and h. The summation of the
left-hand side is

ř

s,a,h ∆hps, aqnk
hps, aq, while the summation of the right-hand side can be shown

as approximately (low-order terms discarded) H
ř

s,a,h

b

Var˚
hps, aqnk

hps, aqι.

This inequality has the form
ř

s,a,h us,a,hnhps, aq Æ
ř

s,a,h vs,a,h
a

nhps, aq for some non-negative
coefficients us,a,h, vs,a,h. It entails upper bounds of nhps, aq, and if we proceed with the calcula-
tions, we will recover the bound

RegretpKq À
ÿ

s,a,h

HVar˚
hps, aqι

∆hps, aq
` (some low-order terms)

in Simchowitz and Jamieson [2019] while avoiding complex calculations. In the latter steps, we will
refine this method for a tighter bound.

Generalized weighted sum of suboptimality gaps. Intuitively, the previous bound is not bal-
anced as Var˚

hps, aq “ ΩpH2q only happens for a small portion of ps, a, hq. In contrast, the summa-
tion of Equation (4) contains enough degrees of freedom for us to utilize it for a better bound. Let
whps, aq be any set of nonnegative weights. Then the weighted sum of Equation (4) writes

ÿ

s,a,h

whps, aq∆hps, aqnK
h ps, aq À

H
ÿ

h“1

K
ÿ

k“1

whpskh, a
k
hq

H
ÿ

h1“h

ErEk
h1 pskh1 , akh1 q|Fk´1,hs, (5)

where Fk´1,h is the σ-field generated by first k ´ 1 episodes and the first h states in the k-th
trajectory. We will choose whps, aq carefully to balance the contribution of each term.
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Bounding weighted sum of surpluses. The right-hand side of Equation (5) needs to be manipu-
lated carefully. Rewriting the summation order, the leading term of Equation (5) becomes

ÿ

s1,a1

H
ÿ

h1“1

K
ÿ

k“1

d

Var˚
h1 ps1, a1qι

nk
h1 ps1, a1q

h1
ÿ

h“1

whpskh, a
k
hqEr1tpskh1 , akh1 q “ ps1, a1qu|Fk´1,hs.

We will apply certain probability inequalities to approximate Er1tpskh1 , akh1 q “ ps1, a1qu|Fk´1,hs

with 1tpskh1 , akh1 q “ ps1, a1qu (approximation error omitted). Then, the innermost sum over h con-
tains only whpskh, a

k
hq, which can be bounded by W̄ “ H2ι ^ Varc

max if we pick wk
hps, aq “

Var˚
hps, aq. Now, the sum over k is

nK
h1 ps1,a1

q
ÿ

n“1

c

Var˚
h1 ps1, a1qι

n
“ O

ˆ

b

Var˚
h1 ps1, a1qnK

h1 ps1, a1qι

˙

,

so by Equation (5),
ÿ

s,a,h

V ar˚
hps, aq∆hps, aqnK

h ps, aq À W̄
ÿ

s,a,h

b

Var˚
hps, aqnK

h ps, aqι

loooooooooooooooomoooooooooooooooon

:“R

. (6)

End of proof. With similar (and simpler) arguments above, we have

RegretpKq À R,

where again, we ignore the lower-order terms.

We apply the Cauchy-Schwartz inequality to Equation (6) and get

W̄R ¨

˜

ÿ

s,a

H
ÿ

h“1

ι

∆hps, aq

¸

Ç

˜

ÿ

s,a,h

b

Var˚
hps, aqnK

h ps, aqι

¸2

“ R2,

so we conclude that

RegretpKq À R Æ
ÿ

s,a,h

W̄ ι

∆hps, aq
.

5 Gap-Dependent Lower Bound

In this section, we will prove the following gap-dependent regret lower bound. It shows a separation
between Varc

max and Varmax, as well as the necessity of Varc
max in gap-dependent regrets.

Theorem 3. [Gap-dependent lower bound (informal)] Fix S,A,H and the target conditional vari-
ance L P r1, H2s. Given a set of SAH suboptimality gaps t∆iu, assume that all non-zero gaps
are sufficiently small. For any algorithm, there always exists an MDP with gaps equal to Θp∆iq,
Varc

max “ ΘpLq but Varmax “ Op1q, such that

RegretpKq ě Ω

˜

ÿ

i:∆ią0

L

∆i
¨ logK

¸

.

Proof sketch. We sketch the proof as follows. For simplicity, we assume there are 4 states
tA, B, C, Du in each h-th layer. The dynamics of the four states are presented below.

• A : There is only one action at A, which transits the agent to A in the next layer with
probability 1 ´ 1

LH , and B with probability 1
LH . The reward is 0 at A;

• B : There are A actions at B. For each action a, the agent is transported to C with probability
1
2 ´

∆paiq

4
?
L

and D with probability 1
2 `

∆paiq

4
?
L

;

• C : This state is a terminal state with reward
?
L;
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• D : This state is a terminal state with reward 0.

In this instance, the learner makes a decision only at state B for each layer h, and state A has variance
Op 1

LH ¨ p
?
Lq2q “ OpH´1q and state B has variance ΘpLq, showing Varc

max “ ΘpLq. For any
strategy π, it visits B with probability 1 ´ p1 ´ 1

LH qH “ OpL´1q, So

Varmax ď H ¨ OpH´1q ` LOpL´1q “ Op1q.

Clearly, the decision problem at state B and layer h could be viewed as a Bernoulli bandit problem.
The expected visiting count at state B and layer h is ΘpK{Lq. Let Regreth,BpKq be the regret by
taking suboptimal actions at B and the h-th layer. Consequently, applying the classical lower bound
on regret for Bernoulli bandits yields:

lim
KÑ8

Regreth,BpKq

logpK{Lq
ě Ω

˜

ÿ

a

L

∆hpB, aq

¸

.

Thus,

RegretpKq ě

H
ÿ

h“1

Regreth,BpKq ě Ω

˜

ÿ

h,a

L

∆hpB, aq
¨ logK

¸

.

for sufficiently large K.

Discussion. This example shows a separation between unconditional variance Varc
max and con-

ditional variance Varmax. Even if Varmax “ Op1q, there can still be a regret lower bound of
order ΘpH2q. In this view, our introduction to Varc

max is essential in proving gap-dependent regret
bounds.

We also observe that the second term pH2
^Varc

maxq|Zopt|

∆min
in our upper bound (2) is not yet matched

by this lower bound. This could pose a significant challenge for existing optimistic algorithms, as
they typically explore all potentially optimal actions, resulting in additional surplus terms. We refer
the readers to Appendix D the full proof of Theorem 3.

6 Conclusion

In this paper, we study gap-dependent regret bounds for episodic MDPs and demonstrate that the
Monotonic Value Propagation (MVP) algorithm Zhang et al. [2024] achieves a tighter upper bound
compared to previous works from the aspects of tighter dependence on a better variance notion,
as well as reduced order of H . Our analysis centers around a careful bound of the weighted sum
of suboptimality gaps. Along the way, we introduce a new notion of maximum conditional total
variance and provide a lower bound to establish its necessity as well as the tightness of the 1

∆hps,aq

term.

We also acknowledge some limitations. First, the pH2
^Varc

maxq|Zopt|

∆min
term in our upper bound does

not match the lower bound of S
∆min

in Theorem 2.3 of Simchowitz and Jamieson [2019]. Improv-
ing either the upper bound or lower bound will help advancing the understanding of gap-dependent
regrets. Second, we only apply our new techniques to tabular MDPs. For future work, we be-
lieve our analysis can be adapted to other problem settings (e.g., linear MDPs [Wagenmaker and
Jamieson, 2022] and MDPs with general function approximation) to derive tighter gap-dependent
regret bounds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We prove a new bound for gap-dependent MDP and this is reflected in the
abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss about the ∆min term and an extra log factor in our regret bound.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14



Justification: Our main text discusses the intuition and provides a proof sketch. Full proof
can be found in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: Our paper focuses on the theoretical part. No experiment was performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Our paper focuses on the theoretical part. No experiment was performed.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper focuses on the theoretical part. No experiment was done.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper focuses on the theoretical part. No experiment was done.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our paper focuses on the theoretical part. No experiment was done.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe that our work conforms with Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper focuses on proving theorems for an existing algorithm. We are not
aware of any societal impact from our paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No dataset is required for a purely theoretical proof.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We didn’t use any assets for our theoretical proof.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: We didn’t create any assets for our theoretical proof.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: We didn’t conduct any crowdsourcing or research with human subjects for
our theoretical proof.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We didn’t conduct any crowdsourcing or research with human subjects for
our theoretical proof.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used LLM for editing paper.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations and Technical Lemmas

A.1 Notations

We list notations in Tables 2 to 4.

S, S “ |S| State space and its size
A, A “ |A| Action space and its size

H Horizon
K Learning episodes
s, s1 States in S
a, a1 Actions in A

h, h1, h˚ Horizon numbers
k, k1 Indices of learning episode
Ps,a,h Transition probability
Rs,a,h Distribution of rewards
µ Distribution of beginning state

rhps, aq Expected reward
π Policy

πhpsq Action that policy π takes at state s, step h
V π
h psq, V ˚

h psq V -function of policy π and of optimal policy, respectively
Qπ

hps, aq, Q˚
hps, aq Q-function of policy π and of optimal policy, respectively

Var˚
hps, aq Variance at state s, action a, and step h

Varmax Maximum unconditional variance
Varc

max Maximum conditional variance
∆hps, aq Suboptimality gap
∆min Minimal nonzero suboptimality gap
Zsub Set of suboptimal actions
Zopt Set of optimal actions

Table 2: Parameters of MDP

skh, a
k
h, r

k
h States, actions, and rewards observed in the k-th episode

V k
h psq Vh of the algorithm before the k-th episode

Qk
hps, aq Qh of the algorithm before the k-th episode

r̂khps, aq Estimation of rhps, aq before the k-th episode
σ̂k
hps, aq Estimation of σhps, aq before the k-th episode
P̂ k
s,a,h Estimation of Ps,a,h before the k-th episode

n̂k
hps, aq Visitation count at ps, a, hq before the k-th episode

bkhps, aq Bonus term in the k-th episode
πk The policy at the k-th episode

Table 3: Values used in the algorithm

A.2 Technical Lemmas

Lemma 1 (Bennett’s inequality, Theorem 3 in Maurer and Pontil [2009]). Let X1, X2, ¨ ¨ ¨ , Xn be
i.i.d. random variables with values r0, aspa ą 0q and let δ ą 0. Then,

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

ErX1s ´
1

n

n
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ą

c

2VrX1s logp2{δq

n
`

a logp2{δq

n

ff

ă δ.

Lemma 2 (Freedman’s inequality, Lemma 10 in Zhang et al. [2020]). Let pXnqně1 be a martingale
difference sequence (i.e., ErXn|Fn´1s “ 0 for all n ě 1, where Fk “ σpX1, X2, ¨ ¨ ¨ , Xkq) such
that |Xn| ď a for some a ą 0 and for all n ě 1. Let Vn “

řn
k“1 ErX2

k |Fk´1s for n ě 0. Then, for
any positive integer n, and any ε, δ ą 0, we have

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2
a

Vn logp1{δq ` 2
a

ε logp1{δq ` 2a logp1{δq

ff

ď 2pna2ε´1 ` 1qδ.
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rns Set t1, 2, ¨ ¨ ¨ , nu

∆B Set of distribution functions over set B
x ^ y mintx, yu

x _ y maxtx, yu

1tφu Indicator function of φ, i.e. 1 if φ is true and 0 otherwise
clip ra|εs a1ta ě εu

δ Acceptable error probability
Ek

hps, aq Surplus; Qk
hps, aq ´ rhps, aq ´ Es1

„Ps,a,hrV k
h`1ps1qs

Ēk
hps, aq Clipped surplus
ι logpSAHK{δq

whps, aq Weights used in analysis
W̄ 160H2 logp4KpH ` 1q{δq ^ Varc

max
Regret Total regret
Fk σ-field generated by the first k ´ 1 episodes of the algorithm
Fk,h σ-field generated by the first k ´ 1 episodes and the first h steps in the k-th episode

ř

s,
ř

a,
ř

s,a

ř

sPS ,
ř

aPA,
ř

sPS,aPA, respectively
Ex„X ,Vx„X Expectation when x is sampled from distribution X

Pπ,Eπ Probability and expectation over a trajectory when following policy π
Table 4: Other notations

Lemma 3 (Lemma 10 in Zhang et al. [2022]). Let X1, X2, . . . be a sequence of random variables
taking values in r0, ls. Define Fk “ σpX1, X2, . . . , Xk´1q and Yk “ ErXk | Fks for k ě 1. For
any δ ą 0, we have that

P

«

Dn,
n

ÿ

k“1

Xk ě 3
n

ÿ

k“1

Yk ` l lnp1{δq

ff

ď δ,

P

«

Dn,
n

ÿ

k“1

Yk ě 3
n

ÿ

k“1

Xk ` l lnp1{δq

ff

ď δ.

Lemma 4 (Lemma F.5 in Simchowitz and Jamieson [2019]). Let X,Y be two random variables
defined on the same probability space. Then

|
a

VrXs ´
a

VrY s| ď
a

ErpX ´ Y q2s.

Lemma 5 (Lemma B.5 in Simchowitz and Jamieson [2019]). Let a1, a2, ¨ ¨ ¨ , am be a sequence of
nonnegative reals and ε ą 0. Then,

clip

«

m
ÿ

i“1

ai|ε

ff

ď 2
m
ÿ

i“1

clip
”

ai|
ε

2m

ı

.

A.3 Model errors

Our analysis will mostly be based on the success of following inequalities.
Lemma 6 (Good events). Let ι “ logpSAHK{δq. With probability at least 1 ´ 10δ, the following
inequalities hold for all s, a, s1, h, k:

|r̂khps, aq ´ rhps, aq| ď

d

2Vr1„Rs,a,hrr1sι

nk
hps, aq

`
Hι

nk
hps, aq

,

|P̂ k
s,a,hps1q ´ Ps,a,hps1q| ď

d

2Ps,a,hps1qι

nk
hps, aq

`
ι

nk
hps, aq

,

|Es1
„P̂k

s,a,hrV ˚
h`1ps1qs ´ Es1

„Pk
s,a,hrV ˚

h`1ps1qs| ď

d

2Vs1„Ps,a,hV ˚
h`1ps1qι

nk
hps, aq

`
Hι

nk
hps, aq

,
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b

Vs1„P̂k
s,a,hrV ˚

h`1ps1qs ´

b

Vs1„Ps,a,hrV ˚
h`1ps1qs ď H

d

2ι

nk
hps, aq ´ 1

.

b

σ̂k
hps, aq ´ pr̂khps, aqq2 ´

b

Vr1„Rs,a,hrr1s ď H

d

2ι

nk
hps, aq ´ 1

.

Proof. The first three inequalities can be derived from Theorem 1, Theorem 2. The last two inequal-
ities are adapted from Theorem 10 in Maurer and Pontil [2009].

Lemma 7. Let V be a function defined on S. Conditioned on the success of Lemma 6,

|Es1
„P̂s,a,hrV ps1qs ´ Es1

„Ps,a,hrV ps1qs| ď

d

2SEs1„Ps,a,hrV ps1q2sι

nk
hps, aq

`
maxsPS |V psq|Sι

nk
hps, aq

.

Proof. Let M “ maxsPS |V psq|. Then, by Lemma 6,

|Es1
„P̂s,a,hrV ps1qs ´ Es1

„Ps,a,hrV ps1qs|

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS
pP̂ k

s,a,hps1q ´ Ps,a,hps1qqV ps1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

s1PS
|V ps1q|

˜
d

2Ps,a,hps1qι

nk
hps, aq

`
ι

nk
hps, aq

¸

ď

g

f

f

e

˜

ÿ

s1PS
Ps,a,hps1qV ps1q2

¸ ˜

ÿ

s1PS

2ι

nk
hps, aq

¸

`
MSι

nk
hps, aq

“

d

Es1„Ps,a,hrV ps1q2s ¨
2Sι

nk
hps, aq

`
MSι

nk
hps, aq

.

A.4 Variance bounds

Corollary 4. Let π be any fixed policy. For any h P H and s P S, we have

Eπ

«

H
ÿ

h1“h

Var˚
hpsh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

ď H2.

Proof. Recall that Es1
„Ps,a,hrV ˚

h`1ps1qs “ Q˚
hps, aq ´ rhpx, aq ď V ˚

h psq ´ rhps, aq, so

Eπ

«

H
ÿ

h1“h

Var˚
hpsh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

“Eπ

«

H
ÿ

h1“h

Vr1
„Rs

h1 ,ah1 ,h
1
rr1s `

H
ÿ

h“h1

Vs1
„Ps

h1 ,ah1 ,h
1
rV ˚

h1`1ps1qs

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

ďEπ

«

H
ÿ

h1“h

pr1
h1 ´ rh1 psh1 , ah1 qq2 `

H
ÿ

h1“h

pV ˚
h1`1psh1`1q ´ V ˚

h1 psh1 , ah1 q ` rh1 psh1 qq2

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

ďEπ

»

–

˜

H
ÿ

h1“h

pr1
h1 ` V ˚

h1`1psh1`1q ´ V ˚
h1 psh1 qq

¸2 ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

fi

fl (7)
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ďEπ

»

–

˜

H
ÿ

h“h1

r1
h1 ´ V ˚

h pshq

¸2 ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

fi

fl ď H2,

where Equation (7) is because of independence and that

Es1
„Ps

h1 ,ah1 ,hrV ˚
h1`1ps1q ´ V ˚

h1 psh1 , ah1 q ` rh1 psh1 qs ď 0 “ Er1
„Rs

h1 ,ah1 ,hrr1 ´ rh1 psh1 , ah1 qs.

Lemma 8 (Lemma 42, Zhou et al. [2023]). Let π be any fixed policy. For any δ ą 0,

Pπ

«

H
ÿ

h1“h

Var˚
hpsh1 , ah1 q ě 160H2 logp4pH ` 1q{δq

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

ď δ.

Proof. We have
H
ÿ

h1“h

Var˚
hpsh1 , ah1 q “

H
ÿ

h1“h

Vr1
„Rs

h1 ,ah1 ,h
1
rr1s `

H
ÿ

h1“h

Vs1
„Ps

h1 ,ah1 ,h
1
rV ˚

h1`1ps1qs

“

H
ÿ

h1“h

Es1
„Ps

h1 ,ah1 ,h
1
rV ˚

h1`1ps1q2s ´

H
ÿ

h1“h

pQ˚
h1 psh1 , ah1 q ´ rh1 psh1 , ah1 qq2 `

H
ÿ

h1“h

Hrh1 psh1 , ah1 q

ď

H
ÿ

h1“h

pEs1
„Ps

h1 ,ah1 ,h
1
rV ˚

h1`1ps1q2s ´ V ˚
h1`1psh1`1q2q

`

H
ÿ

h1“h

pV ˚
h1 psh1 q2 ´ pQ˚

h1 psh1 , ah1 q ´ rh1 psh1 , ah1 qq2q ` H2

ď2

g

f

f

e2
H
ÿ

h1“h

Vs1„Ps
h1 ,ah1 ,h

1
rV ˚

h1`1psh1`1q2s logp1{δq ` 2
a

H4 logp1{δq ` 2H2 logp1{δq (8)

` 2H
H
ÿ

h1“h

pV ˚
h1 psh1 q ´ Q˚

h1 psh1 , ah1 q ` rh1 psh1 , ah1 qq ` H2

ď4H

g

f

f

e2
H
ÿ

h1“h

Vs1„Ps
h1 ,ah1 ,h

1
rV ˚

h1`1ps1q2sq logp1{δq ` 5H2 logp1{δq ` 2H ¨ V ˚
h pshq

` 4H

g

f

f

e2
H
ÿ

h1“h

Vs1„Ps
h1 ,ah1 ,h

1
rV ˚

h1`1ps1q2sq logp1{δq ` 4H
a

H2 logp1{δq ` 4H2 logp1{δq (9)

ď8H

g

f

f

e2
H
ÿ

h1“h

Var˚
h1 psh1 , ah1 q ` 15H2 logp1{δq,

where Equations (8) and (9) holds with probability 1 ´ 2pH ` 1qδ each by Lemma 2. Thus, by
solving the quadratic equation,

Pπ

«

H
ÿ

h1“h

Var˚
hpsh1 , ah1 q ě 160H2 logp1{δq

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

ď 1 ´ 4pH ` 1qδ.

The proof is finished with rescaling δ.

B MVP Algorithm descrpition

This section provides a description of MVP algorithm (Algorithm 1) in detail3.
3The original version of MVP contains a doubling mechanism to trigger updates of V and Q mainly to

lower switching cost. Since switching cost is not central to gap-dependent analysis, we choose to update Vh

and Qh every episode for simplicity.
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Algorithm 1 Monotonic Value Propagation (MVP)
Require: MDP M “ pS,A, H, P,R, µq, learning episode number K, confidence parameter δ,

universal constants c1, c2, c3, ι “ logpSAHK{δq.
1: Initialize: For all ps, a, s1, hq P S ˆAˆS ˆ rH `1s, set θhps, aq, κhps, aq Ð 0, nhps, a, s1q Ð

0, nhps, aq, Qhps, aq, Vhpsq Ð 0.
2: for k “ 1, 2, ¨ ¨ ¨ ,K do
3: Construct policy πk such that πk

hpsq “ argmaxa Qhps, aq.
4: Observe trajectory sk1 , a

k
1 , r

k
1 , s

k
2 , a

k
2 , r

k
2 , ¨ ¨ ¨ , skh, a

k
h, r

k
h.

5: for h “ H,H ´ 1, . . . , 1 do
6: ps, a, s1q Ð pskh, a

k
h, s

k
h`1q

7: Update nhps, a, s1q Ð nhps, a, s1q ` 1, nhps, aq Ð nhps, aq ` 1, θhps, aq Ð θhps, aq `

rkh, κhps, aq Ð κhps, aq ` prkhq2.
8: r̂hps, aq “

θhps,aq

nhps,aq

9: σ̂hps, aq “
κhps,aq

nhps,aq

10: P̂hps, a, s1q “
nhps,a,s1

q

nhps,aq

11: for ps, aq P S ˆ A do

12: bhps, aq Ð c1

c

Vs1„P̂s,a,h rVh`1ps1qsι
nhps,aq_1 ` c2

b

pσ̂hps,aq´pr̂hps,aqq2qι
nhps,aq_1 ` c3

Hι
nhps,aq_1

13: Qhps, aq Ð mintr̂hps, aq ` Es1
„P̂s,a,hVh`1 ` bhps, aq, Hu

14: Vhpsq Ð maxa Qhps, aq

15: end for
16: end for
17: end for

C Proof of main theorem

We begin by choosing the universal constants in the algorithm as c1 “ c2 “ 2, c3 “ 10.

C.1 Clipping surpluses

Existing analysis of MDP already shows that Qk
h and V k

h are upper bounds of Q˚
h and V ˚

h with high
probability as expected:

Lemma 9. With probability at least 1 ´ 4δ, for all s, a, h, k P S ˆ A ˆ rHs ˆ rKs,

Qk
hps, aq ě Q˚

hps, aq, V k
h psq ě V ˚

h psq.

Proof. The proof is almost the same as Lemma 8 in Zhang et al. [2024] with necessary modifications
for our constant choices. Since c3 “ 10 ě 4 “ c21, the monotonic function can be constructed as

fP,npvq :“ Es„P rvpsqs ` max

#

2

c

Vs„P rvpsqsι

n
,
4Hι

n

+

.

We define clipped surpluses as

Ēk
hpsh, ahq “ clip

„

Ek
hpsh, ahq|c4∆min max

"

Var˚
hps, aq

mintH2, Varc
maxu

`
1

H

*ȷ

. (10)

Also, we recursively define
Q̄k

H`1ps, aq “ V̄ k
H`1psq “ 0,

Q̄k
hps, aq “ rkhps, aq ` Ēk

hps, aq ` Es1
„Ps,a,hrV̄ k

h`1psqs, V̄ k
h psq “ max

a
Q̄k

hps, aq

for h “ H,H ´ 1, ¨ ¨ ¨ , 1, and Q̄k
0 “ V̄ k

0 “ Es1
„µrV̄ k

1 ps1qs.
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Lemma 10.
V̄ k
h psq ě V k

h psq ´
∆min

3
.

Proof. We have Ēk
hps, aq ě Ek

hps, aq ´
∆minVar

˚
h ps,aq

6pH2^Varc
maxq

´ ∆min

6H for any pair of s, a, h. Thus,

V̄ k
h psq ´ V k

h psq

“Eπk

«

H
ÿ

h1“h

Ēk
hpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

ěEπk

«

H
ÿ

h1“h

Ek
hpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

´
∆min

6pH2 ^ Varc
maxq

Ek

«

H
ÿ

h1“h

Var˚
hpsh, ahq

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

´

H
ÿ

h1“h

∆min

6H

ěV k
h psq ´ V k

h psq ´
∆min

3
,

where the last line is due to Theorem 4 and definition of Varc
max.

This lemma links the half-clipped values V̄ k
h with the optimal values V ˚

h .
Lemma 11. Conditioned on success of Lemma 9, for any state s P S and h P rHs,

V ˚
h psq ´ V k

h psq ď
3

2
pV̄hpsq ´ V k

h psqq.

Proof. The first step in the proof is to recursively expand both sides at all states where an optimal
action is taken. Specifically, we let

Eh˚ “ tπk
h1 psh1 q “ ah1 , h1 “ h, h ` 1, ¨ ¨ ¨ , h˚u,

and Eh˚ ´ Eh˚`1 as the set of the trajectories in Eh˚ but not in Eh˚`1 (that is, those trajectories
where the first suboptimal action after the h-step is at the ph˚ ` 1q-th step). Since trajectories are
sampled with policy πk, Eh is the set of all trajectories with sh “ s.

We hope to claim that

V ˚
h psq ´ V k

h psq “

h˚
ÿ

h1“h`1

Eπk

r1tEh1´1 ´ Eh1 upV ˚
h1 psh1 q ´ V πk

h1 psh1 qq|sh “ ss (11)

` Eπk

r1tEh˚ upV ˚
h˚`1psh˚`1q ´ V πk

h˚`1psh˚`1q|sh “ ss (12)

and

V̄ k
h psq ´ V k

h psq ě

h˚
ÿ

h1“h`1

Eπk

r1tEh1´1 ´ Eh1 upV̄ k
h1 psh1 q ´ V πk

h1 psh1 qq|sh “ ss (13)

` Eπk

r1tEh˚ upV̄ k
h˚`1psh˚`1q ´ V πk

h˚`1psh˚`1qq|sh “ ss. (14)

These claims are proved by induction on h˚ and expanding the last term on event Eh˚`1. For
Equation (11), we have

V ˚
h˚ psh˚ q ´ V πk

h˚ psh˚ q

“Q˚
h˚ psh˚ , πk

h˚ psh˚ qq ´ Qπk

h˚ psh˚ , πk
h˚ psh˚ qq

“Es1
„Ps,π

h˚ ,k rV ˚
h˚`1ps1q ´ V ˚

h˚`1ps1qs

when the trajectory is in Eh˚`1, and for Equation (13), we have

V̄ k
h˚ psq ´ V πk

h˚ psq “ Q̄k
h˚ ps, πk

h˚ psqq ´ Qπk

h˚ ps, πk
h˚ psqq

“Ēk
h˚ ps, aq ` E

s1
„P

s,πk
h˚

psq,k
rV̄ k

h˚`1ps1q ´ V̄ πk

h˚`1ps1qs
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ěE
s1

„P
s,πk

h˚
psq,k

rV̄ k
h˚`1ps1q ´ V̄ πk

h˚`1ps1qs.

We will use Equation (11) and Equation (13) when h˚ “ H . In this case, the last lines are both zero,
so it suffices to show that

3

2
pV̄ k

h1 psh1 q ´ V πk

h1 psh1 qq ě V ˚
h1 psh1 q ´ V πk

h1 psh1 q

on Eh1´1 ´ Eh1 . In fact, since the trajectory is sampled from πk, and since ah1 is suboptimal, we
have that

V̄ k
h1 psh1 q ě V k

h psh1 q ´
∆min

3
“ Qk

h1 psh1 , ah1 q ´
∆min

3
ě V ˚

h1 psh1 q ´
∆h1 psh1 , ah1 q

3
ě

2

3
V ˚
h1 psh1 q,

where the last inequality is because ∆h1 psh1 , ah1 q “ V πk

h1 psh1 q ´ Q˚
h1 psh1 , ah1 q ď V πk

h1 psh1 q.

Lemma 12. Conditioned on success of Lemma 9, if a “ πk
hpsq, then

∆hps, aq ď
3

2

H
ÿ

h1“h

Eπk

rĒk
h1 psh1 , ah1 q|psh, ahqs.

Lemma 13. Conditioned on success of Lemma 9,

V ˚
0 ´ V πk

0 ď
3

2

H
ÿ

h“1

Eπk

rĒk
hpsh, ahqs.

Proof. We prove Lemmas 12 and 13 together. By recursively applying

V̄ k
h psq ´ V k

h psq “ Ēk
hps, πk

hpsqq ` Es1
„P

s,πk
h

psq,hrV̄ k
h`1psq ´ V πk

h`1psqs,

we have

V̄ k
h psq ´ V k

h psq “

H
ÿ

h1“h

Eπk “

Ēk
h1 psh1 , ah1 q|sh “ s

‰

.

Then we use Lemma 11 and

∆hps, aq “ V ˚
h psq ´ Q˚

hps, aq ď V ˚
h psq ´ V k

h psq, V ˚
0 ´ V πk

0 “ Eπk

rV ˚
1 ps1q ´ V πk

1 ps1qs,

for Lemmas 12 and 13, respectively.

C.2 Estimating Surpluses

Lemma 14. Conditioned on success of Lemma 6,

bkhps, aq ď
2

H
Es1

„P̂k
s,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s ` 2

d

2Var˚
hps, aqι

nk
hps, aq

`
20Hι

nk
hps, aq

.

Proof. Recall that our choice of bonus in the algorithm is

bkhps, aq “ 2

d

Vs1„P̂k
s,a,hrVh`1ps1qsι

nk
hps, aq

` 2

d

pσ̂k
hps, aq ´ pr̂khps, aqq2qι

nk
hps, aq

`
10Hι

nk
hps, aq

.

Since the last term is at least H if nk
hps, aq “ 1, it suffices to consider nk

hps, aq ě 2. The first term
can be bounded using

b

Vs1„P̂k
s,a,hrV k

h`1ps1qs “

ˆ

b

Vs1„P̂k
s,a,hrV k

h`1ps1qs ´

b

Vs1„P̂k
s,a,hrV ˚

h`1ps1qs

˙

`

ˆ

b

Vs1„P̂k
s,a,hrV ˚

h`1ps1qs ´

b

Vs1„Pk
s,a,hrV ˚

h`1ps1qs

˙

`

b

Vs1„Pk
s,a,hrV ˚

h`1ps1qs
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ď

b

Es1„P̂k
s,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s ` H

d

2ι

nk
hps, aq ´ 1

`

b

Vs1„Pk
s,a,hrV ˚

h`1ps1qs

by Lemmas 4 and 6, so
d

Vs1„P̂k
s,a,hrVh`1ps1qsι

nk
hps, aq

ď

c

Es1„P̂k
s,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s ¨

ι

nk
hps, aq

`
2Hι

nk
hps, aq

`

g

f

f

e

Vs1„Pk
s,a,hrV ˚

h`1ps1qsι

nk
hps, aq

ď
1

H
Es1

„P̂k
s,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s `

g

f

f

e

Vs1„Pk
s,a,hrV ˚

h`1ps1qsι

nk
hps, aq

`
3Hι

nk
hps, aq

.

The second term of bkhps, aq can easily be bounded by Lemma 6 as
d

pσ̂k
hps, aq ´ pr̂khps, aqq2qι

nk
hps, aq

ď

d

Vr1„Rs,a,hrr1sι

nk
hps, aq

`
2Hι

nk
hps, aq

.

Thus

bkhps, aq ď
2

H
Es1

„P̂k
s,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s ` 2

d

2Var˚
hps, aqι

nk
hps, aq

`
20Hι

nk
hps, aq

.

Lemma 15. Conditioned on success of Lemma 6,

V k
h psq ´ V ˚

h psq ď Eπk

«

H
ÿ

h1“h

H ^ 22H

d

Sι

nk
h1 psh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

Proof. We begin by decomposing V k
h ps1q ´ V ˚

h ps1q as follows:

V k
h psq ´ V ˚

h psq ď V k
h psq ´ Q˚

hps, πk
hpsqq

“r̂khps, aq ` bkhps, aq ` Es1
„P̂s,a,hV k

h`1ps1q ´ rhps, aq ´ Es1
„Ps,a,hV ˚

h`1ps1q

“pr̂khps, aq ´ rhps, aqq ` pEs1
„P̂s,a,hrV k

h`1ps1q ´ V ˚
h`1ps1qs ´ Es1

„Ps,a,hrV k
h`1ps1q ´ V ˚

h`1ps1qsq

` pEs1
„P̂s,a,hV ˚

h`1ps1q ´ Es1
„Ps,a,hV ˚

h`1ps1qq ` Es1
„Ps,a,hrV k

h`1ps1q ´ V ˚
h`1ps1qs ` bkhps, aq.

By Lemmas 6 and 7 (with V “ V k
h`1 ´ V ˚

h`1) and definition of bkhps, aq, we conclude

V k
h psq ´ V ˚

h psq ď Es1
„Ps,a,hrV k

h`1ps1q ´ V ˚
h`1ps1qs `

˜
d

2Vr1„Rs,a,hrr1sι

nk
hps, aq

`
Hι

nk
hps, aq

¸

`

˜

d

2SEs1„Ps,a,hrpV k
h`1ps1q ´ V ˚

h`1ps1qq2sι

nk
hps, aq

`
SHι

nk
hps, aq

¸

`

˜

d

2Vs1„Ps,a,hrV ˚
h`1ps1q2sι

nk
hps, aq

`
Hι

nk
hps, aq

¸

`

¨

˝2

d

Vs1„P̂k
s,a,hrVh`1ps1qsι

nk
hps, aq

` 2

d

pσ̂k
hps, aq ´ pr̂khps, aqq2qι

nk
hps, aq

`
10Hι

nk
hps, aq

˛

‚

ďEs1
„Ps,a,hrV k

h`1ps1q ´ V ˚
h`1ps1qs ` p3

?
2 ` 4qH

d

Sι

nk
hps, aq

`
13SHι

nk
hps, aq

.
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If Sι ď nk
hps, aq then we have

V k
h psq ´ V ˚

h psq ď Es1
„Ps,a,hrV k

h`1ps1q ´ V ˚
h`1ps1qs `

˜

H ^ 22H

d

Sι

nk
hps, aq

¸

. (15)

If Sι ą nk
hps, aq, then Equation (15) also holds since V k

h psq´V ˚
h psq ď H . Thus, we can recursively

apply Equation (15) and conclude

V k
h psq ´ V ˚

h psq ď Eπk

«

H
ÿ

h1“h

H ^ 22H

d

Sι

nk
h1 psh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s

ff

Lemma 16. Conditioned on success of Lemma 6, if a “ πk
hpsq then

Ek
hps, aq ď

˜

H ^ 5

d

Var˚
hps, aqι

nk
hps, aq

¸

` Eπk

«

H
ÿ

h1“h

3H2 ^
1500SH2ι

nk
h1 psh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

psh, ahq “ ps, aq

ff

.

Proof. Similar to the proof of Lemma 15,

Ek
hps, aq “ Qk

hps, aq ´ rhps, aq ´ Es1
„Ps,a,hrV k

h`1ps1qs

“r̂khps, aq ` bkhps, aq ` Es1
„P̂s,a,hV k

h`1ps1q ´ rhps, aq ´ Es1
„Ps,a,hV k

h`1ps1q

ď|r̂khps, aq ´ rhps, aq| ` |Es1
„P̂s,a,hrV k

h`1ps1q ´ V ˚
h`1ps1qs ´ Es1

„Ps,a,hrV k
h`1ps1q ´ V ˚

h`1ps1qs|

` |Es1
„P̂s,a,hV ˚

h`1ps1q ´ Es1
„Ps,a,hV ˚

h`1ps1q| ` bkhps, aq.

We will apply Lemmas 6, 7 and 14 to bound each term. So

Ek
hps, aq ď

d

2Vr1„Rs,a,hrr1sι

nk
hps, aq

`
Hι

nk
hps, aq

`
1

H
Es1

„Ps,a,hrpV k
h`1ps1q ´ V ˚

h`1ps1qq2s `
SHι

nk
hps, aq

`

d

2Vs1„Ps,a,hrV ˚
h ps1qsι

nk
hps, aq

`
Hι

nk
hps, aq

`
2

H
Es1

„P̂k
s,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s ` 2

d

2Var˚
hps, aqι

nk
hps, aq

`
20Hι

nk
hps, aq

.

By Lemma 7 (with V “ pV k
h`1 ´ V ˚

h`1q2) again,

Es1
„P̂k

s,a,hrpV k
h`1ps1q ´ V ˚

h`1ps1qq2s ´ Es1
„Ps,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s

ď

d

2SEs1„Ps,a,hrpV k
h`1ps1q ´ V ˚

h`1ps1qq4sι

nk
hps, aq

`
SH2ι

nk
hps, aq

ď

d

2H2SEs1„Ps,a,hrpV k
h`1ps1q ´ V ˚

h`1ps1qq2sι

nk
hps, aq

`
SH2ι

nk
hps, aq

ďEs1
„Ps,a,hrpV k

h`1ps1q ´ V ˚
h`1ps1qq2s `

2SH2ι

nk
hps, aq

.

By Lemma 15,

pV k
h`1ps1q ´ V ˚

h`1ps1qq2 ď Eπk

»

–

˜

H
ÿ

h1“h`1

H ^ 22H

d

Sι

nk
h1 psh1 , ah1 q

¸2 ˇ

ˇ

ˇ

ˇ

ˇ

sh`1 “ s1

fi

fl
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ďEπk

«

H
ÿ

h1“h`1

H3 ^
500SH3ι

nk
h1 psh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

sh`1 “ s1

ff

.

Hence,

Ek
hps, aq ď p2 ` 2

?
2q

d

Var˚
hps, aqι

nk
hps, aq

`
3

H
Es1

„Ps,a,hrpV k
h`1ps1q ´ V ˚

h`1ps1qq2s `
27SHι

nk
hps, aq

ď5

d

Var˚
hps, aqι

nk
hps, aq

` Eπk

«

H
ÿ

h1“h

3H2 ^
1500SH2ι

nk
h1 psh1 , ah1 q

ˇ

ˇ

ˇ

ˇ

ˇ

psh, ahq “ ps, aq

ff

.

The extra “H^” part is because Ek
hps, aq ď H by definition.

C.3 Concentration of visitation count

This lemma shows that the sum of visiting probabilities is bounded by nk
h.

Lemma 17. With probability at least 1 ´ δ,

k
ÿ

k1“1

Er1tpsk
1

h , ak
1

h q “ ps, aqu|Fk1 s ď 3nk
hps, aq ` ι

for all s, a, h, k, where Fk is the σ-field generated by the first k ´ 1 episodes.

Proof. This is a direct consequence of Lemma 3.

The next lemma considers a weighted sum over visiting probabilities.

Lemma 18. With probability at least 1 ´ 2δ,

k
ÿ

k1“1

h
ÿ

h1“1

whpsk
1

h1 , ak
1

h1 qEr1tpsk
1

h , ak
1

h q “ ps, aqu|Fk1,h1 s ď 9W̄nk
hps, aq ` 4HW̄ι,

for all s, a, h, k, where we recall the definition

whps, aq “ Var˚
hps, aq, W̄ “ mint160H2 logp4KpH ` 1q{δq, Varc

maxu

and Fk,h is the σ-field generated by the first pk´1q episodes and the first h steps of the k-th episode.

Proof. By Lemma 3 and whpskh1 , akh1 q ď W̄ ,

k
ÿ

k1“1

h
ÿ

h1“1

whpsk
1

h1 , ak
1

h1 qEr1tpsh, ahq “ ps, aqu|Fk1,h1 s ď 3
k

ÿ

k1“1

h
ÿ

h1“1

whpsk
1

h1 , ak
1

h1 q1tpsh, ahq “ ps, aqu`W̄ ι

for all s, a, h, k. Then, we will bound
řk

k1“1

řh
h1“1 whpsk

1

h1 , ak
1

h1 q1tpsh, ahq “ ps, aqu in two differ-
ent ways for each term in W̄ .

First, we apply Lemma 3 again with respect to only the sum over k1 with psk
1

h , ak
1

h q “ ps, aq. This
shows

k
ÿ

k1“1

h
ÿ

h1“1

whpsk
1

h1 , ak
1

h1 q1tpsk
1

h , ak
1

h q “ ps, aqu ď 3Varc
maxn

k
hps, aq ` HVarc

maxι.

Second, by Lemma 8, with probability 1 ´ δ,

H
ÿ

h1“1

whpsk
1

h1 , ak
1

h1 q1tpsk
1

h , ak
1

h q “ ps, aqu ď 160H2 logp4KpH ` 1q{δq1tpsk
1

h , ak
1

h q “ ps, aqu
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for all k1 “ 1, 2, ¨ ¨ ¨ ,K. Thus,

k
ÿ

k1“1

h
ÿ

h1“1

whpsk
1

h1 , ak
1

h1 q1tpsk
1

h , ak
1

h q “ ps, aqu ď 160H2 logp4KpH ` 1q{δqnk
hps, aq.

Hence we conclude
k

ÿ

k1“1

h
ÿ

h1“1

whpsk
1

h1 , ak
1

h1 qEr1tpsk
1

h , ak
1

h q “ ps, aqu|Fk1,h1 s ď 9W̄nk
hps, aq ` 4HW̄ι.

Lemma 19. Let f be a non-increasing nonnegative function defined on r1,`8q with fp1q ď M .
Conditioned on success event of Lemma 17, we have

K
ÿ

k“1

fpnk
hps, aqqPrpskh, a

k
hq “ ps, aq|Fks ď Mpι ` 3q ` 3

ż nK
h ps,aq

1

fpxqdx.

Proof. Let n1
k “

řk
k1“1 Prpsk

1

h , ak
1

h q “ ps, aq|Fk1 s ď 3nk
hps, aq ` ι and

K0 “ mintk : n1
k ě ι ` 3u.

(If n1
K ă ι ` 3 then we define K0 “ K.) Then,

K
ÿ

k“1

fpnk
hps, aqqPrpskh, a

k
hq “ ps, aq|Fks

“

K0
ÿ

k“1

fpnk
hps, aqqPrpskh, a

k
hq “ ps, aq|Fks `

K
ÿ

k“K0`1

fpnk
hps, aqqPrpskh, a

k
hq “ ps, aq|Fks

ďM
K0
ÿ

k“1

Prpskh, a
k
hq “ ps, aq|Fks `

K
ÿ

k“K0`1

fppn1
k ´ ιq{3qpn1

k ´ n1
k´1q

ďMn1
K0

`

K
ÿ

k“K0`1

ż n1
k

n1
k´1

fppx ´ ιq{3qdx

ďMpι ` 3q `

ż n1
K

n1
K0

fppx ´ ιq{3qdx ď Mpι ` 3q `

ż n1
K

ι`3

fppx ´ ιq{3qdx

“Mpι ` 3q ` 3

ż pn1
K´ιq{3

1

fpxqdx ď Mpι ` 3q ` 3

ż nK
h ps,aq

1

fpxqdx.

Lemma 20. Let f be a non-increasing nonnegative function defined on r0,`8q with upper bound
M . Conditioned on success event of Lemma 18, we have

K
ÿ

k“1

fpnk
hps, aqq

h
ÿ

h1“1

whpskh1 , akh1 qPrpskh, a
k
hq “ ps, aq|Fk,h1 s ď MW̄ p4Hι`9q`9W̄

ż nK
h ps,aq

1

fpxqdx.

The proof is similar to that of Lemma 19.

C.4 Final calculations

Our calculations are conditioned on success of Lemmas 6, 9, 17 and 18, and they happen simultane-
ously with probability at least 1 ´ 20δ.

We begin by analyzing the clipped surplus. By Lemmas 5 and 16, we have
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C.4.1 Bounding regret

By Lemma 13, we have
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We will use Lemma 19 to bound the two sums.
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When ∆hps, aq ą 0, we bound the integration by
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For the second sum, we bound similarly that
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C.4.2 Lower-bounding visitation count

Recall the lower bound in Lemma 12. We begin by taking a weighted sum over all states visited
during the algorithm:
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with probability at least 1 ´ 20δ, as we have claimed in the main text.

Thus we have proved the following main theorem.
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Theorem 5 (Formal statement of Theorem 2). Suppose we run MVP algorithm with universal con-
stants c1 “ c2 “ 2, c3 “ 10. For any MDP instance M satisfying Assumption 1 and any confidence
parameter δ ą 0, any episode number K ě 1, with probability at least 1 ´ 20δ,

RegretpKq À
ÿ

ps,a,hqPZsub

pH2 logpHK{δq ^ Varc
maxq logpSAHK{δq

∆hps, aq

`
|Zopt|pH

2 ^ Varc
maxq logpSAHK{δq

∆min

` S2AH4 logpSAHK{δq logpSAH∆´1
min logpSAHK{δqq
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D Regret Lower Bound

Theorem 6 (Formal statement of Theorem 3). For a given configuration of S,A,H , target condi-
tional variance L P r1, H2s, as well as a set of suboptimality gaps ∆ “ t∆1,∆2, . . . ,∆SAHu, we
make the following mild assumptions:

• Let I “ ti | ∆i “ 0u. Assume that |I| ě SH , i.e., the suboptimality gaps are realizable.

• Assume that ∆i ă
?
L for all 1 ď i ď SAH .

For any algorithm π, there exists an MDP instance Mπ satisfying:

• It has
ˇ

ˇS̄
ˇ

ˇ “ S ` 2 states and A actions.

• There exists S Ă S̄ such that |S| “ S, and a bijection σ between rHsˆSˆA and rSAHs,
satisfying ∆hps, aq “ 1

4∆σph,s,aq for any ph, s, aq P rHs ˆ S ˆ A.

• Varc
max “ ΘpLq, while Varmax ď Op1q.

such that
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Proof. First consider multi-armed bandit lower bound given a set of gaps ∆ “ t∆1,∆2, . . . ,∆Au

and a target variance L. WLOG, assume ∆i ď ∆i`1. Construct Bernoulli outcomes for each
action ai: w.p. pi “ 1
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P r 14 ,
1
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. Then Varpaiq “ pip1 ´ piqL “ ΘpLq. We
invoke standard lower bound [Lai and Robbins, 1985] with reward outcomes in r0, 1s. We first scale
the rewards in our example by 1?

L
. For any algorithm π, there exists a permutation on the gaps (into
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∆π), such that
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where klpp, qq “ p log p
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1´q ; (i) is by p 1
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ě x logp2xq ` p1 ´ xq logp2 ´ 2xq for
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Scaling back, we have
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Then, we construct the MDP as:

• States: in total S ` 2 states. s0 as a main state, s1, s2, . . . , sS as bandit states, s´1 as a
terminal state.

• Transition: s0 does not require decision-making: Ps0,a,hps0q “ 1 ´ 1
LH , Ps0,a,hpsiq “

1
LSH for 1 ď i ď S. si is a bandit problem, and directly transits into s´1: Psi,a,hps´1q “ 1
for 1 ď i ď S. s´1 is self-absorbing: Ps´1,a,hps´1q “ 1.

• Rewards: for s0 and s´1, all rewards are 0. Rewards for psi, a, hq are decided by the
construction below.

Assign ∆ into H ˆ S groups, each with exactly A items: t∆h,siuph,iqPrHsˆrSs and from the as-
sumption we can guarantee at least one 0 gap in each group. We have dhpsiq “ 1
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r 1
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We have Var˚
hps0q “ Θpp1 ´ 1

LH q 1
LH ¨ Lq “ Θp 1

H q, Var˚
hps´1q “ 0, and Var˚

hpsiq “ ΘpLq. It is
easy to verify that Varc

max is taken at states ph, siq, so
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max “ max

h,i

#
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hpsiq `

h´1
ÿ
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Var˚
t ps0q

+
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However,
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H
ÿ

h“1

˜

dhps0qVar˚
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S
ÿ
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˚
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¸
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showcasing the separation between Varc
max and Varmax.
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