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ABSTRACT

Compositional zero-shot learning (CZSL) aims to recognize unseen attribute-object
combinations by learning primitive concepts (i.e., attribute and object) from seen
compositions. Existing CZSL solutions typically harness the power of vision-
language models like CLIP via textual prompt tuning and visual adapters. However,
they independently learn one deterministic textual prompt for each primitive or
compositional labels, ignoring both the inherent semantic diversity within each
primitive and the semantic relationships between primitive concepts and their
compositions. In this paper, we propose BAYECZSL, a novel Bayesian-induced
framework that learns probability distributions over each primitive textual prompt
from a Bayesian perspective. Specifically, BAYECZSL models image-specific
primitive textual prompts as learnable probability distributions to capture intra-
primitive diversity. Building on these primitive distributions, we aggregate learned
probability distributions from attribute and object branches to form compositional
prompt space via Compositional Distribution Synthesis strategy, thus capturing
the semantic relationships between primitive concepts and their compositions.
Moreover, Three-path Distribution Enhancement module is introduced to transform
initial distributions into expressive ones via invertible mappings. Finally, these
enhanced distributions are sampled to generate diverse textual prompts, achieving
more comprehensive coverage of the prompt space and generalizing to unseen
compositions. Extensive experiments on multiple CZSL benchmarks demonstrate
the superiority of our BAYECZSL. Code will be released.
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a pre-trained vision encoder and textual embed-

dings of attribute-object labels. Due to the availability of pretrained vision-language models (e.g.,
CLIP), recent approaches [30, 8, 20, 18, 66, 49] harness the powerful visual-semantic aligning
capabilities of CLIP for recognizing attribute-object compositions via various finetuning strategies,
e.g., prompt tuning [28, 34], adapters [68, 9], and cross-attention mechanism [11, 23]. Though
these methods show impressive performance, they exhibit two key limitations: First, they typically
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learn one single deterministic textual prompt for each primitive concept (attribute or object) and
their compositions, which is oversimplified and struggles to capture the complex inherent semantic
diversity within each primitive [7, 35]. For example, the attribute “old” conveys distinct semantic
meanings when applied in different compositions, e.g., “old dog” and “old town”. Thus, we argue that
one single learnable textual prompt is insufficient to capture intra-primitive variation, and learning
probability distributions over textual prompts to expand the prompt space is necessary to model
the natural diversities of primitives (Fig. 1). Second, they treat attribute, object, and compositional
prompts independently, ignoring the rich relational structure between primitives and their compo-
sitions. As a result, the learned prompts remain overly isolated and fail to exploit cross-branch
synergies, where different branches of the model complement and enhance each other’s contributions,
leading to limited generalization capacity when encountering novel combinations.

To address these limitations, we present BAYECZSL, a Bayesian-induced framework for CZSL that
explicitly models probability distributions over each primitive textual prompt (i.e., attribute and
object) from a Bayesian inference perspective. Different from representing each attribute or object
with one single prompt, BAYECZSL learns distributional prompts that capture the natural variability of
primitives. Building on learned probability distributions from primitive branches, we aggregate such
two distributions to form a compositional prompt space via Compositional Distribution Synthesis,
explicitly capturing the semantic relationships between primitive concepts and compositions.

Concretely, BAYECZSL starts by learning the probability distributions for each primitive textual
prompt via Bayesian-induced Primitive Distribution learning, which effectively represent the
intra-primitive diversity and reduce overfitting on seen attribute—object combinations. To introduce
rich visual semantics into the text prompt space, our constructed primitive prompt distributions are
dynamically adapting based on the primitive-wise visual features. Beyond modeling the attribute and
object distributions separately, we further employ the Compositional Distribution Synthesis module,
which aggregates the learned probability distribution of both attribute and object branches into a
unified compositional prompt space, thus capturing the rich semantic relationships between primitive
concepts and their compositions. Moreover, to better approximate complex prompt distributions for
intra-primitive modeling and unseen composition generalization, we adopt a Three-path Distribution
Enhancement module, which transforms simple initial primitive and composition distributions into
more flexible and expressive ones via a sequence of invertible mappings. Finally, we draw multiple
Monte-Carlo samples from these enhanced distributions and mix them with original textual prompts
to enhance the coverage of the textual prompt space, thus reducing overfitting on seen attribute—object
combinations and improving generalization on unseen compositions.

The contributions of this work can be summarized as follows: First, we revisit CZSL task from
the Bayesian inference view, and learn probability distributions over attribute and object prompts
to explicitly model intra-primitive variability and semantic uncertainty. By distribution sampling
and distribution regularization of the textual prompt space, BAYECZSL reduces overfitting to seen
compositions, and improve generalization on unseen compositions. Second, we introduce a novel
Compositional Distribution Synthesis mechanism that aggregates the probability distribution of
attribute and object branches to form the compositional prompt space, thus capturing the rich
semantic relationships between primitive concepts and their compositions. Third, we develop a
Three-path Distribution Enhancement module to transform base prompt distributions into expressive
ones, thus facilitating diverse prompt sampling for comprehensive intra-primitive modeling.

Extensive experiments on three challenging benchmark datasets (MIT-States [17], UT-Zappos [65],
and C-GQA [42]) demonstrates BAYECZSL outperforms existing CZSL methods by a large margin
in both Close-World (CW) and Open-World (OW) settings (§4.2). Concretely, on the CW setting,
BAYECZSL exceeds the current state-of-the-art methods by up to +8.9% and +3.2% relative AUC
improvement on UT-Zappos and C-GQA. Under the more challenging OW setting, BAYECZSL still
surpasses the best CLIP-based method by up to +7.0% and +14.8% relative AUC improvement
on UT-Zappos and C-GQA. In §4.3, we further conduct extensive ablation studies to validate the
effectiveness of each model component.

2 RELATED WORK

Compositional Zero-shot Learning (CZSL). The objective of CZSL is to recognize unseen attribute-
object compositions by learning a comprehensive knowledge of seen compositions. Early CZSL
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approaches generally follow two main strategies. The first strategy extracts composed attribute-
object semantic features through a transformation function and performs recognition directly with
a classifier [33, 41, 43, 48, 59, 23]. The second strategy employs a disentangler to separate the
original image features into distinct attribute and object representations, which are then independently
classified using two separate classifiers [54, 67, 52, 11, 64, 31, 63]. However, all of these methods
require learning the alignment between image features and text embeddings from scratch, which
makes them prone to overfitting on the seen compositions. Recent studies have increasingly focused
on utilizing pre-trained vision-language models (VLMs) to tackle the challenge of compositional
zero-shot learning. Troika [15] proposes a multi-path paradigm to jointly model the attribute, object,
and composition. DFSP [36] proposes a cross-modal decomposed fusion module that leverages
a disentangler and constructs a vector combination of learnable soft prompts with attribute and
object to capture more detailed features. PLID [4] integrates pretrained large language models to
construct diverse and expressive prompt distributions, orthogonal to prior work on soft, hard, and
distributional prompting. In contrast to previous methods, our BAYECZSL models the distribution of
textual prompts and leverages sampling to explore the prompt space based on a multi-path paradigm,
thereby enhancing performance in compositional zero-shot learning (CZSL).

Prompt Learning in VLMs. As an efficient adaptation strategy, prompt learning enables Vision-
Language Models (VLMs) to be customized for specific tasks. Vision-Language Models (VLMs)
such as the CLIP are pre-trained on large-scale image-text pairs, recently have demonstrated their
effectiveness in diverse vision-language applications, most notably in zero-shot recognition [71, 57,
55, 19]. In early prompting methods, like the hard prompt used in CLIP, heuristic templates such as
“a photo of [CLS]” are used as textual inputs. Recently, the methods in CoOp [67], CoCoOp [69] and
CSP [44] use soft prompt tuning. The former treats the context of class names as learnable prompt
tokens, while the latter uses a fixed template for the context and treats the class names themselves
as learnable prompt tokens. In CDS-CZSL [34], the entire prompt is further treated as learnable
parameters, enabling the model to capture task-relevant information more precisely. However, the
prompts used by these approaches are fixed and insufficiently diverse to represent the wide appearance
variations in fine-grained visual data, making them susceptible to overfitting on the training set. To
address this problem, ProDA [37] explicitly employs a set of soft prompts to build class-specific
gaussian distributions, leading to improved zero-shot performance. PLO [29] further promotes
finer-grained understanding by progressively and adaptively observing primitives, employing a staged
observation approach to prevent model overfitting. Recent work [3, 52, 56, 5] assumes that the latent
embedding of the prompt input follows a gaussian prior and utilizes variational inference to learn the
latent distribution. In this paper, we introduce a Bayesian-induced framework that represents textual
prompts as probability distributions, which encourages diverse prompt generation and strengthens
generalization to unseen compositions. This probabilistic modeling facilitates broader coverage of
the prompt space and captures richer semantic relationships.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Given the attribute set A = {a1,az, ..., a4} and the object set O = {01,09,...,0)0|} as primitive
concepts, the compositional space C is defined as their Cartesian product: C = A x O. The objective
of the CZSL task is to recognize images belonging to a compositional category y € C, where the
compositional space C is subsequently partitioned into two disjoint subsets: the seen composition
set Cs and the unseen composition set C,,, such that C; N C,, = @. The training set is defined as
T ={(zg,ck) | zx € X, cx € Cs}, where X represents the image space. In the Closed-World (CW)
setting, the target set is defined as C; = C; U C,,, where only compositions of the known space are
considered. In contrast, the Open-World (OW) setting assumes that the target set consists of all
possible permutations of attribute-object pairs, i.e., C; = C.

3.2 BASELINE ARCHITECTURE

Textual Prompt Extraction. Our framework is built upon a three-path paradigm [15, 36], which
jointly recognizes three types of semantic components: attributes, objects, and attribute-object
compositions. Following prior work in CZSL [15], we construct prompt representations using a
soft and learnable prompting strategy for the three aforementioned semantic components. For a
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Figure 2: The overview of BAYECZSL: (a) Training and inference (§3.2 and §3.4); (b) Bayesian-induced
learning (§3.3): Bayesian-induced Primitive Distribution Learning, Compositional Distribution Synthesis, and
Three-path Distribution Enhancement.

given attribute-object composition ¢; ; = (a;, 0;), we create prompts using a three-path paradigm,
i.e., attribute prompt P{ = [pf,,...,p{,, ,v{], object prompt P} = [pf,,...,p},,,v7] and com-
position prompt P} = [pi,p e 7pk’m,v,w,v,w] We 1n1t1ahze the learnable prompt prefixes
[pf1s- - D], [Pf 15+ D5 ] and [P, s, PY ] With the phrase “a photo of 7, serving as a
semantic prior to guide prompt optimization. In addition, v{, v§ and v}, denote the trainable vocabu-
lary embeddings corresponding to the attribute a;, object o; and composition c. These fully trainable
prompts are subsequently passed through the text encoder Eiy to derive the prompt representations
for each branch, formulated as follows:

t; = Etxt(P(il)a t? = Etxt(P;?)a Etxt(P ) (H

Visual Feature Extraction. Following the prior works [23, 15], we incorporate adapter modules [34,
68] to adapt the image encoder while keeping its original parameters frozen. Given an input image

e RFT>*W>3 “the visual encoder Eipg of CLIP [50] is employed to obtain the image representation
x € RP. We treat the image representation x as compositional features x¢, and employ an attribute
disentangler D, and an object disentangler D, to decouple the composition feature x¢ into the
attribute feature x® and an object feature x° as:

x¢=x, x%=D4(x°), x°=D,(x°), 2)
where D, and D, are implemented as two separate MLPs [53].

Three-path paradigm Training. Based on the three-path paradigm, we provide each branch with
corresponding prompts and visual representations, and separately compute the probabilities of
assigning attribute a;, object o, and composition ¢y, labels to the image. To enable the recognition
of primitive concepts and their compositions within each branch, we also utilize three separate
cross-entropy loss functions. They are expressed as follows:

pla; | o) = —SPCUETD S ~logp(a| ), 3)

Z‘::ll exp(x@ - t%/T) |X| zeX
Do |2) = —REHIT) L o]0, @
Z‘nozll exp(x° - t%/r) |X| zeX
C . tC
ple | ) = — PO /) S ~logp(c| ). )

SI exp(xe -t /r) C|me
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where 7 € R is the pre-defined temperature parameter in CLIP. Thus, the three-path classification loss
can be formulated as:
Eanc = 5a£a + B0£0 + 5(:LC7 (6)

where (3, B,, B¢ are all set to 1, following [15]. More ablation studies can be found in Appendix §G.

Motivation. Though impressive, these methods learn one single-form textual prompt for each primi-
tive and compositional label, ignoring the semantic diversity of primitive concepts across different
compositions and struggling to generalize to unseen compositions. Moreover, they overlook the
rich semantic relationships between primitive concepts and their compositions. To address these
limitations, we propose BAYECZSL in Fig. 2, which models primitive textual prompts as proba-
bility distributions from a Bayesian inference perspective, capturing both intra-primitive diversity
and inter-primitive relationships. In particular, our model first learns image-specific probabilistic
distributions over each primitive concept via Bayesian-induced Primitive Distribution learning.
Then our proposed Compositional Distribution Synthesis module aggregates the attribute and
object probability distribution to form the compositional prompt space. Monte Carlo sampling [40] is
applied to these distributions, and the sampled results are fused with the original textual prompts to
enhance the coverage of the textual prompt space. Moreover we employ Three-path Distribution
Enhancement module to better estimating the textual prompt distribution.

3.3 BAYESIAN-INDUCED LEARNING

Bayesian-induced Primitive Distribution Learning. We define the training set 7 = {(xx, cx) | xx €
X, ¢, € Cs}, where z, denotes the input image and ¢, represents the associated compositional label.
For the attribute and object branches, we construct primitive prompt distributions by embedding
the contextual information of each primitive as a D-dimensional random vector ®, leading to the
following posterior distribution:

p(T | ®)p(®)
p(T)
Because calculating p(7) is tractable, we adopt variational inference [21] with a parameterized

distribution ¢, (%) to approximate the posterior. This approximation enables the estimation of the
marginal likelihood p(7"). It is necessary to minimize the KL divergence between g.,(®) and p(®):

p(@|T)= )

- 7+ (®)
Dict.(a,(®) [ p(®)) = [ (®)log 7 1 2. ®)

Using Jensen’s inequality, we derive a variational lower bound on the logarithmic marginal likelihood
of the training data:

logp(T) =log [ p(T | @)p(®) d® )
> Ey (o[ logp(T, ®) ~log g, (®| T)] (10)
=Eq (o) logp(T | ®)] - Dxr(g(® | T) [ p(®)) = =Lpn(T). (11)

We obtain the primitive variational distribution ¢ (®) by minimizing the loss function £,,;, which
corresponds to the negative evidence lower bound (ELBO).

Given the attribute and object visual features x* and x°, we employ Bayesian inference to map each
primitive feature into a distributional representation. Following standard variational optimization
practices [10, 25], we model the residual distributions of the two primitives as gaussian, with
w(x?) € RY,%(x%) € RY and u(x°) € RY, %(x°) € RY estimated from the image features via
a three-layer network with ELU activations [6]. Finally, we obtain the variational distributions
O ~ ¢, (®*) and O° ~ ¢, (P°) for these two primitives, which capture the semantic uncertainty of
each primitive in the prompt space.

Compositional Distribution Synthesis. To capture the rich semantic relationships between primitive
concepts and their compositions, we adopt a variance-inverse weighted Gaussian fusion strategy,
which combines the attribute and object distributions to inform the compositional distributions.
Specifically, given the primitive distributions ®* ~ A (u(x*), X(x*)) and ®° ~ N (u(x°), X(x%)),
we fuse the two primitive distributions as follows:

B(x) =[BT+ 2D L ux) = B[S ax) + 2x) T u)] (12)
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As such, we obtain the compositional prompt distribution ®. ~ N (u(x¢),¥(x)). This com-
positional prompt distribution serves as an auxiliary prior, encouraging the model to attend to
primitive-relevant regions and to better generalize to unseen attribute—object pairs.

Three-path Distribution Enhancement. Employing more expressive posterior approximations
enhances the ability to approximate the prompt distribution with greater fidelity, capturing its inherent
uncertainty and structural complexity more effectively [51]. Accordingly, a distribution enhancement
module is designed, in which a simple probability distribution go(®g) is transformed into a more
complex distribution g (® ) through a sequence of invertible mappings fy:

Oy = fn(fn-1(-f1(D0)))- (13)

To improve computational efficiency, a linear-time transformation is employed, defined as:
f(®)=®+vTanh(w'®+b), (14)

where the parameters w,v € R® and b € R are trainable, and Tanh(-) denotes the Tanh activation
function [53]. The new distribution after [V transformations is expressed as:

N
log gy (®n) =log qo(Po) - Z log|1 + v;y'(qu)n + b)w| ) (15)

n=1

By substituting g, (® | 7°) in Eq. 11 with the transformed distribution ¢ (® ), the objective function
for optimizing the Bayesian-induced framework can be formulated as:

Ly(T) = Eq a7y [ogp(T | ®)] - Dxr(ay(2 | T) | p(®))
N
=E g (0) [log q0(P0) = D log|1 + vy (w @, + b)w|
n=1

~ Egy(@0) 1ogp(PN)] = Eyy (a,) [logp(T | 2n)]. (16)

We assume that the prior follows a standard normal distribution, i.e., p = N'(0,I). The initial density
qo is modeled as a multivariate normal distribution, specifically, go = N (u(x), X(x)), where the
mean 1 € R and the diagonal covariance matrix diag(X) = o € R are conditioned on the input
vector x € RY. Both x and ¥ are parameterized by three consecutive linear layers.

Based on different input x provided to the distribution enhancement module, we obtain the image-
conditioned distributions: the attribute distribution g (®%), the object distribution g (%), and
the auxiliary compositional distribution ¢ (®%; ), which is derived from the primitive distributions.

Semantic Prompt Sampling and Mixing. We treat the learned distributions as priors over the
prompt space, and Monte Carlo sampling is used to sample from the enhanced distribution of
attributes, objects, and compositions. By integrating all sampled results with original textual prompts,
the prompt space is substantially expanded, enabling a more comprehensive characterization of
the underlying semantic distribution and enhancing the model’s robustness and generalization to
unseen compositions. Specifically, the textual prefix representations for each branch are denoted as
[(Pf 15508 ] (P51 5 PG ] and [pf 4, - .., Pf . ]. We then draw L Monte Carlo sampling from
the enhanced distribution gn (® ) to obtain 4*,77,77,1 = 1,2,..., L, which represent sampled
attribute, object and composition vectors. The mixing process can be shown as:

Py = [0l +pia + s P + VI (17)
P?,l:[p?,l+’7loap;')72+fylov"'7p§')7m+7l07v_?]7 (18)
Pz,l = [PZJ + chapi,Z +7lca s ’plce,m +’YZCVVIC€,¢17V2,O]' (19)

Here, P{;, P7, and Py ; denote the text prompts obtained by mixing the attribute, object and
composition prompts with the [-th sample. To guarantee correct gradient flow through discrete

sampling, the optimization process utilizes the reparameterization trick [25].

Cross-modal Similarity Score. The branch-specific textual prompts from Eq. 17-19 are encoded
by the text encoder (Eq. 1) to yield textual features t, t7,, and ty ;. Given an image feature, we
compute its similarity to L sampled textual embeddings and take the average across the L samples to

obtain the final similarity score for the attribute, object, and composition branches.
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Table 1: Quantitative results (§4.2) on MIT-States [17], UT-Zappos [65] and C-GQA [42] within CW setting.

Closed-World Backbone MIT-States UT-Zappos C-GQA
Method Seent Unseent HM? AUC? | Seent Unseent HM?t AUC?T | Seent Unseenf HM?t AUCT
CLIP [50]icviooon | VIT-L 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp [70]wcvao) ViT-L 344 47.6 29.8 13.5 52.1 49.3 34.6 18.8 | 20.5 26.8 17.1 44
PCVL [60]iariv2022) | VIT-L 48.5 47.2 353 18.3 64.4 64.0 46.1 322 - - - -
CSP [44]1crr2023 ViT-L 46.6 49.9 36.3 194 | 642 66.2 46.6  33.0 | 288 26.8 20.5 6.2
DFSP(i2t) [36]cveraoz | VIT-L 474 524 372 207 | 642 66.4 45.1 32.1 35.6 29.3 243 8.7
DFSP(BIF) [36]icvrroo2s ViT-L 47.1 52.8 377 208 | 633 69.2 47.1 335 36.5 32.0 26.2 9.9
DFSP(t2i) [36]cvers | VIT-L 46.9 52.0 373 206 | 66.7 71.7 472 360 | 382 32.0 27.1 10.5
GIPCOL [61]wacvas | VIT-L 48.5 49.6 36.6 199 | 65.0 68.5 48.8 362 | 319 28.4 225 7.1
Troika [15]cveros | VIT-L 49.0 53.0 393 221 66.8 73.8 546 417 | 41.0 35.7 29.4 12.4
PLID [4]izcovaos) | VIT-L 49.7 524 39.0 2211 67.3 68.8 524 387 38.8 33.0 279 11.0
ProLT [18]aaaies | ViT-L 49.1 51.0 382  21.1 66.0 70.1 494 36.1 39.5 329 27.7 11.0
CDS-CZSL [34]cvero024) | VIT-L 50.3 52.9 392 224 | 639 74.8 527 395 38.3 34.2 28.1 11.1

BAYECZSL (Ours) ViT-L 51.7+05 51.8:04 39.6-0> 22.5:02]67.6:10 76.1:1.1 57.6-07 45.4-05]|41.0-05 35.5-0> 30.4-01 12.8-01

3.4 TRAINING AND INFERENCE

Training. Based on Eq. 6, we transform the similarity scores into probability distributions and com-
pute the cross-entropy to obtain the final loss function £,,.. We introduce a Bayesian regularization
term £, (Eq. 16) to better model the distribution uncertainty. The overall loss function is defined as:

L= Looe + Lp. (20)

Inference. During inference, the test image is fed into BAYECZSL to obtain the prediction scores for
the attribute p(a; | ), the object p(o; | ), and the composition p(cy, | ). The final compositional
class is then predicted by integrating the predictions from all three branches:

¢ =argmax p(cg | z) +p(a; | x) -p(o; | x). (21

ck€Crest

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three CZSL benchmarks: MIT-States [17], UT-Zappos [65],
and C-GQA [42]. MIT-States consists of 53,753 images representing canonical scenes, encompassing
245 objects and 115 attributes, which together give rise to 1,962 distinct attribute-object compositions.
UT-Zappos comprises 29,126 shoe images, categorized into 12 distinct objects and 16 material
attributes, resulting in a total of 116 attribute—object compositions. C-GQA contains 39,298 images
annotated with 7,732 attribute—object compositions, encompassing 413 distinct attributes and 674
distinct objects. More details are provided in Table 5 (c¢f. §A in Appendix).

Evaluation Metric. We follow the evaluation protocol of prior works [42, 48, 34, 15], plotting the
unseen-seen accuracy curve with seen accuracy on the X-axis and unseen accuracy on the Y-axis
under varying scalars, and computing the Area Under the Curve (AUC). We also report the best
Harmonic Mean (HM), best-Seen accuracy (Seen) and best-Unseen accuracy (Unseen). Moreover,
AUC is prioritized, as it provides a more comprehensive assessment of the model’s performance.

Implementation Details. BAYECZSL is based on the pretrained CLIP ViT-L/14 model [50]. For
open-world evaluation, we adopt the post-training calibration strategy [44] to filter out infeasible com-
positions. For fairness, following the existing training setup in prior works [15, 4], our optimization
setup uses Adam optimizer with a learning rate of 5 x 107> for MIT-States with 10 epochs, 1.5 x 107
for UT-Zappos with 15 epochs, and 1 x 10° for C-GQA with 15 epochs. For data augmentation, we
apply random horizontal flipping and cropping to a resolution of 224 x 224. Similar to the CLIP-based
prompt learning methods such as Coop [67] and Troika [15], the total number of tokens fed into
the CLIP text encoder in our approach is 77. The number of Monte Carlo samples L is set to 12,
and the number of reversible mapping layers NV for distribution augmentation is set to 15. Further
implementation details are provided in §D of Appendix.

Reproducibility. BAYECZSL is implemented in PyTorch and trained on one NVIDIA RTX 3090
GPU with a 24GB memory. Training and inference are conducted on the same machine.
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Table 2: Quantitative results (§4.2) on MIT-States [17], UT-Zappos [65] and C-GQA [42] within OW setting.

Open-World Backbone MIT-States UT-Zappos C-GQA

Method Seent Unseent HM? AUC?T| Seent Unseent HM?t AUC? | Seent Unseent HM? AUC?T

CLIP [50]ucmirz021 ViT-L 30.1 143 12.8 3.0 15.7 20.6 11.2 22 75 4.6 4.0 0.3

CoOp [70]ucva02) ViT-L 34.6 9.3 12.3 2.8 52.1 31.5 289 132 | 21.0 4.6 55 0.7

PCVL [60]ariv2021 ViT-L 48.5 16.0 17.7 6.1 64.6 44.0 37.1 21.6 - - - -

CSP [44]iciro0z) ViT-L 46.3 15.7 174 57 64.1 441 389 227 28.7 52 6.9 12

DFSP(i2t) [36]icveroos) | VIT-L 47.2 18.2 19.1 6.7 64.3 53.8 412 264 | 356 6.5 9.0 2.0

DFSP(BIF) [36]cveraos | VIT-L 47.1 18.1 192 6.7 63.5 57.2 427 276 | 364 7.6 106 24

DFSP(t2i) [36]icv 1| VIiT-L 475 18.5 19.3 6.8 66.8 60.0 440 303 38.3 72 104 24
GIPCOL [61]wacvaooe | VIT-L 48.5 16.0 17.9 6.3 65.0 45.0 40.1 235 31.6 55 73 13
Troika [15]cvero024 | VIT-L 48.8 18.7 20.1 7.2 66.4 61.2 47.8  33.0 | 40.8 7.9 109 2.7
PLID [4]izcovaos | VIT-L 49.1 18.7 200 73 67.6 55.5 46.6 308 39.1 75 106 25
CDS-CZSL [34]icvero24) | VIT-L 49.4 21.8 22.1 8.5 64.7 61.3 482 323 37.6 8.2 11.6 2.7
BAYECZSL (Ours) VIiT-L 50.2:04 18.9:05 20.8:02 7.6:02]69.5:1> 62.2:10 49.7:06 35.3:07(43.9:05 8.4:02 11.7:02 3.1:01

Table 3: A set of ablation studies on UT-Zappos [65] and MIT-States [17] within CW setting (§4.3).

Method UT-Zappos MIT-States

Seen? Unseent HM? AUC?t Seen? Unseent HM?T AUC?t
BASELINE 67.2:09 73.6:08 55.4:06 42.6+06 | 45.6+04 52.9+05 373201 20.4+03
BPD 67.2:12 747209 55.6:05 43.1:07 | 492205 51.5:03 38.1x02 21.3201
BPD + CDS 67.9-10 73.4:08 57.0:04 43.7:06|499+06 51.8202 38.6202 21.840.1
BPD + CDS + TDE || 67.6+10 76.1:1.1  57.6:07 45.4.05 | 51.7:05 51.8:04 39.6:02 22.5.02

(a) BAYECzSL Components

UT-Zappos
Seent  Unseenf HM?  AUC?t
67.2 73.6 55.4 42.6

Attribute | Object | Composition

v 65.4 74.1 56.7 42.7
v 65.8 73.3 56.5 429
v 67.2 74.7 55.7 43.1
e v v 68.0 73.4 57.0 43.7

(b) Distribution of Three Branches

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Performance on CW Setting. As summarized in Table 1, under CW setting, BAYECZSL out-
performs recent state-of-the-art (SOTA) CZSL methods across all datasets (i.e., MIT-States [17],
UT-Zappos [65], and C-GQA [42]), and sets a new SOTA. In particular, BAYECZSL improves HM by
+0.3, +3.0, and +1.0 and AUC by +0.4, +3.7, and +0.4 on the three datasets. BAYECZSL also achieves
the highest accuracy on both seen and unseen accuracies across the UT-Zappos. It can be observed
that BAYECZSL significantly improves classification accuracy by exploring a larger prompt space.

Performance on OW Setting. In OW setting illustrated in Table 2, the results show that BAYECZSL
consistently delivers strong performance across all three datasets [17, 65, 42]. Especially on UT-
Zappos, BAYECZSL achieves the best performance of 49.7 (+4.0%) HM and 35.3 (+7.0%) AUC. The
learned prompt distributions effectively explore intra-primitive diversity, covering a more diverse
range of prompts and enabling BAYECZSL to excel in the expansive search space of the open-world
scenario. For complex datasets with large-scale and highly diverse attributes, such as C-GQA, our
model achieves the best performance of 11.7 (+7.3%) HM and 3.1 (+14.8%) AUC.

4.3 ABLATION STUDY

Key Component Analysis. We first study the efficacy of our core idea and model designs, which
is summarized in Table 3a. We conduct ablation studies based on the BAYECZSL baseline, where
three key components are incrementally incorporated. Specifically, BPD denotes Bayesian-induced
Primitive Distribution Learning component, CDS represents Compositional Distribution Synthesis
component, and TDE refers to Three-path Distribution Enhancement component. In the second row,
only the primitive prompt branch is modeled as a probability distribution on top of the baseline. This
core component yields clear gains in both HM and AUC. In the third row, we further incorporate
CDS, which builds an auxiliary compositional distribution upon primitive distributions, resulting
in additional improvements, e.g., +1.4 HM on UT-Zappos [65] and +0.5 HM on MIT-States [17].
Finally, enhancing textual prompt distributions of three branches via TDE leads to a substantial
improvement in performance, e.g., +1.7 AUC on UT-Zappos and +0.7 AUC on MIT-States.

Primitive Distribution Learning. We next evaluate the effectiveness of learning image-specific
probabilistic distributions in primitive (i.e., attribute and object) and compositional branches in
Table 3b. It is worth emphasizing that the results reported in Table 3b are obtained without applying
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Figure 3: We show top-1 predictions of BAYECZSL in comparison with baseline. Correct predictions are
highlighted in green, and incorrect predictions in red.

Table 4: Ablation of the Hyperparameters on UT-Zappos [65] within CW setting (§4.3).

N=5 UT-Zappos N =10 UT-Zappos
- Seent Unseent HM{t AUC?t B Seen? Unseent HM?t AUC?T
L=3 63.6 72.5 51.2 38.0 L=3 69.3 75.9 56.4 44.3
L=6 69.4 73.6 52.5 40.5 L=6 63.4 76.1 53.4 39.8
L=9 65.3 71.2 55.3 41.1 L=9 66.0 70.4 51.2 38.2
L=12 67.4 73.7 53.4 40.9 L=12 66.6 72.8 55.8 42.1
L=15 65.8 73.7 53.0 39.6 L=15 67.5 74.3 54.5 424
(a) Ablation with N =5 (b) Ablation with N = 10
N=15 UT-Zappos N =20 UT-Zappos
- Seent Unseent HM{t AUCYT - Seent Unseent HM?t AUC?T
L=3 64.0 72.5 522 39.1 L=3 65.5 75.8 54.4 41.2
L=6 64.0 75.4 52.3 39.5 L=6 61.6 74.6 50.9 36.5
L=9 68.0 75.4 56.7 44.0 L=9 67.8 73.7 52.3 40.2
L=12 67.6 76.1 57.6 45.4 L=12 61.8 74.3 49.9 35.2
L=15 67.8 75.7 56.4 44.0 L=15 63.7 73.7 53.8 39.8
(c) Ablation with N =15 (d) Ablation with N = 20

distribution enhancement, and thus solely reflect the effect of introducing probabilistic modeling into
different branches. For one of the primitive branches, we remove the distribution construction and
instead use the original soft prompt. The results in Row 2 and 3 show that applying probabilistic
modeling to either the attribute or the object branch individually already yields noticeable performance
gains. Row 4 demonstrates that modeling both primitive branches simultaneously enables BAYECZSL
to capture better intra-primitive diversity, thereby improving classification accuracy. Moreover,
modeling probability distributions across all three branches leads to further gains in both HM and
AUC. This indicates that jointly applying probabilistic modeling to attribute, object, and compositional
levels allows the model to achieve more comprehensive coverage of the prompt space.

Sensitivity Analysis on Monte Carlo Sampling Number L. and Reversible Mapping Layer
Number N. Table 4 presents comprehensive ablations on the sampling number L and the number of
reversible mapping layers /N on the UT-Zappos dataset. Overall, both hyperparameters consistently
improve the model’s performance when set within a reasonable range, but choosing values that are
either excessively small or overly large results in significantly degraded performance, exhibiting a
typical “sweet-spot” behavior commonly observed in hyperparameter tuning.

When fixing N, different values of L significantly influence the quality of distribution characterization.
A small L results in insufficient sampling, preventing the model from adequately exploring the latent
space. Conversely, an excessively large L introduces unnecessary noise, which harms performance.
Across configurations with NV = 5, 10, 15, 20, we consistently observe optimal HM and AUC around
L = 12. When fixing L, the number of reversible mapping layers N also impacts the expressiveness
of the model. A shallow mapping limits the capacity to model complex distributions, whereas an
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overly deep mapping introduces redundant parameters and training instability, ultimately reducing
performance. Results across all tested L values show that performance peaks around N = 15.

These findings suggest that a moderate sampling scale (e.g., L = 12) and a reasonable mapping depth
(e.g., N = 15) provide the most balanced and stable performance, while deviations from this region
lead to noticeable degradation. More detailed analyses can be found in Appendix §D.

4.4 QUALITATIVE RESULTS

In Fig. 3, we visualize both the successful and failed cases of our BAYECZSL, as well as examples
from the baseline model without the Bayesian-induced learning. For instance, BAYECZSL is able
to correctly adjust the material of “leather” to “satin” in the UT-Zappos dataset, and “fresh” to
“sliced” in the MIT-States dataset. This demonstrates that BAYECZSL can capture intra-primitive
diversity and more comprehensive relationships between primitives and their compositions. The
last two columns in the figure show failure cases, where the images contain ambiguous primitive
cues, causing BAYECZSL to make incorrect predictions at the composition level. Nevertheless, the
predicted compositions still provide a reasonable interpretation of the image content. More success
and failure cases are provided in §F of Appendix.

5 CONCLUSION

In this paper, we propose BAYECZSL, a novel Bayesian-induced framework for Compositional Zero-
Shot Learning that learns probability distributions over primitive prompts to capture intra-primitive
diversity and semantic uncertainty. Then, by aggregating the probabilistic distributions of the attribute
and object branches into a unified compositional prompt space, BAYECZSL captures the rich semantic
relationships between primitive concepts and their compositions. Moreover, Three-path Distribution
Enhancement module is introduced to transform initial distributions into expressive ones via invertible
mappings, facilitating diverse prompt sampling from these complex distributions. Experiments on
three datasets confirm the superiority of our Bayesian-induced framework.
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This appendix provides additional details for the ICLR 2026 submission, titled “Bayesian Primitive
Distributing for Compositional Zero-Shot Learning”. The appendix is organized as follows:

* §A Detailed Statistics on Data Splitting.

* §B LLM Usage Statement.

¢ §C Baseline Model Details.

¢ §D More Quantitative Results.

* §E Semantic Prompt Sampling and Mixing.

¢ §F More Qualitative Visualization.

* §G Impact of the Hyperparameter /3.

* §H Performance Comparison of CoCoOp and BAYECZSL.
* §1 Compositional Distribution Fusion Strategy.

* §J Distribution Enhancement Strategy.

¢ §K Evaluation Results across Different Pre-trained Models.

* §L Generalization to Higher-Order Compositions.

A  DETAILED STATISTICS ON DATA SPLITTING

We experiment with three real-world CZSL benchmarks: MIT-States [17], UT-Zappos [65], and
C-GQA [42]. The MIT-States dataset is constructed by collecting images from diverse real-world
scenes and manually annotating them with the corresponding attributes and objects. The MIT-States
dataset consists of 53,753 images depicting canonical scenes, encompassing 245 objects and 115
attributes, which together give rise to 1,962 attribute—object compositions. Following the standard
split, these compositions are divided into 1,262 seen compositions for training, and 300 seen as well
as 400 unseen compositions for validation and testing. The UT-Zappos dataset consists of 29,126 shoe
images, categorized into 12 distinct object classes and annotated with 16 material attributes, resulting
in a total of 116 attribute—object compositions. The dataset is divided into 83 seen compositions for
train, 15 seen and 15 unseen compositions for validation, and 18 seen and 18 unseen compositions
for test. Unlike datasets that involve relatively simple attribute—object compositions, the UT-Zappos
dataset primarily focuses on subtle variations in shoe materials, which poses significant challenges
for compositional models. The C-GQA dataset encompasses common attribute concepts together
with object concepts encountered in everyday contexts, making it the most comprehensive benchmark
for CZSL. It consists of 39,298 images annotated with 413 distinct attributes and 674 distinct objects,
forming over 9,500 attribute—object compositions. Following the standard split, the dataset includes
5,592 seen compositions for training, 1,252 seen and 1,040 unseen compositions for validation, and
888 seen and 923 unseen compositions for testing. The detailed data split statistics is provided in
Table 5.

Table 5: Summary of data splits (§5) of MIT-States [17], UT-Zappos [65], and C-GQA [42].

Composition Train Validation Test
Dataset |4 jo| |axo] e |x] ICsl/ICul [ Y
MIT-States [17] 115 245 28,175 1,262 30,338 300/300 10,420 400/400 12,995
UT-Zappos [65] 16 12 192 83 22,998 15/15 3,214 18/18 2914

C-GQA [42] 413 674 278,362 5,592 26,920 1,252/1,040 7,280 888/923 5,098

B LLM USAGE STATEMENT

We utilized a large language model (e.g., ChatGPT) to assist in refining the wording of specific
sentences and paragraphs within this paper. The sole purpose of this tool is to enhance the clarity and
readability of the text. Importantly, LLM is not employed in any core research processes, including
method design, the generation of experimental results, or the formulation of research conclusions.
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C BASELINE MODEL DETAILS

Visual Representation Learning. Following [34, 15], for a given image = € RF>*">3 we employ
the CLIP image encoder Eiy, to divide it into N, = HW / p? patches, where (P, P) is the resolution
of each patch. We extend the PETL technique to the visual domain, where it is instantiated in the
form of an adapter [12]. The patches are transformed into a sequence of patch tokens, augmented
with a pre-trained [CLS] token, while pre-trained positional embeddings are incorporated to preserve
spatial information. We employ the [CLS] token as the image representation x, and subsequently
adopt an attribute adapter D, and an object adapter D,,, both implemented as MLPs, to disentangle
x€ into the attribute feature x* and the object feature x°.

Prompt Representation Learning. Following [15], we adopt a three-path paradigm to construct
the prompts. For each attribute-object composition ¢; ; = {a;, 0;), we construct attribute prompt
P¢ = [pfy,...,pf,,, vi], object prompt P¢ = [pf,,...,p?,,, V7] and composition prompt P}, =
[P%1> > Phoms Via» Vi.o]- All prompts are learnable vectors, and the prompt prefixes pf 1.,,,, P$ 1.,
and py, ,.,,, are initialized with “a photo of . Subsequently, these prompts are fed into the frozen text
encoder of CLIP [50] to obtain the corresponding prompt features.

Feasibility Calibration for Open-World Setting. Following [39, 44], post-training feasibility
calibration is employed to eliminate infeasible compositions that may occur during open-world
evaluation. This procedure operates under the assumption that semantically similar objects are
more likely to share compatible attributes, whereas dissimilar objects are unlikely to exhibit such
commonality. Therefore, given a candidate pair ¢ = {a, o), similarities between the objects can be

computed as:

po(a,0) = max M. (22)

oc0 | p(0)[ |o(0)]

Here, O“¢ denotes the set of objects that co-occur with attribute a in the seen compositions. The
function ¢(-) represents the embedding mapping that projects each primitive into a pre-trained em-
bedding space, instantiated with GloVe embeddings [47].Analogously, attribute similarities p, (a, 0)
are computed following the same procedure. Finally, the feasibility score for a composition (a, 0) is
obtained by aggregating the two similarity measures using a mean pooling function p:

p(a,o) = /J“(po(a70)7pa(a’70))' (23)

Finally, infeasible compositions are pruned by retaining only those whose feasibility score satisfies
p(a,0) > T on the validation set. The final prediction is then obtained as

¢=  argmax  p(e | @) +p(ai | 2)-p(oj | 7). 24)

ci,;€C9%, p(ai,05)>T

D MORE QUANTITATIVE RESULTS

Sample Number and Mapping Layers. We conducted experiments on UT-Zappos, evaluating
different combinations of sampling numbers and mapping layers (Fig. 4).

For N =5, performance initially increases with the number of samples, peaking at L = 9, and then
slightly decreases. This suggests that a moderate number of samples helps, but excessive sampling
introduces redundancy. Overall, performance remains limited, indicating that N = 5 layers constrain
model expressiveness, suitable mainly for simpler tasks.

For N = 10, performance decreases as sample size increases, with the best results at L = 3. This
indicates that deeper layers without sufficient capacity may not benefit from larger sample sizes, and
excessive samples can lead to overfitting and computational redundancy.

For N =15, both HM and AUC improve with more samples, reaching the optimum at L = 12. The
deeper mapping layers provide richer feature representations, allowing the model to effectively utilize
more samples to enhance feature learning, stabilize training, and improve generalization.

For N = 20, performance fluctuates, with the best results at L = 3. Excessively deep layers increase
model capacity, which can cause instability and overfitting, especially with limited data. Smaller
sample sizes balance learning capacity and training data diversity, leading to optimal performance.
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Figure 4: AUC and HM under Different Mapping Layers and Sampling Numbers.

Efficiency and Performance Analysis of BAYECZSL. We conducted a systematic efficiency analysis
of the proposed BAYECZSL method and compared it with the state-of-the-art Troika [15] and our
baseline model, with results summarized in Table 6. BAYECZSL has 14.9M trainable parameters.
This lightweight advantage primarily stems from the compact design of our probabilistic prompt
distribution modeling, which maintains a high degree of parameter sharing and avoids the introduction
of additional large networks. Although BAYECZSL exhibits slightly higher memory usage (11.7G)
and training time (19.6 min) compared to the baseline and Troika, its inference latency is only 25.1
ms, remaining well within acceptable limits for practical deployment without significant impact on
efficiency.

In terms of performance, BAYECZSL achieves an AUC of 45.4 on the UT-Zappos dataset, representing
an improvement of +2.8 over the baseline and +3.5 over Troika. This substantial performance gain
is highly acceptable given the modest additional computational overhead, demonstrating that our
probabilistic distribution enhancement framework effectively improves compositional generalization
while maintaining strong efficiency. These results indicate that BAYECZSL achieves a superior
balance between performance and computational cost, confirming its practical utility in real-world
scenarios.

Table 6: Efficiency comparison on UT-Zappos [65]. Here, we report trainable parameters, training
time per epoch, and inference speed for each model. See in §D for more details.

Method | Params? | Memory? | Training time? | Inference Speedt | AUCY
Troika [15] 21.7T™M 9.0G 15.1min 22.0ms 41.9
Baseline 7.6M 8.6G 11.8min 14.2ms 42.6
BAYECZSL (ours) | 14.9M 11.7G 19.6min 25.1ms 45.4

More Comparison Results with Existing CZSL Methods. Apart from CLIP-based approaches, we
further compare our proposed BAYECZSL with existing CZSL methods, all of which adopt ResNet18
as the backbone. Evaluations are conducted on three datasets, with the results reported in Table 7
under the closed-world setting and in Table 8 under the open-world setting. It can be observed that,
by transferring pre-trained knowledge, CLIP-based methods consistently outperform other CZSL
approaches in both settings. Notably, our proposed BAYECZSL achieves state-of-the-art performance
across all cases.
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Table 7: More comparison results(§D) on MIT-States [17], UT-Zappos [65] and C-GQA [42] within closed
world setting.

Closed-World MIT-States UT-Zappos C-GQA

Method Seen? Unseen| HM? AUC?T | Seent Unseent HM?t AUC?T | Seen? Unseen] HM?t AUC?T
Traditional vision-based methods

AoP [43] 14.3 17.4 9.9 1.6 | 59.8 542 408 259 | 17.0 5.6 59 0.7
LE+ [41] 15.0 20.1 10.7 2.0 | 53.0 61.9 41.0 257 | 18.1 5.6 6.1 0.8
TMN [48] 20.2 20.1 13.0 29 | 587 60.0 450 293 | 23.1 6.5 7.5 1.1
SymNet [33] 24.2 25.2 16.1 3.0 | 49.8 574 404 234 | 26.8 10.3 11.0 2.1
CompCos [38] 253 24.6 164 45 59.8 62.5 43.1 28.1 | 28.1 11.2 124 2.6
CGE [42] 28.7 25.3 172 5.1 56.8 63.6 412 264 | 28.1 10.1 114 23
Co-CGE [39] 27.8 25.2 17.5 5.1 58.2 63.3  44.1 29.1 | 293 11.9 127 2.8
SCEN [31] 29.9 25.2 184 53 63.5 63.1 478 320 | 289 12.1 124 29
CVGAE [1] 28.5 25.5 182 53 65.0 624 498 346 | 28.2 11.9 139 238
CANet [58] 29.0 26.2 179 54 | 61.0 66.3 473 33.1 | 30.0 13.2 145 33
CAPE [23] 30.5 26.2 19.1 5.8 | 60.4 674 455 31.3 | 329 15.6 163 4.2
CLIP-based methods

CLIP [50] 30.2 46.0 26.1 11.0 | 158 49.1 156 5.0 7.5 25.0 8.6 14
CoOp [70] 344 47.6 29.8 13.5 | 52.1 49.3 346 18.8 | 20.5 26.8 17.1 44
PCVL [60] 48.5 472 353 183 | 644 64.0 46.1 322 - - - -
CSP [44] 46.6 49.9 363 194 | 642 66.2 46.6 33.0 | 28.8 268 205 6.2
DFSP(i2t) [36] 474 524 372 207 | 64.2 66.4 451 32.1 | 35.6 29.3 243 8.7
DFSP(BIF) [36] 47.1 52.8 377 20.8 | 63.3 69.2 47.1 335 | 36.5 320 262 99
DFSP(2i) [36] 46.9 52.0 373 206 | 66.7 717 472 360 | 38.2 320 27.1 10.5
GIPCOL [61] 48.5 496 366 199 | 65.0 68.5 488 362 | 319 284 225 7.1
Troika [15] 49.0 53.0 393 22.1 | 66.8 73.8 546 41.7 | 41.0 357 294 124
PLID [4] 49.7 524 390 2211 | 67.3 68.8 524 38.7 | 38.8 330 279 11.0
BAYECZSL (Ours) | 51.7 51.8  39.6 225 | 67.6 761 57.6 454 | 41.0 35.5 304 128

Table 8: More comparison results(§D) on MIT-States [17], UT-Zappos [65] and C-GQA [42] within open
world setting.

Open-World MIT-States UT-Zappos C-GQA

Method Seent Unseent HM? AUC?T | Seent Unseent HM?t AUC?T | Seen? Unseent HM?t AUC?T
Traditional vision-based methods

AoP [43] 16.6 5.7 4.7 0.7 | 50.9 342 294 137 - - - -
LE+ [41] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 163 | 19.2 0.7 1.0 0.1
TMN [48] 12.6 0.9 1.2 0.1 55.9 18.1 217 84 - - - -
SymNet [33] 21.4 7.0 5.8 0.8 | 53.3 446 345 18.5 | 26.7 2.2 33 0.4
CompCos [38] 25.4 10.0 8.9 1.6 | 59.3 46.8 369 213 | 284 1.8 2.8 0.4
CGE [42] 29.6 4.0 4.9 0.7 | 58.8 46.5 38.0 21.5 | 283 1.3 22 03
Co-CGE [39] 26.4 10.4 10.1 2.0 | 60.1 44.3 38.1 213 | 287 1.6 26 04
KG-SP [22] 28.4 7.5 74 1.3 61.8 52.1 423 265 | 31.5 2.9 4.7 0.8
CVGAE [1] 27.3 9.9 10,0 1.8 | 58.6 484 417 222 | 26.6 2.9 64 0.7
CLIP-based methods

CLIP [50] 30.1 14.3 128 3.0 15.7 20.6 112 22 7.5 4.6 40 03
CoOp [70] 34.6 9.3 123 2.8 | 52.1 31.5 289 132 | 21.0 4.6 5.5 0.7
PCVL [60] 48.5 16.0 177 6.1 64.6 440 37.1 21.6 - - - -
CSP [44] 46.3 15.7 174 57 | 64.1 44.1 389 227 | 28.7 5.2 6.9 1.2
DFSP(i2t) [36] 47.2 18.2 19.1 6.7 | 643 53.8 412 264 | 35.6 6.5 9.0 2.0
DFSP(BIF) [36] 47.1 18.1 192 6.7 | 635 572 427 276 | 364 7.6 10,6 24
DFSP(2i) [36] 47.5 18.5 193 6.8 | 66.8 60.0 44.0 303 | 38.3 7.2 104 24
GIPCOL [61] 48.5 16.0 179 6.3 65.0 450 40.1 23.5 | 31.6 5.5 7.3 1.3
Troika [15] 48.8 18.7 20.1 7.2 | 664 61.2 478 33.0 | 40.8 7.9 109 2.7
PLID [4] 49.1 18.7 200 7.3 67.6 55.5 46.6 30.8 | 39.1 7.5 10.6 2.5
BAYECZSL (Ours) | 50.2 189 208 7.6 | 69.5 622 49.7 353 | 439 84 11.7 3.1
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E SEMANTIC PROMPT SAMPLING AND MIXING

State Sample Composmon Sample Object Sample
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Figure 5: Iustration of Monte Carlo sampling and prompt mixing for expanding the prompt space.

Process of Semantic Prompt Sampling and Mixing. As shown in Fig. 5, we perform Monte Carlo
sampling for each of the three branches and then fuse each sample with its corresponding prompt
prefix.

F MORE QUALITATIVE VISUALIZATION

More Case Study. We provide additional success and failure cases of our method BAYECZSL across
three CZSL benchmarks, i.e., MIT-States [17] in Fig. 6, UT-Zappos [65] in Fig. 7 and C-GQA [42]
in Fig. 8. We also compare our approach BAYECZSL with baseline without Bayesian-induced
framework. As shown in the figure, by modeling the intra-primitive variance through Bayesian
learning, the model can achieve more comprehensive coverage of the prompt space and generalize to
unseen compositions. For more fine-grained primitives, such as rich colors, textures, and appearances,
the model can make accurate predictions. Even when the same attribute appears with different visual
expressions across various compositions, the model can still clearly distinguish the differences.

Success cases

Mit-States

Baseline broken laptop inflated ball tiny bathroom sunny beach old building large pond
Ours broken computer deflated ball grimy bathroom molten sea ancient castle winding steet
Ground Truth broken computer deflated ball grimy bathroom molten sea large castle winding stream

4 “
Mit-States 'll ’

-/

Baseline mashed potato shattered church steaming soup whipped salad modern computer dark sky
Ours melted cheese fallen tower spilled sauce cooked salad cluttered room dark lightning
Ground Truth melted cheese fallen tower spilled sauce cooked salad cluttered desk bright lightning

Figure 6: Additional case studies on Mit-States [17] are presented, where BAYECZSL is compared with the
baseline that does not include Bayesian-induced framework. Correct predictions are highlighted in green, and
incorrect ones in red.
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Success cases

Failure cases

UT-Zappos
Baseline Rubber Boots.Mid-Calf  Leather Shoes.Oxfords Suede Boots.Ankle Leather Shoes.Flats Leather Boots.Knee.High  Suede Shoes.Heels
Ours Synthetic Boots.Mid-Calf ~ Nubuck Shoes.Oxfords Suede Boots.Mid-Calf Canvas Shoes.Flats Suede Boots. Mid-Calf Synthetic Shoes.Heels

Ground Truth Synthetic Boots.Mid-Calf ~ Nubuck Shoes.Oxfords

Suede Boots.Mid-Calf

Canvas Shoes.Flats

Synthetic Boots.Mid-Calf  Synthetic Boots.Ankle

UT-Zappos
Baseline Synthetic Shoes.Heels Suede Boots.Mid-Calf Canvas Shoes.Flats Leather Sandals Leather Boots.Ankle  Rubber Boots.Knee.High
Ours Hair.Calf Shoes.Heels Synthetic Boots.Ankle Canvas Shoes.Loafers Cotton Sandals Leather Boots.Mid-Calf ~ Rubber Boots.Mid-Calf
Ground Truth ~ Hair.Calf Shoes.Heels Synthetic Boots.Ankle Canvas Shoes.Loafers Cotton Sandals Suede Boots.Mid-Calf  Leather Boots.Mid-Calf

Figure 7: Additional case studies on UT-Zappos [65] are presented, where BAYECZSL is compared with the
baseline that does not include Bayesian-induced framework. Correct predictions are highlighted in green, and

incorrect ones in red.

Success cases

C-GQA
Baseline gray cup large cake
Ours white cup chocolate cake
Ground Truth white cup chocolate cake
C-GQA
Baseline black bag purple coat
Ours purple bag pink jacket
Ground Truth purple bag pink jacket

white cow

brown cow

bright cloud

brown cow

black truck

black car

black car

pink cloud

pink cloud

orange jersey

orange shirt

orange shirt

Failure cases

blurry tree yellow pie
sunny grass round cake
green grass round bread

red truck red suitcase
huge tire silver belt
ruber tire wood belt

Figure 8: Additional case studies on C-GQA [42] are presented, where BAYECZSL is compared with the
baseline that does not include Bayesian-induced framework. Correct predictions are highlighted in green, and

incorrect ones in red.

G IMPACT OF THE HYPERPARAMETER [3

The ablation study on UT-Zappos [65] regarding the influence of the hyperparameter /3 is presented
in Table 9. We conducted a sensitivity analysis on the loss weights for the attribute, object, and
compositional branches, (3, 5,, B.) within the range [0.5, 2]. The results indicate that increasing any
branch weight to 2 or decreasing it to 0.5 significantly reduces both HM and AUC, demonstrating
that the model performance is relatively sensitive to the loss weights of the three branches.

Table 9: Effect of (S,, ., 5.) on UT-Zappos [65].

(Bas Bos Be) Seent Unseen? HM?t AUC?H
(1, 1,0.5) 66.2 74.4 55.6 42.9
(1,1,2) 66.5 74.5 55.7 43.0
(1,0.5, 1) 67.2 73.6 55.0 42.0
(1,2, 1) 65.2 73.2 54.0 40.0
05,1, 1) 66.2 73.6 54.4 41.3
2,1, 1) 70.0 75.3 57.6 44.5
(1,1, 1) 67.6 76.1 57.6 45.4
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H PERFORMANCE COMPARISON OF COCOOP AND BAYECZSL

As shown in Table 10, we report the average AUC and standard error for CoCoOp [69] and BAYECZSL
over 5 random seeds on UT-Zappos [65]. CoCoOp is a conditional variant of CoOp that generates
image-specific bias vectors using visual information and adds them to the prompt vocabulary, thereby
improving few-shot object classification performance. In this study, we examine whether such
image-conditioned prompts can also enhance performance in compositional zero-shot learning tasks.
In contrast, BAYECZSL introduces modules such as BPD, CDS, and TDE to more effectively model
compositional distributions. Experimental results show that BAYECZSL outperforms CoCoOp across
all three datasets. These findings indicate that, although incorporating image-conditioned prompts
can provide some performance improvement, the compositional modeling design of BAYECZSL
can significantly boost AUC, validating the effectiveness of our method in compositional zero-shot
learning tasks.

Table 10: Performance comparison with CoCoOp [69] on UT-Zappos [65].

Method MIT-States UT-Zappos C-GQA
CoCoOp [69] 11.3=06 18.8x1.1 4.2:0.1
Ours 22.5+02 45.4405 12.8x0.1

I COMPOSITIONAL DISTRIBUTION FUSION STRATEGY

Analysis of Fusion Strategies for Compositional Representations. The results of different fusion
strategies are shown in table 11. If a simple weighted geometric mean were used, the attribute
and object branches would be assigned the same confidence. However, in most compositions,
the contributions of attributes and objects are generally different. The inverse-variance weighted
Gaussian fusion assigns larger weights to branches with lower uncertainty, meaning that more reliable
information (smaller variance) contributes more. This fusion strategy naturally reflects the uncertainty
of semantic components while suppressing bias introduced by noisy signals, resulting in more stable
and generalizable compositional representations.

Table 11: Ablation study about fusion strategies on UT-Zappos [65].

Method Seen | Unseen | HM | AUC
Weighted Geometric Mean | 65.6 74.1 55.1 | 41.8
Ours 67.6 76.1 57.6 | 454

Impact of Fusion on Compositional Prompt Expressiveness. If the distribution is extracted
directly from the compositional branch without any fusion, the model cannot fully leverage the
complementary information from the attribute and object branches. This leads to less expressive
compositional prompt distributions, insufficient coverage of the diversity of primitive concepts, and
limited generalization to unseen attribute—object compositions. As shown in the table 12, the fusion
strategy improves performance.

Table 12: Ablation study about without fusion on UT-Zappos [65].

Method Seen | Unseen | HM | AUC
Direct Compositional Branch | 69.7 74.9 57.0 | 445
Ours 67.6 76.1 57.6 | 454

As shown in Table 13, we conducted an experiment by removing the disentangling MLP and the
CDS module in our method, and directly predicting a compositional posterior distribution from
the combined representation ¢ obtained via Eq. 2. This simplified structure no longer models the
individual attribute/object posteriors, nor performs precision-weighted fusion. We carried out this
ablation study on the UT-Zappos dataset for comparison.

Table 13: Ablation study about without MLP and CDS on UT-Zappos [65].

Method Seen 7T | Unseen? | HM 7 | AUC 1
Without MLP and CDS | 66.4 73.7 54.7 414
Ours 67.6 76.1 57.6 45.4

21



Under review as a conference paper at ICLR 2026

J  DISTRIBUTION ENHANCEMENT STRATEGIES

To further enhance the model’s expressive power, we introduce the TDE module on top of BPD. By
stacking invertible mappings (similar to normalizing flows), TDE transforms the simple diagonal
Gaussian into a more complex distribution. This design allows the model to maintain the simplicity of
the initial assumption while modeling nonlinear dependencies and complex input-conditioned struc-
tures, effectively “shifting complexity upstream.” As shown in Table 14, we conducted experiments on
UT-Zappos using three alternative posterior modeling strategies: full-covariance, mixture posteriors,
and standard normalizing flows. Although we carefully tuned these methods to achieve reasonable
performance, they still underperform TDE. This indicates that the diagonal-Gaussian assumption in
BPD has limited impact on the results, and the invertible mappings in TDE are sufficient to enhance
posterior expressiveness.

Table 14: Ablation study about different distribution enhancement strategies on UT-Zappos [65].

Method Seen T | Unseen T | HM 7 | AUC T
Full-Covariance 67.9 72.9 56.0 422
Mixture Posteriors 66.6 70.0 54.3 40.5
Normalizing Flows | 65.6 72.8 54.8 41.5
TDE 67.6 76.1 57.6 454

K EVALUATION RESULTS ACROSS DIFFERENT PRE-TRAINED MODELS

As shown in Table 15, we conducted experiments using the ViT-B backbone, which demonstrate that
our method exhibits strong robustness and superiority.

Table 15: Performance comparison on CLIP-ViT-B backbone on UT-Zappos [65].
Method | Backbone | Seen? | Unseen T | HM 1T | AUC T
ViT-B | Baseline 61.0 62.9 45.1 31.9
ViT-B | Ours 65.7 67.5 51.3 37.3

L. GENERALIZATION TO HIGHER-ORDER COMPOSITIONS

Previous work (CSP) [44] introduced another challenging dataset: AAO-MIT-States, a subset derived
from MITStates to evaluate the higher-order compositional learning ability in the form of attribute-
attribute-object (AAO) compositions. This approach allows us to accommodate multi-attribute objects
without altering the original disentanglement framework, while preserving the Bayesian modeling of
uncertainty. As shown in Table 16, our framework achieves strong performance on this dataset.

Table 16: Quantitative comprasion results on AAO-MIT-States.
Model | Accuracy
CLIP 62.7
CSP 72.6.04
Ours 749&0.7
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