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ABSTRACT

The task of understanding and interpreting the complex information encoded within
genomic sequences remains a grand challenge in biological research and clinical
applications. In this context, recent advancements in large language model research
have led to the development of both encoder-only and decoder-only foundation
models designed to decode intricate information in DNA sequences. However,
several issues persist, particularly regarding the efficient management of long-
range dependencies inherent in genomic sequences, the effective representation of
nucleotide variations, and the considerable computational costs associated with
large model architectures and extensive pretraining datasets. Current genomic
foundation models often face a critical tradeoff: smaller models with mediocre
performance versus larger models with improved performance. To address these
challenges, we introduce dnaGrinder, a unique and efficient genomic foundation
model. dnaGrinder excels at managing long-range dependencies within genomic
sequences while minimizing computational costs without compromising perfor-
mance. It achieves results that are not just comparable but often superior to leading
DNA models such as Nucleotide Transformer and DNABERT-2. Furthermore,
dnaGrinder is designed for easy fine-tuning on workstation-grade GPUs, accommo-
dating input lengths exceeding 17,000 tokens. On a single high-performance GPU,
it supports sequences longer than 140,000 tokens, making it a highly efficient and
accessible tool for both basic biological research and clinical applications.

1 INTRODUCTION

Foundation models (aka large language models) such as BERT (Devlin et al., 2019) and GPT (Brown
et al., 2020), have demonstrated their stellar performance in learning the complex characteristics and
structures of natural languages, making them well-suited for a variety of subsequent applications, such
as sentiment analysis, text generation, and translation (OpenAI et al., 2024). These foundation models
have recently been adapted to analyze biological sequences as their deep structure and large-scale
parameters are well suited for dealing with the intricacy of biological sequences and structures (Ji
et al., 2021; Dalla-Torre et al., 2023; Nguyen et al., 2023; Zhou et al., 2024; Outeiral & Deane,
2024; Wang et al., 2024b; Fang et al., 2024; Wang et al., 2024a). Biological sequences composed of
nucleotides like DNA and RNA, as well as amino acids forming peptides and proteins, are regarded
as natural languages of life and can be effectively leveraged by using the technology of foundation
models to uncover the underlying patterns and functions they encode (Benegas et al., 2023). Typically,
these foundation models build robust feature representations from biological sequences through a
process known as pretraining. Encoder-based models like BERT perform such pretraining by using a
method called Masked Language Modeling (MLM), where they predict the actual words of some
masked or corrupted ones in given sequences. By pretraining on millions of biological sequences,
foundation models gain a comprehensive contextual understanding of the given sequences. Once
trained, they only need a few fine-tuning steps to be effectively applicable to specific downstream
tasks (Liu et al., 2024), including prediction of epigenetic marks, gene expressions, protein folding
structures, and more.

Understanding the genetic and epigenetic regulations encoded in the genomic sequence and their
interactions has been a focal research area in genomics. As the technologies of foundation models
have advanced, several models designed specifically for DNA sequences and downstream applications
have emerged. Current DNA foundation models, such as DNABERT (Ji et al., 2021), DNABERT-2
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(Zhou et al., 2024), and Nucleotide Transformer (NT) (Dalla-Torre et al., 2023), are primarily based
on encoder architectures, while others like HyenaDNA (Nguyen et al., 2023) adopt a decoder-only
framework. These models aim to capitalize on the strengths of transformer architectures, adapting
them to the unique challenges of genomic data.

DNABERT (Ji et al., 2021), as a pioneering DNA foundation model, is capable of extracting context-
specific feature representations from large quantities of DNA sequences and addressing various
genomic-specific prediction tasks. Despite its widespread use in recent years, the original DNABERT
faces several technical limitations. Firstly, DNABERT is pretrained exclusively on the human
reference genome, which not only ignores genome diversity across different species but also creates
repetitions in the dataset. Specifically, although the human reference genome comprises 3 billion
base pairs (bp), DNABERT employs data augmentation to increase the dataset size in order to make
pretraining effective for building encoder-based models. Nonetheless, the repetitive sequences, in
fact, limit the overall effectiveness of pretraining. Second, the use of overlapping k-mer tokenization
can cause information leakage between adjacent tokens during pretraining, while non-overlapping
k-mer tokenization can significantly alter the content in cases of sequence addition or deletion. Lastly,
DNABERT is restricted to sequences of up to 512 tokens during pretraining, which limits its ability
to analyze longer sequences in downstream tasks.

DNABERT-2 (Zhou et al., 2024), an advanced model of DNABERT, replaces the k-mer tokenization
with Byte Pair Encoding (BPE), a compression algorithm that counts and merges DNA nucleotides
based on their frequency. This encoding effectively avoids information leakage in pretraining and
reduces the length of tokenized sequences. DNABERT-2 also incorporates improved positional
encoding and Attention with Linear Bias (ALiBi) (Press et al., 2021b) to extend sequence length
for downstream applications. However, these improvements and extensions are constrained by the
original maximal pretraining length of 128 tokens. Additionally, DNABERT-2 applies the GEGLU
activation function (Shazeer, 2020) to improve the convergence of the pretraining process. However,
this activation function uses two linear layers, resulting in a parameter size similar to the original
BERT and, consequently, longer fine-tuning processes for downstream applications.

NT (Dalla-Torre et al., 2023), which also builds upon the BERT architecture, supports longer
sequences. However, its first-generation models, with parameters ranging from 500M to 2500M, are
considerably larger than the original BERT, leading to higher computational costs for pretraining
and fine-tuning. While the second generation of NT attempts to mitigate these issues, it requires a
substantially higher number of training tokens ranging from 300B to 900B driven by the Chinchilla
scaling laws, resulting in computation-intensive pretraining and fine-tuning processes.

HyenaDNA (Nguyen et al., 2023), being a decoder-only model, benefits from shorter training time
due to its implicit convolution layers. However, it falls short in accuracy compared to the other
models mentioned above.

In summary, the restriction on the lengths of sequences processed, the large model parameters, and
the high computation cost in pretraining and fine-tuning are common critical issues of the existing
foundation models for genomics.

In addition to these drawbacks in the existing methods, the selection of pretraining datasets (Sanabria
et al., 2023; Nguyen et al., 2024) also plays a crucial role in the model performance. Typically, these
models utilize either the human reference genome, multispecies reference genomes, or a human
reference genome augmented with specific variant structures. While multispecies data aims to address
the issue of limited genome diversity, the mutually exclusive use of these datasets means each model
is constrained to learning from a single source.

To address these limitations, we introduce dnaGrinder, a refined genomic foundation model, whose
main contributions can be summarized as follows: 1) We incorporate Flash Attention 2 to optimize
computational speed during pretraining and inference; 2) We employ Sequence Length Warmup
in pretraining to stabilize training and effectively capture features across varying sequence lengths;
3) A memory-efficient BPE tokenizer is designed to improve memory usage while maintaining
representative tokenization for long genomic sequences; 4) A novel approach is introduced to expand
the pretraining dataset by effectively increasing genome diversity rather than simply adding similar
or repetitive sequences. Through extensive experiments on several downstream benchmarks, we
demonstrate that dnaGrinder achieves performance exceeding or comparable to state-of-the-art
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models while overcoming input length constraints and requiring fewer parameters and less GPU time
for both pretraining and fine-tuning.

2 METHODS

In this section, we present an overview of dnaGrinder’s architecture, detailing its features and
enhancements. We also discuss the specific implementation of the pretraining strategies employed to
integrate these architectural improvements, providing insights into how these modifications contribute
to the model’s overall performance and efficiency.

2.1 MODEL

The dnaGrinder model employs an encoder-only transformer architecture (Figure 1.a). DNA se-
quences are first converted into numerical representations using Byte Pair Encoding (BPE) tokeniza-
tion (Sennrich et al., 2016). These numerical representations are then transformed into sequences
of embeddings through an embedding layer. Unlike most encoder-only models that use absolute
positional embedding (Devlin et al., 2019) or rotary positional embedding (Su et al., 2024), we utilize
Attention with Linear Biases (ALiBi) (Press et al., 2021b), which is introduced at the beginning of
the attention computation. To improve computational, memory, and inference efficiency, we employ
sequence length warmup (Figure 1.b) (Press et al., 2021a; Li et al., 2022) to the pretraining phase and
adopt Flash Attention 2 (Dao, 2023) as our attention mechanism. We also experiment with several
architectural enhancements, including the SwiGLU (Shazeer, 2020) activation function and token
random replacement (Dalla-Torre et al., 2023). During the pretraining stage, we incorporate dynamic
masking (Lan et al., 2020) to improve the model’s learning capability.

ACTGATCTA      GCAAGCTAG

ME-BPE
Tokenization [CLS]  AC  TGATC  TA      GCAA  GC  TAG  [SEP]

Input DNA 
Sequence

Token 
Embedding

...

12 ×

Q K V
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Architecture

...

...

Add & LayerNorm

Feed Forward
(SwiGLU w/o Dropout)

Add & LayerNorm

FlashAttention2

ALiBi

Padding

Unpadding

Output

(a) Architecture of dnaGrinder.

...

AGCATGACTGATCTCTAG

TACTACTGATAGCATGCTAGCTAGA

GATCTAGAAGCATGCTCTCTAGTAG

ACTGATGCATTGCTAGCCTAAGTAG

ACTGATACTGATGCATTGCTAGCATTGCTA

ACTACTGATTGATATGCTGCTGCTAGCATA

...Input DNA Sequence

...

ME-BPE Tokenization Sequence Length Warmup

(b) Sequence length warmup rearranges the se-
quences after ME-BPE tokenization.

Figure 1: Sketches of (a) the architecture and (b) characteristics of dnaGrinder.

2.1.1 MEMORY-EFFICIENT BPE TOKENIZATION (ME-BPE)

Byte Pair Encoding (BPE) (Sennrich et al., 2016) is a data compression algorithm that segments
words by counting the co-occurrence frequency of subwords. For DNA data, BPE starts with a
base vocabulary of four characters of bp (A, C, G, and T). In each iteration, it counts the frequency
of each consecutive pair of character segments. The most frequent pair is identified and merged
into a new subword, effectively reducing the number of distinct pairs. This process is repeated
until the vocabulary reaches the desired size, which is 4,096 tokens in the current implementation
of the model. By merging frequent pairs, BPE captures common patterns and motifs in the DNA
sequences, improving both the efficiency of tokenization and the model’s ability to learn meaningful
representations. The final vocabulary, therefore, consists of the most frequent and representative
tokens derived from the set of given sequences, enlarging the tokenization length and reducing
computational complexity.
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Counting and merging pairs during BPE tokenization are memory-intensive processes that involve
multithreading (Kudo & Richardson, 2018). The memory consumption depends on both the number
of sequences and the length of each sequence. For instance, the corpora file of DNABERT-2, where
each sequence is 1,000 bp long, and the total size is 30GB, requires over 1TB of memory during
training, according to the original authors.

For our model, with each sequence length set to 12,200 bp and a corpus size exceeding 118GB, it
is impractical to load the entire corpus into memory at once. Our tests indicate that the maximum
manageable corpus size per file for BPE tokenization, with each sequence length set to 12,200 bp, is
approximately 20GB, which would still require around 1.8TB of memory. To address this issue, we
present ME-BPE, a novel BPE tokenization that split the corpus into smaller files and train iteratively
on one file at a time, thereby managing memory usage more effectively.

Our ME-BPE tokenizer begins by processing the first file of sequences to generate an initial vocabulary
of 4,096 tokens based on its content. For each subsequent file, the tokenizer updates its vocabulary
using the content of the new file. Suppose tokens in the new file appear more frequently than some
of the existing tokens in the vocabulary. In that case, the tokenizer replaces the less frequent tokens
to maintain a vocabulary size of 4,096. If a token from the new file already exists in the current
vocabulary, its frequency will be updated to include the new occurrences. However, if a token was
previously excluded from the vocabulary, its earlier frequency is not retained, and only the frequency
from the current file is considered. To mitigate the risk of missing some of the most frequent tokens
in the entire corpus, the size of each split file plays a critical role. Larger file splits can capture more
representative token frequencies across sequences, reducing the likelihood of omitting important
tokens. By balancing memory efficiency and file size, this greedy process is necessary to ensure that
the vocabulary adapts to many sequences as it processes more files. However it may not necessarily
capture all the most frequent tokens, especially for less frequent tokens, in the entire dataset. After
processing all files, the final vocabulary will contain up to a predefined number of the most frequent
and relevant tokens, which is 4,096 in our current implementation of dnaGrider.

2.1.2 SEQUENCE LENGTH WARMUP (SLW)

During pretraining, encoder-based models usually randomly sample data from the entire dataset
according to the batch size. This approach works well when the variance of sequence lengths is
minimal, as observed in models such as DNABERT (Ji et al., 2021) and NT (Dalla-Torre et al., 2023),
which use fixed-length k-mer sequences. On the other hand, with BPE, even if the original sequence
length is fixed, the number of tokens after tokenization varies. For instance, DNABERT-2 (Zhou
et al., 2024) restricts its pretraining sequences to a maximum of 128 tokens. Notably, despite the use
of BPE, the length of DNABERT-2’s pretraining sequence varies little, which does not significantly
affect its training strategy.

In contrast, our model deals with sequences of 12,000 bp long. Given the use of BPE and a substantial
portion of our training sequences from multispecies, the tokenized sequences have over 700 to
more than 2300 tokens. If sequences are randomly sampled to form a batch for training, sequence
lengths may vary considerably, and we need to pad these sequences to have the longest, uniform
length in each batch. Because of the long sequence length resulting from padding, the pretraining is
prolonged. Since the sequence lengths vary from one batch to the next, model performance fluctuates
across batches. To address these issues, we adopt a sequence length warmup strategy, often used in
pretraining decoder models (Press et al., 2021a; Li et al., 2022). This strategy arranges the sequences
in increasing order of their number of tokens, which helps to reduce training time and enhance
stability as the variance in gradients increases.

In addition, we employ a data augmentation technique akin to that utilized in NT to generate
a comprehensive set of training sequences. Initially, we partition the genome of each species
into overlapping segments, each with 12,200 bp in length. Each segment is designed to overlap
with its predecessor and successor by 100 bp at both the beginning and the end. From these
overlapping segments, we extract a 12,000 bp segment. To enhance the diversity of the training
set, the starting positions for these extracted segments are randomly selected within the initial 200
bp of the overlapping segments. This extraction process is repeated multiple times, resulting in a
training sequence set comprising 300 billion tokens, which is consistent with the quantities typically
employed in other genomic foundation models. Although different segments derived from the same
genomic region of a species exhibit variability, BPE tokenization ensures that the tokenized sequences

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

maintain comparable lengths. Finally, the augmented sequences originating from the same genome
are organized together in the final pretraining dataset according to their respective sequence lengths.

To the best of our knowledge, our model is the first encoder-based architecture to incorporate SLW in
pretraining. By leveraging SLW, we organize the pretraining process by the order of species. Our
findings (Section 4) demonstrate that the model is capable of effectively learning sequence features
and representations after being trained on a dataset comprising just 69.5 billion tokens.

The following observation can help appreciate SLW’s contribution to model performance. Sequences
characterized by a greater number of repeated elements (or simple patterns) exhibit lower complexities
and reduced entropies, enabling them to be compressed into fewer tokens. This compression results
in shorter sequence lengths in terms of token count. In the pretraining phase, sequences with low
complexities are prioritized for processing over those with high complexities. The model first
acquires the simpler patterns inherent in low-complexity sequences before advancing to the more
intricate patterns in high-complexity sequences. This approach of initially focusing on simple patterns
facilitates the model’s ability to learn complex patterns within more intricate sequences. Consequently,
this methodology enhances the overall pretraining process and, in turn, improves the performance of
the model.

2.1.3 ATTENTION WITH LINEAR BIAS (ALIBI)

When a model is trained on short sequences, such as 512 tokens, its ability to handle longer sequences
during inference is known as its extrapolation capability. This presents two challenges: first, the
model meets position encodings that are not seen during training; second, the number of tokens
processed by the attention mechanism during inference significantly exceeds those encountered
during training. Popular approaches, such as Sinusoidal positional embeddings (Vaswani et al.,
2017) and Rotary positional embeddings (RoPE) (Su et al., 2024), either impose limitations on
the maximum allowed input length or encounter difficulties in maintaining effective attention over
long sequences. Specifically, RoPE has been found to have a decaying effect (Xiong et al., 2023),
where the model struggles to attend to tokens beyond 4,000-6,000 positions, even with extensive
long-context pretraining. This decay in attention scores for distant tokens limits RoPE’s effectiveness
in handling extremely long input sequences, potentially impacting performance in tasks requiring
long-range dependencies. According to the original paper (Press et al., 2021b), ALiBi surpasses
T5 Bias and Rotary positional encodings in both training and inference speed, while performing
comparably to Sinusoidal encodings.

The ALiBi method is straightforward. It assumes that as the distance between two tokens increases,
their association decreases accordingly. Therefore, it penalizes attention scores based on the distance
between the two tokens. A pre-defined bias matrix is added to the original attention score computation,
which introduces a linear bias to the dot product between the query and key. This bias is an arithmetic
sequence with a common difference of 1 and an initial term of −m(i− 1):

Softmax(qiKT +m[−(i− 1), . . . ,−2,−1, 0])

Our experiments reveal the superior extrapolation ability of ALiBi, particularly in inference tasks like
species classification that involve sequences ten times longer than those used during pretraining. Even
though the pretraining phase utilized sequences of 12,000 bp, inference tasks were able to extend
sequence lengths to 120,000 bp effectively. This aligns with observations in the original study (Press
et al., 2021b), where the model’s perplexity remained stable as inference token lengths increased.

2.1.4 FLASH ATTENTION 2

Flash Attention (Dao et al., 2022) is a fast and efficient vanilla attention enhanced by exploiting
IO awareness to compute exact attention scores. Unlike sparse attention methods such as Big Bird
(Zaheer et al., 2020) or approximated attention techniques like Linformer (Wang et al., 2020) and
Performer (Choromanski et al., 2021), Flash Attention takes advantage of the different capacities
and speeds of different memory types in GPUs to accelerate the overall attention computation. For
example, SRAM is fast but has limited capacity, whereas High Bandwidth Memory (HBM) offers
larger capacity but at slower speeds. By reducing the communication between these memory types,
Flash Attention optimizes memory usage and improves computational efficiency.
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Unlike the Flash Attention Triton used in DNABERT-2, Flash Attention 2 (Dao, 2023) is twice as fast
and optimized for inference, particularly for iterative decoding when the query is a short sequence
(e.g., sequence length = 1). This improvement is especially beneficial for our model, as we train on
long DNA sequences of 12,000 bp, but DNA sequences in many downstream tasks vary in length,
with most not exceeding 1,000 bp. For instance, in DNABERT-2 downstream tasks, all sequences in
the GUE dataset are shorter than 1,000 bp.

2.2 ARCHITECTURAL ENHANCEMENTS

Beyond improving the primary methods of the model, we have also explored various latest architec-
tural enhancements to optimize model performance. For instance, we experimented with different
activation functions and further pretraining.

2.2.1 SWIGLU AND GEGLU

DNABERT-2 replaces the ReLU activation function with GEGLU (Shazeer, 2020), a variant of GLU
(Dauphin et al., 2016), which has been shown to boost the performance of Transformer models.
However, the use of GEGLU increases the parameter size of our model from 63M to 110M due to the
two separate linear transformations that the function uses. Specifically, the GELU activation function
is applied to the first transformation, and the second transformation serves as a gating mechanism:

GEGLU(x,W, V, b, c) = GELU(xW + b)⊗ (xV + c)

where W and V are the weight matrices, and b and c are the biases of the transformation. The symbol
⊗ represents element-wise multiplication, which modulates the output of the second transformation
using the gating signal from the first. This structure leads to a significant increase in the number of
parameters, as GEGLU requires separate linear transformations and associated biases for both the
gating and output signals, which increases model capacity and computational complexity compared
to ReLU and GELU.

SwiGLU (Shazeer, 2020), another variant of GLU, prioritizes parameter size by simplifying the gate
computation. To achieve parameter efficiency, SwiGLU utilizes a single linear transformation to
compute the gating signal and applies this signal to the result of another linear transformation. This
allows SwiGLU to maintain performance while reducing the complexity of the gating mechanism:

SwiGLU(x,W, V, b, c, β) = Swishβ(xW + b)⊗ (xV + c)

where Swishβ is the Swish activation function with a parameter β, acting in place of GELU for the
gating mechanism. Specifically, for an input dimension din and an output dimension dout, GEGLU
requires 2× (din × dout + dout) parameters. In contrast, SwiGLU achieves the same gating effect with
a more parameter-efficient design, requiring only din × dout + dout parameters, as the Swish activation
allows for a more straightforward gate computation. This makes SwiGLU more parameter-efficient by
simplifying gate computation without the additional weights and biases needed by GEGLU. Given the
significant increase in parameter size introduced by GEGLU, we opted to use SwiGLU in our model,
as it provides comparable performance while substantially reducing the model’s overall complexity.

2.2.2 FURTHER PRETRAINING

Like DNABERT-2, we also explored further pretraining (Sun et al., 2019) using some downstream
datasets. Our model was first pretrained on a general DNA dataset of multispecies reference genomes
with human sequences updated with SNP variants. However, downstream classification tasks usually
focus on specific regions of the genome, such as genic regions, to predict whether a sequence is a
(core) promoter or contains a splicing site. These regions may have some intricate sequence features
that the model needs to learn to deliver adequate performance.

Given that our model’s pretraining sequences range from 729 to 2314 tokens in length, We employed
in-domain further pretraining (Sun et al., 2019), where the model is further pretrained on all down-
stream datasets, including both the GUE and GUE-plus datasets from DNABERT-2, which contain 10
genomic problems including 36 classification tasks with sequences ranging from 70 to 10,000 bp. This
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approach contrasts with the further pretraining of DNABERT-2, which is constrained to only the GUE
benchmark consisting of 28 classification tasks due to limitations on its pretraining input sequence
length. Another difference from DNABERT-2 is that our model performed 100,000 steps, or about
0.41B tokens, of further pretraining, roughly equivalent to 3-4 epochs on the downstream datasets.
In contrast, our model was only further pretrained for one epoch, processing approximately 0.176B
tokens across 31,000 steps—about 70% fewer steps and 60% fewer tokens than DNABERT-2’s
further pretraining.

3 DATASETS

3.1 PRETRAINING DATASETS

To facilitate effective training of the dnaGrider model, we constructed a comprehensive set of genomic
sequences from multiple species, aiming to reduce redundancy while maximizing diversity to capture
meaningful genomic variations for robust model training.

3.1.1 THE HUMAN REFERENCE GENOME DATASET

The latest Human Reference Genome (GRCh38.p14) covers approximately 92% of the human
genome, encompassing 3.29 billion bp (Nurk et al., 2022). This comprehensive reference includes
sequences from all autosomal, sex, and mitochondrial chromosomes. Although the first generation
base model of NT replaces the reference genome sequence with 1000 Genome SNP data, introducing
alterations to the DNA sequence, it retains 98% redundant content among the samples (Zhang et al.,
2024), which limits the NT’s ability to learn from the diversity of the human genome.

To mitigate the impact of redundancy, we notice that there are abundant repetitive DNA sequences
in genomic sequences. For example, about half of the human genome is repetitive (Treangen &
Salzberg, 2012). Such repetitions complicate genomic analyses and mask significant genotypic
variations. Therefore, we used the soft-masked assembly sequences from the UCSC Genome Browser
to differentiate non-repeats and repeats identified by RepeatMasker (RepeatMasker, 2017) and
Tandem Repeats Finder (with a period of 12 bp or less) (Benson, 1999).

To ensure that non-repetitive sequences constitute a substantial portion of each training sequence,
we focused on preserving most non-repeating regions while minimizing the inclusion of repeating
sequences. To the best of our knowledge, our approach is the first application in the context of
genomic models. We initially removed all repetitive regions, focusing solely on the non-repetitive
sections. However, we observed that many non-repetitive sequences were short and fragmented.
Consequently, we further filtered out non-repetitive sequences shorter than a specified threshold.
Following this filtering, we extended the remaining non-repetitive sequences to meet the model’s
required input length. Even though this extension included a small portion of repetitive regions, we
ensured that these sequences were neither fragmented nor redundant. A comprehensive description
of the data preparation process can be found in Appendix A.1.1.

3.1.2 1000 GENOME DATA

The 1000 Genome Project dataset contains 3,202 samples, including 2,504 genomes of unrelated
individuals and 602 samples from family trios (Byrska-Bishop et al., 2021). These samples originate
from 27 geographically structured populations representing African, American, East Asian, and
European ancestries. The dataset utilizes the GRCh38.p14 version of the human reference genome as
the template. This set of sequence data covers a total of 73,554,796 genetic variants, including filtered
Single Nucleotide Variants (SNVs), insertions and deletions (INDELs), and Structured Variants
(SVs)—such as large deletions (DELs), insertions (INSs), duplications (DUPs), and inversions
(INVs).

To achieve a broader and more diverse data augmentation, we downloaded phased variant call format
(VCF) files, where each variant includes one maternal allele and one paternal allele, representing
the bp inherited from the respectiv parent. Unlike the NT dataset, which only includes SNVs and
INDELs (<50 bp), our dataset also incorporates longer SVs (>50 bp). These SVs (Table 1) represent
large-scale genetic alterations in the genome, which can significantly impact gene function and
regulation, contributing to genetic diversity and disease susceptibility. Furthermore, to enhance data
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Table 1: Total number of phased sites in provided VCFs (chr1-22, chrX)

Types of variants Total number of phased sites

SNVs 63,993,320
INDELs 9,459,017
SV-DELs 54,074
SV-INSs 32,548
SV-DUPs 15,234
SV-INVs 603

Variants 73,554,796

diversity, our training dataset considers both sets of alleles. We utilize maternal and paternal genetic
variants (Appendix A.1.2) in our training data, unlike NT, which considers only one set at a time.

3.1.3 MULTISPECIES REFERENCE GENOME DATA

The Multispecies Reference Genome dataset includes the reference genomes of 794 species, including
a diverse array of organisms such as bacteria, fungi, invertebrates, protozoa, vertebrate mammals,
and other vertebrates. We downloaded this dataset directly from NCBI, similar to NT, with the
only difference being the exclusion of species with invalid reference links. In processing the data,
any character different from a base pair, A, T, C, or G, was transformed into an ’N’. Each DNA
chunk was processed to ensure all letters were in uppercase and restricted to bp or N, with any
sequence containing ’N’ being discarded at the end. This dataset forms the third sequence dataset for
pretraining, providing a broad spectrum of genomic data across multiple species for comprehensive
genomic studies.

3.2 DOWNSTREAM DATASETS

We utilized the GUE dataset from DNABERT-2, which consists of 28 sets of sequences for 7
classification tasks with sequence lengths ranging from 70 to 1,000 bp. The seven genome sequence
classification tasks we studied include core promoter detection, promoter detection, transcription
factor prediction, and splice site detection for human sequences, transcription factor prediction for
mouse sequences, epigenetic marks prediction for yeast sequences, and covid variant classification
for virus sequences.

In addition, we incorporated downstream tasks from the NT model. Given that the GUE dataset and
NT’s downstream tasks overlap in the epigenetic mark prediction, and both datasets include tasks for
promoter detection and splice site prediction (albeit with different data), we extended our evaluation
to include two additional enhancer-related tasks from the NT model.

To further validate the capability of our model for handling sequences 10 times longer than those used
in pretraining, we employed the species classification tasks from HyenaDNA. To ensure consistency
and fairness, we selected the same five species used in HyenaDNA: hippo, human, lemur, mouse,
and pig. We randomly sampled DNA sequences of 120,000 bp from these species and fine-tuned 6
pretrained models. Our testing revealed that only the HyenaDNA model and our proposed model
could accommodate sequences of 120,000 bp long on a single GPU. In contrast, DNABERT-2 and
NTs models exceeded the maximum GPU memory capacity even with a batch size of 1.

4 RESULTS

4.1 BASELINE

We compared dnaGrinder against five top-performing DNA foundation models to assess its per-
formance comprehensively: HyenaDNA, DNABERT-2, NT-500M-1000g, NT-2500M-multi, and
NT-50M-multi-V2.
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Given that our pretraining data are from multispecies reference genomes and the human genome
(version GRCh38) updated with 1000G SNP variants, we included DNABERT-2, NT-2500M-multi,
and NT-50M-multi-V2, which were pretrained using multispecies reference genomes. We also
included NT-500M-1000g, which was pretrained on the human GRCh38 genome sequences updated
with 1000G SNP variants to align with our dataset.

The inclusion of NT-50M-multi-V2 in our comparison was motivated by the fact that it is represen-
tative of the second-generation NT models. It incorporates enhancements such as rotary positional
encoding, the SwiGLU activation function, and the removal of MLP biases and dropout mecha-
nisms—similar features are used in our model. To the best of our knowledge, this is the first study to
compare a model like ours with the second-generation NT.

Additionally, we included HyenaDNA in the comparison because it is a decoder-only model and
employs a similar sequence length warmup strategy to ours during pretraining.

4.2 SETUP AND METRIC

We assessed the models based on two criteria: computational efficiency and performance on down-
stream tasks. For computational efficiency, we compared the relative Floating-Point Operations
(FLOPs)—the sum of multiplication and addition operations performed during a forward pass. FLOPs
were calculated using the H3 dataset from the yeast epigenetic marks prediction task, with sequences
of 500 bp long. To assess performance, we used two metrics: Accuracy on 20 application tasks and
Matthews Correlation Coefficient (MCC) specifically for the 10 yeast epigenetic marks prediction
tasks, for a total of 30 tasks evaluated. Since the DNABERT-2 plus models were not publicly
released, using MCC allows us to directly compare dnaGrinder’s performance with the reported
performance of DNABERT-2 plus in (Zhou et al., 2024) (Table 6). This combination of metrics
enables a comprehensive evaluation of each model’s computational efficiency and task-specific
performance.

4.3 RESULTS ON THE GUE BENCHMARK AND ENHANCER TASKS

Table 2 summarizes the performance of six models compared by five evaluation metrics. Notably,
dnaGrinder secured the top position in 11 tasks and ranked second in 12 tasks out of 30, achieving
the highest overall performance among the six models evaluated. dnaGrinder outperforms the
largest, state-of-the-art model NT-2500M-multi in the number of the top-2 tasks and outperforms
the second state-of-the-art model DNABERT-2 in the average scores, while significantly surpassing
other baselines. This demonstrates dnaGrinder’s exceptional efficiency and scalability in genomic
sequence modeling without compromising performance.

Table 2: The table presents the performance statistics of 6 models, including the number of parameters,
relative FLOPs compared to dnaGrinder, tokens used in pretraining, the top-2 rankings across models
(1st ∥ 2nd), and the average evaluation scores on DNABERT-2 and NT downstream tasks. We used
the calflops package to calculate the FLOPs for each model; however, during the calculation of
HyenaDNA, we encountered a ”tensors not on the same device” error, denoted by ”/”. ↓ indicates
that a lower value is better, and ↑ indicates that a higher value is better.

Model Params↓ FLOPs↓ Trn. Tokens Num. Top-2↑ Ave. Scores↑

HyenaDNA(1K) 1.6M / 3B 0 ∥ 0 56.99
DNABERT-2 117.0M 1.8 262B 7 ∥ 7 70.86
NT-500M-1000g 480.0M 5.6 50B 0 ∥ 1 64.25
NT-2500M-multi 2537.0M 29.4 300B 8 ∥ 4 68.32
NT-50M-multi-V2 56.0M 0.6 300B 4 ∥ 6 67.70

dnaGrinder 63.6M 1.0 69B 11 ∥ 12 73.01

Among the total 28 GUE benchmark problems, dnaGrinder achieved the best or second-best results in
21 tasks, ranked the best among all methods evaluated (Table 3). The dominance of dnaGrinder over
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other baselines is particularly notable in the human and mouse transcription factor prediction problems,
reaching the highest or second-highest ACC scores in all ten tasks. Furthermore, dnaGrinder also
achieved the highest or second-highest MCC prediction scores in 8 out of 10 tasks, showing strong
performance on epigenetic marks prediction tasks. Despite only reaching the second-highest ACC
score in 2 out of 6 core promoter and promoter detection tasks, dnaGrinder is ˜40 times fewer in
parameters and runs ˜29 times fewer FLOPs when compared with NT-2500M-multi that achieved the
highest ACC scores in 4 out of 6 core promoter and promoter detections tasks. This result indicated
that dnaGrinder offered a favorable tradeoff between FLOPs, parameters, and model prediction tasks
for promoter-related problems.

While dnaGrinder performs similarly to DNABERT-2 and NT-50M-multi-V2 on the enhancer predic-
tion task (Table 4), it achieved an accuracy of 68.50 in the enhancer type prediction task, surpassing
the second-best model, NT-50M-multi-V2, by 4.75 points. This result showed dnaGrinder’s superior
ability to distinguish between different enhancer types, highlighting its robustness in handling more
complex genomic classification tasks.

Compared to other baseline models, dnaGrinder also achieved the highest prediction scores in
reference to the model parameter size and the number of FLOPs. Although requiring ˜40% more
FLOPs and ˜14% more model parameters, dnaGrinder outperformed HyenaDNA in all 30 datasets
(Tables 3 and 4) and the species classification task. The large NT-2500M-multi model came out
second among the 30 tasks compared, with its performance closely comparable with dnaGrinder
(Table 2). However, dnaGrinder is ˜40 times smaller in parameters and runs ˜29 times fewer FLOPs
than NT-2500M-multi. Notably, in the species classification task (Table 5), only dnaGrinder and
HyenaDNA (160K) successfully handled such long sequences on a single GPU, with dnaGrinder
achieving a perfect classification accuracy of 100%, while HyenaDNA (160K) achieving a score of
64.22%. In contrast, models like DNABERT-2, NT-500M-1000g, NT-2500M-multi, and NT-50M-
multi-V2 could not process sequences of this length, even with a batch size of 1 on a single GPU. To
further illustrate dnaGrinder’s extrapolation capability, we conducted GPU evaluations (Table 7) to
determine the maximum token length it could handle across different GPUs.

4.4 RESULTS OF FURTHER PRETRAINING

Since DNABERT-2 plus, the further pretrained version, was not available for testing, we compared
our model’s performance with DNABERT-2 plus by using the MCC values for yeast epigenetic marks
prediction tasks reported in the DNABERT-2 paper. We then calculated the MCC performance of our
model and NT-v2-50M on these 10 classification tasks. The results (Table 6) show that even though
our model was trained with fewer steps, it outperformed DNABERT-2 plus on half of the 10 tasks,
achieving state-of-the-art performance on these tasks.

5 CONCLUSION

We presented dnaGrinder, an efficient and lightweight DNA foundation model that has a high
capacity for processing long genomic sequences. We trained the dnaGrinder model on reference
genomes of multispecies and human genomes reconstructed from a collection of datasets of SNP
variants. In dnaGrinder, we introduced an improved BPE algorithm that significantly reduced memory
requirements. Our use of sequence length warmup is the first implementation of this technique in an
encoder-based model that accelerates pretraining by aligning with the varying tokenized sequence
lengths and our multispecies dataset, a goal that K-mers tokenization cannot achieve. Furthermore,
we incorporate several cutting-edge techniques into our encoder-based model, including the ALiBi
positional bias mechanism, the SwiGLU activation function, Flash Attention 2, and the elimination
of dropout, to significantly improve the overall efficiency and performance of the model. Through
these enhanced pretraining strategies and model improvements, dnaGrinder addresses several serious
drawbacks in the existing models, such as short pretraining sequence lengths, extensive pretraining
datasets, unnecessarily long pretraining processes, and large parameter sizes. dnaGrinder offers a
lightweight alternative with a smaller parameter size, reduced pretraining dataset requirements, faster
pretraining and fine-tuning times, and, importantly, superior or comparable performance on several
genomic applications.
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Ré, and Stephen Baccus. Hyenadna: Long-range genomic sequence modeling at single nucleotide
resolution. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 43177–43201. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/86ab6927ee4ae9bde4247793c46797c7-Paper-Conference.pdf.

Eric Nguyen, Michael Poli, Matthew G. Durrant, Armin W. Thomas, Brian Kang, Jeremy Sul-
livan, Madelena Y. Ng, Ashley Lewis, Aman Patel, Aaron Lou, Stefano Ermon, Stephen A.
Baccus, Tina Hernandez-Boussard, Christopher Ré, Patrick D. Hsu, and Brian L. Hie. Se-
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A APPENDIX

A.1 DATA PREPARATION

To enhance the model’s ability to learn from diverse genomic data, we aimed to minimize redundancy
by removing repetitive DNA sequences, which can impede the identification of key genomic features.
These repetitive regions occupy a significant portion of the genome but offer little benefit to training,
as they largely consist of duplicated content that lacks diversity. Our objective was to filter out these
repetitive elements while preserving the most informative non-repetitive regions, ensuring that the
input sequences were both relevant and met the necessary length for effective training.

A.1.1 REPEATED AND NON-REPEATED CONTENT

Genomes across species contain repetitive sequences that are present multiple times within chromo-
somes. These repetitions, ranging from simple patterns like ”CGCGCG” to more complex structures,
can be categorized into different types, such as tandem repeats or interspersed repeats. Repeats give
rise to redundancy and affect genome alignment and assembly, particularly during model pretrain-
ing, as they provide duplicated training tokens and position information. In other words, repeated
sequences provide little information but incur extra computational burden to pretraining. Therefore,
it is necessary to remove these repeats to focus on the unique and informative regions of the genome.

In processing the Human Reference Genome, we utilized the soft-masked assembly data. Initially,
we removed all repeat regions, retaining only the non-repetitive sections and documenting their start
and end positions. Upon analyzing these sequences, we observed that the majority were short and
fragmented, with very few meeting the required input length for our model. To address potential
issues associated with variations in input lengths, we implemented the following schemes:

1. Filtering Short Sequences: We excluded non-repetitive sequences shorter than a specified
length, which varied across chromosomes depending on the proportion of retained sequences
relative to the total chromosome lengths. For instance, with a target sequence length of
12,200 bp, non-repetitive sequences shorter than 1,150 bp on chromosome 1 of the human
genome were filtered out. This approach ensured that during the subsequent sequence
extension phase, we avoided scenarios where short non-repetitive sequences constituted
only a small fraction of the final sequence, thus avoiding excessive redundancy.

2. Extension:
(a) Rightward Extension: We started the process at position 0 on a selected chromosome,

identifying the rightmost index of the first valid non-repetitive sequence. If this
sequence was shorter than 12,200 bp, it was then extended to the right along the
chromosome until it was 12,200 bp long. If this extension included one or more
non-repetitive sequences, the subsequent operation began from the next non-repetitive
sequence to the right that had not yet been included. Sequences exceeding 12,200 bp
were split to ensure that each segment adhered to this length requirement.

(b) Handling ’N’ Characters: In cases where an ’N’ (representing unidentified bases) was
encountered during rightward extension, the extension was halted, and the sequence was
extended to the left to reach the required length of 12,200 bp. Given that ’N’ constitutes
only 5% of the human reference genome, such unidentified bp rarely appear on each
chromosome. We did not observe any cases where the presence of ’N’ prevented
reaching the target length of 12,200 bp.
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After filtering and extension, the final retained set of sequences on chromosome 1 was equivalent to
50% of the original content, reflecting the proportion of non-repeated sequences on this chromosome.
Although our data included some repeated sequences, we avoided fragmentation and redundancy.
Our approach ensured that non-repeated content formed a substantial part of each training sequence,
maximizing the inclusion of meaningful, non-redundant genomic data. The proportions of retained
content per human autosomal chromosome plus the X chromosome, were as follows: [0.50, 0.50,
0.55, 0.53, 0.52, 0.51, 0.54, 0.56, 0.47, 0.56, 0.53, 0.54, 0.46, 0.44, 0.44, 0.49, 0.52, 0.51, 0.55, 0.56,
0.50, 0.57, 0.50], which was first introduced in (Treangen & Salzberg, 2012).

In addition, considering that repetitive regions can also contain regulatory elements or genetic
variants, we incorporated the complete human reference genome within the multispecies dataset.
This inclusion was intended to fill potential gaps in the training data by providing the model with
a thorough representation of human genomic features. Despite this inclusion, the proportion of the
human genome constituted only 2.7% of the whole multispecies dataset, thereby minimizing the risk
of excessive repetition while ensuring that the model benefits from a broad spectrum of genomic
information. This approach maintains a balance between leveraging the richness of human genomic
data and preventing undue repetition in the training set.

A.1.2 PARENTAL GENETIC VARIANTS LOCUS REPLACEMENT

Upon obtaining human reference genome sequences of length 12,200 bp, we constructed the final
pre-training set by extracting sequences of 12,000 bp long from these sequences with their starting
positions randomly chosen from the first 0 to 199 bp.

Subsequently, we randomly selected an individual from the 3,202 samples of the 1,000 Genomes
dataset. We then identified all SNVs, INDELs, and SVs (Figure 2.a) of this individual that fell within
this extracted 12,000 bp sequence. We replaced these variants at their corresponding positions on
this extracted sequence (Kosugi & Terao, 2024). In this replacement, because INDELs (<50 bp) and
SVs (>50 bp) are variants of varying lengths, the final length of each 12,000 bp sequence will be
different, especially considering that the start index is randomly selected from the first 200 bp. This
approach achieves data augmentation by ensuring that the sequences vary significantly.

Reference genome  C A T A T A 
Insertion sequence  C A T G A T A T A 

Reference genome  C A T G C C A T A
Deletion sequence  C A T A T A 

 

Tandem duplicationInterspersed duplication

Inversion

(a) Types of variants

Ref          ACGTAAAGCGTGAT

Father    ACGT--A--------CGAT
Mother  ACGT--AA------TGAT

DEL DEL

SNV

SNV

Child       ACGTACA--------GAT

(b) Family trios including paternal (fa-
ther), maternal (mother), and child

Figure 2: Variants and family trios.

In contrast to the NT-500M-1000g model, which covers only SNVs and INDELs from just one
parental lineage (either maternal or paternal, a detail not clarified in their paper), our approach
incorporates variants from both maternal and paternal origins (Figure 2). In other words, each
extracted 12,000 bp sequence includes two parallel sequences of the maternal and paternal variants.
This dual consideration is essential because 18.8% of the sequences of the 1000 Genome project
are from family trios, and genetic variations from both parents contribute to the individual’s overall
genetic makeup. By including variants from both maternal and paternal origins, we aim to capture a
more comprehensive representation of genetic variability and enhance the model’s ability to account
for inherited genetic differences.
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A.2 ALL EXPERIMENT RESULTS

Table 3: The performance of selected 6 models on the GUE datasets.

Metric: MCC Epigenetic Marks Prediction

H3K79me3 H3K14ac H3K9ac H4 H4ac

HyenaDNA(1K) 54.09 31.98 50.84 73.69 38.44
DNABERT-2 67.39 52.57 55.63 80.71 50.43
NT-500M-1000g 59.33 39.37 49.29 76.29 36.79
NT-2500M-multi 64.70 56.20 56.01 81.67 49.13
NT-50M-multi-V2 55.25 64.89 63.78 74.65 45.03

dnaGrinder 67.58 57.36 59.95 81.01 54.65

Metric: MCC Epigenetic Marks Prediction

H3 H3K36me3 H3K4me1 H3K4me2 H3K4me3

HyenaDNA(1K) 67.17 48.27 35.83 25.81 23.15
DNABERT-2 78.27 56.88 50.52 31.13 36.27
NT-500M-1000g 72.52 45.58 40.45 31.05 26.16
NT-2500M-multi 78.77 61.99 55.30 36.49 40.34
NT-50M-multi-V2 69.80 52.66 39.46 27.76 41.4

dnaGrinder 80.23 56.65 47.22 45.22 48.03

Metric: ACC Core Promoter Detection Promoter Detection

all notata tata all notata tata

HyenaDNA(1K) 76.64 79.46 72.26 88.76 93.34 76.18
DNABERT-2 81.77 82.38 84.50 93.07 96.74 83.19
NT-500M-1000g 81.87 82.43 83.03 92.88 95.36 87.60
NT-2500M-multi 84.03 83.38 83.84 95.30 97.11 82.30
NT-50M-multi-V2 83.47 81.27 89.07 93.59 95.70 93.63

dnaGrinder 82.15 83.31 87.11 92.69 96.06 83.52

Metric: ACC Transcription Factor Prediction (Human) Splice

0 1 2 3 4 reconstructed

HyenaDNA(1K) 79.3 80.7 70.1 66.2 77.3 62.84
DNABERT-2 82.1 83.3 82.3 77.2 87.7 91.49
NT-500M-1000g 82.4 84.1 75.7 72.5 81.4 87.52
NT-2500M-multi 83.3 85.1 77.4 75.1 81.6 88.75
NT-50M-multi-V2 79.9 80.5 75.1 67.4 81.1 90.31

dnaGrinder 85.4 86.6 80.1 77.3 85.6 89.30

Metric: ACC Transcription Factor Prediction (Mouse) Virus

0 1 2 3 4 Covid

HyenaDNA(1K) 51.97 85.29 82.01 57.74 60.06 14.28
DNABERT-2 80.00 90.86 92.07 86.61 73.60 69.19
NT-500M-1000g 67.90 87.57 82.62 61.08 66.70 37.36
NT-2500M-multi 55.68 91.91 83.46 57.32 62.26 38.01
NT-50M-multi-V2 71.11 87.79 85.36 68.61 64.84 50.96

dnaGrinder 74.32 91.09 90.85 88.28 69.25 69.95
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Table 4: The performance of selected 6 models on the enhancer prediction tasks from NT.

Metric: ACC Enhancer Prediction

Enhancer Enhancer Types

HyenaDNA(1K) 71.75 62.75
DNABERT-2 79.25 56.50
NT-500M-1000g 77.00 58.50
NT-2500M-multi 71.75 57.75
NT-50M-multi-V2 79.00 63.75

dnaGrinder 79.00 68.50

Table 5: The performance of selected six models on a long sequence classification task on a single
GPU. Only dnaGrinder and HyenaDNA can handle such long sequences.

Species Classification

120K Base Pair Length

HyenaDNA(160K) 64.22
DNABERT-2 /
NT-500M-1000g /
NT-2500M-multi /
NT-50M-multi-V2 /

dnaGrinder 100.00

A.3 COMPARISON WITH DNABERT-2 WITH FURTHER PRETRAINING

To ensure a comprehensive comparison, we also evaluate the performance of dnaGrinder with further
pretraining against DNABERT-2 with further pretraining on epigenetic marks prediction tasks (Table
6). Since DNABERT-2 with further pretraining has not been officially released, we relied on the
MCC scores reported in the DNABERT-2 paper. Notably, even though our model was pretrained
on only one-third of the data used for DNABERT-2’s further pretraining, it delivered comparable
performance across 10 tasks.

After further pretraining, dnaGrinder experienced a decline in MCC scores for 6 out of the 10 yeast
epigenetic mark prediction tasks, with an average decrease of 0.8783. In contrast, the scores improved
for 4 tasks, with an average increase of 0.755. These results suggest that further pretraining did not
yield significant benefits for dnaGrinder in these tasks. This indicates that while further pretraining
might offer some improvements in specific cases, its overall impact on dnaGrinder’s performance is
limited, and the gains do not substantially enhance the model’s effectiveness in this context.

A.4 GPU MEMORY EVALUATION

To evaluate dnaGrinder’s efficiency in compressing nucleotide sequences and handling lengthy input
lengths, we randomly selected 11 DNA sequences from each chromosome of the human reference
genome. The results (Table 7) illustrate dnaGrinder’s capability to effectively handle lengthy genomic
sequences, with our ME-BPE tokenization encoding approximately 5 bp per token, even with GPUs
that have limited memory. Specifically, dnaGrinder can process sequences of over 17,000 tokens on
workstation-grade GPUs with 12GB of memory, such as the RTX 4070. In contrast, high-performance
GPUs with 80GB of memory, like the H100 or A800, dnaGrinde can handle sequences exceeding
140,000 tokens. By efficiently managing very long sequences while maintaining a small parameter
size and requiring minimal fine-tuning time, dnaGrinder proves to be a highly effective tool for
addressing complex genomic challenges, even under resource-constrained conditions.
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Table 6: The performance of DNABERT-2 plus (with further pretraining) and dnaGrinder plus (with
further pretraining) on epigenetic marks prediction.

Metric: ACC H3 H3K14ac H3K36me3 H3K4me1 H3K4me2

DNABERT-2 plus 80.17 57.42 61.90 53.00 39.89
dnaGrinder plus 78.91 56.44 56.93 46.47 45.07

Metric: ACC H3K4me3 H3K79me3 H3K9ac H4 H4ac

DNABERT-2 plus 41.20 65.46 57.07 81.86 50.35
dnaGrinder plus 49.90 67.99 60.41 80.58 52.95

Table 7: Sequence lengths in tokens for varying original DNA sequence lengths.

DNA Sequence Length (bp) Longest Tokenized Length (tokens) Shortest Tokenized Length (tokens)
120,000 24,709 21,036
250,000 51,588 44,784
300,000 62,137 53,209
500,000 103,285 89,779
700,000 144,653 126,738

A.5 PRETRAINING AND FINE-TUNING INSIGHTS

During an early pretraining trial, we initially planned to pretrain exclusively on the 1000G SNP
variant data. However, we discovered that the model was only able to learn features from a single
chromosome. For instance, after achieving 60% accuracy on chromosome 1, the model performed
poorly on other chromosomes with the same MLM task. This indicated that the model was not
learning generalizable data distributions beyond one chromosome. We initially suspected that the
data might be too limited for generalization, so we expanded our pretraining data to include SNP
variants from chromosomes 1, 21, and 22. Yet, the model still failed to achieve generalization. We
concluded that SNP variants, being often physically separated from one another by arbitrary distances
on one chromosome, are not suitable for modeling biological data distributions. Consequently, we
decided to use complete DNA sequences with SNP variants incorporated.

In another early pretraining trial, we also experimented with dilated attention (Ding et al., 2023) to
extend sequence lengths. Although dilated attention allowed us to scale sequences up to 400,000
bp, it was challenging for the model to effectively learn data features. This led to consistently low
MLM accuracy that was insufficient for downstream tasks. The poor generalizability of this model
can be attributed to the missing information in the model because dilated attention approximates the
authentic attention mechanism.

During fine-tuning, we observed that BERT models were quite sensitive to learning rates. Small
variations, such as a change of 0.1× 10−5 in the learning rate, could lead to significantly different
test results. As a result, we tested our model in a range of learning rates between 1.0 × 10−5 and
3.0× 10−5 for most tasks to identify the optimal rate. Additionally, we used five different random
seeds for each downstream task, resulting in approximately 100 runs per task to determine the best
test results.

For the Covid variant classification of the virus, our tests show that all six models struggle to converge
on this dataset. However, dnaGrinder and DNABERT-2 can converge in one or two runs, while the
other models have difficulty converging even after multiple attempts. For instance, despite trying ten
different random seeds, HyenaDNA consistently failed to converge on this task. Additionally, fine-
tuning NT-2500M-multi and NT-500M-1000g using LoRA for five epochs required approximately
700 minutes and 150 minutes, respectively. This significantly increases the time cost for each new
attempt with a different random seed. The authors of DNABERT-2 attribute these difficulties to early
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convergence to local minima, likely stemming from the substantial mismatch between the pretraining
and evaluation data distributions.

For the NT 2.5b-MS model, our tests revealed that its large size and depth led to an early and easy
convergence to local minima in some tasks. This resulted in the model struggling to learn data
features, with accuracy stagnating around 50%. Moreover, the model’s runtime per epoch was
significantly longer than that of other models. Even with the use of LoRA, with only about 0.1%
of the parameters being fine-tuned, extensive testing with different random seeds was required to
surpass 50% accuracy. This explains why the NT 2.5b-MS performed worse in our tests compared to
DNABERT-2.

A.6 IMPLEMENTATION DETAILS

A.6.1 SPECIES CLASSIFICATION

To ensure a fair comparison, we selected the same 5 species as used in the HyenaDNA paper: hippo,
human, lemur, mouse, and pig. For each species, we randomly sampled 11 DNA sequences of
120,000 bp from the reference genome of each chromosome, with 10 sequences allocated for training
and 1 for testing. Sequences of any chromosome shorter than 120,000 bp were excluded from the
sampling process. The completed dataset includes 1,090 sequences for training and 109 sequences for
testing. Among the 6 tested models, only dnaGrinder and HyenaDNA were able to process sequences
of this length as input. In contrast, other models were unable to handle the sequence length even with
a batch size of 1 on a single GPU.

A.6.2 PRETRAINING IMPLEMENTATION

We pretrain dnaGrinder on 8 H100 GPUs using MLM with a 15% mask ratio and dynamic masking
for each sequence. We use a batch size of 256 and a maximum sequence length of 2314. We train the
model for 119,000 steps using the AdamW optimizer with β1 = 0.9, β2 = 0.98, ϵ = 1× 10−6, and
a weight decay of 1× 10−5. The learning rate linearly increases from 0 to 4× 10−4 during the first
16,000 steps, followed by cosine annealing for the remaining steps.

A.6.3 FURTHER PRETRAINING IMPLEMENTATION

We further pretrained dnaGrinder on a single A800 GPU, using MLM with a 15% mask ratio and
dynamic masking for each sequence. We use a batch size of 32 and a maximum sequence length of
2241. We train the model for 31,000 steps using the AdamW optimizer with β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−6, and a weight decay of 1× 10−5. The learning rate is set to 5× 10−5.

A.6.4 FINE-TUNING IMPLEMENTATION

For fine-tuning, we applied a consistent architecture across all models, which includes two linear
layers. The structure is as follows: the first linear layer is followed by layer normalization, a GELU
activation function, and dropout with a rate of 0.1. The output is subsequently fed into a second linear
layer, which produces the final classification output.

HyenaDNA, as an exception, utilizes only a single linear layer since it has already integrated the
classification layer directly into the model.

In the case of dnaGrinder, we explored 20 different learning rates for each task, including ranges
such as 1× 10−5 to 3× 10−5, 3× 10−5 to 5× 10−5, and 5× 10−5 to 7× 10−5. Additionally, we
experimented with 5 different random seeds, resulting in a total of 100 model runs per downstream
task to identify the optimal test results.

For DNABERT-2 and HyenaDNA, we adopted a learning rate of 3 × 10−5, as reported in the
DNABERT-2 paper. For the three models of NT, we used a learning rate of 1× 10−4, consistent with
the values reported in the original paper. The number of epochs for each task is displayed in Table 8.
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Table 8: The number of training steps used for the following tasks: epigenetic marks prediction
(EMP), transcription factor prediction on the human genome and the mouse genome (TF-H and
TF-M), tata dataset of promoter detection (PD-tata), notata and all datasets of promoter detection
(PD-o), tata dataset of core promoter detection (CPD-tata), notata and all datasets of core promoter
detection (CPD-o), splice site prediction (SSP), covid variant classification (CVC), enhancer and
enhancer types (enhancer), and multi-species classification (species).

EMP TF-M TF-H PD-data PD-o CPD-data CPD-o SSP CVC Enhancer Species

Epochs 5 10 5 10 5 10 5 5 5 5 5

A.7 PRETRAINING DATA AVAILABILITY

For the softmask assembly of the human reference genome, we have selected the GRCh38 version
from the UCSC browse: https://hgdownload.soe.ucsc.edu/goldenPath/hg38/
bigZips/. For the 1000 Genome variants, we have selected the 1000 Genome project: https:
//ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_
high_coverage/working/20220422_3202_phased_SNV_INDEL_SV/. For the multi-
species reference genome, we have selected from NCBI: https://www.ncbi.nlm.nih.gov/.
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