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ABSTRACT

Incremental object detection (IOD) task is trapped in well-known catastrophic
forgetting. Knowledge distillation has been used to overcome this problem. Pre-
vious works mainly focus on combining different distillation methods, including
feature, classification, location and relation, into a mixed scheme to solve this
problem. In this paper, we find two reasons of catastrophic forgetting, knowledge
fuzziness and imbalance learning. We propose a task regularized hybrid knowl-
edge distillation method for IOD task. Our method integrates knowledge selection
strategy and knowledge transfer strategy. First, we propose an image-level hybrid
knowledge representation by combining instance-level hard knowledge and soft
knowledge to use teacher knowledge critically. Second, we propose a task-based
regularization distillation loss by taking account of loss difference between old
and new tasks to make incremental learning more balance. Extensive experiments
conducted on MS COCO and Pascal VOC demonstrate that our method achieves
state-of-the-art performance. Remarkably, we reduce the mAP gap between in-
cremental leaning and joint learning to 6.15% under the most difficult Five-Step
scenario of MS COCO, which is superior to 19.5% of the previous best method.

1 INTRODUCTION

The current object detection models (Ge et al., 2021) primarily follow the overall learning paradigm,
where the annotations for all categories are provided prior to the learning process. This paradigm
assumes that the data distribution remains fixed or stationary (Yuan et al., 2021). However, in
the real world, data is dynamic and exhibits a non-stationary distribution. When a model learns
from continuously incoming data, new knowledge interferes with the previously learned knowledge,
resulting in catastrophic forgetting of old knowledge (McCloskey & Cohen, 1989; Goodfellow et al.,
2014). To address this issue, incremental learning has been studied in recent years and has shown
advancements in image classification task. However, there has been limited research on incremental
object detection (IOD) task.

Knowledge distillation has been proved to be an effective method for IOD task, in which the model
trained on old classes performs as a teacher to guide the training of student model on new classes.
There are four kinds of distillation schemes: feature, classification, location and relation distillation.
Most previous works combine feature and classification knowledge to construct their distillation
methods, while the latest work combines classification distillation and location distillation to con-
struct a response-based distillation method. In addition, various distillation losses, based on KL
diversity, cross entropy and mean square error, are proposed for knowledge transfer. In summary,
the keys of knowledge distillation are what knowledge should be selected from teacher and how it
is transferred to student. The former question needs Knowledge Selection Strategy (KSS), while the
latter needs Knowledge Transfer Strategy (KTS).

Incremental object detection face two problems. (1) Teacher outputs probability distributions as
logits and converts them into one-hot labels as final predictions. Logits and one-hot labels are re-
garded as soft knowledge and hard knowledge, respectively. Soft knowledge contains confidence
relations among categories, but brings knowledge ambiguity inevitably. While, hard knowledge has
completely opposite effects. Therefore, how to design KSS to keep balance between accuracy and
fuzziness of knowledge is a key problem. (2) Incremental learning should maintain old knowledge
during the learning of new knowledge to overcome catastrophic forgetting, therefore how to design
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KTS to keep balance between stability of old knowledge and plasticity of new knowledge is a key
problem. This paper focuses on how to design effective KSS and KTS for IOD task. We demon-
strate that catastrophic forgetting can be significantly alleviated by reducing knowledge fuzziness of
teacher and suppressing imbalance learning between old and new tasks.

Firstly, the max confidence value of logits is always lower than its corresponding one-hot value
(equal to 1), which brings knowledge ambiguity and reduces teacher’s supervise ability. This
means soft knowledge is not completely reliable, which should be used critically. However, pre-
vious methods ignore this keypoint. Motivated by this insight, we propose an image-level hybrid
knowledge representation method, named as HKR, by combining instance-level soft knowledge
and hard knowledge adaptively to improve the exploration of teacher knowledge. Secondly, new
coming data contains massive labeled objects of new classes, while contains a few unlabeled objects
of old classes, therefore student trends to be dominated by new classes and falls into catastrophic
forgetting. Thus it is very important to balance the learning of old and new classes. We propose
a task regularized distillation method, named as TRD, by using losses difference between old and
new classes to prevent student from task over-fitting effectively. We first explore imbalance learning
problem for IOD explicitly.

Our contributions can be summarized as follows: (1) We propose a hybrid knowledge representation
strategy by combing logits and one-hot predictions to make a better trade-off and selection between
soft knowledge and hard knowledge. (2) We propose a task regularized distillation method as an
effective knowledge transfer strategy to overcome the imbalance learning between old and new tasks,
which relieves catastrophic forgetting remarkably. (3) Extensive experiments on MS COCO, Pascal
VOC and OWOD scenarios demonstrate that our method achieves state-of-the-art performance.

2 RELATED WORKS

Incremental Object Detection. There are several schemes for IOD task. Li & Hoiem (2018)
first proposed a knowledge distillation scheme by applying LWF to Fast RCNN (Girshick, 2015).
Zheng & Chen (2021) proposed a contrast learning scheme with a proposal contrast to eliminate the
ambiguity between old and new knowledge.Joseph et al. (2021b) proposed a meta-learning scheme
to share optimal information across incremental tasks. Joseph et al. (2021a) introduced the concept
of open world object detection(OWOD), which integrates incremental learning and open-set learning
simultaneously. In addition, Li et al. (2021) first studied few-shot IOD. Li et al. (2019) designed a
IOD system on edge devices. Wang et al. (2021a) presented an online incremental object detection
dataset. Recently, Wang et al. (2022) proposed a data compression strategy to improve sample
replay scheme of IOD. Yang et al. (2022) proposed a prototypical correlation guiding mechanism to
overcome knowledge forgetting. Cermelli et al. (2022) proposed to model the missing annotations.

Knowledge Distillation for Incremental Object Detection. Knowledge distillation (Hinton et al.,
2015) is an effective way to transfer knowledge between models with KL diversity, cross entropy
or mean square error as the distillation loss. There are mainly four kinds of knowledge distillation
used in IOD task: feature, classification, location and relation distillation. LwF was the first to ap-
ply knowledge distillation to Fast RCNN detector (Li & Hoiem, 2018). RILOD designed feature,
classification and location distillation for RetinaNet detector on edge devices (Li et al., 2019). SID
combined feature and relation distillation for anchor-free detectors (Peng et al., 2021). Yang et al.
(2021a) proposed a feature and classification distillation by treating channel and spatial feature dif-
ferently. ERD is the latest state-of-the-art method, combining classification and location distillation
(Feng et al., 2022). Most of existing methods combine feature, classification and location distillation
in composite and complex schemes to realize knowledge selection and transfer.

3 OUR METHOD

3.1 OVERALL ARCHITECTURE

We build our incremental detector on the top of YOLOX (Ge et al., 2021), a typical one-stage
anchor-free detector, which can contribute to the typical verification of our method. Its overall ar-
chitecture is shown in Fig4. YOLOX designs two independent branches as its classification and
location heads. Firstly, hybrid knowledge representation (HKR) module works after the classifi-
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Figure 1: The overall architecture of our incremental detector ilYOLOX. Cls and Loc refer to classi-
fication and location respectively. Hybrid Knowledge Representation (HKR, Eq.3) and Task Regu-
larized Distillation (TRD, Eq.10) refer to our proposed two components, which play roles of knowl-
edge selection and knowledge transfer strategies, respectively.

cation head of teacher to discover valuable predictions for old classes. Secondly, task regularized
distillation (TRD) module works between the heads of teacher and student to transfer knowledge.

3.2 HYBRID KNOWLEDGE REPRESENTATION

Teacher outputs probability distribution as logits and converts them to one-hot labels as final predic-
tions. Logits and one-hot labels are regarded as soft knowledge and hard knowledge, respectively.
Hinton et al. (2015) shows that soft knowledge is better than hard knowledge for classification
distillation. However, although soft knowledge reflects more between-class information than hard
knowledge, it also brings fuzziness to knowledge inevitably, which makes student confused during
distillation learning. Actually, teacher confidence reflects knowledge quality. If teacher has high
confidence about its predictions, we should further strengthen this trend so that student can feel the
certainty of this knowledge. Conversely, if teacher has low confidence, we should not do that.

Therefore, the key problem is how to evaluate the quality of soft knowledge from teacher. Here,
we propose to evaluate soft knowledge according to the confidence difference between the maxi-
mum value and the secondary maximum value of teacher logits. This confidence difference reflects
detector’s preference for Top-2 predictions. The more the detector leans towards Top-1, the higher
the logit quality is. Given a batch of images, teacher outputs a batch of logits for potential objects
about old categories. For each logit, if the confidence difference between its maximum confidence
and secondary maximum confidence is larger than a threshold, the knowledge quality of this logit
will be regarded as high, otherwise as vanilla. High quality knowledge will be represented as one-
hot prediction, while vanilla knowledge will be represented as soft prediction. We compute the
mean value of the confidence differences across the entire batch as the threshold to judge knowledge
quality adaptively. We formulate the description above as follows:

ConfDiff = Conffirst max − Confsecond max (1)

quality = ConfDiff >
1

N

N∑
i

ConfDiffi (2)

Hybrid = quality ·Onehot+ (1− quality) · Soft (3)

where, ConfN×C refers to a batch of logits with batch size of N and categories of C. ConfDiffN×1

refers to the confidence difference of each logit between its maximum confidence and secondary
maximum confidence. N and i refers to the total number of logits and the ith logit. 1

N

∑N
i ConfDiffi

is the threshold to judge knowledge quality. quality defined in Eq.2 is a Boolean vector to indicate
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knowledge quality for all logits. Then, Hybrid predictions can be computed in Eq.3 by combining
Onehot predictions and Soft predictions. Our method combines soft knowledge and hard knowl-
edge dynamically to form a hybrid knowledge representation for each input image.

3.3 TASK REGULARIZED DISTILLATION

The learning loss of student in IOD task can be defined as following equation Eq.6. New task
loss (Lossnew, Eq.5) refers to the loss supervised by the ground-truth of new classes. Old task loss
(Lossold, Eq.4) refers to the loss supervised by one-hot or soft targets from teacher. The Losscls and
Lossloc are the same as the official YOLOX, which are cross entropy loss and IoU loss respectively
with coefficients of α = 1 and β = 5. The task balance factor γ is set to be 1 by default.

Lossold = α · Losscls + β · Lossloc (4)
Lossnew = α · Losscls + β · Lossloc (5)
Losstotal = Lossnew + γ · Lossold (6)

Incremental learning is easily affected by data proportion of old and new tasks. If the data proportion
of new task is too large, student will be dominated by new task loss and forget old knowledge.
Conversely, student will obtain much more stability to old knowledge and lack of plasticity to accept
new knowledge. Therefore, the key problem of distillation learning is to keep balance between old
and new tasks. Motivated by this insight, we propose a task regularized distillation method (TRD)
to solve the imbalance learning problem. TRD method consists of two parts: task equal loss and
task difference loss, which are formulated as follows:

Loss∗old = [
2 · Lossnew

Lossold + Lossnew
] · Lossold (7)

Loss∗new = [
2 · Lossold

Lossold + Lossnew
] · Lossnew (8)

Loss∗diff = (Lossold − Lossnew)
2 (9)

Loss∗total = Loss∗new + Loss∗old + η · Loss∗diff (10)

Where, Lossold and Lossnew are defined in Eq.4 and Eq.5. Loss∗old and Loss∗new are the newly
defined losses for old and new tasks. [] refers to the detach operation of PyTorch, which can separate
a variable from graph to remove the gradient back-propagation of that part. [] operation adds two
task-based balance factors to Lossold and Lossnew, so that Loss∗old and Loss∗new will be always
equal to each other during the entire incremental learning. Therefore, we can ensure a completely
dynamic balance between old and new tasks regardless of their data imbalance. Loss∗diff measures
the loss difference between old and new tasks, which can further contribute to their balance learning.
η is a weighting factor. Loss∗total is the final formulation of TRD method. Compared with Eq.6,
TRD emphasizes task balance explicitly by introducing two task-based balance factors (seen in Eq.7
and Eq.8) and a task-based penalty item (Eq.9), thus can prevent student from over-fitting to any
task. We provide an experimental result and theoretical analysis in Fig.2 and Appendix SectionA.2.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

YOLOX uses CSPNet (Wang et al., 2020) as its backbone, which is trained from scratch along with
detection heads for 300 epochs 1. Following the general settings of IOD task(Li et al., 2019), we
replace CSPNet with pre-trained ResNet(He et al., 2016) and PVT2(Wang et al., 2021b), which are
frozen during incremental learning. We keep the other components and hyper parameters of YOLOX
unchanged. The modified YOLOX, denoted as ilYOLOX, is used for incremental learning.

Given a leaning scenario, we continually train ilYOLOX task by task. The leaning on each task is
seen as an incremental learning step. The ilYOLOX trained on old task is used as teacher to guide
the next step learning of student on new task. Optimizer is SGD with warm-up iterations of 1500,
a learning rate of 0.2 decayed by 10% at the 8th and 11th epochs respectively, a momentum of 0.9

1seen YOLOX in https://github.com/open-mmlab/mmdetection
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and a weight decay of 0.0005. All experiments are performed on 8 NVIDIA 3090 GPUs with a total
batch size of 16×8. All training images are randomly scaled to [416, 640] by their short sides with
content shape ratios unchanged. Normalization, cutout and random horizontal flip with a probability
of 50% are used for training. All test images are adaptively scaled to 640x640 and only normalized.

4.2 DATASETS, BENCHMARKS AND EVALUATION METRICS

We build benchmarks using Pascal VOC(Everingham et al., 2010) and MS COCO2017(Chen et al.,
2015) separately, with 20 and 80 categories in each dataset. We split training and validation sets
into several subsets following the alphabetic order of categories. Each split scheme is called a
incremental learning scenario. For example, the scenario of COCO(40+20+20) indicates splitting
COCO into three subsets with 40, 20 and 20 categories in each. Incremental learning will be carried
out sequentially on these subsets step by step. At each step, only categories in new subset is loaded
for training, while all previously learned categories are loaded for testing. The total learning steps
equals to the number of subsets. Learning by loading all categories at once refers to joint learning.
In addition, we also use the benchmark of OWOD task, which combines VOC and COCO together,
abbreviated as VOCO. The first subset consists of 20 categories from VOC, while the other subsets
consist of the remaining 60 categories from COCO. These categories are sorted by semantic drift.

Our benchmarks include (i)Two-Step scenarios: 40+40, 50+30, 60+20 and 70+10 on
COCO; 10+10, 15+5, 19+1 on VOC. (ii)Three-Step scenarios:40+20+20 on COCO. (iii)Four-
Step scenarios:20+20+20+20 on COCO and VOCO; 5+5+5+5 on VOC. (iv)Five-Step sce-
nario:40+10+10+10+10 on COCO; 15+1+1+1+1+1 on VOC. We denote A(a-b) as the first-step
normal training for categories a-b, while +B(c-d) as incremental training for categories c-d. There-
fore, the scenario of COCO(40+20+20) contains three learning steps A(1-40),+B(50-60),+B(70-80).

Evaluation Metrics. (1) The standard COCO protocols (mAP) and VOC protocols (mAP@0.5)
are used to evaluate object detection performance. The mAP of joint learning and incremental
learning are denoted as mAPjoint and mAPincre. In order to evaluate the incremental learning
better, we use the following metrics. (2) AbsGap and RelGap(Menezes et al., 2022), defined as
Eq.11, respectively evaluate the absolute gap and relative gap between incremental learning and
joint learning at every step without cumulation. (3) Omega (Ω)(Hayes et al., 2018; Menezes et al.,
2022), defined as Eq.14(b), is used to evaluate the cumulative capability of multi-step incremental
learning step by step. Similar to COCO protocols, Ω can be extended as Ωall, Ω50, Ω75, ΩS , ΩM and
ΩL. (4) SDR and PDR (Menezes et al., 2022), defined in Eq.12 and Eq.13, refer to the stability
deficits rate on old categories and the plasticity deficits rate on new categories, respectively. (5)
SPDR, defined in Eq.14(a), refers to the total deficits rate of stability and plasticity.

(a)AbsGap = mAPjoint,t −mAPincre,t (b)RelGap =
mAPjoint,t −mAPincre,t

mAPjoint,t
(11)

SDR =
1

Nold

Nold∑
i=1

mAPjoint,i −mAPincre,i

mAPjoint,i
(12)

PDR =
1

Nnew

Nnew∑
i=Nold+1

mAPjoint,i −mAPincre,i

mAPjoint,i
(13)

(a)SPDR = SDR+ PDR (b)Ω =
1

T

T∑
t=1

mAPincre,t

mAPjoint,t
(14)

where T and t refers to the total learning steps and the tth learning step. i refers to the ith category.
mAPincre,t and mAPjoint,t refers to incremental and joint learning on the testing data of all learned
categories after the tth learning step. Nold and Nnew are the total number of old and new categories.

4.3 OVERALL PERFORMANCE

4.3.1 INCREMENTAL LEARNING ABILITY

Table1 reports the incremental learning results of Two-Step scenarios on COCO. Table2 reports
the incremental learning results of Four-Step scenario on VOC. Compared with previous works,
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including LwF (Li & Hoiem, 2018), ILOD (Shmelkov et al., 2017), CIFRCN (Hao et al., 2019),
RILOD (Li et al., 2019), SID (Peng et al., 2021) and the latest best method ERD (Feng et al., 2022),
our method achieves best performance under all these scenarios and all evaluation metrics. For the
Four-Step scenario of VOC(5+5+5+5), our method also shows obvious performance improvement.
For the most difficult scenario of Five-Step COCO(40+10+10+10+10) in Table3, our method shows
overwhelming advantages over ERD under final mAP (34.06% vs 20.70%), AbsGAP (6.15% vs
19.50%), RelGAP (15.28% vs 48.51%) and Ωall (0.933 vs 0.796). We further plot Ωall curves in
Fig.3 to highlight our advantages. AbsGap and RelGap reflect the knowledge distillation ability
at each current step. Ωall reflects the accumulated learning ability step by step, therefore reveals
accumulated knowledge forgetting. Obviously, our method exhibits superior long-range incremental
learning abilities. More results on COCO and VOC are shown in Appendix Tables 14 16 12. These
results fully demonstrate excellent incremental learning capacity of our methods.

Table 1: Incremental learning results under different Two-Step scenarios of COCO. mAP refers to
the final mAP of incremental learning. Upper refers to the mAP of normal learning on all classes.

Scenarios Method AbsGap↓ RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ ΩS ↑ ΩM ↑ ΩL ↑ mAP↑ Upper

40 classes
+ 40 classes

LwF 23.00 57.21% 0.714 0.718 0.713 0.670 0.709 0.733 17.20 40.20
RILOD 10.30 25.62% 0.872 0.886 0.867 0.841 0.874 0.888 29.90 40.20
SID 6.20 15.42% 0.923 0.941 0.916 0.897 0.935 0.930 34.00 40.20
ERD 3.30 8.21% 0.959 0.967 0.954 0.959 0.958 0.955 36.90 40.20
Ours 2.65 6.58% 0.967 0.966 0.961 0.954 0.980 0.965 37.57 40.21

50 classes
+ 30 classes

LwF 35.20 87.56% 0.562 0.581 0.553 0.608 0.576 0.555 5.00 40.20
RILOD 11.70 29.10% 0.854 0.870 0.846 0.832 0.858 0.864 28.50 40.20
SID 6.40 15.92% 0.920 0.937 0.914 0.879 0.932 0.932 33.80 40.20
ERD 3.60 8.96% 0.955 0.963 0.946 0.918 0.958 0.960 36.60 40.20
Ours 1.50 3.74% 0.981 0.971 0.980 0.974 0.992 0.972 38.71 40.21

60 classes
+ 20 classes

LwF 34.40 85.57% 0.572 0.593 0.561 0.586 0.596 0.574 5.80 40.20
RILOD 14.80 36.82% 0.816 0.833 0.807 0.800 0.829 0.823 25.40 40.20
SID 7.50 18.66% 0.907 0.927 0.897 0.871 0.926 0.917 32.70 40.20
ERD 4.40 10.95% 0.945 0.954 0.940 0.944 0.947 0.945 35.80 40.20
Ours 1.87 4.64% 0.977 0.969 0.975 0.960 0.990 0.973 38.34 40.21

70 classes
+ 10 classes

LwF 33.10 82.34% 0.588 0.606 0.580 0.603 0.608 0.596 7.10 40.20
RILOD 15.70 39.05% 0.805 0.825 0.795 0.806 0.811 0.821 24.50 40.20
SID 7.40 18.41% 0.908 0.920 0.901 0.869 0.918 0.926 32.80 40.20
ERD 5.30 13.18% 0.934 0.945 0.929 0.903 0.940 0.936 34.90 40.20
Ours 2.98 7.41% 0.963 0.961 0.958 0.945 0.975 0.944 37.23 40.21

Figure 2: The training loss of old and new tasks
at γ = 0.8 and TRD for Table8 respectively.

Figure 3: The Ωall performance on multi-step in-
cremental learning on MS COCO.
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Table 2: Incremental learning results on the Four-Step scenario of VOC(5+5+5+5).

Method mAP Final mAP↑ AbsGap↓ RelGap↓ Ω50 ↑ UpperA (1-5) +B(6-10) +B(11-15) +B(16-20)
CF 1.25 2.34 3.12 36.32 11.31 43.94 61.37% 0.636 70.64
SID 27.26 40.10 43.02 34.44 36.21 35.40 49.43% 0.736 71.60
ILOD 29.55 43.47 46.65 37.34 39.25 30.55 43.76% 0.755 69.80
CIFRCN 34.60 44.10 55.60 59.60 48.48 22.04 31.25% 0.797 70.51
ERD 41.25 57.38 63.57 53.12 53.83 16.77 23.55% 0.902 70.60
Ours 38.04 61.14 69.03 53.96 55.54 15.10 21.37% 0.920 70.64

Table 3: Incremental learning results on the Five-Step scenario of COCO(40+10+10+10+10).

A(1-40)

Method +B(40-50) +B(50-60)
mAP↑ AbsGap↓ RelGap↓ Ωall ↑ Upper mAP↑ AbsGap↓ RelGap↓ Ωall ↑ Upper

CF 5.80 32.20 84.74% 0.576 38.00 5.70 34.10 85.68% 0.432 39.80
RILOD 25.40 12.60 33.16% 0.834 38.00 11.20 28.60 71.86% 0.650 39.80
SID 34.60 3.40 8.95% 0.955 38.00 24.10 15.70 39.45% 0.839 39.80
ERD 36.40 1.60 4.21% 0.979 38.00 30.80 9.00 22.61% 0.911 39.80
Ours 39.16 0.16 0.41% 0.998 39.32 35.97 2.72 7.03% 0.975 38.69

Method +B(60-70) +B(70-80)
mAP↑ AbsGap↓ RelGap↓ Ωall ↑ Upper mAP↑ AbsGap↓ RelGap↓ Ωall ↑ Upper

CF 6.30 29.40 82.35% 0.368 35.70 3.30 36.90 91.79% 0.311 40.20
RILOD 10.50 25.20 70.59% 0.561 35.70 8.40 31.80 79.10% 0.491 40.20
SID 14.60 21.10 59.10% 0.731 35.70 12.60 27.60 68.66% 0.648 40.20
ERD 26.20 9.50 26.61% 0.866 35.70 20.70 19.50 48.51% 0.796 40.20
Ours 34.22 4.08 10.65% 0.955 38.30 34.06 6.15 15.28% 0.933 40.21

4.3.2 COMPARED WITH OWOD METHODS

Within the OWOD paradigm, at each learning step, a model learns to detect a given set of known ob-
jects while simultaneously being capable of identifying unknown objects. These flagged unknowns
can be labeled by human annotators as newly added classes for the next step learning. Given the data
of these new classes, the model would continue updating its knowledge in an incremental fashion
without retraining from scratch on the previously known classes. The difference between OWOD
and IOD is that the former need to locate unknown objects by model itself at each step, while
the latter treats all unknown objects as background until the next learning step. We compare our
method with current three OWOD methods, including(Joseph et al., 2021a), SemTopology(Yang
et al., 2021b) and OW-DETR(Gupta et al., 2022). The results are shown in Table4. Our method
performs better than current OWOD methods under the metrics of mAP , AbsGap, RelGap, Ωall.

4.3.3 BALANCE LEARNING ABILITY

The stability of old knowledge and plasticity of new knowledge are usually considered as two strug-
gle aspects for incremental learning(Menezes et al., 2022). The metrics of SDR, PDR and SPDR
measure the deficits rate of stability, the deficits rate of plasticity and their combination. The lower
the deficits rate, the better the stability and plasticity. SPDR reflects the struggle between these
two aspects. Table5 and Appendix Table14 report the balance learning results on COCO and VOC,
respectively. These results reveal that our method make a better trade-off between stability and plas-
ticity to achieve an optimal comprehensive performance. Meanwhile, although different methods
shows different stability (SDR) and plasticity (PDR), the final incremental learning performance
(mAP , RelGap, Ω) under these scenarios shows a clear positive correlation with the SPDR.

5 ABLATION STUDY

The Performance of HKR and TRD under Two-Step Scenario. Table6 shows the results of ab-
lation experiments. The two baseline methods, denoted as Onehot and Soft, use one-hot predictions
and soft predictions (logits) as teacher knowledge respectively. Then we add Hybrid Knowledge
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Table 4: Incremental learning results on the Four-Step scenario of VOCO(20+20+20+20).

mAPMethod A(1-20) +B(20-40) +B(40-60) +B(60-80) mAP↑ AbsGap↓ RelGap↓ Ωall ↑ Upper

56.34 56.34 0.00 0.00% 1 56.34
52.37 25.58 38.98 11.13 22.21% 0.889 50.11

37.77 12.41 29.32 15.91 35.18% 0.809 45.23ORE

30.01 13.44 26.66 16.23 37.84% 0.762 42.89
56.34 56.34 0.00 0.00% 1 56.34
53.39 26.49 39.94 10.17 20.30% 0.899 50.11

38.04 12.81 29.63 15.60 34.49% 0.817 45.23SemTopology

30.11 13.31 25.91 16.98 39.59% 0.764 42.89
56.34 56.34 0.00 0.00% 1 56.34
53.55 33.45 42.92 7.19 14.35% 0.928 50.11

38.25 15.82 30.77 14.46 31.97% 0.846 45.23OW-DETR

31.38 17.14 27.82 15.07 35.14% 0.796 42.89
53.90 53.90 0.00 0.00% 1 53.90
44.51 37.87 41.19 6.62 13.85% 0.931 47.81

34.72 31.86 33.77 9.72 22.36% 0.879 43.49Ours

32.35 24.00 30.26 10.91 26.49% 0.843 41.17

Table 5: Stability deficits rate(SDR), plasticity deficits rate(PDR) and their total deficits rate (SPDR),
which reflect the balance learning ability between old knowledge and new knowledge.

Scenarios Method SPDR↓ SDR↓ PDR↓ Incremental mAP Joint mAP
Total↑ Old New Total Old New

ERD 16.66 8.37 8.29 36.90 41.60 32.10 40.20 45.40 35.0040 classes
+ 40 classes Ours 12.76 9.28 3.48 37.57 36.27 38.86 40.21 39.98 40.26

ERD 17.04 9.74 7.30 36.60 38.00 34.30 40.20 42.10 37.0050 classes
+ 30 classes Ours 3.49 7.97 -4.48 38.71 37.07 41.44 40.21 40.28 39.66

ERD 16.57 13.69 2.88 35.80 35.30 37.10 40.20 40.90 38.2060 classes
+ 20 classes Ours 4.46 7.51 -3.05 38.34 37.17 41.86 40.21 40.19 40.62

ERD 19.45 14.18 5.26 34.90 35.70 28.80 40.20 41.60 30.4070 classes
+ 10 classes Ours 7.22 9.09 -1.87 37.23 36.25 44.07 40.21 39.88 43.26

Representation (HKR) module and Task Regularized Distillation (TRD) module to the Soft baseline
respectively, whose results are denoted as Soft+HKR and Soft+TRD. Finally, we add both HKR
and TRD to the Soft baseline simultaneously, whose results are denoted as Soft+HKR+TRD. The
results under two scenarios all show that soft knowledge is better than hard knowledge, but both are
inferior to hybrid knowledge. Compared with the baseline, Soft+TRD shows higher performance
improvement than Soft+HKR. This demonstrates that, as two independent components, both HKR
and TRD have their own effects. Meanwhile, the results of ‘Soft+HKR+TRD’ get further significant
improvement, demonstrating that HKR and TRD have good additivity and compatibility.

The Performance of HKR and TRD under Multi-Step Scenario. We make additional ablation
studies under Three-Step scenario of COCO(40+20+20). The results shown in Table7 demonstrate
the effectiveness of HKR and TRD clearly. It reflects that HKR can effectively take the advantages of
both soft knowledge and hard knowledge in adaptive manner. TRD can further improve performance
by re-balancing the old and new tasks during multi-steps incremental learning.

The Analysis of Task Balance During Incremental Learning. We make experiments by chang-
ing the task balancing factor (γ in Eq.6). The results are shown in Table8, Where the optimal and
suboptimal values are represented by bold and underlined digits, respectively. On one hand, when
γ changes from 0.2 to 3.0, the mAP of ‘Old 70 Classes’, ‘New 10 Classes’ and ‘Final 80 classes’
shows noticeable changes. TRD method gets best performance under all other metrics at a small cost
of mAP on ‘New 10 Classes’. This fully demonstrate that task balance factor (γ) has a significant
influence on incremental learning by controlling knowledge transfer from teacher to student. Espe-
cially, compared with different γ values, TRD method gets the highest mAP for ‘Old 70 Classes’,
indicating that TRD relieves knowledge forgetting to the greatest extent. On the other hand, TRD

8
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Table 6: Incremental learning results under Two-Step scenarios for ablation study. We equip
YOLOX with two knowledge selection methods (Onehot and Soft) as our baselines.

Scenarios 60 classes + 20 classes 70 classes + 10 classes
Methods AbsGap ↓ RelGap ↓ Ωall ↑ Ω50 ↑ Ω75 ↑ AbsGap ↓ RelGap ↓ Ωall ↑ Ω50 ↑ Ω75 ↑
Onehot 3.86 11.27% 0.944 0.948 0.939 4.91 14.33% 0.928 0.937 0.926
Soft 3.29 9.60% 0.952 0.951 0.954 4.49 13.10% 0.935 0.939 0.933
Soft+HKR 3.10 9.04% 0.955 0.951 0.958 4.19 12.22% 0.939 0.942 0.941
Soft+TRD 2.95 8.62% 0.957 0.954 0.958 4.06 11.83% 0.941 0.943 0.944
Soft+HKR+TRD 2.49 7.26% 0.964 0.958 0.969 3.14 9.16% 0.954 0.953 0.956

Table 7: Ablation results under Three-Step scenario of COCO(40+20+20).

Scenarios A(1-40)
+B(50-60) +B(70-80)

Methods AbsGap↓ RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ AbsGap↓ RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑
Onehot 2.04 6.05% 0.970 0.972 0.969 3.83 11.16% 0.943 0.945 0.942
Soft 1.81 5.38% 0.973 0.971 0.975 3.39 9.91% 0.949 0.945 0.949
Soft+HKR 1.62 4.81% 0.976 0.970 0.982 3.08 8.97% 0.954 0.948 0.958
Soft+HKR+TRD 0.78 2.32% 0.988 0.980 0.997 1.60 4.68% 0.976 0.966 0.979

shows much more balancing ability between old and new tasks with the minimum RSPD. We plot
the training losses of old and new tasks at γ = 0.8 and TRD in Fig.2. We can see that the loss new
is always larger than loss old at γ = 0.8 during the entire incremental learning, which is more con-
ducive to learning new tasks. While loss new∗ and loss old∗ are always equal to each other, and
the loss diff∗ quickly approaching zero. Obviously, TRD effectively balance knowledge transfer
to get the best comprehensive result by introducing task-based regularization.

Table 8: Incremental learning results on Two-Step scenario for ablation study. Hyper parameter γ is
the task balance factor (seen in Eq.6). TRD is task regularized distillation method (seen in Eq.10)

.
Methods mAP ↑

Ωall ↑ Ω50 ↑ Ω75 ↑ RSPD ↓Old 70 Classes New 10 Classes Final 80 Classes
γ = 0.2 27.00 37.41 28.30 0.913 0.926 0.910 20.18
γ = 0.5 28.41 37.70 29.57 0.932 0.937 0.931 15.23
γ = 0.6 28.37 38.02 29.58 0.932 0.936 0.929 14.47
γ = 0.7 28.58 37.69 29.72 0.934 0.939 0.932 14.76
γ = 0.8 28.92 37.48 29.99 0.938 0.939 0.936 14.30
γ = 0.9 28.59 37.53 29.71 0.934 0.936 0.933 15.14
γ = 1.0 28.72 37.14 29.78 0.935 0.939 0.933 15.79
γ = 1.5 28.61 36.96 29.66 0.933 0.936 0.929 16.60
γ = 2.0 28.37 36.04 29.33 0.928 0.931 0.929 19.78
γ = 3.0 27.11 35.14 28.12 0.910 0.917 0.907 25.90
TRD 29.24 36.97 30.21 0.941 0.943 0.944 13.71

6 CONCLUSION

In order to improve the performance of incremental object detection, we propose a knowledge dis-
tillation method that combines knowledge selection and transfer strategy effectively. For the first
strategy, hard knowledge and soft knowledge are adaptively combined to construct a kind of hy-
brid knowledge representation to use teacher knowledge effectively. For the second strategy, loss
difference are combined to construct task regularized distillation loss to enhance task balance learn-
ing. Extensive experiments under different scenarios validate the effectiveness of our method. Most
existing methods mix feature, response and relation distillation in a complex framework to relieve
catastrophic forgetting. We demonstrate that catastrophic forgetting can be significantly alleviated
by reducing knowledge fuzziness of teacher and suppressing imbalance learning between old and
new tasks.More experiments and analyses are provided in Appendix A.
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A APPENDIX

A.1 MORE DETAILS OF IMPLEMENTATION AND EXPERIMENTS

Our experiments are implemented based on YOLOX detector (Ge et al., 2021). YOLOX is a typical
one-stage anchor-free detector among famous and widely used YOLO series, which can contribute
to the typical verification of our method. The official YOLOX provided in MMDetection 2 adopts
a training schedule of 300 epochs from scratch with CSPDarkNet as its backbone. In order to
boost its performance, official YOLOX adopts a large input image size of 1333 × 800 and a very
strong data augmentation strategy, including Mosaic, MixUP, Photo Metric Distortion, EMA, Ran-
dom Affine and so on. For economical training and stable reproducibility, we use a small input
image size of 640x640 and drop these data augmentation tricks to reduce the randomness of in-
cremental learning. To enhance model performance, we use the pre-trained PVT2-b2(Wang et al.,
2021b) and ResNet50(He et al., 2016) as our backbones on MS COCO and Pascal VOC, respectively.
YOLOX has multiple versions with different parameter quantities, named as YOLOX-L, YOLOX-
M, YOLOX-S and so on. In order to ensure similar baseline performance with other methods under
joint learning, we use YOLOX-L and YOLOX-M for MS COCO and Pascal VOC, respectively.

2seen YOLOX in https://github.com/open-mmlab/mmdetection
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A.2 ALGORITHM AND THEORETICAL ANALYSIS

Hybrid Knowledge Representation. Teacher outputs soft logits and one-hot labels as its predic-
tions. Soft logits contains more information about between-class confidences and is regarded as a
kind of soft knowledge (Hinton et al., 2015). Knowledge distillation methods are developed pros-
perously under this background in image classification and object detection tasks. However, there
are significant difference between the two tasks. For image classification, since an input image con-
tains only one instance, the image knowledge is just the knowledge of its instance. However, for
object detection, an input image always contains several instances, the image knowledge is a col-
lection of the knowledge of all instances on it. In other words, image-level knowledge should be
the combination of instance-level knowledge, thus the combination mode is very important. Soft
logits and one-hot labels provide two kinds of instance-level knowledge, soft knowledge and hard
knowledge respectively. Soft knowledge contains confidence relations among categories, but brings
knowledge fuzziness inevitably. While, hard knowledge has completely opposite effects. By com-
bining their advantages, we construct an image-level hybrid knowledge representation, abbreviated
as HKR. The ablation studies in Table6 and Table 7 demonstrate its good performance. Algorithm.1
provides more details about HKR method.

Algorithm 1 Algorithm of Hybrid Knowledge Representation
Input: BatchImgs: a batch of images from new task, batch size N , teacher detector θT

Output: Hybrid: the hybrid predictions of teacher outputs

1: Inference BatchImgs with θT yields two kinds of predictions for the old categories, soft logits
SoftPredTold and one-hot labels OnehotPredTold.

2:
3: // Calculating the confidence difference (abbreviate as ConfDiff) for each image.
4: Create ConfDiff

5: for i, img in BatchImgs do
6: Compute Conf i

first max = max(SoftPredTold,i)

7: Compute Conf i
second max = sorted(SoftPredTold,i, descending = True)[1]

8: Compute ConfDiff i = Conf i
first max − Conf i

second max

9: ConfDiff.append(ConfDiff i)

10: end for
11:
12: // Calculating binary vector quality and final hybrid prediction Hybrid.
13: Compute quality = ConfDiff > 1

N

∑N
i ConfDiffi

14: Compute Hybrid = quality ·OnehotPredTold + (1− quality) · SoftPredTold

Figure 4: The illustration of HKR method. The image is inferenced by a teacher detector trained on
the first 60 classes of MS COCO. Conf1 and Conf2 respectively refer to the first and second maxi-
mum confidences. ConfDiff is their conference difference. Red and green boxes will be regarded as
hard knwoledge and soft knowledge, respectively.
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Task Regularized Distillation. Regularization method is very import for statistical machine learn-
ing, which can prevent model from over-fitting to some part of data. Classical regularization methods
introduce a weight constraint in terms of p-Norm as model penalties. Other regularization methods
include early termination of training and soft weight sharing (Nowlan & Hinton, 1992). Dropout
works by dropping some connections randomly to prevent over-fitting of deep neural networks (Sri-
vastava et al., 2014). In incremental learning, model needs to be trained task by task in the continu-
ous data flow, therefore bring task-based imbalance learning and leading to catastrophic knowledge
forgetting of old task. A few previous works propose regularization-based methods on incremental
image classification (Kirkpatrick et al., 2017; Li & Hoiem, 2018). We give a solution by proposing
task-based regularized distillation loss Eq.10 for IOD tasks. It explicitly uses the loss difference
between old and new tasks as a model penalty to constraint optimization process. Just like Fig.2
shows, throughout the entire incremental learning, the losses of new task and old task are equiva-
lent (loss new∗ TRD == loss old∗ TRD, their curves coincide with each other). Table6, Table8,
Table10 and Fig.5 all show its strong effectiveness to prevent incremental model from over-fitting
to old and new task. Table5 and Fig.6 show that our method makes a better trade-off between the
stability of old knowledge and the plasticity of new knowledge on both MS COCO and Pascal VOC.
Its algorithm can be seen in Algorithm.2.

Algorithm 2 Algorithm of Task Regularized Distillation
Input: Image I , teacher detector θT , student detector θS , GtLabelsnew and GtBBoxesnew of
current new task. α=1, β=5 for YOLOX. The default value of η is 1.
Output: the detection loss of Loss∗total for student detector.

1:
2: // Calculating the detection loss Lossnew of student detector on new task.
3: // Calculating Lossnewcls and Lossnewloc by classification loss function and location loss function

of the original base detector, respectively.
4: Inference I with θS yields the logits predictions SoftPrednew and bounding-box predictions

BBoxPrednew for new categories of the current task.
5: Compute Lossnewcls = CrossEntropyLoss(GtLabelsnew, SoftPrednew)

6: Compute Lossnewloc = IoULoss(GtBBoxesnew, BBoxPrednew)

7: Compute Lossnew = α · Lossnewcls + β · Lossnewloc

8:
9: // Calculating the detection loss Lossold of student detector on old task.

10: // Calculating Lossoldcls and Lossoldloc by classification loss function and location loss function of
the original base detector, respectively.

11: Inference I with θS yields the logits predictions SoftPredSold and bounding-box predictions
BBoxPredSold for old categories of previously learned task.

12: Inference I with θT yields the logits predictions SoftPredTold and bounding-box predictions
BBoxPredTold for old categories of previously learned task.

13: Compute Lossoldcls = CrossEntropyLoss(SoftPredTold, SoftPredSold)

14: Compute Lossoldloc = IoULoss(BBoxPredTold, BBoxPredSold)

15: Compute Lossold = α · Lossoldcls + β · Lossoldloc

16:
17: // Calculating the detection loss Loss∗total of student detector on old and new task.
18: // [] refers the detach operation of PyTorch, which can separate a variable from the current

computed graph to remove the gradient back-propagation of that part.
19: compute Loss∗old = [ 2·Lossnew

Lossold+Lossnew
] · Lossold

20: compute Loss∗new = [ 2·Lossold
Lossold+Lossnew

] · Lossnew
21: compute Loss∗diff = (Lossold − Lossnew)

2

22: compute Loss∗total = Loss∗new + Loss∗old + η · Loss∗diff
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Here we give an theoretical analysis for our TRD method. We use the definition of Loss∗old in Eq.7,
Loss∗new in Eq.7, Losstotal in Eq.6, Loss∗total and Loss∗diff in Eq.9. The γ in Losstotal is set as
default value of 1. Considering the difference between Losstotal and Loss∗total, we can have the
following deductions.

Firstly, considering a single forward propagation

(Lossold + Lossnew)− (Loss∗old + Loss∗new) = Lossold + Lossnew

− [
2 · Lossnew

Lossold + Lossnew
] · Lossold

− [
2 · Lossold

Lossold + Lossnew
] · Lossnew

= (Lossold + Lossnew)−
4 · Lossold · Lossnew
Lossold + Lossnew

=
Loss2old + Loss2new − 2 · Lossold · Lossnew

Lossold + Lossnew

=
(Lossold − Lossnew)

2

Lossold + Lossnew

Because of Lossold > 0 and Lossnew > 0 at most of the time, there exists

Lossold + Lossnew ≥ Loss∗old + Loss∗new (15)

if and only if Lossold == Lossnew, the equal sign established.

For student detector, the traditional Losstotal and our Loss∗total are defined as following

Losstotal = Lossnew + Lossold

Loss∗total = Loss∗new + Loss∗old + η · Loss∗diff

Then we have

Loss∗total − Losstotal = η · (Lossold − Lossnew)
2 − (Lossold − Lossnew)

2

Lossold + Lossnew
(16)

When gradient back-propagation gradually reduce the Loss∗total, the additional item Loss∗diff with
a default coefficient of η = 1 will reach down to zero. In other words, Lossold will be gradually
equal to Lossnew. Then the Loss∗total will be gradually reach up to Losstotal. Obviously, if there
is no item of Loss∗diff , then Loss∗total will always be smaller than Losstotal, which easily leads to
insufficient training and under-fitting. Therefore, with the help of Loss∗diff , TRD method can realize
sufficient training on both old and new tasks. With the help of Loss∗new=Loss∗old, TRD method can
affect optimization process and thereby contributing to prevent detector from over-fitting to any task.

The experiments in Fig.2 effectively support the above theoretical analysis. During the entire in-
cremental training, Lossnew is always greater than Lossold. For the object function Losstotal, it
means that the new data brings in a significant and persistent impact on student detector, implying
that detector trends to over-fitting on new task and occurs knowledge forgetting of old task. While
for TRD object function Loss∗total, Loss

∗
diff gradually and quickly reduced to a very small value

(seen the yellow solid line in Fig.2). The imbalance impact from new data will be under control,
thus effectively alleviating the over-fitting of new task and the catastrophic forgetting of old task
during incremental training.

A.3 COMPARED WITH KL DIVERGENCE LOSS

Kullback-Leibler Divergence loss (denoted as KLD loss) is used for knowledge distillation of image
classification (Hinton et al., 2015). YOLOX (Ge et al., 2021) uses cross entropy loss (denoted
as CE loss) for its classification head. Table9 shows the comparison results of this two losses on
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incremental object detection. The experiments adopt the same loss weight setting with α = 1 and
β = 5 (seen in Eq.4 and Eq.5) for the two losses. T is temperature factor, a hyper parameter of KLD
loss. When the temperature T changes from 1 to 5, ilYOLOX gets its best performance (marked by
brown color) under the medium temperature of 3. However, CE loss has a much better performance
than KLD loss (marked by underline). Our TRD loss exceeds both KLD and CE loss. The use of
KLD loss usually requires careful adjustment of temperature factor T and loss weight α. However,
the change of α in Lossold will destroy the loss consistency about classification and location between
old task (Lossold, Eq.4) and new task (Lossnew, Eq.5), which will influence task balance during
incremental learning. Based on this consideration and the experiment results in Table9, we use cross
entropy loss as our fundamental knowledge transfer strategy.

Table 9: The comparison with KL Divergence Loss

Scenarios 70 classes + 10 classes

Methods
mAP ↑

AbsGap ↓ RelGap ↓ Ωall ↑
Old 70 Classes New 10 Classes Final

KLD T=1 25.55 35.19 26.75 7.51 21.92% 0.890
KLD T=2 26.36 35.87 27.55 6.71 19.59% 0.902
KLD T=3 26.86 36.29 28.04 6.22 18.16% 0.909
KLD T=4 26.84 35.96 27.98 6.29 18.35% 0.908
KLD T=5 26.49 35.50 27.62 6.65 19.41% 0.903
CE Loss 28.72 37.14 29.78 4.49 13.10% 0.935

TRD Loss 29.24 36.97 30.02 4.24 12.38% 0.938

A.4 CATASTROPHIC FORGETTING CAUSED BY IMBALANCED LEARNING

In order to further analyses the influence of task balance, we conduct experiments on a small dataset.
The dataset consists of 3800 images, 9 classes (commonly seen toys including car, truck, train, per-
son and so on) and have 400 ∼ 500 instances for every class with a relative balanced category
distribution. We build a Two-Step scenario of 5 classes + 4 classes as our incremental object de-
tection benchmark. The experiment results are illustrated in Fig.5 and Table10. Fig.5 shows that
even a very small change of the task balance factor γ (defined in Eq.6) from 1 to 0.9 can lead to
dramatically descending of the mAP of old task (blue dotted curve). It fully demonstrates that the
loss imbalance between old and new tasks can bring significant catastrophic forgetting during in-
cremental leaning. In Table10, when γ is adjusted from 1.3 to 0.7, the mAP of old task (‘Old 5
Classes’) drops from 53.58% to 5.16%. Among all manually set gamma values, γ = 1.0 achieved
good balance and performance. However, it is significant inferior to our TRD and TRD+HKR meth-
ods. This supplementary experiment further demonstrates the importance of balancing old and new
tasks for IOD and the effectiveness of our methods.

Table 10: Task balance experiment on a small dataset

Scenarios 5 classes + 4 classes

Methods
mAP↑

AbsGap↓ RelGap↓ Ωall ↑
Old 5 Classes New 4 Classes Final

γ = 0.7 5.16 58.73 28.97 32.31 52.73% 0.736
γ = 0.9 5.10 59.20 29.14 32.14 52.44% 0.738
γ = 1.0 54.24 60.18 56.88 4.40 7.18% 0.964
γ = 1.1 54.34 59.98 56.84 4.44 7.25% 0.964
γ = 1.3 53.58 59.05 56.01 5.27 8.60% 0.957

TRD 54.46 64.18 58.78 2.50 4.08% 0.980
TRD+HKR 54.66 64.63 59.09 2.19 3.58% 0.982
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Figure 5: The catastrophic forgetting caused by imbalance learning of old and new tasks.

A.5 GENERALITY STUDIES ON OTHER DETECTORS

Most methods that rely on feature distillation require adaptation to the feature layers of the original
detector. This limits their generality to some extent. Benefit from its isolated design, our method
has good generality. Our method includes two modules, HKR and TRD, which does not rely on the
network architecture of original detectors. HKR mixes soft and hard knowledge by analyzing the
confidence of teacher’s outputs, thereby enhancing knowledge selection. TRD balances the losses
between new and old tasks, preventing the model from overfitting one of them, thereby enhancing
knowledge transfer. During entire incremental learning, HKR and TRD only rely on the outputs and
losses, therefore they does not require much invasive adaptation to the original detector.

To validate the generality of our method, we perform experiments on a Transformer detector
AdaMixer(Gao et al., 2022). For AdaMixer, we only need to replace Cross-Entropy loss with Focal
lossLin et al. (2017) as classification loss (Losscls in Eq.4 and Eq.5), and replace the IOU loss with
GIoU Loss as location loss (Lossloc in Eq.4 and Eq.5). Meanwhile, let the balance factors of α and
β be the same with the official AdaMixer implementation3. Other settings are consistent with sec-
tion 4.1. We only need to adjust our method slightly for adapting the outputs and losses of different
detectors. Results in Table11 shows that our method still brings stable gain compared with previous
best method ERD(Feng et al., 2022), which indicates its good generalization ability.

Table 11: Incremental learning results under different Two-Step scenarios of COCO.

Scenarios Method AbsGap↓ RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ ΩS ↑ ΩM ↑ ΩL ↑

40 classes
+ 40 classes

ERD 3.30 8.21% 0.959 0.967 0.954 0.959 0.958 0.955

Ours(AdaMixer) 2.55 6.76% 0.963 0.969 0.958 0.955 0.968 0.966

50 classes
+ 30 classes

ERD 3.60 8.96% 0.955 0.963 0.946 0.918 0.958 0.960

Ours(AdaMixer) 2.45 6.12% 0.962 0.968 0.959 0.932 0.966 0.970

60 classes
+ 20 classes

ERD 4.40 10.95% 0.945 0.954 0.940 0.944 0.947 0.945

Ours(AdaMixer) 3.41 8.92% 0.952 0.963 0.944 0.950 0.956 0.950

70 classes
+ 10 classes

ERD 5.30 13.18% 0.934 0.945 0.929 0.903 0.940 0.936
Ours(AdaMixer) 2.98 7.41% 0.963 0.961 0.958 0.945 0.975 0.944

A.6 MORE EXPERIMENTS ON MS COCO

We conduct additional experiments on MS COCO(Everingham et al., 2010) to demonstrate the ef-
fectiveness of our method. Table 12 and Table 13 respectively report the incremental learning results
on COCO(40+20+20) and COCO(20+20+20+20). Table12 shows that our method get a very signif-
icant gain compared with ERD. The gains of mAP, AbsGap, RelGap and Ωall are 5.59%, -5.57%,

3https://github.com/open-mmlab/mmdetection/tree/master/configs/adamixer
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Table 12: Incremental learning results under Three-Step scenario of COCO(40+20+20).

A(1-40)

+B(40-60) +B(60-80)
mAP AbsGap↓ RelGap↓ Ωall ↑ Upper mAP AbsGap↓ RelGap↓ Ωall ↑ Upper

CF 10.70 29.10 73.38% 0.634 39.80 9.40 30.80 76.62% 0.501 40.20
RILOD 27.80 12.00 30.85% 0.849 39.80 15.80 24.40 60.70% 0.697 40.20
SID 34.00 5.80 15.42% 0.927 39.80 23.80 16.40 40.80% 0.815 40.20
ERD 36.70 3.10 7.79% 0.961 39.80 32.40 7.80 19.40% 0.909 40.20
Ours 38.28 0.41 1.05% 0.995 38.69 37.99 2.23 5.53% 0.978 40.21

-13.87%, and 0.0773. Table13 shows that although our method lags behind at the leaning step of
+B(20-40), it quickly leads at the leaning step of +B(40-60) and significantly expands its lead at the
learning step of +B(60-80). We list the improvements at the last learning step of +B(60-80) to show
our strengths. It demonstrates that our method has better long-range incremental learning ability.

Table 13: Incremental learning results under the Four-Step scenario of COCO(20+20+20+20).

mAP
Method

A (1-20) +B(20-40) +B(40-60) +B(60-80)
mAP↑ AbsGap↓ RelGap↓ Ωall ↑ Upper

ERD

34.58 34.58 0.00 0.00% 1 34.58
30.55 41.23 35.89 5.71 13.73% 0.931 41.60
27.07 37.52 35.53 33.37 6.43 16.16% 0.900 39.80
22.33 32.10 29.41 35.60 29.86 10.34 25.72% 0.861 40.20

Ours

34.30 34.30 0.00 0.00% 1 34.30
31.50 42.29 36.89 2.29 5.84% 0.971 39.18
30.60 39.89 36.60 34.54 4.16 10.74% 0.945 38.69
29.68 39.93 35.58 38.05 35.81 4.41 10.95% 0.931 40.21

A.7 MORE EXPERIMENTS ON PASCAL VOC

Dataset and Benchmarks. We conduct experiments on Pascal VOC(Everingham et al., 2010) to
demonstrate the effectiveness of our method. The total training set of VOC2007 and VOC2012 con-
tains 16551 images and 47223 instances. The test set of VOC2007 contains 4952 images and 14976
instances. By combining VOC2007 and VOC2012, we build different incremental learning scenar-
ios based on the total training set and test set, including VOC(10+10), VOC(15+5), VOC(19+1),
VOC(5+5+5+5), VOC(15+1+1+1+1+1). Other details are the same as section.4.2.

Incremental Learning Ability. We compare our method with most of the previous methods on
the Two-Step VOC scenarios, which are shown in Tabel.14 and Table 17. These methods cover a
variety of technical routes, including knowledge distillation, parameter isolation, examplar-replay,
pseudo-labels and meta-learning. The results in Table14 show that our method gets the best perfor-
mance under the scenarios of VOC(10+10), as well as competitive performance under the scenario
of VCO(15+5) and VOC(19+1). The AbsGap, RelGap, Ω50 and SPDR all get ideal and consis-
tent results. Meanwhile, the final mAP (denoted as Total Incremental mAP) also gets very good
values under these scenarios. Table15 shows the incremental learning results on the Four-Step sce-
nario of VOC(5+5+5+5). Table16 shows the incremental learning results on the Six-Step scenario
of VOC(15+1+1+1+1+1). Compared with other methods, our method gets better performance at
each learning step, demonstrating its better learning ability on long task sequences.

Balancing Learning Ability. Considering the stability of old knowledge and the plasticity of new
knowledge, we plot the relation curves among SDR, PDR, SPDR and RelGap in Fig.6 to make
the intuitive observation. In numerical terms, SPDR = SDR + PDR, seen in Eq.14(a).

In both Fig.6(a) and Fig.6(b), the incremental learning performance (RelGap) reflects positive cor-
relation with SPDR. However there are notable differences between Fig.6(a) and Fig.6(b). On one
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(a) Stability and Plasticity on VOC(10+10) (b) Stability and Plasticity on VOC(15+5)

Figure 6: Incremental learning performance (RelGap) on VOC benchmarks, the stability deficits
rate (SDR) of old knowledge, the plasticity deficits rate (PDR) of new knowledge and their total
deficits rate (SPDR). (a) results on VOC(10+10). (b) results on VOC(15+5).

hand, some previous methods have contrary performance of stability and plasticity on VOC(10+10).
They sacrifice one in exchange for the promotion of the other. For example, OWOD methods (ORE,
SemTopology, OW-DETR) obtain better plasticity at the cost of stability, while ILOD-based meth-
ods (ILOD, Faster ILOD and Meta-ILOD) do the opposite. Other methods (RILOD, DMC, MVCD,
IncDet and Ours) make a better trade-off between stability and plasticity, and our method do best.
On the other hand, all methods show consistent phenomenon on VOC(15+5), in which stability far
exceeds plasticity. In the scenario of VOC(15+5), old knowledge and new knowledge respectively
contains 15 and 5 categories, therefore sacrificing the latter has less impact on final performance.

Obviously, these remarkable results once again reveal that the balance between stability of old
knowledge and plasticity of new knowledge is crucial to incremental learning. The total deficits
rate of stability and plasticity (SPDR) reflects a strong correlation with the final incremental learn-
ing performance. Compared with most of these methods in Table17, our method performs better on
both SDR and PDR, therefore leading to better comprehensive performance on SPDR as well as
the best final incremental performance.
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Table 14: Incremental learning results under Two-Step scenarios of VOC(10+10), VOC(15+5) and
VOC(19+1). The Incremental mAP of Total, Old and New respectively refers to the evaluation
performance on total, old and new classes after the 2th learning step. Similarly, the Joint mAP of
Total, Old and New respectively refers to the evaluation performance on total, old and new classes
after once normal learning. Joint mAP can be seen as the Upper Bound mAP of incremental learning.
The bold numbers and underlined numbers respectively refer to the best and second best values.
Sec. is the abbreviation for Scenarios. The compared methods and their reference information can
be found in Table 17

Sce. Method AbsGap↓ RelGap↓ Ω50 ↑ SPDR↓ SDR↓ PDR↓
Incremental mAP Joint mAP

Total↑ Old New Total Old New

10

+

10

SID 11.80 16.48% 0.918 32.97 12.18 20.78 59.80 62.70 56.80 71.60 71.40 71.70

ILOD 9.38 13.30% 0.934 26.67 4.91 21.75 61.14 67.34 54.93 70.51 70.82 70.20

Faster ILOD 8.35 11.84% 0.941 23.90 1.50 22.41 62.16 69.76 54.47 70.51 70.82 70.20

Meta-ILOD 8.88 11.81% 0.941 23.58 8.51 15.07 66.31 68.36 64.26 75.19 74.72 75.66

MMA 8.60 11.44% 0.943 22.82 7.23 15.59 66.60 69.3 63.9 75.20 74.70 75.70

RILOD 6.80 9.10% 0.954 18.09 10.42 7.67 67.90 67.48 68.36 74.70 75.33 74.04

DMC 6.40 8.57% 0.957 17.01 6.37 10.64 68.30 70.53 66.16 74.70 75.33 74.04

ORE 5.93 8.41% 0.958 16.76 14.76 2.01 64.58 60.37 68.79 70.51 70.82 70.20

SemTopology 5.55 7.87% 0.961 15.67 15.21 0.46 64.96 60.03 69.88 70.51 70.80 70.20

MVCD 5.48 7.66% 0.962 15.31 7.29 8.02 66.09 66.15 66.02 71.57 71.35 71.78

OW-DETR 4.80 6.81% 0.966 13.67 10.36 3.30 65.71 63.48 67.88 70.51 70.82 70.20

IncDet 3.00 4.07% 0.980 8.14 4.52 3.62 70.80 69.70 71.80 73.80 73.00 74.50

Ours 1.15 1.63% 0.992 3.26 3.89 -0.62 69.49 67.63 71.35 70.64 70.36 70.91

15

+

5

SID 13.70 20.88% 0.896 41.35 24.49 16.86 51.90 52.26 51.54 65.60 69.21 61.99

Meta-ILOD 7.42 9.87% 0.951 27.20 6.58 20.62 67.77 71.73 55.90 75.19 76.78 70.42

MMA 5.30 7.05% 0.965 19.01 4.95 14.06 69.90 73.00 60.50 75.20 76.80 70.40

MVCD 5.02 7.02% 0.965 17.48 5.56 11.92 66.54 69.41 57.92 71.57 73.50 65.76

ILOD 4.16 5.90% 0.971 16.32 3.97 12.36 66.35 69.25 57.60 70.51 72.11 65.72

IncDet 3.40 4.61% 0.977 12.35 3.20 9.16 70.40 72.70 63.50 73.80 75.10 69.90

Faster ILOD 2.57 3.64% 0.982 14.11 0.75 13.36 67.94 71.57 56.94 70.51 72.11 65.72

ORE 2.00 2.84% 0.986 11.16 0.44 10.71 68.51 71.79 58.68 70.51 72.11 65.72

OW-DETR 1.09 1.55% 0.992 8.81 -0.14 8.95 69.42 72.21 59.84 70.51 72.11 65.72

SemTopology 0.58 0.82% 0.996 6.39 -1.26 7.65 69.93 73.01 60.69 70.51 72.10 65.72

Ours 1.95 2.76% 0.986 10.14 0.72 9.41 68.69 71.65 59.82 70.64 72.17 66.04

19

+

1

SID 20.10 30.64% 0.847 60.82 33.82 27.00 45.50 46.33 44.67 65.60 70.01 61.19

RILOD 9.70 12.99% 0.935 59.60 10.93 48.67 65.00 66.33 40.40 74.70 74.47 78.70

Meta-ILOD 4.97 6.60% 0.967 27.56 5.82 21.74 70.23 70.89 57.60 75.19 75.27 73.60

MMA 4.50 5.98% 0.970 19.44 5.58 13.86 70.70 71.10 63.40 75.20 75.30 73.60

DMC 3.90 5.21% 0.974 17.12 4.80 12.33 70.81 70.90 69.00 74.70 74.47 78.70

ILOD 2.79 3.96% 0.980 11.37 3.97 7.40 67.72 67.72 65.10 70.51 70.52 70.30

Faster ILOD 1.95 2.77% 0.986 15.37 2.28 13.09 68.56 68.91 61.10 70.51 70.52 70.30

MVCD 1.86 2.59% 0.987 14.28 2.11 12.17 69.71 70.19 60.60 71.57 71.70 69.00

ORE 1.62 2.30% 0.989 16.17 1.66 14.51 68.89 69.35 60.10 70.51 70.52 70.30

SemTopology 0.69 0.98% 0.995 11.81 0.43 11.38 69.82 70.22 62.30 70.51 70.52 70.30

OW-DETR 0.30 0.43% 0.998 12.28 0.48 11.81 70.21 70.18 62.00 70.51 70.52 70.30

Ours 0.87 1.24% 0.994 29.03 -0.27 29.30 69.77 70.77 50.62 70.64 70.58 71.60
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Table 15: Incremental learning results under the Four-Step scenario of VOC(5+5+5+5). The evalua-
tion results of each subtask after each incremental learning step are presented in the table in a stepped
presentation. Joint mAP, seen as the Upper Bound mAP, refers to the mAP of normal learning.

mAPMethod
A(1-5) +B(6-10) +B(11-15) +B(16-20)

mAP↑ AbsGap↓ RelGap↓ Ω50 ↑ Joint mAP

SID

70.60 70.60 0.00 0.00% 1 70.60
49.60 68.00 58.80 11.30 16.12% 0.919 70.10
38.20 43.60 52.90 44.90 27.20 37.73% 0.821 72.10
33.50 36.90 38.40 36.00 36.20 35.40 49.44% 0.742 71.60

ILOD

66.30 66.30 0.00 0.00% 1 66.30
42.90 61.10 52.00 13.80 20.97% 0.895 65.80
39.20 46.80 55.00 47.00 23.50 33.33% 0.819 70.50
34.60 38.50 40.10 43.80 39.25 30.55 43.77% 0.755 69.80

RD-IOD

71.97 71.97 0.00 0.00% 1 71.97
66.23 69.98 68.10 20.03 22.73% 0.886 88.13
60.71 51.24 60.00 57.32 16.85 22.72% 0.849 74.17
54.89 44.64 39.81 41.02 45.09 28.76 38.94% 0.789 73.85

CIFRCN

63.90 63.90 0.00 0.00% 1 63.90
43.80 71.20 57.50 13.68 19.22% 0.904 71.18
35.30 49.00 68.40 50.90 22.48 30.64% 0.834 73.38
34.60 44.10 55.60 59.60 48.48 22.01 31.22% 0.797 70.51

ERD

70.45 70.45 0.00 0.00% 1 70.45
60.86 76.66 68.76 2.35 3.30% 0.984 71.11
48.33 65.51 73.63 62.49 8.59 12.08% 0.948 71.08
41.25 57.38 63.57 53.12 53.83 16.77 23.57% 0.902 70.60

Ours

70.34 70.34 0.00 0.00% 1 70.34
62.17 77.00 69.86 0.50 0.71% 0.996 70.36
50.50 69.66 74.72 64.96 7.21 9.99% 0.964 72.17
43.44 63.89 68.57 54.88 57.69 12.95 18.34% 0.927 70.64

Table 16: Incremental learning results under the Four-Step scenario of VOC(15+1+1+1+1+1).

Scenarios aerobikebirdboatbottle bus car cat chair cow table dog horsembikepersonplantsheepsofatrain tv mAP↑SIDMVCD

A(1-20) 74.4 75.8 73.1 54.5 60.6 72.8 81.3 84.4 56.3 70.4 58.2 81.2 79.1 77.9 82.5 50.9 69.1 62.3 76.3 71.6 70.6 71.6 71.6

A(1-15) 77.4 76.5 73.9 54.0 58.8 74.6 81.4 84.8 58.3 74.8 59.4 81.0 79.8 75.6 82.6 72.9 72.6 73.7

+B(16 plant) 77.4 76.8 74.4 56.0 61.9 76.5 78.7 85.7 57.1 75.5 61.0 84.0 84.5 79.4 82.2 39.8 71.9 68.2 68.0

+B(17 sheep) 74.8 73.9 72.5 54.9 58.8 76.0 77.5 85.8 51.9 63.6 61.3 81.9 78.3 76.3 81.7 35.5 20.2 66.2 65.6 63.0

+B(18 sofa) 74.1 68.2 68.4 54.7 55.0 75.1 77.3 85.3 49.0 61.0 60.7 79.6 77.6 75.9 77.7 31.4 17.7 51.1 63.3 63.3 57.3

+B(19 train) 68.1 67.6 67.1 50.5 52.0 68.1 77.9 84.7 44.3 56.0 60.9 79.8 71.5 74.6 77.1 29.5 10.4 22.8 60.6 59.0 56.7 53.2

+B(20 tv) 63.8 66.5 66.2 48.7 52.6 64.3 77.1 85.0 44.8 46.3 58.2 75.5 71.8 74.9 77.0 30.1 6.3 21.0 54.0 45.5 56.5 51.9 48.9
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Table 17: Main methods and base detectors for class-incremental object detection task in recent
years.

Method Method Type Base Detector

LwF (Li & Hoiem, 2018) Pseudo-Labels Faster-RCNN (Ren et al., 2015)

SID(Peng et al., 2021) Knowledge Distillation CenterNet(Duan et al., 2019)

ILOD (Shmelkov et al., 2017) Knowledge Distillation Faster-RCNN(Ren et al., 2015)

Knowledge Distillation
RILOD (Li et al., 2019)

External Data
RetinaNet(Lin et al., 2017)

Faster ILOD (Peng et al., 2020) Knowledge Distillation Faster-RCNN (Ren et al., 2015)

Knowledge Distillation

Meta-LearningMeta-ILOD (Joseph et al., 2021b)

Exemplar Replay

Faster-RCNN(Ren et al., 2015)

RD-IOD (Yang et al., 2020) Knowledge Distillation Faster-RCNN(Ren et al., 2015)

CIFRCN (Hao et al., 2019) Knowledge Distillation Faster-RCNN(Ren et al., 2015)

MVCD (Yang et al., 2021a) Knowledge Distillation Faster-RCNN(Ren et al., 2015)

MMA (Cermelli et al., 2022) Knowledge Distillation Faster-RCNN(Ren et al., 2015)

Knowledge Distillation
DMC (Zhang et al., 2019)

External Data
RetinaNet(Lin et al., 2017)

Pseudo-Labels
ORE (Joseph et al., 2021a)

Exemplar Replay
Faster-RCNN(Ren et al., 2015)

Knowledge Distillation
SemTopology (Yang et al., 2021b)

Exemplar Replay
Faster-RCNN(Ren et al., 2015)

Pseudo-Labels
OW-DETR (Gupta et al., 2022)

Exemplar Replay
DETR(Carion et al., 2020)

Pseudo-Labels
IncDet (Liu et al., 2020)

EWC
Faster-RCNN(Ren et al., 2015)

ERD (Feng et al., 2022) Knowledge Distillation GFL v1(Li et al., 2020)

Ours Knowledge Distillation YOLOX(Ge et al., 2021)
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