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Abstract

We consider gap-dependent regret bounds for episodic MDPs. We show that the
Monotonic Value Propagation (MVP) algorithm (Zhang et al. [2024]) achieves a
variance-aware gap-dependent regret bound of

~ H?log K A Var® H? A Var®
max max AH4 H 1 K
0 > Arloa) + ) R w—— (Sv H) |logK |,

Ap(s,a)>0 Ap(s,a)=0

where H is the planning horizon, S is the number of states, A is the number of
actions, K is the number of episodes, and O hides poly log(S, A, H,1/Ayin, 1/0)
terms. Here, Ap(s,a) = V;*(a) — Q5 (s, a) represents the suboptimality gap
and Ay = ming, (s,a)>0 An(s,a). The term Varf . denotes the maximum
conditional total variance, calculated as the maximum over all (7, h, s) tuples of
the expected total variance under policy 7 conditioned on trajectories visiting state
s at step h. Var{ . characterizes the maximum randomness encountered when
learning any (h, s) pair. Our result stems from a novel analysis of the weighted
sum of the suboptimality gap and can be potentially adapted for other algorithms.
To complement the study, we establish a lower bound of

H? A Var®,
Z AN armax.logK

0 A Vamax
Ap(s,a) ’

Ap(s,a)>0
demonstrating the necessity of dependence on Vart ,. even when the maximum
unconditional total variance (without conditioning on (h, s)) approaches zero.

1 Introduction

Reinforcement learning (RL, Sutton et al. [1998]) is an interactive decision-making problem where
an agent gains information from an unknown environment through taking actions, with the goal
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of maximizing the total reward. RL has a wide range of applications, such as robotics and control
[Lillicrap et al., 2015], games [Silver et al., 2016], finance [Nevmyvaka et al., 2006], healthcare [Liu
et al., 2017], and recommendation systems [Chen et al., 2019].

The most canonical setting in RL is episodic learning in tabular Markov decision processes (MDPs),
where the agent interacts with the MDP for K episodes, each episode allowing exactly H steps
taken. Under this setting, we choose cumulative regret as the performance criteria, which should
scale sublinearly with K to indicate that the agent is making progress by shortening the performance
difference between the policy 7% played in episode k and the optimal policy 7*. Most work [Azar
et al., 2017, Jin et al., 2018, Dann et al., 2019, Zhang et al., 2020, 2021a] in this topic focused on
minimax regret that is the worst-case guarantee for the algorithms over all the MDPs. Typically,
these minimax regret bounds have main order terms scaling with /K.

The MDPs in practice often enjoy benign structures, so the above-mentioned algorithms may per-
form far better than their worst-case guarantees. Consequently, problem-dependent regret bounds
are of great interest. Variance-dependent regret bounds [Talebi and Maillard, 2018, Zanette and
Brunskill, 2019, Zhou et al., 2023, Zhang et al., 2024] are informative when the MDP is near-
deterministic. This type of regret bounds have main order terms scaling with v/Var - K where Var
is a symbol for some variance quantity (might be different across different works). For deterministic
MDPs and MDPs such that V,*(s) = V;*(s) for any h, s, s’, Var = 0.

Meanwhile, gap-dependent regret bounds [Simchowitz and Jamieson, 2019, Yang et al., 2021, Dann
et al., 2021, Xu et al., 2021, Zheng et al., 2024] are especially favored when for every h, s, the
optimal value V;*(s) is better than other suboptimal values Q;(s,a) by a margin. Formally, let
Ap(s,a) = Vi¥(s) — Qf(s,a) and Apin := min{Ap(s,a) | (h,s,a) € [H] x S x A, Ap(s,a) >
0}, then a typical gap-dependent regret bound is

~ 1 ‘Zopt| -
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where Z,y, is the set of all suboptimal (h, s, a) tuples, Z,,. is the set of all optimal (h, s, a) tuples,

and O hides poly log(S, A, H,1/Amnin, 1/0) terms. When K is large enough, gap-dependent regrets
grow much slower than minimax and variance-dependent (when Var > 0) regrets.

A natural yet fundamental question about problem-dependent regrets is:
What is the tightest problem-dependent regret while considering both variance and gap?

If such a regret outperforms variance-only-dependent and gap-only-dependent regrets asymptoti-
cally (as T' — o0) while also being nearly minimax optimal, it is actually best-of-three-worlds!

To address the above problem, there are two factors that can be improved in previous gap-dependent
regrets. First is the dependence on variance quantities. Only Simchowitz and Jamieson [2019],
Zheng et al. [2024] contain variance-dependent terms in their gap-dependent regrets, while their
variance quantities are defined as the maximum per-step variance, Q* < H?. This quantity is first
defined in Zanette and Brunskill [2019], and all of them use HQ* as an almost-sure upper bound
on variances. This upper bound can be substantially larger than an expected total variance (such as
Definitions 5 and 6 in Zhou et al. [2023]). From this side, a tighter dependence on an expected total
variance can improve the regret.

Second is the dependence on H. Specifically, when compared under the rime-inhomogeneous set-
ting, the poly(H) factors in Equation (1) are H 3 HS H5, and H5 in Simchowitz and Jamieson
[2019], Yang et al. [2021], Xu et al. [2021], Zheng et al. [2024], respectively. Simchowitz and
Jamieson [2019] provides a lower bound of (Zs,a H?/A (s, a)), which indicates the chance of

shaving out extra H dependence.

Our contributions. We analyze the gap-dependent regret of the Monotonic Value Propagation
(MVP, Zhang et al. [2024] version) algorithm, which is a model-based algorithm already proven to
be near-optimal in the sense of minimax and variance-only-dependent regrets. After careful analysis,

2Xu et al. [2021] used a more fine-grained notion named 2, instead.



we show that the gap-dependent regret depends on a variance quantity VarS .. < HQ*, and the

max >

worst-case dependency on H is H?2. We improve the above-mentioned two factors simultaneously.
Formally, with probability at least 1 — J, the regret in K episodes by MVP is bounded as

~ H2looc K A Var® H2 A VarS z,
5 Z og K A Varf e (H? AVars, )| Zopt| L SAHY(S v H) |log K
(h,s,a)€ Zsup An(s,a) Anin
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To the best of our knowledge, we are the first to incorporate a tighter variance quantity into gap-
dependent regrets, and the worst-case dependency of H? in gap-dependent terms is also the state-
of-the-art (see Table 1).

To complement our upper bound, we provide a lower bound (see Theorem 3) of

H? A Var$
0 Z ﬁ log K
(h,s,a)€Zsup n(s,a)

With this lower bound, we show that the first term in the upper bound (2) is tight (modulo log terms).
This implies that (i) It is necessary to introduce the conditional total variance (see Definition 2) to
derive a variance-aware gap-dependent bound. In comparison, the unconditional total variance (see
Definition 1) is sufficient for variance-aware minimax bounds (e.g., Zhou et al. [2023]); (ii)) When
the first term in (2) dominates, the order of H cannot be improved.

Technical novelty. We propose a new variance metric to describe the upper bound of regret in
gap-dependent MDPs. Our version of variance metric considers the conditional total variance to
allow for some states with small visiting probability to accumulate a large regret over the whole
training progress.

To derive a tighter regret bound using our new metric, we utilize a novel analysis which reweighs the
suboptimality gaps. Our approach does not require the clipping and recursion method in Simchowitz
and Jamieson [2019] for the main bound; instead, we directly prove that a certain weight sum over
all suboptimality gaps times the visitation counts is bounded by a lower-order term of visitation
counts, and establish a congregated upper bound of all visitation counts. We believe our approach is
novel and reveals fundamental facts about suboptimality gaps.

We also propose a more refined version of clipping for optimal actions. Our version of clipping
utilizes the new conditional variance metric while also providing an O(H?) worst case bound for
Apin-dependent terms.

Finally, we prove that the Ap(s,a) terms in our upper bound match the lower bound modulo log
factors. The construction is based on a reduction to Bernoulli bandits. A key insight is that low-
frequency states, though often neglected in deriving minimax regret bounds, can still contribute
substantially to regret in gap-dependent bounds.

Paper overview. In Section 2, we introduce previous research about gap-dependent regret bound.
In Section 3, we list the basic concepts of MDPs and define the conditional variance. In Section 4,
we describe the MVP algorithm and provide a proof sketch of the gap-dependent regret upper bound.
We conclude our paper in Section 5 with a matching lower bound.

2 Related works

Gap-dependent regrets and sample complexities. Research on gap-dependent regrets originates
from multi-armed bandits, which are special MDPs with H = S = 1. Auer et al. [2002] showed a
Yacz., 108 K/A(a) type regret when running an UCB algorithm on MABs. Bubeck et al. [2012]

proposed algorithms achieving a },,. -  (A(a) +log(1/e)/A(a)) bounded regret given knowledge
of the maximum reward max, 7(a) as well as a lower bound ¢ > 0 of A.

Aside from the works studying finite-horizon tabular MDPs mentioned in Section 1, there is a line of
work under the setting of gap-dependent regrets for infinite-horizon tabular MDPs [Auer and Ortner,
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Table 1: Comparison between different algorithms and their gap-dependent regrets for time-
inhomogeneous MDPs. The result in Simchowitz and Jamieson [2019] is scaled accordingly as
it originally studied time-homogeneous MDPs. Variance-dependence: whether the gap-dependent
regret is also variance-dependent. Var? , < HQ*, so dependence on H? A Var$, . is tighter. Min-
imax Optimal: whether the analyzed algorithm achieves a O(v/ H3SAK) (main order) minimax
regret. Xu et al. [2021] did not provide such a guarantee.

2006, Tewari and Bartlett, 2007, Auer et al., 2008, Ok et al., 2018], while in these works, the gaps
are usually defined as the difference between policies instead of actions. Recently, gap-dependent
regrets have been studied for risk-sensitive RL [Fei and Xu, 2022], linear/general function classes
[He et al., 2021, Papini et al., 2021, Velegkas et al., 2022], and Markov games [Dou et al., 2022].

Gap-dependent sample complexities under online [Jonsson et al., 2020, Marjani and Proutiere, 2020,
Al Marjani et al., 2021, Wagenmaker et al., 2022b, Tirinzoni et al., 2022, Wagenmaker and Jamieson,
2022, Tirinzoni et al., 2023] and offline [Wang et al., 2022, Nguyen-Tang et al., 2023] RL setting
are also widely studied.

Minimax optimal regrets. Under the setting of time-inhomogeneous MDPs, algorithms achieving
a high-probability regret upper bound of O(v H3SAK) are (nearly) minimax optimal. There have
been many works with this guarantee while optimizing the lower order terms: Azar et al. [2017],
Osband and Van Roy [2017], Zanette and Brunskill [2019], Simchowitz and Jamieson [2019], Zhang
and Ji [2019], Zhang et al. [2020, 2021a], Ménard et al. [2021], Li et al. [2021], Xiong et al.
[2022], Zhou et al. [2023], Zhang et al. [2024]. Notably, Zhang et al. [2024] derived the tightest

6(\/ H3SAK A HK) regret up to logarithm factors.

Variance-dependent regrets. Talebi and Maillard [2018] studied variance-dependent regrets for
infinite horizon learning under strong assumptions on ergodicity of the MDPs. Zanette and Brunskill
[2019] defined and incorporated the maximum per-step conditional variance, Q*, and first proved
a O(vHQ* - SAK) regret for the finite-horizon setting. Zhou et al. [2023], Zhang et al. [2024]
proved regrets depending on expected total variances (see our Definition 2 for one of their quantities)
that are more fine-grained than the coarse HQ™* upper bound. Variance-dependent regrets have also
been studied for bandits [Zhang et al., 2021b, Zhou et al., 2021, Kim et al., 2022, Dai et al., 2022].

Other problem-dependent regrets. Under infinite-horizon setting, Bartlett and Tewari [2012],
Fruit et al. [2018] studied regrets depending on the span of the optimal value function. There are
works studying first-order regrets, whose main order terms depend on value functions: Jin et al.
[2020], Wagenmaker et al. [2022a], Huang et al. [2023].

3 Preliminaries

Notations. For any event &, let 1{€} be the indicator function of £. For any set X, we use A% to
denote the probability simplex over X'. For any positive integer n, we denote [n] := {1,2,...,n}.

0,9, < hide polylog(S, A, H,1/Awin, 1/6) factors.

Finite-horizon MDPs and trajectories. A finite-horizon MDP is described by a tuple M =
(S, A, H,P,R,11). S is the finite state space with size S and A is the finite action space with
size A. H is the planning horizon. For any (s,a,h) € S x A x [H], Ps o5 € AS is the transition



function and R, , j, € Al%H] is the reward distribution with mean r;, : S x A — [0, H]. p € AS
is the initial state distribution. A trajectory {s1, a1, 7}, s2, a2, 75, L SH, AH, 'y} is sampled with
$1~ by Sh1 ~ Psy, an. b Th ~ Rs, an,h Where aj, can be chosen arbitrarily.

Unlike most common settings, we relax the standard assumption that R, , € Al01] (uniformly
bounded reward) and instead assume a bounded total reward setting (Assumption 1). Problems
under this setting can contain a spike in reward and are therefore harder than standard problems.

Assumption 1 (Bounded total reward). We assume that ZhH:1 r}, < H for any possible trajectory.

Policies. A history-independent deterministic policy 7 chooses an action based on the current state
and time step. Formally, 7 = {7, } e[ ] Where 75, : S — A maps a state to an action. Any trajectory
sampled by 7 satisfies a, = 7, (sp). For any random variable X related to a trajectory, we denote
E™[X] and V™[ X] as the expectation and variance of X when the trajectory is sampled under 7.

Value functions and ()-functions. Given 7, we define its value function and ()-function as

H H
Vir(s) :=E7 [2 Ty | Sp = s] , Qr(s,a) =FE" lE Ty
t=h

t=h
It is easy to verify that Q7 (s,a) = r1,(s,a) + Ps o n V)" . We define V{7 := E*~#[V]"(s)] as the
expected total reward when executing policy .

(sn,an) = (s,a)] .

Learning objective. Episodic RL on MDPs proceeds for a total of K episodes. At the beginning
of episode k, the learner chooses a policy 7% and uses it to sample a trajectory.

We aim to maximize V*. Using dynamic programming, we can find a policy 7* maximizing all
Q7 (s, a) simultaneously, and we denote V* := v, Q* := Q”*.

Performance is evaluated by the cumulative regret:
K k
Regret(K) := Z (VO* Az ) .
k=1

Gap quantities. The suboptimality gap is defined as follows:
An(s, a) := Vi (s) — Q5(s, a).
The sets of optimal and suboptimal actions are defined as
Zopt = {(s,a,h) e S x Ax [H]: Ap(s,a) =0}, Zeupb =8 x A x [H\Zops.

The minimum gap A, = ming o n)ez. Ap(s,a) is the smallest positive gap. WLOG, we only

consider MDPs with nonempty Zg,p.

sub

Variance quantities. The variance at each (s,a,h) tuple [Zanette and Brunskill, 2019, Sim-
chowitz and Jamieson, 2019] is defined as

Varj(s,a) := V7~ Bosanss'~Paanlp 4 Vit ()]

The maximum per-step conditional variance is defined as Q* := maxy s , Varj (s,a). Previous
works including Zheng et al. [2024] use HQ* which could be as large as H? in their variance-
dependent terms.

The maximum unconditional total variance has been introduced in prior works [Zhou et al., 2023,
Zhang et al., 2024] when studying variance-dependent regret bounds for MDPs.

Definition 1 (Maximum unconditional total variance).

H
Vary.x := maxE” lz Var;‘:(sh,ah)‘| .
T h=1



These works showed that Var,., < min{HQ* H 2} and incorporated it in the main order terms
of variance-only-dependent regrets for better results. However, as we will discuss in Theorem 3,
variance-aware gap-dependent regrets must scale with separate variance quantities for each (s, h)
pair, even for those hard to visit. Thus, the quantity should be conditioned on (s, h). We propose the
following quantity as the maximum conditional total variance:
H
Vary . := irnsméE” Z Vary (sp,an) | Sh =S| .
’7 h'=1

Definition 2 (Maximum conditional total variance).

Remark 1. The maximum conditional total variance is novel in literature, as in variance-only-
dependent works, Var, . is a better quantity, while in previous variance-aware gap-dependent
works, researchers did not develop better approaches other than bounding total variance by HQ*.
By definition, Var¢, ., < HQ*, and our final results will scale with min{Var$ ., H?} after careful

analysis, which can improve the dependency on H by one order.

4 Main Results

4.1 Algorithm Overview: MVP

Monotonic Value Propagation (MVP, Appendix B) is a representative [Zhang et al., 2021a, Zhou
et al., 2023, Zhang et al., 2024] model-based optimistic algorithm which maintains upper bounds of
V* and Q*, namely V* and Q*, in each episode. The rollout policy 7* picks the action that max-
imizes Q’fb(s, -) at each step and updates the upper bounds using Bellman equation with empirical
estimates of reward and transitions:

Qu(s,a) « Fa(s,0) + EFoan Vi1 (5,0) + bu(s, ), Vi(s) «— maxQu(s, a).

Here by, (s, a) is a bonus term ensuring that Q,, V}, are upper bounds of @, V;* (“optimism”) with
high probability. For the proof of optimism, interested readers can refer to Zhang et al. [2021a].

4.2 Gap-dependent Upper Bound

Now, we present the main result of this work — a gap-dependent regret upper bound ensured by
MVP. For the formal version, please refer to Appendix C.

Theorem 2 (Gap-dependent upper bound). There exists universal constants cy, ca, c3 such that, for
any MDP instance, any episode number K, and § > 0, MVP (Algorithm 1) attains the following
regret bound with probability at least 1 — §:

max

Ah (87 CL) Amin

Z H?log K A VarS,, N (H? A Vars, )| Zopt|

Regret(K) < + SAH*(S v H) |log K.

(h,s,a)€Zsun

Remark 2. This bound contains a new notion of maximum conditional total variance (Defini-
tion 2). Since this definition requires us to condition on any possible state, Varj, .. can be as
large as ©(H?). However, Var? . is bounded by H max; o 5{Varj(s,a,h)}, so this term is still
no worse than previous O(HQ*) bounds. Furthermore, there is a sufficient condition to make
Var® . = O(H?log(1/d)): for any policy 7 and (s,a,h) € S x A x [H], the state-action pair
(s, a) is not reachable at step h if we sample the trajectory under m, or it is visited with probability
at least 5. We can even generalize this concept to exclude the states that are difficult to reach from

the definition of Var¢ .. We omit this approach for simplicity.

max*

The H? term in H? A Var® . is derived by conditioning on the event where all trajectories have

bounded total variance to avoid the dependence on Vary,,, when it is large.

Our lower bound (Theorem 3) shows that Var$ . cannot be replaced by Vary,, (Definition 2), a
quantity used by previous variance-only-dependent works. Intuitively, Var,,.x can be very small as
long as all states with large variance have small visiting probability, but those states can accumulate
a total regret of order Varj (s,a)/Ap(s,a) that cannot be bounded by Var,,.x. The leading term
matches with the lower bound modulo log factors. Furthermore, Simchowitz and Jamieson [2019]
has shown that a A, ;,,-dependent term is unavoidable for UCB-based algorithms. Our coefficient
of the Ay, term is also improved to worst case O(H 2), better than previous worst-case factors of
HQ* [Simchowitz and Jamieson, 2019] and H3Q* [Zheng et al., 2024].



4.3 Proof Sketch

We present the high-level ideas in the proof for Theorem 2 here, deferring the details to Appendix C.
We assume the optimistic condition holds (see Lemma 9).

Regret decomposition. Following Simchowitz and Jamieson [2019], we define

B}y (s,a) == Q}(s,) = (Ru(s,a) + B~ Frer [Vl (1)) 3)
as the surplus at (s, a, h, k) € S x A x [H] x [K]. Standard analysis show the regret bound

K H 1
Analyzing gaps and surpluses. Suppose that the algorithm takes action « at state s at episode k,

stage h. By optimism, Q7 (s, @) must be at least V;*(s) = Q7 (s,a) + Ax(s, a), so we have
Ef(s,a) + B~ Poen [VE L (s)) = VE L ()] = An(s,a).

By recursively expanding the V' term, we have

Regret(K

An(s,a) <E™ [Z E¥(s,a)

h'=h

(Spryap) = (&a)} : 4)

That is, if the expectation of future surpluses is small, then the algorithm will avoid actions with
large suboptimality gap.
Shp = S] .

We consider the restrictions of nf (s, a) when Ay (s, a) > 0. If the lower bound Equation (4) wrote
Ap(s,a) < Ef(s,a), then nf(s,a) < Varj(s,a)t/Ap(s,a)?, which would directly provide a
regret bound. However, Equation (4) contains the sum all future surpluses, so we cannot directly
apply this method.

The analysis of E}’j shows that (see Lemma 16)

Varf(s,a)t SH.
Efi(s,a) 5 o[ ERE A gt | SHL
nh(S a) h'=h nh(shaah)

low order terms

We will circumvent this problem by adding Equation (4) over all £ and h. The summation of the

left-hand side is X , , An(s, a)nk (s, a), while the summation of the right-hand side can be shown

as approximately (low-order terms discarded) H 3 , ;, \/ Var} (s, a)nf (s, a)e.

This inequality has the form > , ws.a n1n(5,0) § D5 4 p Vs,a,n\/ 1w (S, a) for some non-negative
coefficients s q 5, Usq.p- 1t entails upper bounds of ny,(s, a), and if we proceed with the calcula-
tions, we will recover the bound

Z HVarh s,a)t

Regret(K + (some low-order terms)

s Ap(s,a)

in Simchowitz and Jamieson [2019] while avoiding complex calculations. In the latter steps, we will
refine this method for a tighter bound.

Generalized weighted sum of suboptimality gaps. Intuitively, the previous bound is not bal-
anced as Var} (s, a) = Q(H?) only happens for a small portion of (s, a, h). In contrast, the summa-
tion of Equation (4) contains enough degrees of freedom for us to utilize it for a better bound. Let
wp,(s, a) be any set of nonnegative weights. Then the weighted sum of Equation (4) writes

H
Z wy (s, a)Ap(s, a)nk (s, a) Z Z w(sF, ak) Z E[EF, (¥, af )| Fro1nl,  (5)
s,a,h h=1k=1 h'=h

where Fj,_1, is the o-field generated by first £ — 1 episodes and the first h states in the k-th
trajectory. We will choose wy, (s, a) carefully to balance the contribution of each term.



Bounding weighted sum of surpluses. The right-hand side of Equation (5) needs to be manipu-
lated carefully. Rewriting the summation order, the leading term of Equation (5) becomes

Var¥, s a
Z Z Z h Z wp(sh, af )E[1{(s}s, af) = (5", ')} Fr—1,n]-

s’,a’ h'=1k=1

We will apply certain probability inequalities to approximate E[1{(s¥,,al,) = (s',a')}|Fr—1.1]
with 1{(s¥,,af,) = (s',a’)} (approximation error omitted). Then, the innermost sum over h con-

tains only wy,(s5,af), which can be bounded by W = H? A Vart,, if we pick wf(s,a) =
Varj (s,a). Now, the sum over k is

h,(s a’
V ’
/ arh =0 (X/Varh, (s',a nh’(s a’)i )

so by Equation (5),

Z Vary(s,a)An(s,a)n (s,a) S W Z \/Var;’:(s,a)nf(&a)b_ (6)
s,a,h

s,ah

X

=R

End of proof. With similar (and simpler) arguments above, we have
Regret(K) < R,

where again, we ignore the lower-order terms.

We apply the Cauchy-Schwartz inequality to Equation (6) and get

WR. <22Ahsa> (Z \Vari (s, a)nfs sa)>2=R27

s,a h=1 s,a,h

so we conclude that

Regret(K) < R S Z V(V

5 Gap-Dependent Lower Bound

In this section, we will prove the following gap-dependent regret lower bound. It shows a separation
between Var$, .. and Varp,x, as well as the necessity of Var$, . in gap-dependent regrets.

Theorem 3. [Gap-dependent lower bound (informal)] Fix S, A, H and the target conditional vari-
ance L € [1,H?]. Given a set of SAH suboptimality gaps {A;}, assume that all non-zero gaps
are sufficiently small. For any algorithm, there always exists an MDP with gaps equal to ©(A,;),
Vart .. = O(L) but Vary,,x = O(1), such that

Regret(K) > ( Z A 10gK>

:A;>0

Proof sketch. We sketch the proof as follows. For simplicity, we assume there are 4 states
{A,B, C,D} in each h-th layer. The dynamics of the four states are presented below.

e A : There is only one action at A, which transus the agent to A in the next layer with
probability 1 — and B with probability - z17- The reward is O at A;

e
* B : There are A actions at B. For each action a, the agent is transported to C with probability
Sl L+ A,
73— 45'}) and D with probability £ 45‘}) ;

e C: This state is a terminal state with reward \/f;



e D : This state is a terminal state with reward 0.

In this instance, the learner makes a decision only at state B for each layer h, and state A has variance
O(£7 - (VL)?) = O(H™') and state B has variance ©(L), showing Var¢,, = ©O(L). For any
strategy T, it visits B with probability 1 — (1 — 2)# = O(L™1), So

Vary.x < H-O(H ')+ LO(L™") = O(1).

Clearly, the decision problem at state B and layer h could be viewed as a Bernoulli bandit problem.
The expected visiting count at state B and layer i is ©(K/L). Let Regret;, 5(/) be the regret by
taking suboptimal actions at B and the h-th layer. Consequently, applying the classical lower bound
on regret for Bernoulli bandits yields:

i Regret), 5(K) > Q Z L .
K—w log(K/L) ~ Ay (B, a)
Thus,

H
L
K) > K)=0Q ——logK | .
Regret(K) hZ::lRegreth,B( ) (hZ; An(B.a) og )

for sufficiently large K.
Discussion. This example shows a separation between unconditional variance Var{, . and con-
ditional variance Var.x. Even if Vary.x = O(1), there can still be a regret lower bound of

order ©(H?). In this view, our introduction to Var¢,,  is essential in proving gap-dependent regret
bounds.

2 c
We also observe that the second term Z—2¥2fmax)|Zont] iy oy upper bound (2) is not yet matched

by this lower bound. This could pose a signiﬁrgiafnt challenge for existing optimistic algorithms, as
they typically explore all potentially optimal actions, resulting in additional surplus terms. We refer
the readers to Appendix D the full proof of Theorem 3.

6 Conclusion

In this paper, we study gap-dependent regret bounds for episodic MDPs and demonstrate that the
Monotonic Value Propagation (MVP) algorithm Zhang et al. [2024] achieves a tighter upper bound
compared to previous works from the aspects of tighter dependence on a better variance notion,
as well as reduced order of H. Our analysis centers around a careful bound of the weighted sum
of suboptimality gaps. Along the way, we introduce a new notion of maximum conditional total

variance and provide a lower bound to establish its necessity as well as the tightness of the ~—~—

Ap(s,a)
term.

)INZ

max

(H? AVar®
A

We also acknowledge some limitations. First, the o»t! term in our upper bound does

not match the lower bound of Ai in Theorem 2.3 of Simchowitz and Jamieson [2019]. Improv-
ing either the upper bound or lower bound will help advancing the understanding of gap-dependent
regrets. Second, we only apply our new techniques to tabular MDPs. For future work, we be-
lieve our analysis can be adapted to other problem settings (e.g., linear MDPs [Wagenmaker and
Jamieson, 2022] and MDPs with general function approximation) to derive tighter gap-dependent
regret bounds.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We prove a new bound for gap-dependent MDP and this is reflected in the
abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss about the A ,,;, term and an extra log factor in our regret bound.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Our main text discusses the intuition and provides a proof sketch. Full proof
can be found in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: Our paper focuses on the theoretical part. No experiment was performed.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA|
Justification: Our paper focuses on the theoretical part. No experiment was performed.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: Our paper focuses on the theoretical part. No experiment was done.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]
Justification: Our paper focuses on the theoretical part. No experiment was done.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Our paper focuses on the theoretical part. No experiment was done.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We believe that our work conforms with Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|

Justification: Our paper focuses on proving theorems for an existing algorithm. We are not
aware of any societal impact from our paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: No dataset is required for a purely theoretical proof.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We didn’t use any assets for our theoretical proof.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: We didn’t create any assets for our theoretical proof.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-

per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We didn’t conduct any crowdsourcing or research with human subjects for
our theoretical proof.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We didn’t conduct any crowdsourcing or research with human subjects for
our theoretical proof.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only used LLM for editing paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations and Technical Lemmas

A.1 Notations

We list notations in Tables 2 to 4.

S, 5 =1S] State space and its size
A, A =|A] Action space and its size
Horizon
K Learning episodes
s, s States in S
a,a’ Actions in A
h, W, h* Horizon numbers
k, k' Indices of learning episode
Psan Transition probability
s.ah Distribution of rewards
I Distribution of beginning state
rr(s, a) Expected reward
T Policy
Th(S) Action that policy 7 takes at state s, step h
Vir(s), V5 (s) V -function of policy 7 and of optimal policy, respectively
Q7 (s,a),Q5(s,a) | Q-function of policy 7 and of optimal policy, respectively
Varjy(s,a) Variance at state s, action a, and step h
Varmax Maximum unconditional variance
Var$ .. Maximum conditional variance
Ap(s,a) Suboptimality gap
min Minimal nonzero suboptimality gap
Zaub Set of suboptimal actions
opt Set of optimal actions

Table 2: Parameters of MDP

sk a¥ rF | States, actions, and rewards observed in the k-th episode
Vik(s) V4, of the algorithm before the k-th episode
Q% (s,a) Qp, of the algorithm before the k-th episode
(s, a) Estimation of 7, (s, a) before the k-th episode
6% (s, a) Estimation of oy, (s, a) before the k-th episode
]-Q’S"fa) h Estimation of P , j, before the k-th episode
ik (s, a) Visitation count at (s, a, h) before the k-th episode
by (s, a) Bonus term in the &-th episode
7k The policy at the k-th episode

Table 3: Values used in the algorithm

A.2 Technical Lemmas

Lemma 1 (Bennett’s inequality, Theorem 3 in Maurer and Pontil [2009]). Let X1, X5, - , X, be
i.i.d. random variables with values [0, a](a > 0) and let § > 0. Then,

P l E[X,] — % Zn) x| 2V ;og(2/5) . alog£2/5)1 s
i=1

Lemma 2 (Freedman’s inequality, Lemma 10 in Zhang et al. [2020]). Let (X,,)n>1 be a martingale
difference sequence (i.e., E[ X, |Fn—1] = Oforalln = 1, where Fi, = 0(X1,Xo, -+, Xy)) such
that | X,,| < a for some a > 0 and foralln > 1. Let V,, = 3! _ | E[X?|Fj_1] for n = 0. Then, for
any positive integer n, and any ¢, > 0, we have

> x,
i=1

!

> 24/V, log(1/6) + 24/ log(1/8) + 2alog(1/5)] < 2(na*e™ +1)4.
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[n] Set{1,2,--- ,n}
AB Set of distribution functions over set B
TAY min{z, y}
TVY max{z,y}
1{p} Indicator function of ¢, i.e. 1 if ¢ is true and 0 otherwise
clip [ale] al{a > ¢}
) Acceptable error probability
Ek(s,a) Surplus; Q% (s,a) — (s, a) — B ~Fean VEL(s)]
E¥(s,a) Clipped surplus
L log(SAHK/6)
wp(s,a) Weights used in analysis
W 160H? log(4K (H + 1)/8) A Vars,, .
Regret Total regret
Fk o-field generated by the first £ — 1 episodes of the algorithm
Fr.h o-field generated by the first k£ — 1 episodes and the first h steps in the k-th episode
DIRDINY I Dses? Dac Ar DiseS.ac.A» FESPECtively
Ee~X ye~X Expectation when z is sampled from distribution X
PT E™ Probability and expectation over a trajectory when following policy 7w

Table 4: Other notations

Lemma 3 (Lemma 10 in Zhang et al. [2022]). Let X1, Xo, ... be a sequence of random variables
taking values in [0,1]. Define Fy, = o(X1,Xa,...,Xk—1) and Yy, = E[Xy | Fi] for k > 1. For
any 6 > 0, we have that

k=1

n

P [M, zn] >3 Z Yy + 1In(1/6)
k=1
i Z k + LIn( 1/5)]
k=1

Lemma 4 (Lemma F.5 in Simchowitz and Jamieson [2019]). Let X,Y be two random variables
defined on the same probability space. Then

VVIX] = VVY] < VE[(X - Y)2].

Lemma 5 (Lemma B.5 in Simchowitz and Jamieson [2019]). Lef a1, as,- - , an be a sequence of
nonnegative reals and € > 0. Then,

clip [Z aizs] <2 Z clip [ai\%] .
i=1

i=1

A.3 Model errors

Our analysis will mostly be based on the success of following inequalities.

Lemma 6 (Good events). Let ¢ = log(SAHK /5). With probability at least 1 — 100, the following
inequalities hold for all s,a, s, h, k:

2V ~Rs,an 1]y H.

75 (s,a) — (s,a)| < + ’
h nk (s, a) nyi(s,a)
~ 2P9 ,a h( /) L
Pk N P ! < )
Foanls) = Pranl Ol <\ [ 2000 ¥ )
1 Pk ’ 2VS NPS @ hV* ( ,> HL
s ~Pf‘a ‘ ”P I+1
IE s a,h [Vh*+1(s')] —FE° Vh+1 \/ + ni(s, a)’
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s/~ o~ 2L
VT e (0] I 0 < 1

N R "N 2t
Vok(s,0) = @G, @)2 = Vs ] <y [T

Proof. The first three inequalities can be derived from Theorem 1, Theorem 2. The last two inequal-
ities are adapted from Theorem 10 in Maurer and Pontil [2009]. ]

Lemma 7. Let V be a function defined on S. Conditioned on the success of Lemma 6,

- , 8'~Ps a,h \2
I Npsya,h[v(s,)] g Np_gya)h[v(s,)“ < 25E . [V(s")?]e N maxsekg |V(s)|SL.
ny (s, a) ng (s, a)

Proof. Let M = maxges |V (s)|. Then, by Lemma 6,

B~ Peet [V (s)] = B P [V(5)]

= | S(PE () — Paan(s)DV(S)

s'eS

g 2P, 4.1 (s")t L

< s;s Vsl ( nk(s,a) * ni’(s,a))
S PV ()2 | [ 3 e | 4+ LS
s'eS s'eS ’I’Lh(S, Cl) nh(sa Cl)

25t MS.
=, |Es'"~Ps,a.n 727 . .
\/ [V(s")2?] (. a) + E(s.0)

]
A.4 Variance bounds
Corollary 4. Let 7 be any fixed policy. For any h € H and s € S, we have
H
E™ l Z Varfb(sh/,ah/) Sp = S] < H2.
h'=h
Proof. Recall that E¥~Psan[Vi% | (s')] = QF (s,a) — ru(z,a) < Vi*(s) — (s, a), so
[ H
E™ 2 Varj (sp,an)|sn = s]
Lh/=h
[ H J H ‘P
=" Z VT NRSh““’h"h/ [r’] + Z Vé T sprsagsht [VhﬂjJrl(S/)] Sp = 81
L h/=h h=h
[ H H
<EW (Th’ - T’h/ Shy ah/ Z ‘/h '+l 8h1+1 Vh"i(sh/,ah/) + Th/(Sh/))2 Sp = S]
Lh/=h '=h
SO )
<E™ ( Z T+ Vi1 (Shrg1) — Vh”i(sh/))> Sp =5 7
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" 2
<E" (Z r’}b,—Vh*(sh)> sp=s| < H?,

h=h'

where Equation (7) is because of independence and that

B~ Fonnron (Vi 11 (") = Vi (snrs anr) + pe (s00)] < 0 = B~ Benran m [0 — pps (spr an)]-

O
Lemma 8 (Lemma 42, Zhou et al. [2023]). Let 7 be any fixed policy. For any 6 > 0,
H
P l Z VarZ(s;L/,ah/) = 160H2 10g(4(H + 1)/5) Sp = S] < 6.
h'=h
Proof. We have
H H H b
Z Var,f(sh/,ah/) = Z V7 NRS;LM"'}L’J" [’I"/] + Z Vé T sprsapsn [VhﬂjJrl(S/)]
h'=h h'=
H b, H H
= D BT M IV Z (@ (swy aw) = rav (s aw))® + D Hrw(sw, an)
h'=h '=h h'=h
H p
S Z (B ™o M [V (8)°] = Vit (swr1)?)
h'=h
H
+ Z Vh’ Sh’ Qh (Sh/ ah/) - ’I’h/(Sh/ ah/))2) + H?
h'=h

H
<22 > VI e MIVE L (s141)2] log(1/8) + 24/ Hlog(1/8) + 2H? log(1/5) (8)

H
+ 2H Z (V;{’?(sh/) — QZ/(S}Z/, ahr) + rhf(sh/,ah/)) + H?
h=h

H
<4H, |2 Z VO P i [V (5)2]) log(1/6) + 5H?1og(1/8) + 2H - Vi (sp)
h'=h

+4H Z VI e [V (5)2]) log(1/6) + 4H~/H? log(1/8) + 4H?1og(1/5) (9)

H
<8H, |2 . Var}(sw,an) + 15H"log(1/5),
h'=h

where Equations (8) and (9) holds with probability 1 — 2(H + 1)J each by Lemma 2. Thus, by
solving the quadratic equation,

H

> Varf(sw, an) = 160H*log(1/9)

h'=h
The proof is finished with rescaling §. O

sp = s] <1-—4(H + 1)6.

B MYVP Algorithm descrpition

This section provides a description of MVP algorithm (Algorithm 1) in detail’.

3The original version of MVP contains a doubling mechanism to trigger updates of V and @ mainly to
lower switching cost. Since switching cost is not central to gap-dependent analysis, we choose to update V},
and @), every episode for simplicity.
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Algorithm 1 Monotonic Value Propagation (MVP)
Require: MDP M = (S, A, H, P, R, 1), learning episode number K, confidence parameter 9,
universal constants ¢y, ¢z, ¢3, ¢ = log(SAHK/9).
1: Initialize: For all (s,a,s’,h) € S x Ax S x [H + 1], set Oy (s,a), kn(s,a) < 0,np(s,a,s") —
07 Tlh(S, a)7 Qh(sa a)7 Vh(s) 0.

2. fork=1,2,--- K do
3:  Construct policy ¥ such that 7 (s) = arg max, Qn (s, a).
4:  Observe trajectory s¥,al, r¥, s5 a5 rk .- sk ak rF.
5 forh=H,H—1,...,1do
6: (s,a,s") — (sk,af, sk, )
7: Update ny(s,a,s’) <« np(s,a,8") + L,np(s,a) <« np(s,a) + 1,0,(s,a) < 0,(s,a) +
r}k;7 ""/”h(sva) — lih(&a) + (T}Ii)z'
- 91 )
8: fr(s,a) = n}h((zz))
o on(s.a) = G
10: Py(s,a,8') = 7”,}159(;;))
11: for (s,a) e S x Ado
Vslwﬁs,a,h Vi v 5 —(# R 2
- (s, a) Cl\/ A gy [ CRL TN oy ey
13: Qr(s,a) « min{ry(s,a) + ES~PranV g + br(s,a), H}
14: Vi (s) < max, Qn(s,a)
15: end for
16:  end for
17: end for

C Proof of main theorem

We begin by choosing the universal constants in the algorithm as ¢; = co = 2,¢3 = 10.

C.1 Clipping surpluses

Existing analysis of MDP already shows that Q;‘; and th are upper bounds of Q} and V;* with high
probability as expected:

Lemma 9. With probability at least 1 — 46, for all s,a,h, k€ S x A x [H] x [K],
Qﬁ(&a) = Q;’:(S’ a)7 Vi{C(S) = Vh* (S)

Proof. The proof is almost the same as Lemma 8 in Zhang et al. [2024] with necessary modifications
for our constant choices. Since cg = 10 > 4 = c%, the monotonic function can be constructed as

frn(v) :=EP[u(s)] + max {2 w7 4HL} .

n n
O
We define clipped surpluses as
= . Var} (s, a) 1
Eilj(sha ah) = Chp |:Eilj(sh7 ah)|C4Amin max { min{th, Varfnax} + E }:| . (10)

Also, we recursively define
Q]Ic—l-s-l(sva) = Vf]§+1(3) =0,

QZ(SWL) = TZ(S, a) + E_‘}’KS?(J') + ESINPS'G’}L [th+1(s)]’ o

hk(s) = max Qp(s,a)

forh=H,H—1,---,1,and QF = Vf = E"~+[V}(s)].
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Lemma 10.

AminVarf (s,a i i
1 (90)  Auin fior any pair of s, a, h. Thus,

Proof. We have E¥(s,a) > EF(s,a) — ST Avese ) — 6l

Vi (s) = Vi (s)
k H _
=E" l Z EF(sp,an)|sn = 31
h'=h
H H H
ok k _ Amin k o Amin
=>E l Z Eh(Sh,ah) Shp = 81 — mE l Z Vari(sh,ah) Sp = 81 — Z 6H
h'=h h'=h h'=h
Amin
>Vi(s) = Vi'(s) — 3
where the last line is due to Theorem 4 and definition of Var§, ... O

This lemma links the half-clipped values V;* with the optimal values ViE.
Lemma 11. Conditioned on success of Lemma 9, for any state s € S and h € [H],

Vir(s) = Vi(s) < 5 (Vils) — ViE(s))

Proof. The first step in the proof is to recursively expand both sides at all states where an optimal
action is taken. Specifically, we let

Epx = {F;’iz(sh/) = ah/7h’ =hh+1,--- ,h*},

and s« — Epx 41 as the set of the trajectories in £+ but not in &% 1 (that is, those trajectories
where the first suboptimal action after the h-step is at the (h* + 1)-th step). Since trajectories are
sampled with policy 7%, &, is the set of all trajectories with sj, = s.

We hope to claim that

h*
Vi(s) = Vi) = Y B (&1 — En Vit (sw) — Vi (su))lsn=s] (11
h'=h+1
FE TL{E (Vi (sm41) — Vi1 (sns )l = 5] (12)
and
_ h* k _ k
VEGs) = VEGs) = Y BT [M{Ew—1 — En (Vi (si) = ViE (sw))lsn = 5] (13)
h'=h+1
+E™ [1{Ens } (Vi 11 (sp 1) — V;f:+1(8h*+1))|8h = s]. (14)

These claims are proved by induction on h* and expanding the last term on event &% 1. For
Equation (11), we have

k
Vi (snx) — Vil (snx)
.
=Qjx (snx, T (55%)) — Qe (s, T (%))
=E’ ~PS'Wh*’k[ 1 (81) = Vil 1 (8]
when the trajectory is in % 11, and for Equation (13), we have

— k — k
Vi (8) = Vil (5) = Qs (5, i () — Qfrx (5, 7 ()

* SINP@ wk s),k Y7 ok
=Epe(s,a) +E T ONVE () = Vi (5]
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’
s '~

P,k o) ke _ K
>]E s Z*( )”‘[Vf*+1(sl) — V}Zr*+1(8,)].

We will use Equation (11) and Equation (13) when h* = H. In this case, the last lines are both zero,
so it suffices to show that

3 _ L L
§(Vf/(8h') = Vi (sn)) = Vii(sw) = Vil (s)

on &1 — & In fact, since the trajectory is sampled from 7*, and since ay, is suboptimal, we
have that

= Arnin Amin Ap(s ry Ap 2
V(o) > ViCsne) = 222 = Qf(swan) — S22 > V(o) - S0 5 By,
where the last inequality is because Ay (sp/, ap) = Vh’fk(sh/) — Q5 (spryap) < V,Zik (sh). O

Lemma 12. Conditioned on success of Lemma 9, if a = 7 (s), then

3 < _
Ah(s,a) < - Z Eﬂ—k [E,’i/(sh/,ah/ﬂ(sh,ah)].
é h'=h

Lemma 13. Conditioned on success of Lemma 9,

H

V < sh,ah)]

l\D\QD

Proof. We prove Lemmas 12 and 13 together. By recursively applying

1/ I SINP\W s [/ k
ViE(s) = Vit(s) = B (s,mi(s)) + B = bR [VE (s) — Vi ()],
we have
_ H k — .
Vir(s) = Vit (s) = Z E™ [Ef (5w, an)|sn = s] .
h'=h

Then we use Lemma 11 and
k k k
Ap(s,a) = V5 (s) — Qi (s,a) < Vi*(s) — Vf(s), Vi =V =E" [Vi*(s1) = V] (s1)],
for Lemmas 12 and 13, respectively. O
C.2 Estimating Surpluses
Lemma 14. Conditioned on success of Lemma 6,

2Varj(s,a)t 20H.

nk(s,a) nk(s,a)’

2 s~ pk
bh(s:0) < BT o [(Vily 1 (8) = Vi ()] + 2

Proof. Recall that our choice of bonus in the algorithm is

b (s, a) 2\/Vs'~Pf,a,n [Vit1(s)]e N 2\/(62(3,@ — (7 (s,a))2)0 . 10H.

nfl(s, a) nfl(s, a) nﬁ(s, a)’

Since the last term is at least H if n¥ (s, a) = 1, it suffices to consider nf (s,a) > 2. The first term
can be bounded using

s/~ Pk s'~PF s~
\/V P, n[ViE L (s) (\/V P Vi (sf \/V Pl (Vi (s )])
+ (\/Vsmﬁja’h Vit (s) \/VS ~Fea, Vi () ) + \/VS,NPb Vi ()]
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VB (Vi () ~ V(s />>Q]+H\/7 AV 1 ()

by Lemmas 4 and 6, so

wf“ o [Vig (/)]

nf (s, a)
2H. VPR [ViE ()]
< Es~bah VE Vo )27 . L ht1
\/ [(Viia () = Vil ()] nk(s,a) * n¥(s,a) +J n¥(s,a)
Vo Plan[ViE ()] 3H.
ESN&‘L" k N _VF N2 h+1 )
[(Vthl(S ) h+1(s )) ] + J nﬁ(&a) + ni(‘S’ a)

The second term of b¥ (s, a) can easily be bounded by Lemma 6 as

\/(ff’ﬁ(s,a)(f,’i(s,a»?)L< \/VMRWW]L SH,

- - + .
nﬁ(s,a) nﬁ(s,a) n’fb(s,a)

Thus

2Varj (s, a)t 20H.
PE,a) | )

Sh=81

h(s,0) < B~ PLen (V) — Vit ()7] + 2

Lemma 15. Conditioned on success of Lemma 6,

H
S
VE(s) — Vit(s) <E™ | Y H A 22H, |
Wzh UACTHNTY)

Proof. We begin by decomposing V;*(s") — V;*(s) as follows:
Vi (s) = Vi (s) < Vi (s) — Qi (5,7 (s))
(s, a) + bk (s,a) + Es/”psf“=’Lth+1(s’) —rp(s,a) — ESINPS’“v’LVh*H(s')
=7k (s,a) = ra(s,0)) + (B~ Poor [V () = Vi ()] = B~ Poer [V (5) = Vi ()
+ (B Pren V| (5) = B Poen i (8) + B Poer [V (5) = Vil ()] + b (5, 0).

By Lemmas 6 and 7 (with V' = V¥, — V;¥ ) and definition of b} (s, a), we conclude

k

Vi (s) = Vi (s) S B~ Poen [V (8') = Vila (1)) + ( ny (s, a) " ny (s, a)

. ( wsxﬁs'*wh[(vml(s'>—v,:‘H(sf))?]L SH. )

2V ~Bsan 1]y H. )

+
nj (s, a) ny (s, a)

2V P [V ()] He
- <\/ n¥(s,a) - nﬁ(s,a))

N QWM PV (D) \/(6;’2(8,a)—(f;’i(87a))2)b+ 10H:

ny (s, a) h

n’,?t(s,a) ng (s, a)

St 13SH.

+ .
ny(s,a)  n(s a)

<EY P [V () = Vit (8)] + (3V2 + 4)H
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If St < n¥(s,a) then we have

’ , , St
Vii(s) = Vi (s) S BZ~Poan [ViE (s) = Vi ()] + <H A22H, [ — ) . (15
ny(s,a)

If St > nk (s, a), then Equation (15) also holds since V¥ (s) —V;*(s) < H. Thus, we can recursively
apply Equation (15) and conclude
Sp = 81

H
5
VE(s) = Vit(s) <E™ | Y H A 22H, |
h=h nl{’<sh'7 ah')

Lemma 16. Conditioned on success of Lemma 6, if a = 7y (s) then

Var¥ 15005 H?,
Ef(s,a) < [H A5 arkh& +E Z?,H2
ng(s,a) nh,(sh/ an)

(sp,an) = (s,a)] .

Proof. Similar to the proof of Lemma 15,
Ej(s,a) = Qp(s,a) = ra(s,a) — B~ Foan[ViE (s1)]
=i (s,a) + b (s, a) + B~ S’athth(s’) —rp(s,a) — B~ S’“JLthH(s’)
<|7h(s,a) —ra(s,a)| + [EX~Pan [V (1) = ViE ()] = BS~Pean [ViE L (s) = Vi ()]
+ B PrenVE L (8) — B~ Poen VE L (8)] + bE (s, ).

We will apply Lemmas 6, 7 and 14 to bound each term. So

2 r'~Rs q, / H
Ef(s,a) < v - h[r]L+ - ‘
ng (s, a) ng (s, a)
1 wop . 9 SH.
H]E MV () = Vi ()] + Wk (s,a)
QVs”Pbah V*( N H.
* * n¥(s,a)
h 9
2 2Varf (s, a)t 20H.
]Es~&ah V _V* / 2+2 h\°» + )
H [( h+1( ) h+1(s )) ] nﬁ<s7a) nZ(& a)

By Lemma 7 (with V = (V¥ , — V}¥, |)?) again,

B~ Pran [(VE (8) = Vita ()] = B P [(VE () = Vi ()]

_ [ 2SEPeen [(ViE (') = Vi (s /))4]L+ SH?.
N nj (s, a) nj (s, a)

g 2H2SES ~Ps,an [(Vh’f+1(5’) — Vh*+1(s'))2]L N SH?%
nk (s, a) ny (s, a)

SESINPEY&JI [(V}f}_,_l(S/) - Vh*+1(5/))2] R Y

By Lemma 15,

/
Sh+1 = S

H 2
e SL
(Vi (s) = Vi () <E ( > HA22H k))
h/

h+1 ng (Shrs ap
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H
. H?
<E™ Z Hs/\%shﬂzs’ .
h=h+1 ngy (81, an)
Hence,
Vary(s,a)t 3 o 27SH.
FE 249 AR L P RS ~Psan(1k Ny nN\2 &lodl
h(S a’) ( + \/7) nh(s,a) + H [( h+1(s ) h+1(8 )) ] + nﬁ(s, Cl)
Varj(s,a) > 1500S H?.
< _— 3H 5 =9
nth(S a l Z nh/(sh/ ah/) (Sh ah) (S a)
The extra “H A” part is because E¥ (s, a) < H by definition. O
C.3 Concentration of visitation count
This lemma shows that the sum of visiting probabilities is bounded by nﬁ
Lemma 17. With probability at least 1 — 6,
k: !’ !’
> E[{(sh af ) = (s,0)}|Fi] < 3nj(s,a) +
k=1
forall s,a, h, k, where Fy, is the o-field generated by the first k — 1 episodes.
Proof. This is a direct consequence of Lemma 3. O

The next lemma considers a weighted sum over visiting probabilities.
Lemma 18. With probability at least 1 — 20,

Z Z wh (s57, afE[1{(sF, al') = (s,0)}|Fur ] < OWnl(s,a) + 4HW,
k'=1h'=1

forall s,a, h, k, where we recall the definition

wy,(s,a) = Varj(s,a), W = min{160H? log(4K (H + 1)/5), Var®

max }

and Fy, 1, is the o-field generated by the first (k— 1) episodes and the first h steps of the k-th episode.

Proof. By Lemma 3 and wy,(s¥,,ak,) < W,

ko h kh
Z Z wp (s, aX ) E[1{(s, an) = (s,a VHFw w] <3 Z Z w (s, a¥)1{(sn, an) = (s,a)}+ W

k'=1h'=1 k=1

for all s,a, h, k. Then, we will bound Y3, _, 3t wr (s}, afi)1{(sn, an) = (s, a)} in two differ-
ent ways for each term in W.

First, we apply Lemma 3 again with respect to only the sum over k&’ with (SZ/, aZ/) = (s,a). This
shows

ST walsh ) 1{(s b ) = (s,0)} < BVarS,, nk (s, a) + HVars,,...
k'=1h'=1
Second, by Lemma 8, with probability 1 — ¢,

H

> wnlsh,afb)1{(sh ) = (s,a)} < 160H* log(4K (H + 1)/8)1{(s} ,af, ) = (s,a)}
h'=1
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forall ¥ = 1,2,---, K. Thus,

h
D wn(shi,af)1{(sf  af ) = (s,a)} < 160H? log(4K (H + 1)/8)nf (s, a).
k'=1h'=1

Hence we conclude

k h
D wn(sh, af)E[{(s) af ) = (s, a)} [ Frr ] < 9Wnf(s,a) + AHWL.
k'=1h'=1

O

Lemma 19. Let f be a non-increasing nonnegative function defined on 1, +0) with f(1) < M.
Conditioned on success event of Lemma 17, we have

K
ny, (s,a)

Z f(n¥(s,a)P[(sF,af) = (s,a)|Fr] < M(c+3) + 3f f(z)dz.

1

Proof. Letn) = Z’,:,=1 P[(s,al") = (s,a)|Fr] < 30k (s,a) + v and
Ko = min{k : nj, > ¢+ 3}.
(If n < ¢+ 3 then we define Ky = K.) Then,

zfnhsa B[(sk a) = (s, )| Fi]

= Z fn JBL(sh, ar) = (s,0)| Fi] + Z F (g (s, ))P[(s};, ap) = (s, a)|Fk]
k=Ko+1
Ko
Z (sh» ap) = (s,0) | Fi] + Z f(n, = 0)/3)(n, = nj_1)
k=1 k=Ko+1
<Mnly, + Z J f((xz—v)/3)dx
k=Ko+1

<M(+3) + J /K Fl(@—1)/3)de < M(1+3) + f: Fl(@ = 1)/3)da

nff (s,a)

flz)de < M(t+3) + 3[ f(x)dz.

1

(e —0)/3
=M +3)+ 3J
1

O

Lemma 20. Let f be a non-increasing nonnegative function defined on [0, +0) with upper bound
M. Conditioned on success event of Lemma 18, we have

h

K B 3 ny (s,a
D Fnk(s,a) D) wash, af)P(sf, af) = (5,0)| Fep] < MW (4H149)+9W L f(x)da.
k=1 h'=1

The proof is similar to that of Lemma 19.

C.4 Final calculations

Our calculations are conditioned on success of Lemmas 6, 9, 17 and 18, and they happen simultane-
ously with probability at least 1 — 206.

We begin by analyzing the clipped surplus. By Lemmas 5 and 16, we have
Ej(s,a)
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<2clip lH A5 Varf(s,a)t, ApinVarj (s, a))]

nk(s,a) '24(H? A Var

' 1 H?,
+2clip |E™ Z g2 5 10005
nh,(sh/ ap)

Amin
(Sh, ah) = (87 a)] ‘ 24H2 ]

II]dX)

] Var}(s',a’)t, AminVarj (s',a’)
y L b | I nls, min h
2 {(S,G) (Sva)}CIPl A5 nﬁ(s”a/) |24(H2/\Var

_ " 15008 H2: Amin
+ 2clip [Z hZ E [(31{2 A n;’i(sa)) (s aw) = (5", )} (snoan) = (s,0) | |75
<2 Z 1{(s',d') = (s,a)} fu(s,a;nk (s, a))
1500SH?%, k A
2N |E7 ap) = _ _Smin _
+ 45211/ hZ clip [(31{ A o (s, 0) ) E™ [1{(sn,an) = (s,a)}|(sh,an) = (s,a)] |485AH3]

<2 3, H(.f) = (s )l i)

1500SH?0, Amin ]

ok _ . 2
+4 Z Z E 1{ S a‘ (sh’vah’)}‘(shvah) - (870,)] Chp 3H” A nﬁ,(s,a) |4SSAH3

's,a’ h'=

=2 Z 1{(s',d') = (s,a)} fu(s, a;nk (s,a))
ZZWsa(mMMMFWMwM%
s’,a’ h'=

where

VarZ(s a)t, AminVarf(s,a) 1500SH2, Apin

N o 2
fr(s,a;2) = clip lH AD 1 ,g(x) = clip [SH A . |485AH3

24(H? A Var

max)

C.4.1 Bounding regret

By Lemma 13, we have
3 K H
Regret(K 5 Z:: Z:: Siuah

E [1{(s,a) = (sk,ap)} fu(s, a; nfi (s, )| Fi]

a

K H
Z Z Eh Shﬂh )N Fk]

k=1

l\D\OJ

N
w
=
D= EMN

Nl
g
M=

5 B[P [(s0) = (owsan )l o an) = (s, )] g 5015

+
D

B

Il

—

>

Il

—

»

)

<

;-

fh(87a§n]fi(57a))]P[(S7a) = (827a2)|fk]

I,
M=
D=

»
e
>
l‘
ES
I
—_

g(nfy (s, ) [(s,a) = (s}, )| 7]

_l’_
M=
M=
D=

>
Il
—_
w
S]
=
Il
=
B
Il
—_

We will use Lemma 19 to bound the two sums.

For the first sum, we have then

K nj (s,a)
Z In(s,a; n’,ﬁ(s,a))]P’[(s,a) (sﬁ,aﬁ)] H(t+3)+ SJ fh(s,a;nlfl(s,a))dm.

k=1 1
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When Ay (s,a) > 0, we bound the integration by

nff(s,a) nff(s,a) Var*(s a)L A Var*(s (1)

5 . h min h

. dz = lip |5 d
L fr(s,a;ng(s,a))dz L clip [ |24( H? A Varl ) r

max

ny (s.0)  [yar*
<J 5 de = 10\/Var§(s,a)nhK(s,a)L.

0 X

When Ay (s,a) = 0, we bound by

nff(s,a) nff(s,a) Var* A Var*
J (s, a;nf (s, a))da :J clip l5 ar”(s a)LI min V2T (5. a)) da

1 1 24(H? A Var$

+o Var*(s a)t, AminVar?(s,a)
< i h min h d
fo P l5 SA(H A Var *

max

max)

dx

J(120(H2Avarmax)) L/ A Vary (s,a) Var} (s, a)t
5 —hr ' 7

0 X
 1200(H? A Var
B Amin

max)L

For the second sum, we bound similarly that

H

>, gnki(s,a)P[(s,a) = (sh, ah)]

h'=h

<3H( +3)+3J"f‘s’“> . 15005}124' Amin 4
Sor . P v ASSAH3

7200082 AH® 1/ Amin 15005 H?,

<3H%(1 +3) +3J DA,
1 T

=3H2(1 + 3) + 45008 H210g (7200052 AH® 1/ Apin).

Thus,
3600(H? AV
Regret(K) <3 Z (4H. + 30\/Var;’: (s,a)nE(s,a)) +3 Z 4H. + (A Var
(s,a,h)EZsup (s,a,h)EZopt
+ 6SAH?(12H? + 45005 H?110g(72000S? AH® 1/ A min))
H?* AV
<90 Z \/Var;': (s,a)nf (s, a)e + 10800 Z %
(s,a,h)EZun (s,a,h)EZopt min
+270008? AH*110g (7200052 AH® 1/ A min) + 96S AH®1. (16)

C.4.2 Lower-bounding visitation count
Recall the lower bound in Lemma 12. We begin by taking a weighted sum over all states visited
during the algorithm:

K H
wh(shvah)Ah Shvah

M\w

K H H
Z Zw Shs i) Z [Ep (s, agin)| Fie,n]

k=1h=1 '=h
K H
SHIPICAC Z SE[1{(s,a) = (skr, ak )} fuls, a;nf (5, 0))| Fn]
k=1h=1 h'!=h s,a
K K
+637 D wish,af) Z 33 B[P [(5,0) = (s, a1l (s, anr) = (s af)] g(nfe (5, 0))| Fi |
k=1h=1 =h s,a h*¥=h'
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n

H K
=3 Z Z fu(s,a;nk (s, a)) Z wp(sy, af)P[(s,a) = (s, af,) | F,n]
, k=

s,a h'=1 1 h=1
H K n*  n¥*
+6 Z Z g nh* S, a Z Z W, Sh’ah ( ) (Sﬁ*va’ﬁ*)‘}—k,h]
s,a h¥=1 k=1 h=1h'=
H K h'
=3, >, 2 fuls,asniy(s,)) Y wilsh, ai)P[(s.a) = (sh, afy) [ Fien]
s,a h/=1k=1 h=1
H K h*
+6H Y D > g(np(s,a) D) wn(sh, ai)Pl(s,a) = (shx, afs)| Finl-
s,a h¥=1k=1 h=1

Take wy, (s, a) = Varj (s, a), it follows from Lemma 20 that

H K H
wy (s, a)Ap (s, a)nk (s, a) = 2 Z wp(s¥, ab) A (sF, ab)
s,a h=1 k=1h=1
H nf (s,a)
<3 Z W | 3H?*(4Hu 4+ 9) + 9‘[ fr(s,a;x)dz
s,a h'=1 1

nk(s,a)
+6H Z <3H2 (4Hu+9) + 9] (s, a; a:)dx)
k=1 1

<351WSAH5L + 270W Z \/VarZ(s, a)nk(s,a)
(s,a,h)EZ5up
32400|Zopt|VV(H2 A Var
Amln

mase)L + 81000S? AH* W log(72000S* AH® 1/ Apin).  (17)

For notational simplicity, we denote

Ry = Z \/Varz(s,a)Ah(s,a)L.
(s,a,h)EZsup

By Equation (17) and Cauchy-Schwarz inequality,

32400| Zp¢|(H? A Var
Al'n]l"l

w (35ISAH5L + 270R, + mase )t + 8100052AH4L10g(7200052AH5L/Am1n))

L
> A | =R
(samez., Dn(s,a)

It follows by solving the quadratic equation that

540W ¢ 120|Zopt|(H? A Var
2SS AH"+ °r
Z Ah(s,a)+ o Amm

Ry < max)! £ 30082 AH*1 10g(72000S% AH®1/Apin ).

(s,a,h)€Zsun

From Equation (16),

(HAAVAM 4 270005% AH? 1 1og (72000 AH5 1/ Apin)

Regret(K) < 90Ro + 96SAH*. + 10800
(s,a,h)eZopt
2 48600W ¢ N 21600| Zopt|(H? A Var

max) 2 4 5
An(s,a) A +2700005° AH*110g(10S AH 1/ Apin) + 2765 AH"1,

<

(Svavh)ezsub
with probability at least 1 — 204, as we have claimed in the main text.

Thus we have proved the following main theorem.
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Theorem 5 (Formal statement of Theorem 2). Suppose we run MVP algorithm with universal con-
stants ¢1 = co = 2,c3 = 10. For any MDP instance M satisfying Assumption 1 and any confidence
parameter 6 > 0, any episode number K > 1, with probability at least 1 — 206,

2 (H?log(HK/S) A Var log(SAHK/6)

max)

Ap(s,a)
log(SAHK/6)

Regret(K) <
(s,a,h)€Zsun
L [Zo|(H? A Vary,,)
Amin
+ S?AH*1og(SAHK /5) log(SAHA
+ SAH® log(SAHK/S).

L log(SAHK/5))

min

D Regret Lower Bound

Theorem 6 (Formal statement of Theorem 3). For a given configuration of S, A, H, target condi-
tional variance L € [1, H?), as well as a set of suboptimality gaps A = {A1, Mg, ..., Asan}, we
make the following mild assumptions:

o LetT = {i | A; = 0}. Assume that |Z| = SH, i.e., the suboptimality gaps are realizable.
o Assume that /\; < \/ffor alll <1< SAH.

For any algorithm 7, there exists an MDP instance M™ satisfying:
e It has |5| = S + 2 states and A actions.

s There exists S = S such that |S| = S, and a bijection o between [H] x S x A and [SAH),
satisfying Ap(s,a) = iAa(h,s’a) forany (h,s,a) € [H] x S x A.

e Var$ . = O(L), while Var,,, < O(1).

such that
E™ t(M™, K L
, EREC0( 3 £)
K= 08 A0 T
Proof. First consider multi-armed bandit lower bound given a set of gaps A = {A1,Aq, ..., A4}

and a target variance L. WLOG, assume A; < A;;;. Construct Bernoulli outcomes for each

action a;: w.p. p; = & — i‘(—;i) e [4,1], get reward v/L; wp. 1 — p;, get reward 0. Then

Qa;) = pi = 5 — 592, and Q(a1) — Q(as) = 542, Then Var(a;) = pi(1 — pi) L = O(L). We
invoke standard lower bound [Lai and Robbins, 1985] with reward outcomes in [0, 1]. We first scale
the rewards in our example by ﬁ For any algorithm 7, there exists a permutation on the gaps (into

ﬁ A™), such that

i ]E[Regret( 1 AT K 2 Qla al (1) 2 Var (a;) 0 Z 1
1m ’
K—om logK p“ A0 Q(a ( ) Az/\/f

:A;>0

where kI(p, q) = plog & + (1 — p) log 1=2 ASORS by 2 ( ) > wxlog(2z) + (1 — x)log(2 — 2z) for
x € [0, 1] (we take = = p,) To see this, we substitute t = 1 — 2z € [—1, 1], then

G-oF r > 2

z(1—z) Q-1 +%)

and
H1—t) t(1+1)

t
log(1+1¢t) < + = t2,
& ) 2 2

1—
xlog(2x)+(1—x)log(2—2z) = ?t log(1—t)+
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Scaling back, we have

77 VLE[Regret(-=A™, K
iy ElRegret(A™ )] [ (77 )] 0 L\
:; >0 A

K—o log K K—o0 log K

Then, we construct the MDP as:

 States: in total S + 2 states. sy as a main state, sq, So, ..., Sg as bandit states, s_; as a
terminal state.

. Transition so does not require decision-making: P, 4.5(s0) = 1 — LlH, s0.a,h (Si)
IsH S 7 forl < < S. s; is a bandit problem, and directly transits into s_1: Py, 4 5(5-1) =
forl <i< S s_q is self-absorbing: Ps | 4 p(s-1) = 1.

1

* Rewards: for sy and s_;, all rewards are 0. Rewards for (s;,a, h) are decided by the
construction below.

Assign A into H x S groups, each with exactly A items: {Ah7si}(h7i)€[H]x[s] and from the as-

sumption we can guarantee at least one 0 gap in each group. We have dj, (s;) = a7 (1— 75)" ' €

(57 o] for 1 <i < S. For each (h, i) x [H] x [S], from Lemma 1, with probability at least
1— 1

2HS>
N (s:) \/2dh(si)(1 —dn(si))log(4SH)  log(4SH)
) — <
dn(si) == K TR
= Kdp(si) — Nf(s;) < 2K log(4SH) + log(4SH).

R LSH
When K > ( + \/1 +e)2LSH log(4SH), we have RHS < 577, so we have Nf(s;) =
Kdn(si) — seisy = 5op57- Denote the event & = {NJ(s;) = 555 | (h,i) € [H] x [S]}, then
P[E] = 1.

Since we set independent random instances for each (h, s;), we have that

E[Regret(A7 ., 7, K)] PE]E[Regret(AT , . 5oieg)] + (1 =P[E]) - 0

1. 5 > 1
o log K Ko log K
(i>) i E[Regret( 7;:751,, ﬁ)]
= 11Im K
K—om 4 log(m)

L
S SRR v g &

a:Ap s, (a)>0
where (i) is by P[€] >  and taking K > (2¢LSH)?2. So

- E[Regret(M™, 7, K)] E[Regret(A, . K)]
lim = lim E S
K—o log K K—o0 & log K

E[Regret(A;Si, 7, K)|
K—w log K




We have Var} (so) = O((1 — 27) 75 - L) = O(4), Varj(s_1) = 0, and Var}(s;) =

easy to verify that Var¢ . is taken at states (h, s;), so

h—1
Vart . = max {Var,";(si) + 2 Vary (so)} =O(L).
o t=1

However,

H s
Varmax < Z (dh(so)Varz(so) + Z dh(si)VarZ(si)> <0(1),

h=1 i=1

. . c
showcasing the separation between Var{, . and Varyx.
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