Matryoshka Quantization

Pranav Nair ! Puranjay Datta™! Jeff Dean'? Prateek Jain! Aditya Kusupati'

Abstract

Quantizing model weights is critical for reducing
the communication and inference costs of large
models. However, quantizing models — especially
to low precisions like int4 or int2 — requires a
trade-off in model quality; int2, in particular, is
known to severely degrade model quality. Conse-
quently, practitioners are often forced to maintain
multiple models with different quantization lev-
els or serve a single model that best satisfies the
quality-latency trade-off. On the other hand, in-
teger data types, such as int8, inherently possess
a nested (Matryoshka) structure where smaller
bit-width integers, like int4 or int2, are nested
within the most significant bits. Leveraging this
insight, in this paper, we propose Matryoshka
Quantization (MatQuant), a novel multi-scale
quantization technique that alleviates the afore-
mentioned challenge. This technique allows us to
train and maintain a single quantized model but
serve it with the precision demanded by the de-
ployment. Furthermore, leveraging MatQuant’s
co-training and co-distillation, int2 precision mod-
els extracted by MatQuant outperform standard
int2 quantization by up to 4% and 7% with Omni-
Quant and QAT as base algorithms respectively.
Finally, we demonstrate that by using an extra bit
to represent outliers, a model with an effective
precision of 2.05-bit improves further by 6% with
OmniQuant as the base algorithm.

1. Introduction

Due to their impressive performance, there is a strong push
to deploy deep learning models, particularly large language
models (LLMs) (G Team et al., 2024; Dubey et al., 2024;

“Equal contribution 'Google DeepMind Google Research.
Correspondence to: Pranav Nair <pranavajitnair@ google.com>,
Puranjay Datta <puranjaydatta@google.com>, Jeff Dean
<jeff@google.com>, Prateek Jain <prajain@google.com>,
Aditya Kusupati <kusupati@google.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Achiam et al., 2023) in a large number of scenarios. Due
to auto-regressive nature of LLMs, decode latency tends to
dominate inference cost. Decode latency itself is dominated
by communication cost of transferring model weights from
high-bandwidth memory (HBM) to the SRAM or due to
transferring weights/activations in a distributed cluster.

Quantizing weights and/or activations can significantly re-
duce the overall communication load and is, therefore,
one of the most popular techniques for reducing inference
costs (Dettmers et al., 2022). While floating-point represen-
tations are standard for training, integer data types such as
int8, int4, and int2 are appealing alternatives for inference.
However, current methods for quantizing to these varying
integer precisions typically treat each target precision as an
independent optimization problem, leading to a collection
of distinct models rather than a single, versatile one. Fur-
thermore, quantizing to extremely low precisions like int2
is known to be highly inaccurate. In this work, we pose the
question of whether both of the above challenges can be
addressed; that is, can we train a single model from which
we can extract multiple accurate lower-precision models?
We answer this question in the affirmative by introducing
Matryoshka Quantization (MatQuant), a novel multi-scale
training method that leverages the inherent nested (Ma-
tryoshka) structure (Kusupati et al., 2022) within integer
data types (Figure 1a). Specifically, slicing the most signifi-
cant bits (MSBs) of an int§8-quantized weight can directly
yield an int4 or int2 model. Existing quantization techniques
often neglect this structure, which limits the potential for
multi-scale adaptable models operating at various bit-widths
with optimal performance.

Instead, MatQuant simultaneously optimizes model
weights across multiple precision levels (e.g., int8, int4,
int2). At a high level, we represent each model parame-
ter at different precision levels using shared MSBs, and
then jointly optimize the loss for each precision level. This
allows us to develop a single quantized model that can
effectively operate at any of the chosen bit-widths, offer-
ing a spectrum of accuracy-vs-cost options. MatQuant is
a general-purpose technique, applicable to most learning-
based quantization methods, such as Quantization Aware
Training (QAT) (Jacob et al., 2018) and OmniQuant (Shao
etal., 2023).

Matryoshka Quantization

Gemma-2 9B Weight Distribution for OmniQuant

int8

£9

& | [11]01/1001 .
‘ * 1ol M Baseline
| MatQuant
Lot Lavit Lebie Sos
Bos
o
Loa
w
LMatQuant 0.2
(a) 0.0
Gemma-2 9B 9
I T SN\ 10(mmm Baseline
70 ,'P“ K ad » 8885 MatQuant
) % >
g |« 2
g 60 |V A MatQuant 3
< ® MatQuant-Interp. o
X pu
v 50 v Baseline =
= MinMax
40 Sliced int8
2 4 6 8
Effective bits per FFN parameter
(b)

Quantized buckets

I Baseline
#8088 MatQuant

Quantized buckets

©

Figure 1. (a) MatQuant is a multi-scale quantization training technique using the inherent Matryoshka structure of int8§ — int4 — int2.
(b) Empirical gains of MatQuant on downstream tasks, especially > 8% for int2, on Gemma-2 9B with OmniQuant. (c) The right-shifted
quantized weight distribution as a consequence of MatQuant’s training mechanism that maximises accuracies across all precisions.

We demonstrate the efficacy of MatQuant when applied
to quantizing the Feed-Forward Network (FFN) parame-
ters of standard LLMs (Gemma-2 2B, 9B, and Mistral
7B) (Vaswani et al., 2017) — typically, FFN is the main
latency block hence the focus on improving the most signifi-
cant component’s latency. Our results show that MatQuant
produces int8 and int4 models with comparable accuracy
to independently trained baselines, despite the benefit of
shared model parameters. Critically, the int2 models gen-
erated by MatQuant significantly outperform their indi-
vidually trained counterparts, with 4% higher accuracy on
downstream tasks (Figure 1b). We also extend MatQuant
to quantize all weights of a Transformer layer. In Figure Ic,
we find that quantizing with MatQuant shifts the quantized
weight distribution toward higher values, contributing to
improved int2 performance. Finally, in Section 7, we also
demonstrate that using an extra bit to represent outliers sig-
nificantly boosts the performance for our sliced int2 models.

Beyond improving chosen precision performance,
MatQuant allows for seamless extraction of interpolative
bit-widths, such as int6 and int3. MatQuant also admits
a dense accuracy-vs-cost trade-off by enabling layer-wise
Mix’n’Match of different precisions. Therefore, even if
the hardware only supports int4 and int2, it’s possible to
serve models at various effective precisions, tailored to
the deployment environment. Overall, MatQuant and
its variants present a significant step toward developing
multi-scale models with high flexibility and performance,
pushing the boundaries of low-bit quantization for efficient
LLM inference.

2. Related Work

Model weight quantization is an extremely powerful and
prevalent technique for making resource-intensive neural
networks suitable for deployment constraints — especially
modern-day LLMs. Quantization algorithms can be cate-
gorized as either learning-free or learning-based. Learning-
free methods use limited data to calibrate model parameters
without relying on gradient descent. Learning-based meth-
ods, however, utilize gradient descent to update either model
parameters or auxiliary parameters to aid in quantization.

Learning-free Quantization Methods. Naive quantiza-
tion methods, such as MinMax, absmax, and zero-point
quantization, aim to directly map the range of model weights
to the target bit-width — see (Dettmers et al., 2022) for a de-
tailed background. Dettmers et al. (2022) further improved
this by identifying the need to handle outliers with higher
precision than the rest of the model weights. The core
principle of more recent learning-free quantization methods
remains similar while improving various aspects of it and
using small amounts of data for calibration. For example,
GPTQ (Frantar et al., 2022) improves upon min-max quanti-
zation by iterating over all the coordinates, quantizing them
one at a time, and updating the remaining full-precision
coordinates to minimize the layer-wise activation recon-
struction error. AWQ (Lin et al., 2023), SmoothQuant (Xiao
et al., 2023), and AffineQuant (Ma et al., 2024) scale the
weights and activations to reduce outliers, thus making
them easier to quantize. QulP (Chee et al., 2024), Frame-
Quant (Adepu et al., 2024), and QuaRoT (Ashkboos et al.,

Matryoshka Quantization

2024) multiply the weights and activations by orthonormal
matrices before quantizing to reduce the number of outliers.
SqueezeLLM (Kim et al., 2024) uses clustering to obtain
the optimal buckets for quantization, and CDQuant (Nair &
Suggala, 2024) improves upon GPTQ by greedily choosing
the coordinates to descend along. While learning-free meth-
ods are inexpensive and work well at higher bit-widths, they
are often suboptimal in the low-precision regime, which
benefits greatly from learning-based techniques.

Learning-based Quantization Methods. Quantization
Aware Training (QAT) (Jacob et al., 2018; Abdolrashidi
et al., 2021) is a logical approach to ensure that models
are easy to quantize during inference while retaining high
accuracy. However, because QAT involves updating all
the model parameters, its adoption for LLMs has been lim-
ited. Several recent works improve the performance and
efficiency of QAT. LLM-QAT (Liu et al., 2024a) and Bit-
Distiller (Du et al., 2024) enhance QAT with knowledge dis-
tillation from the full-precision model. EfficientQAT (Chen
et al., 2024) minimizes the block-wise reconstruction error
before performing end-to-end training. This significantly
reduces the time it takes for QAT to converge. On the other
hand, some techniques significantly reduce the overhead
by learning only the auxiliary parameters, such as scaling
factors and zero-points, that aid in quantization instead of
updating the actual weight matrices. For example, Omni-
Quant (Shao et al., 2023) does not update the model pa-
rameters; instead, it learns additional scales and shifting
parameters (that aid with quantization) through gradient de-
scent over the block-wise reconstruction error and achieves
better accuracy than most QAT techniques. Likewise, Spin-
Quant (Liu et al., 2024b) uses gradient descent to learn its
rotation matrices. This class of learning-based quantization
techniques (OmniQuant, SpinQuant, etc.) is widely adopted
due to their appeal of achieving QAT-level accuracy at a
fraction of the cost.

Multi-scale Training. Training across multiple data
scales (resolutions) was heavily popularized in computer
vision for both recognition and generation (Adelson et al.,
1984; Lin et al., 2017; Denton et al., 2015). More recently,
the paradigm of multi-scale training has shifted to mod-
els (Rippel et al., 2014; Yu et al., 2018; Kusupati et al.,
2022; Devyvrit et al., 2023), where the data remains the same,
and models of varying capacity, all nested within one large
model, are trained jointly. This joint, nested (Matryoshka-
style) learning with varying model sizes results in a smooth
accuracy-vs-compute trade-off and is beneficial in many
downstream applications and real-world deployments. How-
ever, the most obvious structure with a nested nature is
the bit structure of the integer data type. Given the suc-
cess of multi-scale training for inputs, outputs, and model
weights, it is imperative to explore it further for integer data

types, especially in the context of quantization, which aids
in the deployment of resource-intensive LLMs. Following
this idea, Yu et al. (2019) have successfully trained a sin-
gle model that can do well at any precision. However, the
experiments were limited to ConvNets and small Neural
Networks. In this paper, we extend the idea of nested pre-
cision to LLMs and show that it indeed works at scale. We
also show that, for the first time, our models are quality
neutral for intermediate precisions such as int3 and int6 that
we never trained for, and densely span the accuracy-vs-bits
trade-off. In Section 5.3, we show that even to train mod-
els for a fixed target precision, having loss over the sliced
bits of an 8-bit model does better than training a model
explicitly for that precision, indicating that MatQuant is a
fundamentally better way to do low-bit quantization.

3. Matryoshka Quantization

We introduce MatQuant, a general-purpose, multi-scale
training technique that works seamlessly with popular
learning-based quantization methods such as Quantiza-
tion Aware Training (QAT) (Jacob et al., 2018) and Om-
niQuant (Shao et al., 2023). As long as the model or
auxiliary parameters are optimized with gradient descent,
MatQuant’s multi-scale training technique can be used
across chosen bit-widths, leveraging the inherent nested
structure of integer data types. In this section, we will elab-
orate on the preliminaries behind QAT and OmniQuant,
alongside our novel proposed approach, MatQuant.

3.1. Preliminaries
3.1.1. QUANTIZATION AWARE TRAINING

Quantization Aware Training (QAT) learns a c-bit quantized
model by optimizing for the end-to-end cross entropy loss
using gradient descent. It uses the quantized weights for the
forward pass and a straight through estimator (STE) (Bengio
et al., 2013) to propagate gradients through the quantization
operator during the backward pass.

To mathematically formulate QAT, we define MinMax quan-
tization of a real-valued vector w in ¢ bits as follows:

Qmm(w, ¢) = clamp Q% + 21 ,0,2¢ — 1)
max(w) — min(w) min(w) M
a= , Z2=-
2¢ -1 o

where Qnm (w, ¢) is the ¢-bit quantized version of w, « is
the scaling factor and z is the zero point.

Let W represent weights of a Transformer LLM and let
D ={(x1,y1),-..,(xN,yn)} be alabelled dataset where
x; and y; represent the input and output respectively. With

Matryoshka Quantization

Lcg as the cross entropy loss, the optimization of QAT is:

mln— Z Lcg (F

16 [N]

mwQMM (WF7C))7y2) (2)

where F'(-) represents the LLM’s forward pass.

3.1.2. OMNIQUANT

OmniQuant, unlike QAT, does not update the model pa-
rameters. Instead, it learns additional scaling and shift-
ing parameters through gradient descent over layer-wise
L2 error reconstruction. These auxiliary parameters aid
with quantization. Similar to QAT, OmniQuant also uses a
straight through estimator during optimization. However,
unlike QAT, OmniQuant operates with limited data, making
it much more attractive for resource-scarce settings.

OmniQuant adds two learnable scales, v and (3, to MinMax
quantization as follows:

Qomni(w, ¢) = clamp Q% + 4 0,26 — 1)
_ max(w) — 8 - min(w) - min(w)
B 2(: _ 1 9 - 7T

3)

OmniQuant also adds another set of learnable shifting and
scaling parameters to the FFN’s affine projections as follows:

XW+b— (X —6) @ 5) Qomni(WEOs)+b+85-W (4)

where X € R™"*4 is the input to the affine transformation,
W € R¥*% is the linear projection associated with the
affine transformation, b € R% is the bias vector, § € R¢ and
s € R4 are learnable shift and scale parameters respectively.

With the goal of optimizing the layer-wise L2 error (where
a layer consists of an Attention block followed by an FFN
block), OmniQuant’s overall objective can be portrayed as
follows:

min ||Fy(W), X1) —

v.8,0,8

F(Qomi(WE), X135

where Fj(-) represents the forward pass for a single layer [,
Wfp represents the layer parameters and X represents the
layer’s input. Note that the above objective is optimized
independently for each of the L Transformer layers.

3.2. MatQuant

MatQuant is a general purpose framework to develop a
single model that can do well at any precision. It is a multi-
scale training technique that works with most learning-based
quantization schemes like QAT and OmniQuant discussed
earlier. At its core, taking inspiration from Kusupati et al.

(2022), MatQuant optimizes the quantization loss for sev-
eral target bit-widths jointly.

To have a single model for various integer precisions, we
nest smaller bit-widths into large ones — leveraging the in-
herent Matryoshka nature of the integer data type. So, if we
want to extract a r-bit model from a c-bit model (0 < r < ¢),
we can just slice out the r most significant bits (MSBs) —
using a right shift, followed by a left shift of the same order.
Formally, the S(q°,) operator slices the most significant r
bits from a c-bit quantized vector ¢°:

(6]

st - |

ZC_J ,0,2" — 1> «2°77(6)

Note that clamp(+) is required to curtail overflows generated
by rounding. More details can be found in Appdendix A.
Once we have this structure, we can optimize for several
precisions by slicing the MSBs from the largest bit-width
we are optimizing for. Let R = {ry, 79, ..., 7 } be the bit-
widths we want to optimize for, (-,) represent the quantiza-
tion function of the base algorithm (i.e., any learning-based
quantization scheme), £(-) represent the loss function per-
taining to the base algorithm, F'(-) represent the forward
pass required to compute the loss, 6 represent the set of
model/auxiliary parameters we are optimizing for and let
W represent the model parameters. MatQuant’s overall
objective can be formulated as follows:

mln—ZZ)\ -L(F(S(Q8,c),r),

i€[N|TER

z),yi) (D)

where y; = y; for QAT and y, = Fy(W, X}) for Omni-
Quant, and z} = z; for QAT and z; = X for OmniQuant.
A is the loss reweighing factor for bit-width r.

In this work, we default to training MatQuant with three
bit-widths, R = {8, 4, 2}, and subsequently perform a linear
search over \,.. This process aims to optimize performance
such that the model performs well across all targeted preci-
sion levels. Further, while the focus of this paper is primarily
on integer data types, we discuss the possibility of extending
MatQuant to floating-point representations in Section 5.5.

A key point to note is that MatQuant primarily alters the
quantized weight distributions across precision levels com-
pared to the base quantization algorithm (OmniQuant or
QAT). Figure 1c illustrates the differences in the quantized
weight histograms obtained with and without MatQuant
on Gemma-2 9B using OmniQuant. Upon close observation,
we find that all the distributions of MatQuant are shifted to
the right; that is, weights quantized with MatQuant tend to
use more higher-valued weights. While this might not signif-
icantly impact int8 or even int4 models, int2 models benefit
from utilizing more of the possible quantized weights com-
pared to the baseline. Because int2 favors higher-valued
weights, this effect propagates to higher-valued weights for

Matryoshka Quantization

Table 1. MatQuant with OmniQuant across Gemma-2 2B, 9B and Mistral 7B models. MatQuant performs on par with the baseline
for int4 and int8 while significantly outperforming it for int2. Even the int3, int6 models obtained for free through interpolation from
MatQuant perform comparably to the explicitly trained baselines. Task Avg. is average accuracy on the evaluation tasks (1) while log

pplx (perplexity) is computed on C4 validation set (J.).

Data type Method Gemma-2 2B Gemma-2 9B Mistral 7B
OmniQuant Task Avg. log pplx. Task Avg. logpplx. Task Avg. log pplx.
bfloat16 68.21 2.551 74.38 2.418 73.99 2.110
int8 Baseline 68.25 2.552 74.59 2.418 73.77 2.110
MatQuant 68.02 2.570 74.05 2.438 73.65 2.125
Sliced int8 62.87 2.730 72.26 2.480 38.51 4.681
int4 Baseline 67.03 2.598 74.33 2.451 73.62 2.136
MatQuant 66.58 2.618 73.83 2.491 73.06 2.153
Sliced int8 39.78 17.030 38.11 15.226 37.29 11.579
int2 Baseline 51.33 3.835 60.24 3.292 59.74 3.931
MatQuant 52.37 3.800 63.35 3.187 62.75 3.153
Sliced int8 67.72 2.497 74.64 2.353 73.00 2.071
int6 Baseline 68.06 2.554 74.23 2.420 74.10 2.112
MatQuant 67.52 2.574 73.92 2.440 73.63 2.127
Sliced int8 41.35 6.024 54.18 3.977 39.21 10.792
int3 Baseline 64.37 2.727 73.23 2.549 71.68 2.211
MatQuant 64.47 2.618 72.87 2.607 71.16 2.238

int4, and then to int8. This observation highlights the po-
tential overparameterization and freedom in the int8 data
type to accommodate the more stringent needs of int2 dur-
ing joint training. We further explore the effects of this
phenomenon in Section 5.3 to develop a better standalone
quantization technique for a single target precision.

3.2.1. INTERPOLATIVE BEHAVIOR

Slicing. Although we explicitly train MatQuant for three
precisions (int8, int4, int2), we find that the resulting model,
when quantized to interpolated bit-widths like int6 & int3
by slicing (Eq. 6) the int8 model, performs on par with
a baseline trained explicitly for that precision. It is also
significantly better than slicing an int8 quantized model.
We attribute this strong interpolation in bit-width space to
MatQuant, and present more results in Sections 4.1 & 4.2.

Mix’n’Match. MatQuant also enables the use of dif-
ferent precisions at different layers through layer-wise
Mix’n’Match (Devvrit et al., 2023), even though we never
trained for these combinatorial possibilities. These large
number of models, obtained at no cost, densely span
the accuracy-vs-memory trade-off. We explore several
Mix’n’Match strategies and find that having a higher preci-
sion (int8) in the middle layers and a lower precision (int2)
at the start and end is the most optimal among hundreds of
possible models. See Section 4.3 for detailed experiments.

4. Experiments

In this section, we present an empirical evaluation of
MatQuant working with two popular learning-based quan-

tization methods: OmniQuant (Section 4.1) and QAT (Sec-
tion 4.2). We demonstrate MatQuant’s efficiency on
Transformer-based LLMs. Unless otherwise mentioned,
our primary focus is on weight only quantization within the
parameter-intensive FFN blocks of the Transformer layer.

For our experiments, we chose the default target quantiza-
tion precisions to be int8, int4, and int2. Furthermore, we
showcase the interpolative nature of MatQuant through
evaluations on int6 and int3, as well as its elastic ability to
densely span the accuracy-vs-cost trade-off using layer-wise
Mix’n’Match (Section 4.3). Finally, we ablate on improving
the performance of MatQuant (Sections 5.1 and 5.2) and
extend MatQuant to the quantization of FFN and Attention
parameters. (Section 5.3). Further training and fine-grained
evaluation details are in the Appendix.

Models and Data. We experiment with Gemma-
2 (Gemma-Team, 2024) 2B, 9B, and Mistral 7B (Jiang et al.,
2023) models. For OmniQuant experiments, we sample
128 examples with a sequence length of 2048 from the C4
dataset (Raffel et al., 2020) and train using a batch size of
4. We train for a total of 10M tokens for all models ex-
cept the int2 baseline, where we train the model for 20M
tokens (Shao et al., 2023). For QAT experiments, we sample
a fixed set of 100M tokens from the C4 dataset and train all
our models using a batch size of 16 and a sequence length
of 8192 for a single epoch.

Baselines. For OmniQuant and QAT, our primary base-
lines (referred to as “Baseline” in the tables and figures)
are models trained explicitly for a given precision. When

Matryoshka Quantization

Table 2. MatQuant with QAT across Gemma-2 2B, 9B and Mistral 7B models. MatQuant performs on par with the baseline for
int4 and int8 while significantly outperforming it for int2. Even the int3, int6 models obtained for free through interpolation from
MatQuant perform comparably to the explicitly trained baselines. Task Avg. is average accuracy on the evaluation tasks (1) while log

pplx (perplexity) is computed on C4 validation set ({.).

Data type Method Gemma-2 2B Gemma-2 9B Mistral 7B
QAT Task Avg. logpplx. Task Avg. logpplx. Task Avg. log pplx.
bfloat16 68.21 2.551 74.38 2.418 73.99 2.110
int8 Baseline 67.82 2.458 74.17 2.29 73.48 2.084
! MatQuant 67.44 2.449 74.52 2.262 72.58 2.104
Sliced int8 67.13 2.483 73.36 2.276 71.76 2.18
int4 Baseline 67.03 2.512 73.26 2.324 72.13 2.105
MatQuant 66.59 2.499 73.24 2.429 71.99 2.148
Sliced int8 39.27 10.217 40.40 7.259 37.41 9.573
int2 Baseline 47.74 3.433 56.02 2.923 54.95 2.699
MatQuant 52.20 3.055 62.29 2.265 61.97 2.524
Sliced int8 67.53 2.401 74.15 2.232 73.35 2.097
int6 Baseline 67.75 2.460 74.31 2.293 72.71 2.077
MatQuant 67.33 2.453 74.30 2.265 72.59 2.106
Sliced int8 59.56 2.882 68.70 2.512 64.33 2.493
int3 Baseline 61.75 2.678 69.9 2.43 68.82 2.197
MatQuant 60.76 2.734 70.41 2.429 67.16 2.324
interpolating the models trained with MatQuant for int6 Sliced Interpolation. Beyond the target quantization gran-

and int3, we do not perform any additional training. How-
ever, the baselines are trained explicitly for 6 and 3 bits
respectively. We also compare against a sliced int§ Omni-
Quant/QAT baseline model to the corresponding precision
(referred to as “Sliced int8” in the tables).

Evaluation Datasets. Following recent work (Frantar
et al., 2022; Ma et al., 2024), we evaluate all the meth-
ods based on log perplexity and average zero-shot accuracy
across a collection of downstream tasks. We use C4’s test
set to calculate perplexity, and for downstream evaluations,
we test on ARC-c, ARC-¢e (Clark et al., 2018), BoolQ (Clark
et al., 2019), HellaSwag (Zellers et al., 2019), PIQA (Bisk
et al., 2020), and Winogrande (Sakaguchi et al., 2020).

4.1. MatQuant with OmniQuant

Table 1 shows the efficacy of MatQuant when used with
FFN-only OmniQuant and compared to explicitly trained
OmniQuant baselines for the target precisions, i.e., int8,
int4, and int2, across all the models. While the average
downstream accuracy of MatQuant for int8 and int4 quan-
tization is within 0.5% of the corresponding independently
trained baselines, the int2 quantized models of MatQuant
are 1.04%, 3.11%, and 3.01% more accurate for Gemma-2
2B, 9B, and Mistral 7B, respectively. Similar trends and
improvements follow when measuring performance through
validation log perplexity. Further, the quantized int4 and
int2 models sliced from the int8 OmniQuant baseline suffer
a significant drop in accuracy around int4, demonstrating
that the nested structure of int8 is not well utilized.

ularities (int8, int4, and int2), MatQuant allows for bit-
width interpolation to bit-widths not optimized during train-
ing. We find that the accuracy of the int6 and int3 models
obtained by slicing the MatQuant models is comparable to
their explicitly trained baselines.

4.2. MatQuant with QAT

To further demonstrate the generality of MatQuant, we
experiment on the same models using the popular QAT
technique. Following the trend of experimental results with
OmniQuant, we show in Table 2 that the models trained
using MatQuant with QAT are comparable to the explicitly
trained baselines for all the targeted bit-widths of int8 and
int4. However, int2 quantized models using MatQuant are
4.46%, 6.27%, and 7.02% more accurate for Gemma-2 2B,
9B, and Mistral 7B, respectively.

Sliced Interpolation. Models trained using MatQuant
with QAT exhibit strong interpolative performance similar
to that of MatQuant with OmniQuant. We find that the
accuracy of the int6 and int3 models obtained by slicing
the MatQuant models is comparable to explicitly trained
baselines for both interpolated bit-widths.

While OmniQuant only trains the auxiliary parameters
needed for quantization, QAT also updates the weight pa-
rameters. This potentially results in severe overfitting to the
C4 subset used in the experiments. We observe this overfit-
ting in all the experiments presented in Table 2, where the
log perplexities improve for QAT compared to OmniQuant,
while the downstream accuracies suffer. This also highlights

Matryoshka Quantization

Gemma-2 9B
75
* Yaok — k- ke @ ¥ - —%— X
[] * 7
0] /
o */
E 70 *,/
(9] * /
> /
X / MatQuant
> * s A atQuan
£65 7 * Mix'n'Match
= A ® MatQuant-Interp.
v Baseline
60 v
2 4 6 8

Effective bits per FFN parameter

Figure 2. Mix’n’Match on Gemma-2 9B model trained using
MatQuant with OmniQuant allows elastic accuracy-vs-cost
model extraction for free during deployment.

the need for high-quality data for QAT to realize its bene-
fits; otherwise, users are better off using resource-friendly
methods like OmniQuant.

4.3. Layerwise Mix’n’Match

Alongside the strong slicing-based interpolative properties,
quantization with MatQuant also enables another form
of elastic and interpolative behavior through Mix’n’Match.
Mix’n’Match provides a mechanism to obtain a combina-
torial number of strong models by using different quanti-
zation granularities, from the target bit-widths — i.e., int8,
int4, and int2 across layers. Figure 2 shows the ability of
Mix’n’Match to densely span the accuracy-vs-bits-per-FFN-
parameter (memory/cost) trade-off for the Gemma-2 9B
model trained using MatQuant with OmniQuant. While
there are many more feasible models, we only showcase
the best models obtained through the strategy described in
Section 3.2.1 and further expanded in Appendix B. Inter-
estingly, the Mix’n’Match model, with a sub-4-bit effective
width, is more accurate than the 4-bit sliced model. This
opens up possibilities for effective serving depending on
hardware support. See Section 5.4 for further discussion.

5. Ablations and Discussion

In this section, we present design ablations to improve
MatQuant. Section 5.1 discusses the effect of non-uniform
weighting across target precisions (int8, int4, int2), and
Section 5.2 explores co-distillation of lower precision lev-
els (int4, int2) from a higher precision model (int8). Dur-
ing the process of extending MatQuant to all Transformer
parameters, not just the FFN block, we uncovered an in-
teresting hybrid quantization algorithm (between Baseline
and MatQuant). Section 5.3 further details this method,
called Single Precision MatQuant, which stabilizes the
QAT baseline for all the Transformer weights. Finally, we
discuss MatQuant beyond integer data types and the con-
siderations for effective deployment on current hardware.

Table 3. Design choice ablation for loss re-weighting of the 3 target
bit-widths (int8, int4, int2) that MatQuant explicitly optimizes.
Note that MatQuant (0, 0, 1) = Single Precision MatQuant.

Data type ~ Weightings Gemma-22B Gemma-2 9B Mistral 7B
Task Avg.
(0.1,0.1,1) 68.02 74.05 73.27
int8 (0.2,0.2,1) 67.91 73.91 73.44
(0.3,0.3,1) 68.01 73.88 73.56
(0.4,0.4,1) 67.95 73.84 73.65
(0.1,0.1,1) 66.58 73.83 72.76
intd (0.2,0.2,1) 67.47 73.8 73.16
(0.3,0.3,1) 66.97 73.25 73.47
(0.4,0.4,1) 67.48 74.32 73.66
(0.1,0.1,1) 52.37 63.35 63.25
int2 (0.2,0.2,1) 51.88 64.04 63.99
(0.3,0.3,1) 51.05 64.1 63.6
(0.4,04,1) 51.69 61.98 62.75

5.1. Weightings ()\,) for MatQuant

Depending on the constraints, we may wish to maximize
the accuracy of one of the target bit-widths in MatQuant.
Equation 7 provides a general formulation of MatQuant
that supports searching over the weight A, for bit-width
r. The results in Section 4 are with the weights that have
balanced performance across target precisions. Table 3
shows the weight multiplier ablation results for Gemma-
2 2B, 9B, and Mistral 7B. We find that a higher relative
value for \q is essential in attaining good int2 performance.
Increasing A4, Ag to improve int8 and int4 models often
results in accuracy drop for the int2 models. In general, we
can see that a higher relative weight for a specific precision
results in increased accuracy for that bit-width. We can
consider re-weighting as scaling the importance of the bits
during training, and finding an optimal re-weighting recipe
is an interesting research question.

5.2. Co-distillation for MatQuant

Given the nested nature of the models trained using
MatQuant, we explored co-distillation, where the outputs
from a higher-precision model are used as the target for
the lower-precision nested model, either in a standalone
fashion or alongside the ground truth target (weighted
equally). Table 4 shows the effects of co-distillation applied
to MatQuant with both OmniQuant and QAT on Gemma-2
9B. While int8 and int4 show no significant improvement,
the nested int2 model benefits substantially from the int8
supervision, reaching 0.97% higher accuracy than the non-
co-distilled MatQuant with OmniQuant. Co-distillation in
MatQuant opens up avenues for interesting design choices
that can further leverage the inherent nested structure of
integer data types.

5.3. Single Precision MatQuant

In Tables 1 and 2, MatQuant performs on par with
the explicitly trained baselines for int4, int8, and the

Matryoshka Quantization

Table 4. Design choice ablations for co-distillation within
MatQuant. x — y represents distilling the y-bit model from
the x-bit model. We note that the accuracy for int2 has signifi-
cantly improved while minimally impacting the other bit-widths.

Table 6. Extending MatQuant with QAT to FFN + At-
tention parameters. Baseline QAT destabilizes for int2
and int3 but improves significantly through MatQuant &
Single Precision MatQuant.

Gemma-2 9B OmniQuant QAT Data type Method Gemma-2 9B Mistral 7B
Data type Config. Task Avg. log pplx. Task Avg. log pplx. QAT Task Avg. log pplx. Task Avg. log pplx.
[8,4,2] 74.05 2.438 74.52 2.262 bfloat16 74.38 2.418 73.99 2.110
=4
int8 8,4,8 = 2] 72.76 2473 7475 2.242 . Baseline 74.61 2.353 73.73 2.091
(8,4,2,8 — 2] 73.99 2.435 T4.87 2.240 int8 , :
8,4,2,8 »4;2] 73.85 2.437 74.81 2.240 MatQuant 7485 2.333 7388 2.182
Sliced int8 73.15 2.362 71.46 2.290
R =4
8 [ff’;l’i] 2 77323 gﬁ’é ;‘;?2 3?7’; int4 Baseline 72.98 2.40 71.87 2.132
intd 8,4,2,8 2 7363 2486 7307 2.276 MatQuant 74.01 2.396 7144 2441
8,4,2,8 = 4;2] 7355 2.478 73.93 2.277 Sliced int8 38.97 23467 35.06 10.640
[8,4,2) 6335 3.187 6229 2.660 int2 Baseline - - - -
. [8,4,8 — 2] 62.64 3.289 62.31 2.670 S.P. MatQuant 45.69 3.780 35.35 7.761
int2 8,4,2,8 2] 62.01 3138 62.70 2.673 MatQuant 44.19 3.826 38.36 10.971
84,2842 6432 3227 6260 2670 Sliced int8 7449 2200 73.61 2.104
int6 Baseline 74.65 2.357 73.72 2.093
. MatQuant 74.57 2.340 74.04 2.161
interpolated int3 and int6 precisions. However, the S 2_ 5 ” ‘1)9 S50 .01 018
int2 models show a significant accuracy improvement.];z:ehlge) A . 3
To investigate this, we conducted a simple ablation in int3 SP.MatQuant 67.68 2.520 67.59 2.335
MatQuant by removing the loss terms for int4 and int8 MatQuant 63.63 2937 4055 4776

(i.e., R = {2} in Equation 7 or setting Ay = Ag = 0)
and present the results in Table 5. We call this ver-
sion of MatQuant as Single Precision MatQuant. With
Single Precision MatQuant, we observe a further boost of
up to 1.05%, in the accuracy of int2 models at a ~2% accu-
racy drop in the corresponding int4 and int8 models — int2
is still nested within int8. This improvement likely stems
from the six additional bits available during MatQuant-
style training to optimize the int2 representation.

In the case of Single Precision MatQuant, gradient de-
scent is free to tune these six additional bits to improve
the overall quality of the int2 model. In MatQuant, since
we have additional losses to preserve the performance of
the int4 and int8, the int2 performance is slightly worse
than Single Precision MatQuant. However, since the int4
and int8 models are typically very close in accuracy to the
bfloat16 model, MatQuant can shift some of the weights to
improve the int2 model. As int4 and int8 models have sub-
stantially more quantized buckets than int2, we hypothesize
that shifting some weights into adjacent buckets may not
significantly affect their performance; however, it can signif-

Table 5. Single Precision MatQuant significantly improves
upon the baseline for int2 and, at times, outperforms
MatQuant. Crucially, int8 and int4 performances of
Single Precision MatQuant experience a significant accuracy
decrease (as shown in Tables 21 & 22) in Appendix G).

int2 Gemma-2 2B Gemma-2 9B Mistral 7B
Method Task Avg. log pplx. Task Avg. logpplx. Task Avg. log pplx.

OmniQuant 51.33 3.835 60.24 3.292 59.74 3.931
S.P. MatQuant 53.42 3.631 64.02 3.171 63.58 2.976
MatQuant 52.37 3.800 63.35 3.187 62.75 3.153
QAT 47.74 3.433 56.02 2.923 54.95 2.699
S.P. MatQuant 52.08 3.054 62.66 2.656 61.48 2.509
MatQuant 52.20 3.055 62.29 2.660 61.97 2.524

icantly impact int2’s performance. In fact, in the weight dis-
tributions presented in Fig 1c, we observe that MatQuant
results in a model where larger number of weights are as-
signed to the higher-valued buckets. Seemingly, MatQuant
and Single Precision MatQuant inherently are a better
way of performing low-bit quantization.

FFN + Attention Weight Quantization. We present re-
sults for FFN + Attention quantization for QAT in Table 6.
For int8, int4 and the interpolated int6 model, MatQuant
performs on par with the Baseline. However, we found int2
and int3 to be very unstable while quantizing both, the FFN
and the Attention parameters. Most recent works that do
QAT for both the blocks (Chen et al., 2024; Liu et al., 2024a;
Du et al., 2024) either do warm starting for the quantized
parameters, or have additional distillation and auxiliary loss
functions. In the naive setup of minimizing the loss with
respect to the ground truth, we find QAT to be very unstable
at lower precisions. On the other hand, both MatQuant and
Single Precision MatQuant are very stable further high-
lighting the benefits brought by MatQuant style training.

5.4. Deployment Considerations

Current hardware accelerators have native support for serv-
ing int8 and int4 quantized models. Additionally, custom-
implemented CUDA kernels can can support various low-
precision bit-widths, like int2 and int3 (Chee et al., 2024;
Frantar et al., 2022). MatQuant can generate a large num-
ber of models at inference time. Depending on the serving
environment, we can choose between Mix’n’Match models
and homogeneous sliced models. For example, suppose
the serving environment has a memory constraint equiva-
lent to an int3 model but lacks optimized support for int3,

Matryoshka Quantization

while supporting int2. In this case, a Mix’n’Match model
with a small performance drop when compared to the sliced
int3 model could be deployed. More generally, as depicted
in Figure 2, MatQuant densely spans the memory-versus-
accuracy curve and can be leveraged to obtain performant
model for several serving constraints. MatQuant facilitates
further research on hardware software co-design to effec-
tively support elastic bit-widths on-the-fly during inference.

5.5. Extension to Floating Point

Extending MatQuant to floating-point representations,
such as FP8 and FP4, presents significant challenges. Given
that the exponent is encoded within the bit representation
and contributes to the value as a power of 2 (i.e., effectively
log,), slicing it results in buckets whose sizes increase ex-
ponentially, unlike the integer case, where bucket sizes are
constant. For example, slicing the first two bits from int8
yields buckets of 0, 64, 128, 192. Here, the bucket size (64)
is constant; however, this would not be the case when slicing
two exponent bits from FP8. This is a promising avenue
for future research that could further unlock the benefits of
MatQuant, even during large-scale pretraining.

6. Conclusions

In this work, we presented MatQuant, a novel multi-scale
training technique that leverages the nested structure of in-
teger data types to simultaneously optimize model weight
quantization across multiple precisions (int8, int4, and int2)
within a single model. This general-purpose method, appli-
cable to learning-based quantization techniques like Omni-
Quant and QAT, produces models with comparable accu-
racy to baselines for int8 and int4, while achieving signifi-
cant improvements, up to 7% for int2 models. MatQuant
further enables bit-width interpolation and layer-wise mix-
and-match for flexible accuracy-cost trade-offs, promising
more efficient deployment of large models across various
hardware settings. Finally, MatQuant also helped discover
Single Precision MatQuant, which significantly improves
standalone low-bit quantization.

7. Errata

In the first draft of the paper, we had a bug and used the
following equation to train and quantize our models:

S(g°r) = Q;ZD #2777 ®)

Equation 8 clearly allows an extra bucket to be included
into the quantization range, i.e, a r-bit model would have
2" 4 1 possible values instead of 2". For example, consider
slicing the first two MSBs from an unsigned int8 value, 234.
As per Equation 6, 234 first gets rounded to 4, following
which it gets clipped to 3, and finally is scaled up to 3 *
64 = 192 (Note that MatQuant int2 allows for 0, 64, 128,

Gemma-2 9B
75 * X PRER_ ek @k e - ¥ X
7
4
1) * ,//
®70 | *-7
= ’
g X
i A E.P. MatQuant
0 65 * E.P. Mix'n'Match
= ® E.P. MatQuant-Interp.
v v Baseline
60
2 4 6 8

Effective bits per FFN parameter

Figure 3. Mix’n’Match on Gemma-2 9B model trained using
Extra Precision MatQuant with OmniQuant as the base algo-
rithm allows elastic pareto-optimal accuracy-vs-cost model extrac-
tion for free during deployment.

192). However, since the clipping operation is missing in
Equation 8, 4 is never clipped down to 3, and S(¢¢,r) is
now 4 x 64 = 256 Thus, for certain int2 values in our final
quantized model, we will have to store an extra bit. This
is the case with int3, int4 and int6 as well where an extra
bit is required to represent certain values. In Table 24 in
Appendix H, we can see that the fraction of parameters
that fall into this extra bucket is very small. However, for
our 2-bit models, this additional bucket gives significant
improvements in performance, for example, in Table 24 int2
Gemma-2 9B’s average downstream accuracy goes up by
5% when trained with an additional bucket (referred to as
Extra Precision MatQuant in Table 24 in Appendix H).
This number is further boosted to 6% with co-distillation, as
evidenced by Table 25 in Appendix H. We hypothesize that
this additional bucket helps with capturing the outliers and
thus leads to a significant performance boost. As highlighted
by recent work (Dettmers et al., 2023; Kim et al., 2024), it is
crucial to store certain outliers full precision. Interestingly,
we show that even a single bit is enough to capture several
of these outliers, especially for low bit quantization. Finally,
note that this performance boost is not very evident in higher
precisions where there are enough buckets to account for
the outliers.

Mix’n’Match As shown in Figure 3 with a
strong int2 model (i.e., 2.050 bits on average),
Extra Precision MatQuant Mix’n’Match densely spans
the Pareto-optimal accuracy-vs-bits-per-FFN-parameter
(memory/cost) trade-off for Gemma-2 9B model trained
using MatQuant with Omni-Quant — sometimes even
improving on the bfloat16 model accuracy. Consequently,
hardware supporting only int2 and int4 data types can still
accommodate a model with a memory footprint similar to
that of an int3 quantized model, and quality comparable or
superior to int3; the additional bits required in the case of
int2 can be packed into int2/int4. However, custom CUDA
kernel would be required to enable sparse additions of these
additional bits to the model weights.

Matryoshka Quantization

Impact Statement

This paper introduces a novel technique designed to ad-
vance the field of machine learning, specifically in the do-
main of model compression and efficient deployment for
large language models. By enabling the creation of ver-
satile, multi-scale models that can operate across various
bit-widths, our work has the potential to democratize ac-
cess to these powerful technologies by making them more
resource-efficient and deployable on a wider range of hard-
ware. This could lead to positive impacts such as more
sustainable Al systems and greater accessibility for users
with limited computational resources. While there are poten-
tial risks associated with the broad deployment of powerful
Al systems, these are not unique to our work, and we believe
the benefits of efficient and accessible Al through innova-
tions like MatQuant have significant potential for societal
good. We encourage further investigation into how novel
quantization techniques can play a role in future sustainable
Al development.

Acknowledgments

We are grateful to Varun Yerram, Shreya Pathak and Devvrit
for assistance in setting up inference pipelines, Shivani
Agrawal. Utku Evci, Praneeth Netrapalli, Rakesh Shiv-
anna, Tom Duerig, Abhijit Ogale, Jon Shlens, Ali Farhadi
and Rahul Sukthankar for helpful discussions, support and
feedback.

References

Abdolrashidi, A., Wang, L., Agrawal, S., Malmaud, J., Ry-
bakov, O., Leichner, C., and Lew, L. Pareto-optimal
quantized resnet is mostly 4-bit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3091-3099, 2021.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, L.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J.,
and Ogden, J. M. Pyramid methods in image processing.
RCA engineer, 29(6):33-41, 1984.

Adepu, H., Zeng, Z., Zhang, L., and Singh, V. Framequant:
Flexible low-bit quantization for transformers. arXiv
preprint arXiv:2403.06082, 2024.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B,
Jaggi, M., Alistarh, D., Hoefler, T., and Hensman, J.
Quarot: Outlier-free 4-bit inference in rotated 1lms.
CoRR, abs/2404.00456, 2024. doi: 10.48550/ARXIV.

2404.00456. URL https://doi.org/10.48550/
arXiv.2404.00456.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in nat-
ural language. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 7432—
7439. AAAI Press, 2020. doi: 10.1609/AAAIL.V34I105.
6239. URL https://doi.org/10.1609/aaai.
v34105.62309.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. M. Quip: 2-bit
quantization of large language models with guarantees.
Advances in Neural Information Processing Systems, 36,
2024.

Chen, M., Shao, W., Xu, P, Wang, J., Gao, P., Zhang,
K., Qiao, Y., and Luo, P. Efficientqat: Efficient
quantization-aware training for large language models.
CoRR, abs/2407.11062, 2024. doi: 10.48550/ARXIV.
2407.11062. URL https://doi.org/10.48550/
arXiv.2407.11062.

Clark, C., Lee, K., Chang, M., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. In Burstein,
J., Doran, C., and Solorio, T. (eds.), Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pp. 2924-2936. Association for Computational
Linguistics, 2019. doi: 10.18653/V1/N19-1300. URL
https://doi.org/10.18653/v1/n19-1300.

Clark, P., Cowhey, L., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.
org/abs/1803.05457.

Denton, E. L., Chintala, S., Fergus, R., et al. Deep generative
image models using a laplacian pyramid of adversarial
networks. Advances in neural information processing
systems, 28, 2015.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers

https://doi.org/10.48550/arXiv.2404.00456
https://doi.org/10.48550/arXiv.2404.00456
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.48550/arXiv.2407.11062
https://doi.org/10.48550/arXiv.2407.11062
https://doi.org/10.18653/v1/n19-1300
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457

Matryoshka Quantization

at scale. Advances in Neural Information Processing
Systems, 35:30318-30332, 2022.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless 1lm weight compression. arXiv preprint
arXiv:2306.03078, 2023.

Devvrit, F., Kudugunta, S., Kusupati, A., Dettmers, T., Chen,
K., Dhillon, L., Tsvetkov, Y., Hajishirzi, H., Kakade, S.,
Farhadi, A., Jain, P., et al. Matformer: Nested transformer
for elastic inference. arXiv preprint arXiv:2310.07707,
2023.

Du, D., Zhang, Y., Cao, S., Guo, J., Cao, T., Chu, X., and Xu,
N. Bitdistiller: Unleashing the potential of sub-4-bit 1lms
via self-distillation. In Ku, L., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pp. 102-116. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.

7.URL https://doi.org/10.18653/v1/2024.

acl-long.7.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

G Team, G., Georgiev, P., Lei, V. I, Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Gemma-Team. Gemma 2: Improving open language
models at a practical size. ArXiv, abs/2408.00118,
2024. URL https://api.semanticscholar.

org/CorpusID:270843326.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp- 2704-2713, 2018.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de Las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.,

Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T.,
and Sayed, W. E. Mistral 7b. CoRR, abs/2310.06825,
2023. doi: 10.48550/ARXIV.2310.06825. URL https:
//doi.org/10.48550/arXiv.2310.06825.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., Shen,
S., Mahoney, M. W., and Keutzer, K. Squeezellm:
Dense-and-sparse quantization. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?
1d=0jpbpFia8m.

Kusupati, A., Bhatt, G., Rege, A., Wallingford, M., Sinha,
A., Ramanujan, V., Howard-Snyder, W., Chen, K.,
Kakade, S., Jain, P., et al. Matryoshka representation

learning. Advances in Neural Information Processing
Systems, 35:30233-30249, 2022.

Lin, J., Tang, J.,, Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for 1lm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2117-2125,
2017.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. LLM-
QAT: data-free quantization aware training for large lan-
guage models. In Ku, L., Martins, A., and Srikumar,
V. (eds.), Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pp. 467-484. Association
for Computational Linguistics, 2024a. doi: 10.18653/V1/
2024 .FINDINGS-ACL.26. URL https://doi.org/
10.18653/v1/2024.findings—acl.26.

Liu, Z., Zhao, C., Fedorov, 1., Soran, B., Choudhary,
D., Krishnamoorthi, R., Chandra, V., Tian, Y., and
Blankevoort, T. Spinquant: LLM quantization with
learned rotations. CoRR, abs/2405.16406, 2024b. doi:
10.48550/ARX1V.2405.16406. URL https://doi.
org/10.48550/arXiv.2405.16406.

Ma, Y., Li, H., Zheng, X., Ling, F., Xiao, X., Wang, R., Wen,
S., Chao, F.,, and Ji, R. Affinequant: Affine transformation
quantization for large language models. arXiv preprint
arXiv:2403.12544, 2024.

Nair, P. A. and Suggala, A. S. Cdquant: Accurate post-
training weight quantization of large pre-trained models
using greedy coordinate descent. CoRR, abs/2406.17542,
2024. doi: 10.48550/ARX1IV.2406.17542. URL https:
//doi.org/10.48550/arXiv.2406.17542.

https://doi.org/10.18653/v1/2024.acl-long.7
https://doi.org/10.18653/v1/2024.acl-long.7
https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270843326
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://openreview.net/forum?id=0jpbpFia8m
https://openreview.net/forum?id=0jpbpFia8m
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.48550/arXiv.2405.16406
https://doi.org/10.48550/arXiv.2405.16406
https://doi.org/10.48550/arXiv.2406.17542
https://doi.org/10.48550/arXiv.2406.17542

Matryoshka Quantization

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text

transformer. Journal of machine learning research, 21
(140):1-67, 2020.

Rippel, O., Gelbart, M., and Adams, R. Learning ordered
representations with nested dropout. In International Con-
ference on Machine Learning, pp. 1746—1754. PMLR,
2014.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 8732—
8740. AAAI Press, 2020. doi: 10.1609/AAAL.V34105.

6399. URL https://doi.org/10.1609/aaai.

v34105.6399.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P, Qiao, Y., and Luo, P. Omniquant:
Omnidirectionally calibrated quantization for large lan-
guage models. arXiv preprint arXiv:2308.13137, 2023.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A sim-
ple and effective pruning approach for large language
models. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=PxoFut 3dWW.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is all you need. In Neural Informa-

tion Processing Systems, 2017. URL https://api.

semanticscholar.org/CorpusID:13756489.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099.
PMLR, 2023.

Yu, H., Li, H., Shi, H., Huang, T. S., and Hua, G. Any-
precision deep neural networks. ArXiv, abs/1911.07346,
2019. URL https://api.semanticscholar.
org/CorpusID:208138922.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. arXiv preprint arXiv:1812.08928, 2018.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?

12

In Korhonen, A., Traum, D. R., and Marquez, L. (eds.),
Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp.
4791-4800. Association for Computational Linguistics,
2019. doi: 10.18653/V1/P19-1472. URL https://
doi.org/10.18653/v1/pl19-1472.

https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:208138922
https://api.semanticscholar.org/CorpusID:208138922
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

Matryoshka Quantization

A. Particulars of the Slicing Operation.

To extract a r-bit model from a c-bit model, we start by slicing out the most significant 7 — 1 bits. We use 1 for the 7" bit
if the (r + 1), else, we use 0. This is captured by the round function in Equation 6 and is done to push values to higher
buckets as we expect them to be more informative (Sun et al., 2024). For example, consider the the unsigned int8 value 53.
The first two MSBs are 0s. Naively slicing them would round down 53 to 0, however, we want to round it up to 1. Since the
bit corresponding to 32 is set, i.e., the (r + 1) MSB, instead of rounding 53 down to 0, we round it up to 1.

The clamp(-) operation is also equally important. The rounding operation in Equation 6 will round 240 down to 4, however,
unsigned int2 operates with only 0, 1, 2, 3. clamp(-) here would make sure that 4 is clamped down to 3.

B. Addition Training Details

We run all our experiments on TPUv5e chips. For OmniQuant experiments, we use a constant learning rate of le — 3
and for QAT experiments, we linearly warmup the learning rate to 1e — 5 for 150 and use a consine decay schedule
thereafter. For OmniQuant experiments, we sample 128 examples with a sequence length of 2048 from the C4 dataset (Raffel
et al., 2020) and train using a batch size of 4. We train for a total of 10M tokens for all models except the int2 baseline,
where we train the model for 20M tokens (Shao et al., 2023). For Co-distillation experiments where OmniQuant is the
base algorithm, we train for a total of 8.3M tokens. For QAT experiments, we sample a fixed set of 100M tokens from
the C4 dataset and train all our models using a batch size of 16 and a sequence length of 8192 for a single epoch. For
Attn + FFN experiments with QAT, we sample a fixed set of 300M tokens from C4 and train with a batch size of 16
for a single epoch. We use (g, A4, A2) = (0.1,0.1,1.0) for all our Gemma experiments unless otherwise stated. In the
case of Mistral 7B, for OmniQuant experiments, we use (As, A4, A2) = (0.4, 0.4, 1.0), and for QAT experiments we use
(A8, A4, A2) = (0.2,0.2,1.0). For all our Extra Precision MatQuant experiments, we use (Ag, A4, A2) = (1.0, 1.0, 1.0).

Mix’n’Match For a fixed effective bits-per-FFN layer, where each layer was quantized to either int2, int4, or int8, we
explored four different quantization strategies: Pyramid, Reverse Pyramid, Increasing, and Decreasing. In the Pyramid
strategy, the initial and final layers were quantized to int2, the central layers to int8, with int4 serving as an intermediate step.
The Reverse Pyramid strategy followed the opposite approach, assigning int8 to the initial and final layers, int2 to the central
layers, and int4 in between. The Increasing and Decreasing strategies assigned bit precision in ascending and descending
order, respectively, across the layers. Our experimental results demonstrated that, for a given effective bits per FFN layer,
the Pyramid strategy consistently outperformed the others. Allocating higher precision (int8) to the middle layers helped
preserve critical information, while the initial and final layers performed adequately with lower bit precision (int2 and int4),
leading to a more efficient and effective quantization scheme.

C. Detailed Downstream Evaluations for OmniQuant and QAT

Tables 7, 8, 9, 10, 11, and 12 present downstream evaluation results on Gemma-2 2B, Gemma-2 9B and Mistral 7B with
OmniQuant and QAT.

D. Detailed Downstream Evaluations for MatQuant Re-weighting

Tables 13, 15, and 14 present downstream evaluation results for OmniQuant reweighting experiments on Gemma-2 2B,
Gemma-2 9B and Mistral 7B.

E. Detailed Downstream Evaluations for Co-Distillation

Tables 16 and 17 present the downstream evaluation and perplexity results for MatQuant with co-distillation on Gemma-2
9B. We present results with both, OmniQuant and QAT as the base algorithms.

F. Detailed Evaluations for FFN + Attention Quantization

Tables 18 and 19 present the downstream evaluation and perplexity results for FFN + Attention quantization on Gemma-2
9B and Mistral 7B with OmniQuant and QAT.

13

Matryoshka Quantization

G. Detailed Evaluation for Single Precision MatQuant

Tables 20, 21, 22, and 23 present the downstream evaluation results comparing Single Precision MatQuant to MatQuant
and the Baseline for int2 quantization of Gemma-2 2B, Gemma-2 9B and Mistral 7B with OmniQuant and QAT. Since
Single Precision MatQuant slices 2 bits from an 8-bit model and computes loss only over the first two bits, we can evaluate
the Single Precision MatQuant model trained for 2-bits on int4 and int8. Downstream evaluation and perplexity results
for this are presented in Tables 21 and 22. We also plot the weight distribution for Single Precision MatQuant in Figure 4.

le8 Gemma-2 9B Weight Distribution for OmniQuant

[Baseline int8

-
[S)

-
o

e S.P. MatQuant

Frequency
o o
o (-]

I
IS

9 e9
0 Baseline
8888 S.P. MatQuant

Em Baseline
8885 S.P. MatQuant

Frequency

Quantized buckets Quantized buckets

Figure 4. The Figure presents the weight distribution for Gemma-2 9B when trained with Single Precision MatQuant for int2 quantiza-
tion. The right-shifted quantized weight distribution is a consequence of Single Precision MatQuant’s training mechanism that heavily
optimizes for the first 2 MSBs of the int8 representation.

H. Detailed Evaluation for Extra Precision MatQuant

Table 24 presents downstream and perplexity evaluation comparing MatQuant and Extra Precision MatQuant for
Gemma-2 2B, 9B and Mistral 7B with OmniQuant as base algorithm. Table 25 presents codistillation ablation results for
Extra Precision MatQuant on Gemma-2 9B with OmniQuant as base algorithm. Tables 26, 27, and 28 present downstream
evaluation results for Extra Precision MatQuant when applied to Gemma-2 2B, 9B, and Mistral 7B with OmniQuant as
the base algorithm. Table 29 presents downstream evaluation and perplexity results for our Extra Precision MatQuant
co-distillation experiments on Gemma-2 9B with OmniQuant as the base algorithm. Table 30 presents downstream task
average and perplexity results comparing Single Precision MatQuant and Single Precision Extra Precision MatQuant
when applied to Gemma-2 2B, 9B and Mistral 7B with OmniQuant as the base algorithm.

14

Matryoshka Quantization

Table 7. Table presents the downstream evaluation results for MatQuant when applied to OmniQuant on Gemma-2 2B.

Data type Method Gemma-2 2B
OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average
bfloat16 50.09 71.59 76.45 69.69 78.29 63.14 68.21
int8 Baseline 50 71.46 76.36 69.76 78.24 63.69 68.25
MatQuant 49.66 71.00 76.73 68.85 78.56 63.30 68.02
Sliced int8 ~ 41.55 66.12 72.02 62.34 75.79 59.43 62.87
int4 Baseline 48.46 70.96 74.22 67.66 77.26 63.61 67.03
MatQuant 47.27 70.79 73.76 66.85 78.07 62.75 66.58
Sliced int8 23.55 27.65 59.63 24.09 51.58 52.17 39.78
int2 Baseline 31.31 53.58 62.2 40.78 66.05 54.06 51.33
MatQuant 29.95 54.21 64.40 44.37 66.81 54.46 52.37
Sliced int8 48.72 71.13 76.06 69.12 78.45 62.83 67.72
int6 Baseline 49.32 71.76 76.48 69.52 78.56 62.75 68.06
MatQuant 48.89 70.50 75.69 68.89 78.40 62.75 67.52
Sliced int8 ~ 22.35 34.97 56.94 29.49 55.44 48.93 41.35
int3 Baseline 46.25 68.64 72.97 62.24 76.06 60.06 64.37
MatQuant 44.03 67.09 74.25 62.78 77.26 61.40 64.47

Table 8. Table presents the downstream evaluation results for MatQuant when applied to OmniQuant on Gemma-2 9B.

Data type Method Gemma-2 9B
OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average
bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38
intS Baseline 59.47 7731 83.94 77.35 81.39 68.11 74.59
MatQuant 57.59 77.02 84.01 76.61 81.18 67.88 74.05
Sliced int8 ~ 55.80 75.04 82.32 73.56 80.47 66.38 72.26
int4 Baseline 58.79 7837 83.55 76.71 81.45 67.09 74.33
MatQuant 58.02 78.11 83.24 76.08 80.96 66.54 73.83
Sliced int8 ~ 24.57 26.43 52.97 24.67 50.16 49.88 38.11
int2 Baseline 39.16 6343 7211 52.24 72.63 61.88 60.24
MatQuant 40.78 67.85 73.64 60.56 72.09 65.19 63.35
Sliced int8§ ~ 59.04 77.61 84.62 77.10 81.18 68.27 74.64
int6 Baseline 59.22 7727 8321 7.1 81.12 67.48 74.23
MatQuant 57.25 76.94 84.04 76.63 81.34 67.32 73.92
Sliced int8 ~ 34.30 55.47 66.36 46.91 67.19 54.85 54.18
int3 Baseline 57.17 77.06 83.79 74.45 80.36 66.54 73.23
MatQuant 55.80 76.89 81.99 74.27 80.14 68.11 72.87

Table 9. Table presents the downstream evaluation results for MatQuant when applied to OmniQuant on Mistral 7B.

Data type Method Mistral 7B
OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average
bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99
in8 Baseline 49.23 73.19 83.88 80.41 81.39 74.51 73.77
MatQuant 49.06 72.52 84.74 79.21 81.45 74.90 73.65
Sliced int8 ~ 21.33 33.67 42.08 28.62 55.66 49.72 38.51
int4 Baseline 49.23 7323 8394 79.9 81.34 74.11 73.62
MatQuant 47.87 71.55 83.88 78.85 81.34 74.90 73.06
Sliced int8 24.32 23.44 49.72 24.71 51.74 49.80 37.29
int2 Baseline 36.69 61.36 70.06 57.47 70.67 62.19 59.74
MatQuant 37.88 62.58 73.15 65.89 73.88 63.14 62.75
Sliced int8 ~ 48.21 71.09 83.21 79.93 81.28 74.27 73.00
int6 Baseline 50.26 73.65 84.04 80.55 81.66 74.43 74.1
MatQuant 49.40 7247 84.68 79.52 81.34 74.35 73.63
Sliced int8 ~ 25.26 25.76 61.99 24.67 48.31 49.25 39.21
int3 Baseline 46.33 70.71 82.72 77.74 80.74 71.82 71.68
MatQuant 47.35 71.00 80.00 76.96 80.30 71.35 71.16

15

Matryoshka Quantization

Table 10. Table presents the downstream evaluation results for MatQuant when applied to QAT on Gemma-2 2B.

Data type Method Gemma-2 2B
QAT ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 50.09 71.59 76.45 69.69 78.29 63.14 68.21
int8 Baseline 47.78 70.66 75.08 69.92 78.35 65.11 67.82
MatQuant 45.39 71.21 75.99 68.74 78.40 64.88 67.44
Sliced int8 ~ 46.16 69.53 75.35 68.49 78.18 65.04 67.13
int4 Baseline 46.16 71.59 73.73 68.72 78.62 63.38 67.03
MatQuant 44.03 69.53 75.84 68.03 77.80 64.33 66.59
Sliced int8 ~ 24.06 26.94 59.05 25.57 51.85 48.15 39.27
int2 Baseline 24.66 43.22 62.17 38.39 64.42 53.59 47.74
MatQuant 28.33 51.85 63.64 46.94 68.28 54.14 52.20
Sliced int8 ~ 47.87 70.83 74.25 69.80 77.86 64.56 67.53
int6 Baseline 47.7 70.88 74.92 69.72 78.07 65.19 67.75
MatQuant 45.39 71.17 76.15 68.33 78.13 64.80 67.33
Sliced int8 ~ 37.97 62.67 64.71 58.01 74.27 59.75 59.56
int3 Baseline 39.68 65.28 67.03 62.68 77.04 58.8 61.75
MatQuant 36.95 66.20 64.25 61.03 75.19 60.93 60.76

Table 11. Table presents the downstream evaluation results for MatQuant when applied to QAT on Gemma-2 9B.

Data type Method Gemma-2 9B
QAT ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38
in8 Baseline 58.11 75.38 80.12 78.7 81.5 71.19 74.17
MatQuant 57.68 76.09 82.23 78.41 82.26 70.48 74.52
Sliced int8 ~ 56.91 75.17 7878 77.02 81.18 71.11 73.36
int4 Baseline 56.91 75.42 75.38 78.06 81.39 72.38 73.26
MatQuant 56.66 75.72 77.55 77.30 81.23 70.96 73.24
Sliced int8 23.46 28.28 57.09 29.76 53.48 50.36 40.40
int2 Baseline 33.45 55.43 62.26 54.8 70.51 59.67 56.02
MatQuant 41.21 66.84 65.41 63.61 75.41 61.25 62.29
Sliced int8 ~ 57.68 75.17 80.73 78.66 81.77 70.88 74.15
int6 Baseline 57.94 76.14 79.63 78.93 82.1 71.11 74.31
MatQuant 57.25 76.01 81.83 78.25 81.77 70.72 74.30
Sliced int8 ~ 50.60 67.85 75.54 71.07 79.11 68.03 68.70
int3 Baseline 53.07 75.04 66.61 74.94 80.03 69.69 69.9
MatQuant 51.19 71.80 78.69 73.18 79.49 68.11 70.41

Table 12. Table presents the downstream evaluation results for MatQuant when applied to QAT on Mistral 7B.

Data type Method Mistral 7B
QAT ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99
int8 Baseline 48.89 71.63 82.42 81.69 81.18 75.06 73.48
MatQuant 47.44 71.21 82.08 80.31 80.74 73.72 72.58
Sliced int8 ~ 47.61 70.41 80.21 79.74 79.98 72.61 71.76
int4 Baseline 4727 70.62 81.28 78.95 81.12 73.56 72.13
MatQuant 45.99 72.22 81.90 79.08 80.36 72.38 71.99
Sliced int8 ~ 24.40 25.97 47.52 24.66 50.27 51.62 37.41
int2 Baseline 29.78 48.23 64.5 55.11 70.84 61.25 54.95
MatQuant 35.58 56.36 72.66 66.68 74.32 66.22 61.97
Sliced int8 ~ 48.55 71.76 82.57 81.67 81.39 74.19 73.35
int6 Baseline 47.7 71.3 82.23 79.84 80.79 74.43 72.71
MatQuant 46.93 71.34 81.96 80.27 80.52 74.51 72.59
Sliced int8 ~ 38.99 61.11 72.54 65.65 77.48 70.24 64.33
int3 Baseline 4454 67.97 73.98 76.31 79.65 70.48 68.82
MatQuant 40.10 6242 79.05 73.82 77.31 70.24 67.16

16

Matryoshka Quantization

Table 13. Tables presents the downstream evaluation results on Gemma-2 2B for MatQuant loss reweighting when applied to OmniQuant.
Weightings: (z,y, z) — (As, A4, A2) (from Equation 7).

Gemma-2 2B
Datatype Weightings ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average
(0.1,0.1,1) 49.66 71 76.73 68.85 78.56 63.3 68.02
(0.2,0.2,1) 494 71.3 76.21 68.97 78.29 63.3 67.91
int8 (0.3,0.3,1) 48.81 T1.72 76.57 68.95 78.4 63.61 68.01
(0.4,0.4,1) 4872 7172 76.61 68.92 78.73 62.98 67.95
(0.5,0.5,1) 49.06 71.34 76.15 68.86 78.45 62.98 67.81
(0.1,0.1,1) 47.27 70.79 73.76 66.85 78.07 62.75 66.58
(0.2,0.2,1) 48.63 71 76.06 68.11 77.97 63.06 67.47
int4 (0.3,0.3,1) 47.7 7117 75.08 67.57 77.69 62.59 66.97
(0.4,0.4,1) 4829 71.25 76.76 67.46 77.58 63.54 67.48
(0.5,0.5,1) 48.04 70.66 75.9 67.57 78.4 64.01 67.43
(0.1,0.1,1) 29.95 54.21 64.4 44.37 66.81 54.46 52.37
(0.2,0.2,1) 30.03 5278 62.39 44.66 66.81 54.62 51.88
int2 (0.3,0.3,1) 29.18 52.61 62.57 41.41 65.94 54.62 51.05
(0.4,0.4,1) 2875 54.88 62.17 42.53 66.16 55.64 51.69
(0.5,0.5,1) 27.13 51.05 60.95 39.94 65.56 54.3 49.82
(0.1,0.1,1) 48.89 70.5 75.69 68.89 78.4 62.75 67.52
(0.2,0.2,1) 49.32 7096 75.87 68.93 78.29 62.67 67.67
int6 (0.3,0.3,1) 4898 71.63 76.21 68.68 78.73 63.46 67.95
(0.4,0.4,1) 4898 T71.72 75.75 68.83 78.67 63.61 67.93
(0.5,0.5,1) 49.4 71.59 76.21 68.63 78.29 63.85 67.99
(0.1,0.1,1) 44.03 67.09 74.25 62.78 77.26 61.4 64.47
(0.2,0.2,1) 43.09 65.7 67.19 59.57 75.3 60.38 61.87
int3 (0.3,0.3,1) 4394 6835 71.87 59.54 75.79 59.98 63.24
(0.4,0.4,1) 41.81 65.53 7291 61.42 75.03 61.88 63.1
(0.5,0.5,1) 41.64 67.34 71.87 61.15 74.54 61.64 63.03

Table 14. Tables presents the downstream evaluation results on Gemma-2 9B for MatQuant loss reweighting when applied to OmniQuant.
Weightings: (z,y,z) — (As, A4, A2) (from Equation 7).

Gemma-2 9B
Data type Weightings ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average
(0.1,0.1,1) 57.59 77.02 84.01 76.61 81.18 67.88 74.05
(0.2,0.2,1) 5776 76.73 83.73 76.5 81.34 67.4 73.91
int8 (0.3,0.3,1) 5794 76.64 83.36 76.56 81.01 67.8 73.88
(0.4,0.4,1) 5828 76.52 83.15 76.74 80.96 67.4 73.84
(0.5,0.5,1) 57.68 76.68 83.39 76.62 81.07 67.09 73.75
(0.1,0.1,1) 58.02 7811 83.24 76.08 80.96 66.54 73.83
(0.2,0.2,1) 58.96 77.9 82.57 76.14 81.07 66.14 73.8
int4 (0.3,0.3,1) 5742 7723 81.62 75.72 80.85 66.69 73.25
(0.4,0.4,1) 5896 78.32 84.53 76.17 81.45 66.46 74.32
(0.5,0.5,1) 57.08 77.02 84.65 76.11 81.56 66.06 73.75
(0.1,0.1,1) 40.78 67.85 73.64 60.56 72.09 65.19 63.35
(0.2,0.2,1) 40.53 67.97 75.57 60.83 72.25 67.09 64.04
int2 (0.3,0.3,1) 39.42 67.68 79.08 60.79 72.47 65.19 64.1
(0.4,0.4,1) 39.68 66.54 66.24 61.08 73.07 65.27 61.98
(0.5,0.5,1) 40.02 66.16 69.08 60.54 73.23 64.88 62.32
(0.1,0.1,1) 5725 76.94 84.04 76.63 81.34 67.32 73.92
(0.2,0.2,1) 57.25 76.6 83.79 76.46 81.12 67.64 73.81
int6 (0.3,0.3,1) 58.7 76.98 83.09 76.63 80.69 67.32 73.9
(0.4,0.4,1) 5828 76.43 83.15 76.76 81.18 67.09 73.81
(0.5,0.5,1) 58.28 76.3 83.33 76.68 81.18 66.93 73.78
(0.1,0.1,1) 55.8 76.89 81.99 74.27 80.14 68.11 72.87
(0.2,0.2,1) 54.69 76.56 79.79 73.92 79.92 66.77 71.94
int3 (0.3,0.3,1) 56.48 77.53 83.09 73.71 80.69 67.32 73.14
(0.4,0.4,1) 56.23 77.86 83.79 74.12 80.69 68.98 73.61
(0.5,0.5,1) 54.35 76.3 83.67 74.21 80.09 68.03 72.77

17

Matryoshka Quantization

Table 15. Tables presents the downstream evaluation results on Mistral 7B for MatQuant loss reweighting when applied to OmniQuant.
Weightings: (z,y, z) — (As, A4, A2) (from Equation 7).

Mistral 7B
Datatype Weightings ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average
(0.1,0.1,1) 49.23 71.84 83.94 78.9 81.39 74.35 73.27
(0.2,0.2,1) 49.23 7197 8391 79.04 81.5 74.98 73.44
int8 (0.3,0.3,1) 49.32 7239 84.43 79.24 81.23 74.74 73.56
(0.4,0.4,1) 49.06 7252 84.74 79.21 81.45 74.9 73.65
(0.5,0.5,1) 49.15 72.64 84.65 79.37 81.72 74.82 73.72
(0.1,0.1,1) 47.61 71.59 83.3 78.32 81.61 74.11 72.76
(0.2,0.2,1) 48.12 7214 84.07 78.72 81.45 74.43 73.16
int4 (0.3,0.3,1) 4821 7281 84.4 79.02 81.18 75.22 73.47
(0.4,0.4,1) 47.87 71.55 83.88 78.85 81.34 74.9 73.06
(0.5,0.5,1) 48.21 71.97 83.82 79.03 81.39 74.35 73.13
(0.1,0.1,1) 3746 6343 71.53 66.22 75.24 65.59 63.25
(0.2,0.2,1) 3754 64.81 71.8 66.57 74.37 65.27 63.39
int2 (0.3,0.3,1) 37.46 6292 75.35 67.2 74.43 64.25 63.6
(0.4,0.4,1) 37.88 62.58 73.15 65.89 73.88 63.14 62.75
(0.5,0.5,1) 37.29 62.75 69.36 64.99 72.36 64.25 61.83
(0.1,0.1,1) 4957 71.72 83.76 78.87 81.28 74.03 73.2
(0.2,0.2,1) 4949 7252 84.22 79.08 81.39 74.19 73.48
int6 (0.3,0.3,1) 4889 72.01 83.85 79.2 81.39 74.35 73.28
(0.4,0.4,1) 494 7247 84.68 79.52 81.34 74.35 73.63
(0.5,0.5,1) 49.4 72.39 84.31 79.5 81.28 74.27 73.52
(0.1,0.1,1) 44.88 68.22 81.96 76.13 80.69 71.35 70.54
(0.2,0.2,1) 4394 67.85 81.56 76.55 79.76 72.61 70.38
int3 (0.3,0.3,1) 45.39 67.89 80.92 7713 80.47 72.06 70.64
(0.4,0.4,1) 47.35 71 80 76.96 80.3 71.35 71.16
(0.5,0.5,1) 46.76 70.29 82.17 77.32 80.9 71.11 71.43

Table 16. Table presents the downstream evaluation and perplexity results for our MatQuant co-distillation experiments on Gemma-2 9B
with OmniQuant.

OmniQuant Gemma-2 9B
Data type Config. ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

(8,4,8 — 2] 57.51 7626 83.30 73.35 80.74 65.43 72.76 2.473
int8 (8,4,2,8 — 2] 5819 76.89 83.73 76.75 81.39 67.01 73.99 2.435
[8,4,2,8 — 4;2] 57.68 77.06 83.00 76.76 81.45 67.17 73.85 2.437
(8,4,8 — 2] 56.23 76.47 82.63 73.03 80.69 66.85 72.65 2.519
int4 (8,4,2,8 — 2] 57.51 76.73 83.36 76.23 80.85 67.09 73.63 2.486
[8,4,2,8 — 4;2] 5751 76.68 83.27 75.85 81.61 66.38 73.55 2.478
(8,4,8 — 2] 38.14 66.50 76.73 59.70 71.11 63.69 62.64 3.289
int2 [8,4,2,8 — 2] 40.61 67.55 71.07 60.80 72.96 64.48 62.91 3.138
[8,4,2,8 — 4;2] 4275 69.65 74.40 60.53 72.42 66.14 64.32 3.227
(8,4,8 = 2] 57.59 76.30 83.55 73.41 80.85 65.51 72.87 2.469
int6 8,4,2,8 — 2] 58.28 76.85 83.43 76.91 81.18 67.01 73.94 2.438
[8,4,2,8 -+ 4;2] 5811 7698 83.33 76.70 81.45 67.48 74.01 2.439
(8,4,8 — 2] 52.30 7525 78.26 71.08 79.49 65.35 70.29 2.651
int3 [8,4,2,8 — 2] 54.44 7597 82.20 73.84 80.20 66.46 72.19 2.603
[8,4,2,8 - 4;2] 5444 7626 81.90 73.89 79.92 65.75 72.03 2.604

18

Matryoshka Quantization

Table 17. Table presents the downstream evaluation and perplexity for MatQuant co-distillation experiments on Gemma-2 9B with QAT.

QAT Gemma-2 9B
Data type Config. ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

(8,4,8 — 2] 57.68 76.09 82.60 78.75 82.48 70.88 74.75 2.242

int8 [8,4,2,8 — 2] 57.76 76.35 81.50 79.13 82.43 72.06 74.87 2.240
[8,4,2,8 » 4;2] 5819 76.05 81.62 78.92 82.21 71.90 74.81 2.240

(8,4,8 — 2] 57.85 76.81 7847 77.62 80.96 70.88 73.76 2.279

int4 [8,4,2,8 — 2] 57.08 75.88 7847 77.65 81.34 72.22 73.77 2.276
[8,4,2,8 » 4;2] 57.34 7580 78.99 77.67 81.50 72.30 73.93 2.277

(8,4,8 — 2] 40.61 67.17 67.37 63.10 75.24 60.38 62.31 2.670

int2 [8,4,2,8 — 2] 40.563 66.71 67.89 63.29 75.46 62.35 62.70 2.673
[8,4,2,8 — 4;2] 40.10 66.37 67.86 63.14 75.08 63.06 62.60 2.670

(8,4,8 — 2] 57.85 76.05 82.23 78.70 82.10 71.43 74.73 2.245

int6 [8,4,2,8 — 2] 58.11 75.93 82.14 79.10 82.26 71.19 74.79 2.243
[8,4,2,8 — 4;2] 5819 75.67 81.31 78.80 82.15 71.27 74.56 2.243

(8,4,8 — 2] 51.19 71.00 76.67 73.07 79.54 68.03 69.92 2.441

int3 [8,4,2,8 — 2] 51.71 71.46 76.85 73.00 79.00 67.88 69.98 2.437
[8,4,2,8 — 4;2] 51.28 71.34 76.12 72.96 79.33 68.98 70.00 2.435

Table 18. Table presents the downstream evaluation results for MatQuant FFN + Attention quantization on Gemma-2 9B with QAT.

Data type Method Gemma-2 9B
ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38
int8 Baseline 58.62 77.02 83.43 79.01 81.34 68.27 74.61
MatQuant 59.47 7799 84.13 77.85 81.23 68.43 74.85
Sliced int8 57.42 76.01 80.86 76.34 80.03 68.27 73.15
int4 Baseline 56.06 74.96 79.27 77.83 80.25 69.53 72.98
MatQuant 58.79 75.80 84.89 76.26 81.23 67.09 74.01
Sliced int8 26.37 25.34 58.10 25.60 49.08 49.33 38.97

int2 Baseline - - - - - - -
S.P. MatQuant 25.26 38.47 62.14 35.09 61.70 51.46 45.69
MatQuant 23.72 36.62 62.17 33.72 59.36 49.57 44.19
Sliced int8 58.53 77.10 83.00 78.81 81.07 68.43 74.49
int6 Baseline 58.87 77.06 83.12 78.81 81.23 68.82 74.65
MatQuant 58.96 78.03 83.30 77.72 80.96 68.43 74.57
Sliced int8 44.71 65.28 71.56 65.25 75.84 62.51 64.19

int3 Baseline - - - - - - -
S.P. MatQuant 4855 71.25 68.38 72.12 79.00 66.77 67.68
MatQuant 43.34 6191 75.96 65.20 75.46 59.91 63.63

19

Matryoshka Quantization

Table 19. Table presents the downstream evaluation results for MatQuant FEN + Attention quantization on Mistral 7B with QAT.

Data type Method Mistral 7B
ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99
int8 Baseline 49.23 72.9 83.49 80.26 81.28 75.22 73.73
MatQuant 50.09 73.44 83.73 80.73 81.39 73.88 73.88
Sliced int8 4599 71.55 81.19 76.90 80.58 72.53 71.46
int4 Baseline 48.04 71.72 7887 78.93 80.36 73.32 71.87
MatQuant 46.59 70.29 81.65 77.34 80.25 72.53 71.44
Sliced int8 22.61 25.38 37.86 24.40 49.13 50.99 35.06

int2 Baseline - - - - - - -
S.P. MatQuant 22.53 25.51 38.90 24.13 50.92 50.12 35.35
MatQuant 21.33 25.59 57.37 24.85 50.92 50.12 38.36
Sliced int8 49.32 73.53 82.60 80.28 80.96 74.98 73.61
int6 Baseline 49.32 73.4 82.48 80.24 81.28 75.61 73.72
MatQuant 50.00 73.78 83.55 80.74 81.66 74.51 74.04
Sliced int8 19.97 30.72 46.79 27.22 58.43 50.91 39.01

int3 Baseline - - - - - - -
S.P. MatQuant 43.86 67.51 70.43 73.97 80.36 69.38 67.59
MatQuant 20.82 3342 53.30 27.77 58.76 49.25 40.55

Table 20. Table presents downstream evaluation and perplexity results for Single Precision MatQuant, comparing it with MatQuant
and the Baseline for int2 quatization of Gemma-2 2B with OmniQuant and QAT.

int2 Gemma2-2B
Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Task Avg. log pplx.
S.P. MatQuant 29.78 57.70 63.39 44.32 68.66 56.67 53.42 3.631
OmniQuant Baseline 31.31 53.58 62.2 40.78 66.05 54.06 51.33 3.835
MatQuant 29.95 54.21 64.40 44.37 66.81 54.46 52.37 3.800
S.P. MatQuant 28.07 52.36 62.87 46.80 68.88 53.51 52.08 3.054
QAT Baseline 24.66 43.22 62.17 38.39 64.42 53.59 47.74 3.433
MatQuant 28.33 51.85 63.64 46.94 68.28 54.14 52.20 3.055

Table 21. Table presents downstream evaluation and perplexity results for Single Precision MatQuant, comparing it with MatQuant
and the Baseline for int2, int4, int8 quatization of Gemma-2 9B with Baseline. Note that the model was trained with
Single Precision MatQuant for int2; the int4 and int8 model were sliced post training.

Gemma-2 9B
Data type Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

S.P. MatQuant 57.94 76.64 82.66 76.98 81.01 67.56 73.80 2.372

int8 Baseline 59.47 7731 83.94 77.35 81.39 68.11 74.59 2.418
MatQuant 57.59 77.02 84.01 76.61 81.18 67.88 74.05 2.438

S.P. MatQuant 57.17 76.39 81.47 75.81 80.85 66.38 73.01 2.420

int4 Baseline 58.79 78.37 83.55 76.71 81.45 67.09 74.33 2.451
MatQuant 58.02 78.11 83.24 76.08 80.96 66.54 73.83 2.491

S.P. MatQuant 40.44 66.75 77.92 60.42 72.52 66.06 64.02 3.171

int2 Baseline 39.16 6343 7211 52.24 72.63 61.88 60.24 3.292
MatQuant 40.78 67.85 73.64 60.56 72.09 65.19 63.35 3.187

20

Matryoshka Quantization

Table 22. Table presents downstream evaluation and perplexity results for Single Precision MatQuant, comparing it with MatQuant
and the Baseline for int2, int4, int8 quatization of Gemma-2 9B with Baseline. Note that the model was trained with
Single Precision MatQuant for int2; the int4 and int8 model were sliced post training.

Gemma-2 9B
Data type Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

S.P. MatQuant 55.89 75.84 79.57 75.47 81.07 68.43 72.71 2.363

int8 Baseline 58.11 75.38 80.12 78.7 81.5 71.19 74.17 2.29
MatQuant 57.68 76.09 82.23 78.41 82.26 70.48 74.52 2.262

S.P. MatQuant 54.95 75.59 75.05 74.60 80.79 69.06 71.67 2.394

int4 Baseline 56.91 7542 75.38 78.06 81.39 72.38 73.26 2.324
MatQuant 56.66 75.72 77.55 77.30 81.23 70.96 73.24 2.295

S.P. MatQuant 40.53 67.38 66.91 63.62 75.63 61.88 62.66 2.656

int2 Baseline 3345 5543 62.26 54.8 70.51 59.67 56.02 2.923
MatQuant 41.21 66.84 65.41 63.61 75.41 61.25 62.29 2.660

Table 23. Table presents downstream evaluation and perplexity results for Single Precision MatQuant, comparing it with MatQuant,
and the Baseline for int2 quatization of Mistral 7B. Results are presented for both, OmniQuant and QAT as the base algorithms.

int2 Mistral 7B
Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Task Avg. log pplx.
S.P. MatQuant 37.63 64.14 7245 67.47 74.81 64.96 63.58 2.976
OmniQuant Baseline 36.69 61.36 70.06 57.47 70.67 62.19 59.74 3.931
MatQuant 37.88 6258 73.15 65.89 73.88 63.14 62.75 3.153
S.P. MatQuant 35.24 57.15 69.88 66.02 75.41 65.19 61.48 2.509
QAT Baseline 20.78 48.23 64.5 55.11 70.84 61.25 54.95 2.694
MatQuant 35.58 56.36 72.66 66.68 74.32 66.22 61.97 2.524

Table 24. Results comparing MatQuant with Extra Precision MatQuant for Gemma-2 2B, 9B, and Mistral 7B, with OmniQuant as
the base algorithm. We find that for the 2-bit model, having an extra bucket significantly boosts the performance, however, this is not the
case with the higher precisions.

Method Gemma-2 2B Gemma-2 9B Mistral 7B
OmniQuant Avg. Bits Task Avg. log pplx. Avg. Bits Task Avg. logpplx. Avg. Bits Task Avg. log pplx.
bfloat16 68.21 2.551 74.38 2.418 73.99 2.110
MatQuant 8 68.02 2.570 8 74.05 2.438 8 73.65 2.125
Extra Precision MatQuant 8 67.85 2.580 8 74.33 2.446 8 73.46 2.132
MatQuant 4 66.58 2.618 4 73.83 2.491 4 73.06 2.153
Extra Precision MatQuant 4.023 66.54 2.617 4.022 74.26 2.470 4.022 73.13 2.155
MatQuant 2 52.37 3.800 2 63.35 3.187 2 62.75 3.153
Extra Precision MatQuant 2.052 55.70 3.355 2.050 68.25 2.823 2.051 65.99 2.569
MatQuant 6 67.52 2.574 6 73.92 2.440 6 73.63 2.127
Extra Precision MatQuant 6.018 68.01 2.582 6.018 74.50 2.446 6.018 73.59 2.139
MatQuant 3 64.47 2.618 3 72.87 2.607 3 71.16 2.238
Extra Precision MatQuant 3.031 63.24 2.757 3.029 73.25 2.535 3.030 71.55 2.228

21

Matryoshka Quantization

Table 25. Design choice ablations for co-distillation within Extra Precision MatQuant. x — y represents distilling the y-bit model
from the x-bit model. We note that the accuracy for 2.050 avg. bits has significantly improved while minimally impacting the other
bit-widths.

Gemma-2 9B OmniQuant
MatQuant E.P. MatQuant

Avg. Bits Config. Task Avg. log pplx. Task Avg. log pplx.
[8,4,2] 74.05 2.438 73.97 2.451
(8,8) [8,4,8 — 2] 72.76 2.473 73.40 2.467
’ [8,4,2,8 — 2] 73.99 2.435 73.46 2.466
(8,4,2,8 — 4;2] 73.85 2.437 73.32 2.466
[8,4,2] 73.83 2.491 73.88 2.481
(4,4.022) [8,4,8 — 2] 72.65 2.519 73.84 2.488
T [8,4,2,8 — 2] 73.63 2.486 73.01 2.495
[8,4,2,8 — 4;2] 73.55 2.478 73.12 2.518
8,4, 2] 63.35 3.187 68.52 2.809
(2,2.050) [8,4,8 — 2] 62.64 3.289 69.2 2.796
T [8,4,2,8 — 2] 62.91 3.138 70.17 2.778
(8,4,2,8 — 4;2] 64.32 3.227 69.72 2.804

Table 26. Table presents the downstream evaluation for Extra Precision MatQuant when applied to OmniQuant on Gemma-2 2B.

Avg. Bits Method Gemma-2 2B
OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 50.09 71.59 76.45 69.69 78.29 63.14 68.21
8 MatQuant 49.66 71.00 76.73 68.85 78.56 63.30 68.02
8 Extra Precision MatQuant ~ 48.04 71.8 75.78 67.64 78.07 63.22 67.42
4 MatQuant 47.27 70.79 73.76 66.85 78.07 62.75 66.58
4.023 Extra Precision MatQuant ~ 45.65 70.29 74.8 66.07 77.58 62.27 66.11
2 MatQuant 29.95 54.21 64.40 44.37 66.81 54.46 52.37
2.052 Extra Precision MatQuant ~ 34.39 59.64 62.69 52.11 69.86 55.56 55.71
6 MatQuant 48.89 70.50 75.69 68.89 78.40 62.75 67.52
6.018 Extra Precision MatQuant ~ 47.1 71.46 76.02 67.47 77.91 63.61 67.26
3 MatQuant 44.03 67.09 74.25 62.78 77.26 61.40 64.47
3.031 Extra Precision MatQuant ~ 44.45 68.56 69.11 62.28 75.95 62.59 63.82

Table 27. Table presents the downstream evaluation for Extra Precision MatQuant when applied to OmniQuant on Gemma-2 9B.

Avg. Bits Method Gemma-2 9B
OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38
8 MatQuant 57.59 77.02 84.01 76.61 81.18 67.88 74.05
8 Extra Precision MatQuant 58.11 78.03 83.27 76.17 81.18 67.09 73.97
4 MatQuant 58.02 7811 83.24 76.08 80.96 66.54 73.83
4.022 Extra Precision MatQuant ~ 57.25 77.36 84.86 75.52 81.5 66.77 73.88
2 MatQuant 40.78 67.85 73.64 60.56 72.09 65.19 63.35
2.050 Extra Precision MatQuant 48.72 72.18 79.2 68.11 76.17 66.77 68.52
6 MatQuant 57.25 76.94 84.04 76.63 81.34 67.32 73.92
6.018 Extra Precision MatQuant 58.87 78.03 83.61 76.18 81.45 67.09 74.21
3 MatQuant 55.80 76.89 81.99 74.27 80.14 68.11 72.87
3.029 Extra Precision MatQuant ~ 55.46 76.14 84.04 74.49 80.14 67.32 72.93

22

Matryoshka Quantization

Table 28. Table presents the downstream evaluation results for Extra Precision MatQuant when applied to OmniQuant on Mistral 7B.

Data type Method Mistral 7B
OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99
8 MatQuant 49.06 72.52 84.74 79.21 81.45 74.90 73.65
8 Extra Precision MatQuant ~ 48.04 73.44 84.13 79.37 81.12 74.66 73.46
4 MatQuant 47.87 T71.55 83.88 78.85 81.34 74.90 73.06
4.022 Extra Precision MatQuant ~ 48.21 72.69 83.49 78.82 81.12 74.43 73.13
2 MatQuant 37.88 62.58 73.15 65.89 73.88 63.14 62.75
2.051 Extra Precision MatQuant ~ 41.38 67.42 71.62 71.98 77.86 65.67 65.99
6 MatQuant 49.40 7247 84.68 79.52 81.34 74.35 73.63
6.018 Extra Precision MatQuant 48.46 72.98 84.07 79.64 81.18 75.22 73.59
3 MatQuant 47.35 71.00 80.00 76.96 80.30 71.35 71.16
3.030 Extra Precision MatQuant ~ 45.65 71.21 80.43 78.31 81.07 72.61 71.55

Table 29. Table presents the downstream evaluation and perplexity results for our Extra Precision MatQuant co-distillation experiments
on Gemma-2 9B with OmniQuant.

OmniQuant Gemma-2 9B
Avg. Bits Config. ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

(8,4,8 — 2] 5759 7727 81.83 75.48 81.01 67.25 734 2.467
8 [8,4,2,8 — 2] 57.17 77.36 82.2 75.82 80.96 67.25 73.46 2.466
[8,4,2,8 — 4;2] 56.4 77.82 82.32 75.02 80.63 67.72 73.32 2.466
8,4,8 — 2] 57.68 7845 8297 75.5 80.85 67.56 73.84 2.488
4.022 [8,4,2,8 — 2] 57.51 77.61 80.46 74.74 81.12 66.61 73.01 2.495
[8,4,2,8 — 4;2] 56.57 77.99 82.54 T4.77 80.58 66.3 73.12 2.518
8,4,8 — 2] 48.81 74.03 81.65 68.1 77.48 65.11 69.2 2.796
2.050 8,4,2,8 — 2] 49.15 75.34 83.12 68.79 77.64 67.01 70.17 2.778
[8,4,2,8 — 4;2] 49.83 75.04 79.79 68.38 77.86 67.4 69.72 2.804
(8,4,8 — 2] 5742 7719 81.87 75.42 81.01 67.8 73.45 2.468
6.018 [8,4,2,8 — 2] 57.51 7748 82.32 75.88 81.07 66.61 73.48 2.467
[8,4,2,8 — 4;2] 56.4 78.03 82.63 75.14 80.79 67.4 73.4 2.498
(8,4,8 — 2] 55.63 75.88 80.12 74.01 80.36 67.96 72.33 2.549
3.029 [8,4,2,8 — 2] 54.35 76.85 79.33 74.6 80.47 67.4 72.17 2.543
[8,4,2,8 — 4;2] 55.2 76.98 82.45 73.59 80.41 68.43 72.84 2.58

Table 30. Results comparing Single Precision MatQuant and Single Precision Extra Precision MatQuant when applied to Gemma-
2 2B, 9B and Mistral 7B with OmniQuant as the base algorithm.

int2 Gemma-2 2B Gemma-2 9B Mistral 7B
Method Task Avg. log pplx. Task Avg. logpplx. Task Avg. log pplx.
OmniQuant 51.33 3.835 60.24 3.292 59.74 3.931
S.P. MatQuant 53.42 3.631 64.02 3.171 63.58 2.976
MatQuant 52.37 3.800 63.35 3.187 62.75 3.153
S.P. E.P. MatQuant 57.38 3.185 68.58 2.857 67.36 2.464
E.P. MatQuant 55.71 3.292 68.52 2.809 65.99 2.569

23

