Kinetics: Rethinking Test-Time Scaling Laws

Ranajoy Sadhukhan* Zhuoming Chen* Haizhong Zheng Yang Zhou Emma Strubell Beidi Chen

Carnegie Mellon University, Pittsburgh, PA {rsadhukh, zhuominc, haizhonz, yangzho6, estrubel, beidic}@andrew.cmu.edu

Abstract

We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-N, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold (14B) than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 point gains in low-cost regimes and over 5 point gains in high-cost regimes for problem-solving accuracy on AIME and LiveCodeBench. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation.

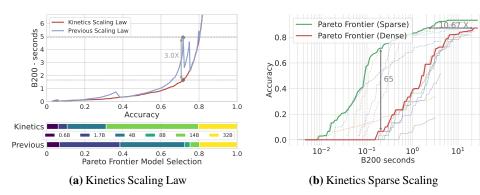


Figure 1: (a): Pareto Frontier for Qwen3 series on AIME24. Previous test-time scaling laws [4, 74, 87] focus solely on compute optimality, neglecting the significant bottleneck of memory access in long-sequence generation. This leads to suboptimal resource utilization. By incorporating memory access, the *Kinetics Scaling Law* reduces resource demands by up to $3\times$ to achieve the same accuracy. (b): Inspired by the Kinetics Scaling Law, we show that *sparse attention models* scale significantly better than dense models, achieving over 50-point improvements in AIME24 in the low-cost regime and consistently outperforming dense models in the high-cost regime, in addition to substantial efficiency gains. B200 second represents the amount of work performed by a single B200 at full utilization for one second.

^{*}Equal contribution.

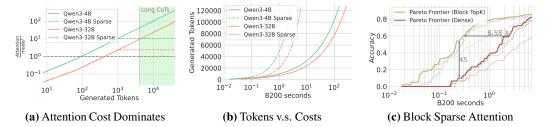


Figure 2: (a) Inference cost is dominated by attention, which is $100 \sim 1000 \times$ more than model parameter computation, sparse attention fundamentally mitigates this bottleneck. (b) Under the same resource constraint, sparse attention can generate massive tokens out of the reach of dense models, which is proven to enhance the effectiveness of test-time scaling. (c) Simple block sparse attention yields substantial gains—improving accuracy by 45 points in the low-cost regime and achieving equivalent accuracy while using $8.58 \times$ fewer resources.

1 Introduction

Test-time scaling (TTS) has recently emerged as a powerful strategy (e.g., Best-of-*N*, Long-CoT [86]) for enhancing the reasoning capabilities of large language models (LLMs) [30, 38, 81], particularly in scenarios where agents interact with complex environments, e.g., writing code, browsing the web [66, 92] or reinforcement learning (RL) with LLMs-in-the-loop [36, 20, 8]. These capabilities, however, introduce substantial inference-time costs, making it critical to understand performance scaling in this new paradigm. Existing scaling law studies [4, 74, 87] primarily focus on floating-point operations (FLOPs) while ignoring memory access costs, which are often the dominant factor in determining wall-clock latency in TTS regimes. As shown in Figure 1a, this gap can lead to sub-optimal deployment decisions.

In Section 3, we introduce the *Kinetics Scaling Law* for TTS, derived from a novel cost model that explicitly incorporates memory access costs. This new perspective reveals markedly different conclusions about Pareto-optimal strategies for allocating test-time compute (Figure 1a). Specifically, we find that: (1) prior scaling laws consistently **overestimate** the effectiveness of small models enhanced with inference-time strategies; and (2) computational resources are best spent first on increasing model size - up to a critical threshold (empirically around 14B parameters) - before investing in test-time strategies, such as Best-of-N sampling or long CoTs. Guided by the Kinetics Scaling Law, our approach yields up to a $3\times$ throughput improvement on B200 hardware.

Our roofline analysis across a suite of state-of-the-art reasoning models reveals that the shift in optimal test-time compute strategies arises because test-time strategies (e.g., long CoTs, Best-of-N) disproportionately increase attention costs rather than parameter costs (Figure 2a). Our Iso-cost analysis shows that the quadratic growth of attention with generation length, combined with the disproportionate scaling of KV memory relative to model parameters, drives a preference for scaling up model size over generations. This imbalance is further exacerbated by MoE architectures [72, 21, 22, 1, 13, 40], which reduce active parameter count without alleviating attention overhead.

Building on this analysis, in Section 4 we introduce a new scaling paradigm, centered on **sparse** attention, which fundamentally reshapes the scaling law and significantly enhances the scalability of TTS (Figure 1b). According to our *Kinetics Sparse Scaling Law*, computational resources are best allocated to test-time strategies rather than reducing sparsity. As more computing is invested at test time, higher sparsity becomes increasingly critical to fully leveraging the benefits of these strategies. Guided by this principle, it increases problem-solving rates by up to **60** points in the low-cost regime and over **5** points in the high-cost regime on AIME24 and LiveCodeBench, through massive generated tokens, which is unaffordable for dense counterparts.

In Section 5, we demonstrate the practicality of the *Kinetics Sparse Scaling Law* using a simple block-sparse attention mechanism built on top of paged attention. This approach achieves up to a **25**× wall-clock speedup on H200 GPUs. While sparsity has traditionally been employed either for regularization in small models [82, 64] or to reduce computation in over-parameterized networks [62, 6, 32, 15, 24, 55], our work introduces a fundamentally different perspective: sparsity as a central enabler of efficient and scalable test-time inference. In contrast to pretraining – where scaling laws often exhibit diminishing returns [37] – TTS continues to benefit from increased token generation and more optimized inference paths. We hope this study can guide and encourage future co-design of model architectures, inference-time strategies, and hardware systems to fully unlock the next wave of scaling at deployment.

2 Related Work and Problem Settings

In this section, we first review several lines of related work relevant to *Kinetics Scaling Law*. Then we introduce a cost model accounting for computation and memory access, followed by a roofline analysis uncovering a key departure from traditional scaling laws. Finally, we outline the experimental setup used in the subsequent analysis. Notation is summarized in Table 1.

Scaling Laws. Prior work [42, 33, 45] has extensively examined the scaling laws of pretraining, exploring the trade-off between model size and the number of training tokens under a fixed FLOPs budget. More recently, studies such as [74, 87] have extended this analysis to test-time scaling (TTS), with a focus on compute-optimality. While these works offer a strong theoretical foundation, they largely overlook the critical bottleneck posed by memory access in current TTS systems.

Test-Time Scaling. Recent LLMs such as DeepSeek-R1 [30], OpenAI-o1/o3 [38], and QwQ [81] generate extended CoT reasoning [86] to solve complex problems, including those from

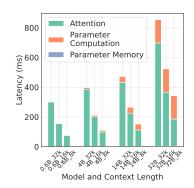


Figure 3: Cost Breakdown (bsz 4K).

AIME [59, 60]. Techniques such as parallel search through repeated sampling [4], majority voting (self-consistency) [85], and reward-model-guided inference (e.g., REBASE [87], MCTS [23, 74]) aim to improve reasoning accuracy. Strategies such as [26, 2, 80] and hybrid models [49, 69, 84] have been proposed to reduce the cost of test-time scaling.

Sparse Attention. A significant line of prior work has focused on overcoming the quadratic computational bottleneck of attention mechanisms during LLM training by leveraging the natural sparsity of attention matrices [11, 44, 17, 98, 3, 96]. More recently, sparse attention has experienced a resurgence in the context of LLM inference, where methods such as [101, 88, 79, 54, 10, 35] restrict the memory access of the key-value (KV) cache during gener-

Table 1: Notation Used throughout the Paper.

Symbol	Description	Symbol	Description	
T,T	Task (set)	L_{out}	# Gen tokens	
M	Model	N, N_T	Reasoning trials	
$C, C_{TTS}(\cdot)$	Cost function	n, n_T	Max # tokens	
\mathcal{A}	Algorithm	B,B_T	KV budget	
L_{in}	Prompt length	P	Parameters	
D	KV size / token	r	GQA ratio	

ation while maintaining strong performance. These advances form a strong and steady foundation for our exploration of a new TTS paradigm.

2.1 Cost Model

We first calculate the inference cost for the cases where the batch size is 1, and then extend to a more general case in TTS. Finally, we propose our cost model using equivalent FLOPs.

Computation. As discussed in [4], the computation consists of two parts: linear modules and self-attention, which is (we assume the model is served in BFloat16.)

$$C_{\rm comp} = \underbrace{2PL_{out}}_{\rm model\ parameters\ computation} + \underbrace{r(2L_{in} + L_{out})L_{out}D}_{\rm self-attention}$$

Memory Access. Memory access also consists of two parts: model parameters and KV cache.

$$C_{\text{mem}} = \underbrace{2PL_{out}}_{\text{model parameter access}} + \underbrace{2L_{in}L_{out}D}_{\text{prompt KV cache}} + \underbrace{L^2_{out}D}_{\text{decoding KV cache}}$$

In real serving scenarios, a large batch size will be used [18] with growing GPU VRAM [83] and model parallelism [70]. The access to the model parameter will be amortized across requests in a batch (Figure 3 shows parameter access time is negligible when the batch size is large). Thus, we only consider the second term (i.e., KV cache loading) in our cost function. Furthermore, in the cases that we have N reasoning trials, the prompt cache access [41, 102] is also shared across these N trials. Thus,

$$C_{\text{comp}}(N) = 2PNL_{out} + 2rNL_{in}L_{out}D + rNL_{out}^2D$$
(1)

$$C_{\text{mem}}(N) = 2L_{in}L_{out}D + NL_{out}^2D \tag{2}$$

eFLOPs. We propose eFLOPs (equivalent FLOPs) to capture both compute and memory access cost,

$$eFLOPs = C_{comp} + C_{mem} \times I^2$$
(3)

where I is the arithmetic intensity of hardware, which reflects that modern accelerators usually have a much larger computation capacity over memory bandwidth, and the gap is growing over the years [71]. In this work, we use I = 562.5 from NVIDIA B200 [83].

With Equations (1) to (3), we obtain the final cost model.
$$C_{\rm TTS} = \underbrace{2NPL_{out}}_{\text{linear modules computation}} + \underbrace{2rNL_{in}DL_{out} + rNDL_{out}^2}_{\text{self-attention computation}} + \underbrace{2IL_{in}DL_{out} + INDL_{out}^2}_{\text{KV access}}$$
 (4)

where P,r,D are hyper-parameters determined by model M^3 .

Roofline Analysis. Our key insight is attention-related cost dominates in long CoTs. We show this by estimating the ratio of attention-related cost to parameter-related cost Φ .

$$\Phi = \frac{2rL_{in}D + (rD + ID)L_{out}}{2P}$$

As shown in Figure 2a, in the regime of long CoTs, where the generation length exceeds 4096 tokens, the cost of attention surpasses that of model parameters by a factor of $100 \sim 1000$.

MLA [53] reduces KV memory access by a constant factor (similar to r in GQA), it is insufficient for achieving true scalability due to several limitations: (1) MLA does not reduce attention computation; (2) the gap between FLOPs and memory bandwidth is expected to widen in the future; and (3) emerging **fine-grained MoEs** [1, 13, 40] drastically reduce FLOPs in linear layers by a factor of $10 \sim 20 \times$, further increasing the relative cost of attention.

Under the context of long-CoTs being widely adopted, we can safely assume generated length $L_{out} \gg$ L_{in} or at least proportional to L_{in} . Hence, the bottleneck of inference is shifted from linear term $L_{out}P$ to the quadratic term L_{out}^2D ⁴.

Experimental Setup. In our analysis, we focus on three challenging reasoning benchmarks: AIME24 [59], AIME25 [60], math datasets spanning algebra, combinatorics, and geometry, and LiveCodeBench [39], which includes complex programming problems from recent coding competitions. We evaluate performance across various model sizes of the Owen3 [91] series. More results are shown in the Appendix. We utilize the specs from the latest and most powerful Nvidia B200 as the basis of our theoretical studies.

Rethinking Test-time Scaling Law 3

In Section 3.1, we first introduce the Kinetics Scaling Law, derived from empirical investigations across the Qwen3 model series. Then, we explore the underlying reasons for the divergence between Kinetics and prior scaling laws through an Iso-Cost analysis in Section 3.2.

3.1 Kinetics Scaling Law

In this section, We study the scaling behavior of the Qwen3 [89, 90] considering the following problem:

For each fixed maximum inference budget, eFLOPs per question, what is the Pareto frontier of achievable accuracy across different LLM configurations?

With the refined cost model in Section 2.1, we first formally formulate the objective of the test-time scaling law, focusing on the tradeoff between model size and the number of generated tokens.

Dense Scaling Law. Given a problem instance T and a total inference budget C, our goal is to explore the optimal tradeoff between two key factors: the choice of language model M, and the number of

reasoning trials
$$N$$
 and the maximum generation length n . More precisely,
$$(N,n)_*, M_* = \arg\max_{(N,n),M} \mathrm{Acc}(N,n,M;T) \quad \text{s.t.} \quad C_{\mathrm{TTS}}(N,n,M;T) \leq C \tag{5}$$

²Roofline model $\max(C_{\text{comp}}, C_{\text{mem}} \times I)$ also works here and favor our claims more since most of the time $C_{\text{mem}} \times I$ dominates the cost. We choose to use an additional model because C_{comp} mainly comes from linear layers while C_{mem} mainly comes from the self-attention layer. The parallelization of these components during decoding remains an active area of research [103]. We discuss this roofline cost model in the Appendix.

³Since L_{out} might differ across reasoning trials, we take the expectation for $\mathbb{E}[L_{out}]$ and $\mathbb{E}[L_{out}^2]$.

⁴This is why we call ours Kinetics Scaling Law—similar to $E_k = \frac{1}{2}mv^2$.

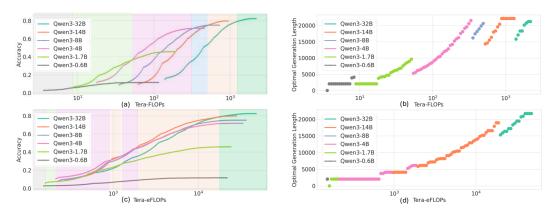


Figure 4: AIME Pareto Frontier (Long-CoTs). We first launch evaluations for Qwen3 series models. By controlling the maximum allowed generation lengths, we control the incurred inference cost in eFLOPs (**ab** for our scaling law) or FLOPs (**cd** for previous scaling law) and measure the accuracy (Pass@1) in AIME24. The optimal model is marked with different colors in (**ac**). The optimal generation length is presented in (**bd**).

Let Acc(N,n,M;T) denote the problem-solving rate of model M on task T, using N reasoning trials, each with a maximum reasoning length of n. We investigate two inference strategies: Best-of-N (with fixed n) and Long-CoT (with fixed N).

In the $Long\ CoTs$ scenarios, where $N_T=1$, we vary n_T to evaluate the model performance under different costs. We present our results in Figure 4. Our Kinetics Scaling Law highlights two important findings compared to the previous one, which focused on merely FLOPs.

- Efficiency of small models is overestimated. As shown in Figures 2b and 4 (ac), smaller models, despite having fewer parameters, are not as efficient as commonly assumed. For example, the 14B model outperforms both the 4B and 8B models even at low accuracy levels (e.g., below 40%), and the 0.6B model only lies on the Pareto frontier in regions where accuracy is negligible. In contrast, under previous scaling laws, models of all sizes span a meaningful portion of the Pareto frontier.
- Extending CoTs are more effective than enlarging parameters only for models beyond a critical scale (empirically, 14B). The Kinetics Scaling Law reveals that under constrained compute budgets, allocating resources to model scaling yields greater returns than increasing CoT length. As illustrated in Figure 4 (bd), only the 14B and 32B models benefit from generating CoTs longer than 10K tokens; for smaller models (e.g., 1.7B and 4B), switching to a larger model is more advantageous when $L_{\rm out}$ < 5K. This suggests that, in practice, most of the available compute should be devoted to increasing model size rather than lengthening generations (Figure 4 (d)). In contrast, previous scaling laws assumed that longer CoTs provided consistent benefits across all model sizes, recommending model scaling only after CoT performance gains had plateaued.

In the Best-of-N setting, we fix the maximum number of generated tokens at n_T , and vary the number of reasoning trials N to evaluate the problem-solving rate (i.e., the probability that at least one trial produces a correct answer). We have similar observations in Figures 6a to 6c. Under the previous scaling laws (Figure 6b), the most cost-effective strategy to achieve high accuracy is to apply repeated sampling using smaller models. Kinetics Scaling Law Figure 6a reveals that deploying a 14B model with fewer reasoning trials is more efficient. We also observe a critical size of 14B. For models smaller than 14B, increasing compute is best allocated toward model scaling rather than additional trials. For models at or above 14B, however, further computation is more effectively spent on increasing the number of reasoning trials, up to diminishing returns.

3.2 Iso-Cost Study

We attribute the above divergence between Kinetics and previous scaling laws to two reasons.

Disproportionation between KV memory size D **and model parameters** P**.** Smaller models tend to require significantly more KV cache relative to their parameter size. For example, Qwen3-0.6B demands 3.5GB of KV cache to store 32K tokens, despite the model itself occupying only 1.2GB. In contrast, Qwen3-32B uses just 8GB of KV cache for the same sequence length. Empirically, doubling model parameters results in only a $1.18\times$ increase in KV cache size. As shown in Figure 5a, this phenomenon is consistently observed across model families such as OPT [100] $(1.55\times)$, Qwen2.5 [90] $(1.46\times)$, and LLaMA3 [27] $(1.27\times)$.

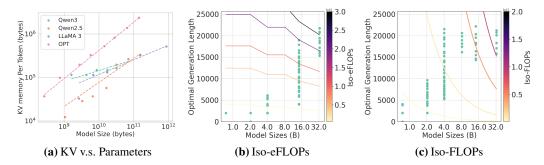


Figure 5: Explanation of the New Scaling Law. Left: Analysis across four LLM families reveals a consistent trend of disproportionately slower KV memory growth relative to model size. For the Qwen3 series in particular, doubling model parameters results in only a $1.18 \times$ increase in KV cache size. Middle and Right: We compare the Iso-Cost landscapes under the proposed cost model (b) and the traditional model (c).

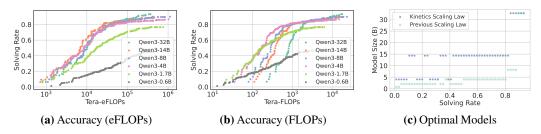


Figure 6: AIME Score Curve Envelope (Best-of-N). We control the incurred inference cost in eFLOPs (a) or FLOPs (b) and measure the solving rate (Coverage) in AIME24 for various models by varying the maximum allowed number of reasoning trials. By taking the curve envelopes, we can project the optimal models in (c).

Shift from linear to quadratic cost model. Under this revised model, increasing generation length incurs a substantially higher cost than scaling model size; consequently, the tradeoff between model capacity and token budget shifts meaningfully. For instance, under the linear LP model, the cost of generating 8K tokens with a 14B model (which is usually insufficient to solve complex tasks) is treated as equivalent to generating 24K tokens with a 4B model (sufficient to complete most tasks). However, under the L^2D model, the same 14B@8K generation is only comparable in cost to a 4B@9K generation. This tighter bound makes it much harder for smaller models to compensate for their limited capacity through extended generation alone. Thus, only if the gap in model capacities is small enough (e.g., 32B only improves the accuracy by 3% on AIME24 compared to 14B), the benefits of extending generation length might be more effective than directly enlarging model parameters.

Figures 5b and 5c show an Iso-Cost analysis comparing two cost models. Under Kinetics Scaling Law, the cost grows quadratically with L_{out} , while the KV cache scales sublinearly with model parameters P. As a result, when total budget is low, the Iso-eFLOPs contours tend to stretch horizontally, favoring larger model sizes over longer generation lengths. This implies that increasing model size is a more efficient use of resources than generating longer outputs. In contrast, the traditional FLOPs-based model leads to steeply vertical contours, encouraging longer generation before increasing model size.

4 Scale Test-time Scaling with Sparse Attention

Based on our findings in Section 3, we propose a new scaling paradigm centered on sparse attention. We begin by presenting a simple greedy algorithm for optimal resource allocation in sparse attention models, which we use to identify the Pareto frontier in Section 4.1. We then analyze the resulting changes in the scaling law and show that sparse attention models with massive TTS strategies lead to significantly higher problem-solving rates Section 4.2.

4.1 Optimal Resource Allocation with Sparse Attention Models

Problem statement. Let \mathcal{A} denote the corresponding sparsity patterns (e.g., top-k, block sparse and local. Our goal is to explore the optimal tradeoff among three factors: model M, KV budget B, and number of trials, and the maximum generation length (N,n). Specifically,

$$(N,n)_*,M_*,B_* = \arg\max_{(N,n),M,B} \mathrm{Acc}(N,n,B,\mathcal{A},M;T)$$
s.t. $C_{\mathrm{TTS}}(N,n,B,\mathcal{A},M;T) \leq C$ (6)

The cost function $C_{\rm TTS}$ differs from the one in Equation (4) as it incorporates sparse attention mechanisms (which makes the quadratic L^2D term back to a linear term LBD). This modified cost model is discussed in detail in the Appendix.

Greedy algorithm for optimal resource allocation: We present a method to optimally schedule generation parameters (N,n) and the KV budget B for each task, establishing an upper bound on achievable performance and enabling analysis of the core tradeoff between TTS strategies and sparsity. We begin by solving the subproblem for each individual task T^5 :

$$\max \quad \operatorname{Acc}(N_T, n_T, B_T, \mathcal{A}, M; T) \quad \text{s.t.} \quad C_{\mathsf{TTS}}(N_T, n_T, B_T, \mathcal{A}, M; T) \le C \tag{7}$$

Empirically, we discretize the searching space. For instance, in Best-of-N, we discretize the space of N and B by producing a search grid:

$$G = \{N_0, N_1, ..., N_i\} \otimes \{B_0, B_1, ..., B_j\}$$

For each pair $(N_a, B_b) \in G$, we compute the corresponding $\cot C_{T,(a,b)}$ and accuracy $\det A_{CT,(a,b)}$. We use $(N_T, B_T) \in G$ which maximizes the accuracy under the cost constraint C as an approximation for Equation (7). By combining the optimal configurations (N_T, B_T) for all tasks T, we obtain a solution to the overall problem in Equation (6). Similar discretizations also applies for Long-CoTs. Thus we find the optimal resource allocation.

4.2 Kinetics Sparse Scaling Law

Sparse attention fundamentally reshapes the Kinetics Scaling Law in Section 3 and significantly enhances the scalability of TTS. We present three important findings below.

Sparse attention significantly enhances problem-solving performance. As shown in Figures 8a to 8f, compared to dense baselines, for both of the inference strategies and models of various sizes, sparse attention models improve problem-solving rates by up to 60 points in the low-cost regime and over 5 points in the high-cost regime. From an efficiency perspective, dense models require over 10×10^{-5} more eFLOPs to match the same solving rate. These findings underscore sparse attention as a key enabler for unlocking the full benefits of test-time scaling.

Sparse attention becomes increasingly valuable in high-cost scenarios. We investigate the tradeoff between KV budget B and generation tokens (N,n). For Long-CoT, we model the trade-offs between KV cache size, generation length, and total cost. For Best-of-N, we analyze how the optimal KV budget and the number of generated tokens scale with cost across N reasoning trials. Our analysis reveals a consistent trend: allocating additional compute toward generating more tokens is generally more effective than expanding the KV cache. In Best-of-N frontier, doubling the cost leads to only a $1.18\times$ increase in KV budget, compared to a $1.74\times$ increase in total generated tokens. Similarly, for Long-CoT, the KV budget grows by $1.23\times$, while the number of generated tokens increases by $1.52\times$. These scaling patterns imply that as the total resource budget grows, the $sparsity\ ratio$, defined as the ratio of KV budget to total generated tokens, should decrease.

Sparse attention reshapes the Kinetics Scaling Law. As shown in Section 4.2, applying sparse attention significantly improves the efficiency of smaller models (0.6B, 1.7B, 4B), allowing them to re-emerge on the Pareto frontier across a broader range. Sparse attention reduces attention memory access from a quadratic cost term (L^2D) to a linear one (LBD), making it negligible or comparable when compared to the cost of computing with model parameters (LP).

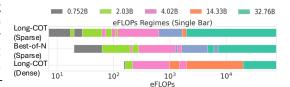


Figure 7: Compared to the scaling law for the dense models (a), small models (0.6B, 1.7B, 4B) are more effective with sparse attention. In other words, they occupy more space in the Pareto Frontier (Figure 8a).

⁵For fairness, we do not schedule resources across tasks, but consider a resource upper bound for all the tasks.

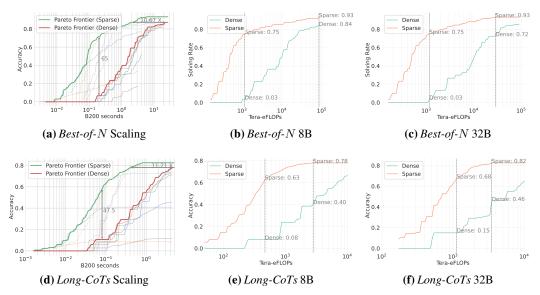


Figure 8: Sparse Attention Boosts Test-Time Scaling. In (a) and (d), we show that sparse attention models significantly improve the cost-accuracy trade-off under both inference strategies, ultimately achieving higher problem-solving rates at lower computational budgets. In (b)(c) and (e)(f), we analyze individual model performance (8B and 32B) and observe that sparse attention provides notable gains. In low-cost regimes, it can enhance problem-solving rates by 50-60 percentage points. Even in high-cost regimes, sparse models maintain an advantage of around 5 points, while reaching these performance levels much earlier. For reference, a workload of 10^5 Tera-eFLOPs corresponds to approximately 22 seconds of full utilization on a single B200.

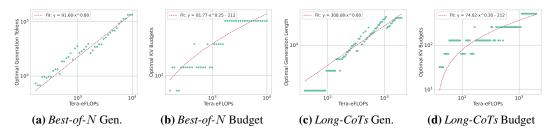


Figure 9: Tradeoff Between Generated Tokens and KV Budget. We empirically investigate how to balance the tradeoff between generating more tokens and allocating a larger KV cache budget, which may yield more accurate but potentially shorter outputs. Using Qwen3-8B as a representative model, we fit curves to characterize this tradeoff. For Best-of-N, we find that for every doubling of the total compute cost, the optimal KV budget increases by a factor of $1.18\times$, while the total number of generated tokens increases by $1.74\times$. For Long-CoT, the corresponding factors are $1.23\times$ and $1.52\times$, respectively. Notably, when the KV budget is small, the computational cost is dominated by model parameter-related computation rather than token generation or KV cache usage. We incorporate a model-specific constant into the cost model to account for this effect.

5 Experimental Validation

In this section, we demonstrate the practicality

of our sparse scaling law through block top-k attention. We report empirical improvements in task throughput (number of tasks performed per unit time) using our block-sparse implementation and conduct ablation studies with alternative sparsification strategies, such as local attention, to highlight the importance of the KV selection mechanism.

5.1 Block Top-k Attention

While top-*k* attention offers attractive theoretical scaling, it is computationally intractable in practice. Instead, we adopt block top-*k* attention for two key reasons. *First*, it exploits temporal locality in attention patterns [75] to retrieve semantically related key-value (KV) blocks. *Second*, its localized retrieval is hardware-efficient and integrates seamlessly with paged attention [46], enabling high-throughput decoding. In practice, we compute a representative vector for each KV block by averaging

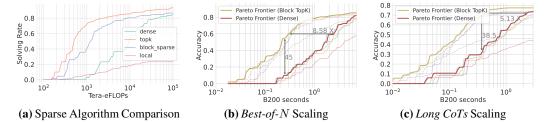


Figure 10: Sparse Attention Algorithms. In (a), we contrast the effectiveness of block top-k attention against oracle top-k attention and local attention. In (b) and (c), we illustrate the optimality of block top-k sparse attention in terms of TTS on AIME24 dataset. Although upper bounded by the oracle top-k attention performance, block top-k achieves a good trade-off between effectiveness and tractability. Whereas, although easy to implement, the performance of local attention is substantially poor.

its key vectors, and use these to score the relevance of blocks to each query. Importance scores are shared across query heads within a group, following the Grouped Query Attention (GQA) scheme.

We compare block top-k with local attention in Figure 10a. Although local attention is more efficient due to its static sparsity pattern, it performs significantly worse. Its poor test-time scaling prevents it from outperforming dense attention except in very low-accuracy regimes.

Implementation. We build our inference backend on Flashinfer [94], incorporating support for paged attention [46] and continuous batching [95]. Alongside the paged KV cache, we introduce an auxiliary data structure to store block-level average key vectors. The KV block size is chosen such that the memory load from the block-average vectors and the selected top-k KV blocks remains balanced. This design enables sub-quadratic KV loading cost as the number of reasoning tokens increases.

5.2 Empirical Results

We quantify TTS efficiency using *task throughput*, defined as the number of tasks completed per unit time. This metric is particularly relevant for reasoning tasks, where the utility of generation hinges entirely on the correctness of the final output—unlike tasks such as summarization or content creation,

where partial outputs may still be useful. We illustrate the benefit of block top-k attention across different model sizes on $8 \times H200$ machines with an extremely large batch size of 4096. As shown in Figure 11, block top-k attention substantially improves task throughput, particularly for smaller models. For instance, the Qwen3-0.6B model achieves a $12.6 \times$ to $25 \times$ increase in throughput as the generation length extends from 16k to 32k tokens. This improvement reflects the growing inefficiency of dense attention at longer contexts, which disproportionately affects smaller models. Thus, the use of sparse attention not only alleviates this bottleneck but also restores much of the practical utility of smaller models in resource-constrained settings by enabling them to use more test-time compute more cost-effectively.

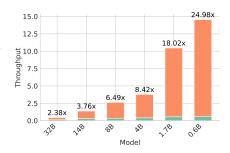


Figure 11: Task throughput improvement with block top-k attention.

6 Conclusion and Discussion

This work introduces the *Kinetics Scaling Law* based on the insight that attention costs rather than parameter counts are the dominant factor in TTS. We demonstrate that sparse attention fundamentally reshapes the scaling landscape, enabling longer generations and significantly higher accuracy. We envision the Kinetics Scaling Law as a foundational tool for guiding end-to-end design across LLM serving, agent frameworks, and reinforcement learning environments. Kinetics Sparse Scaling may signal a new paradigm, enabling continued progress even beyond pretraining plateaus. While our analysis centers on NVIDIA GPUs, the underlying principle that scaling memory bandwidth is more challenging and costly than scaling FLOPs applies broadly across hardware platforms. Ultimately, this study highlights the need for co-designing model architectures, test-time inference techniques, and hardware infrastructure as a critical step toward enabling the next wave of scalable LLM deployment.

We include discussions of limitations and broader impact in the Appendix of supplementary material.

Acknowledgements

We would like to thank Yong Wu, Xinyu Yang and Harry Dong for providing us constructive feedback on our paper and computing resources of NVIDIA. This work was partially supported by Google Research Award, Amazon Research Award, Intel, Li Auto, Moffett AI, and CMU CyLab Seed funding. This material is also based upon work supported by the National Science Foundation under Grant No. 2326610. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

- [1] AI@Meta. Llama 4 model card. 2025. URL https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md.
- [2] Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. *URL https://arxiv.org/abs/2502.04463*.
- [3] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. *arXiv preprint arXiv:2004.05150*, 2020.
- [4] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. *arXiv preprint arXiv:2407.21787*, 2024.
- [5] Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions for long context compression. *arXiv* preprint arXiv:2406.05317, 2024.
- [6] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying sparse and low-rank attention. *Advances in Neural Information Processing Systems*, 34:17413–17426, 2021.
- [7] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper. Accelerating large language model decoding with speculative sampling. *arXiv* preprint arXiv:2302.01318, 2023.
- [8] Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive llm agents. *arXiv preprint arXiv:2502.01600*, 2025.
- [9] Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling Sun, Junyang Lin, and Zhongxin Liu. Parallel scaling law for language models. *arXiv preprint arXiv:2505.10475*, 2025. URL https://arxiv.org/abs/2505.10475.
- [10] Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient Ilm generation. *arXiv preprint arXiv:2410.16179*, 2024.
- [11] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers. *arXiv preprint arXiv:1904.10509*, 2019.
- [12] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers. *arXiv preprint arXiv:2009.14794*, 2020.
- [13] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.
- [14] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *CoRR*, abs/2307.08691, 2023. doi: 10.48550/ARXIV.2307.08691. URL https://doi.org/10.48550/arXiv.2307.08691.

- [15] Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Ré. Pixelated butterfly: Simple and efficient sparse training for neural network models. In *International Conference on Learning Representations (ICLR)*, 2021. URL https://arxiv.org/abs/2112.00029.
- [16] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 December 9, 2022, 2022.
- [17] Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf: Efficient attention using asymmetric clustering. *arXiv* preprint arXiv:2010.05315, 2020.
- [18] DeepSeek-AI. Deepseek open infra index. 2025. URL https://github.com/deepseek-ai/open-infra-index/blob/main/2025020penSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md.
- [19] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale. *Advances in neural information processing systems*, 35: 30318–30332, 2022.
- [20] Danny Driess, Minh Nguyen, Fei Xia, et al. Palm-e: An embodied multimodal language model. *arXiv preprint arXiv:2303.03378*, 2023.
- [21] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Dehao Chen, Yonghui Wu, and Jeff Dean. Glam: Efficient scaling of language models with mixture-of-experts. *arXiv preprint arXiv:2112.06905*, 2021.
- [22] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23 (1):5232–5270, 2022.
- [23] Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. *arXiv* preprint arXiv:2309.17179, 2023.
- [24] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot. In *International Conference on Machine Learning*, pages 10323–10337. PMLR, 2023.
- [25] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.
- [26] Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang. Efficiently serving llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993, 2024.
- [27] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- [28] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *CoRR*, abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.48550/arXiv.2312.00752.
- [29] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. In *The Tenth International Conference on Learning Representations, ICLR* 2022, *Virtual Event, April* 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=uYLFoz1vlAC.
- [30] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

- [31] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space. *arXiv* preprint *arXiv*:2412.06769, 2024.
- [32] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. *Journal of Machine Learning Research*, 22(241):1–124, 2021.
- [33] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
- [34] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache quantization. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 1270–1303. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/028fcbcf85435d39a40c4d61b42c99a4-Paper-Conference.pdf.
- [35] Junhao Hu, Wenrui Huang, Weidong Wang, Zhenwen Li, Tiancheng Hu, Zhixia Liu, Xusheng Chen, Tao Xie, and Yizhou Shan. Efficient long-decoding inference with reasoning-aware attention sparsity. *arXiv* preprint arXiv:2502.11147, 2025.
- [36] Wenlong Huang, Fei Fei, and Chelsea Finn. Language models as zero-shot planners: Extracting actionable knowledge for embodied agents. *arXiv* preprint arXiv:2201.07207, 2022.
- [37] Sutskever Ilya. Ilya sutskever: "sequence to sequence learning with neural networks: what a decade". URL https://www.youtube.com/watch?v=1yvBqasHLZs.
- [38] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024.
- [39] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.
- [40] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.
- [41] Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia Mirhoseini. Hydragen: High-throughput llm inference with shared prefixes. *arXiv* preprint *arXiv*:2402.05099, 2024.
- [42] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*, 2020.
- [43] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In *Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*, volume 119 of *Proceedings of Machine Learning Research*, pages 5156–5165. PMLR, 2020. URL http://proceedings.mlr.press/v119/katharopoulos20a.html.
- [44] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In *The International Conference on Machine Learning (ICML)*, 2020.
- [45] Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision. *arXiv preprint arXiv:2411.04330*, 2024.

- [46] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.
- [47] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. In *International Conference on Machine Learning*, pages 19274–19286. PMLR, 2023.
- [48] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation, 2024. URL https://arxiv.org/abs/2404.14469.
- [49] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida, Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba language model, 2024. URL https://arxiv.org/abs/2403.19887.
- [50] Chaofan Lin, Jiaming Tang, Shuo Yang, Hanshuo Wang, Tian Tang, Boyu Tian, Ion Stoica, Song Han, and Mingyu Gao. Twilight: Adaptive attention sparsity with hierarchical top-*p* pruning. *arXiv* preprint arXiv:2502.02770, 2025.
- [51] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device Ilm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:87–100, 2024.
- [52] Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. *arXiv* preprint arXiv:2405.04532, 2024.
- [53] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024.
- [54] Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chengruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating longcontext llm inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.
- [55] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms at inference time. In *International Conference on Machine Learning*, pages 22137–22176. PMLR, 2023.
- [56] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. *arXiv* preprint arXiv:2402.02750, 2024.
- [57] Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning models can be effective without thinking. *arXiv preprint arXiv:2504.09858*, 2025.
- [58] Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025.
- [59] MAA. American invitational mathematics examination 2024, 2024. URL https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid= AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt.
- [60] MAA. American invitational mathematics examination 2025, 2025. URL https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid= AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt.

- [61] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating generative large language model serving with tree-based speculative inference and verification. arXiv preprint arXiv:2305.09781, 2023.
- [62] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378, 2021.
- [63] Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. Cotformer: A chain-of-thought driven architecture with budget-adaptive computation cost at inference. arXiv preprint arXiv:2310.10845, 2023.
- [64] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural networks. In *Proceedings of the 34th International Conference on Machine Learning*, pages 2498–2507. PMLR, 2017.
- [65] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
- [66] Reiichiro Nakano, Jacob Hilton, Jeffrey Wu, et al. Webgpt: Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.
- [67] Piotr Nawrot, Robert Li, Renjie Huang, Sebastian Ruder, Kelly Marchisio, and Edoardo M Ponti. The sparse frontier: Sparse attention trade-offs in transformer llms. arXiv preprint arXiv:2504.17768, 2025.
- [68] Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Prompting Ilms for efficient parallel generation. arXiv preprint arXiv:2307.15337, 2023.
- [69] Daniele Paliotta, Junxiong Wang, Matteo Pagliardini, Kevin Y. Li, Aviv Bick, J. Zico Kolter, Albert Gu, François Fleuret, and Tri Dao. Thinking slow, fast: Scaling inference compute with distilled reasoners, 2025. URL https://arxiv.org/abs/2502.20339.
- [70] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference. *Proceedings of Machine Learning and Systems*, 5:606–624, 2023.
- [71] Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian En-Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen. Magicdec: Breaking the latency-throughput tradeoff for long context generation with speculative decoding. arXiv preprint arXiv:2408.11049, 2024.
- [72] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv preprint arXiv:1701.06538*, 2017.
- [73] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large language models with a single gpu. In *International Conference on Machine Learning*, pages 31094–31116. PMLR, 2023.
- [74] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling Ilm test-time compute optimally can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.
- [75] Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless acceleration of long sequence generation with hierarchical speculative decoding, 2024. URL https://arxiv.org/abs/2404.11912.

- [76] Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. *arXiv* preprint arXiv:2410.20290, 2024.
- [77] Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin. Specexec: Massively parallel speculative decoding for interactive llm inference on consumer devices. Advances in Neural Information Processing Systems, 37:16342–16368, 2024.
- [78] Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuandong Tian, Jason Weston, and Xian Li. Llm pretraining with continuous concepts. *arXiv* preprint arXiv:2502.08524, 2025.
- [79] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774, 2024.
- [80] NovaSky Team. Sky-t1: Train your own o1 preview model within \$450. https://novasky-ai.github.io/posts/sky-t1, 2025. Accessed: 2025-01-09.
- [81] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https://qwenlm.github.io/blog/qwq-32b/.
- [82] Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)*, 58(1):267–288, 1996.
- [83] Ajay Tirumala and Raymond Wong. Nvidia blackwell platform: Advancing generative ai and accelerated computing. In 2024 IEEE Hot Chips 36 Symposium (HCS), pages 1–33. IEEE Computer Society, 2024.
- [84] Junxiong Wang, Wen-Ding Li, Daniele Paliotta, Daniel Ritter, Alexander M. Rush, and Tri Dao. M1: Towards scalable test-time compute with mamba reasoning models, 2025. URL https://arxiv.org/abs/2504.10449.
- [85] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint arXiv:2203.11171*, 2022.
- [86] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- [87] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An empirical analysis of compute-optimal inference for problem-solving with language models. *arXiv preprint arXiv:2408.00724*, 2024.
- [88] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.
- [89] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.
- [90] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

- [91] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
- [92] Shinn Yao, Jiaming Zhao, Dian Yu, et al. React: Synergizing reasoning and acting in language models. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- [93] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023.
- [94] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and customizable attention engine for llm inference serving. *arXiv preprint arXiv:2501.01005*, 2025. URL https://arxiv.org/abs/2501.01005.
- [95] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A distributed serving system for Transformer-Based generative models. In *16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)*, pages 521–538, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/conference/osdi22/presentation/yu.
- [96] Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025.
- [97] Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu, Zhikai Li, Qingyi Gu, Yong Jae Lee, et al. Llm inference unveiled: Survey and roofline model insights. *arXiv preprint arXiv:2402.16363*, 2024.
- [98] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences. *Advances in Neural Information Processing Systems*, 33, 2020.
- [99] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via kernel density estimation. In *International Conference on Machine Learning*, pages 40605–40623. PMLR, 2023.
- [100] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. *arXiv preprint arXiv:2205.01068*, 2022.
- [101] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models. *Advances in Neural Information Processing Systems*, 36:34661–34710, 2023.
- [102] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language model programs. *Advances in Neural Information Processing Systems*, 37:62557–62583, 2024.
- [103] Kan Zhu, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie, Yufei Gao, Qinyu Xu, Tian Tang, Zihao Ye, et al. Nanoflow: Towards optimal large language model serving throughput. *arXiv preprint arXiv:2408.12757*, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions of this work.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the Appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We include complete assumptions and proof.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they
 appear in the supplemental material, the authors are encouraged to provide a short proof
 sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes].

Justification: The paper has disclosed all the information in the method and experiment part. Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes].

Justification: We include our code in the supplementary material and plan to publicize the code in the future.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes].

Justification: The experimental setting is clearly described in the paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All evaluation is repeated four times to calculate the average accuracy. We also evaluate our method on various settings to verify our conclusion.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes].

Justification: The compute resource information is included in the experimental setting section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes].

Justification: The research conducted in the paper fully conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes].

Justification: We discuss the broader impacts of our work in the Appendix.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA].

Justification: Our paper does not introduce any assets that have a high risk for misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best faith
 effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes].

Justification: We have explicitly mentioned the citations for the datasets and have ensured that all conditions are fully respected.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

 If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The code is anonymized and provided in the supplementary materials. Documentation includes basic usage and setup instructions.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA].

Justification: We do not include any experiments with human subjects or crowdsourcing.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects or crowdworkers.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only use LLM to polish paper writing.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

Table of Contents

- Cost Model	24
Max Cost Model v.s. Additive Cost Model	24
Details about Sparse Attention Cost Model	26
- Dense Scaling Law	26
Additional Benchmarks	26
Additional Reasoning Models	28
- Sparse Scaling Law	
Additional Benchmarks	28
Additional Analysis	29
- Experimental Details	29
Estimate Cost, Accuracy and Solving Rate	30
Greedy Algorithm for Optimal Resource Allocation	31
• Top-K Attention and Block Top-K Attention	31
- Extended Related Work	32
- Limitations, Future Scope, and Broader Impact	

A Cost Model

In this section, we delve into the cost models used in the Kinetics Scaling Law. We show empirically that adopting a max cost model does not alter the scaling behavior and outline methods for calculating the cost of sparse attention models.

A.1 Max Cost Model v.s. Additive Cost Model

Max cost model is widely used in performance modeling [97]. It assumes that computation and memory operations can be fully overlapped with each other and only considers the bottleneck operation for cost measurement.

$$C_{\text{max-cost}} = \max(C_{\text{comp}}, C_{\text{mem}} \times I)$$

where C_{comp} denotes the compute cost, C_{mem} the memory cost per access, and I the memory intensity.

In this section, we analyze the Kinetics Scaling Law using the max cost model. For clarity, we refer to the cost model $C_{\text{comp}} + C_{\text{mem}} \times I$, which is used in the main paper, as **the additive cost model**.

We draw two conclusions from empirical results **under the max cost model**:

- Kinetics scaling law for dense models still holds. We re-plot Figure 4(a)(b) and Figure 6a under the measurement of max cost models in Figures 12 and 13. We find except that in Long-CoTs scenarios, large models become slightly more effective in low-cost regime (with accuracy~0.3), the overall trends are very close to the plots with additive cost models.
- Sparse attention solves problems more cost-effectively. We re-plot Figures 8a and 8d in Figures 14a and 14b. Under the max cost models, in Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and $11.21 \times$ to 52.8 points and $15.71 \times$, respectively. In Best-of-N, the gaps widen from 65 points and $10.67 \times$ to 69.4 points and $19.64 \times$. These results indicate that under the max cost model, our claim that sparse attention can enhance problem-solving performance is strengthen. Compared to dense attention models, sparse attention models tend to have more balanced memory and compute costs. Thus omitting one of them via a max cost model will favor sparse attention models.

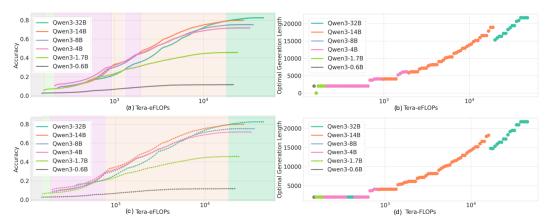


Figure 12: AIME Pareto Frontier (Long-CoTs) with Max Cost Models. (a)(b) is the original plot with the additive cost model. (c)(d) is the corresponding plot using max cost models. Compared to the original plots, the overall trend is similar except that larger models span a slightly broader region on the Pareto frontier. For example, the 14B model now consistently outperforms the 4B model with a noticeable gap around accuracy 0.3 and maintains dominance thereafter. In contrast, under the additive cost model in Figure 4(a), the two models alternate in performance until accuracy exceeds 0.4. This suggests that, when evaluated using a max cost model, larger models appear slightly more efficient relative to their performance under additive cost models.

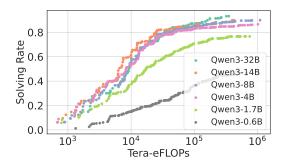


Figure 13: AIME Pareto Frontier (Best-of-*N***) with Max Cost Models.** We re-plot Figure 6a using max cost models. The Pareto Frontier is very similar under different cost models.



Figure 14: Sparse attention scales significantly better under max cost models. We re-plot Figures 8a and 8d using max cost models. Compared to the original plots, the performance and efficiency gaps between sparse attention models and dense models become more pronounced. In Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and $11.21 \times$ to 52.8 points and $15.71 \times$, respectively. In Best-of-N, the gaps widen from 65 points and $10.67 \times$ to 69.4 points and $19.64 \times$.

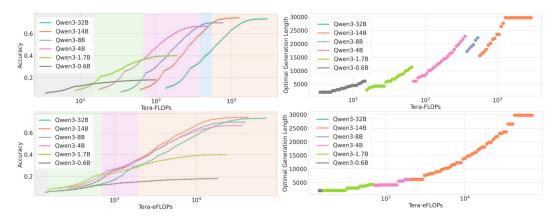


Figure 15: AIME25 Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 4.

A.2 Details about Sparse Attention Cost Model

Sparse attention models follow different cost functions due to the sparsification of KV memory access. In this paper, we focus on algorithms that impose a uniform KV budget (denoted as B) per attention head for each decoded token. We consider $L_{in} \ge B$ for the sake of simplicity. Under this setting, the cost model for sparse attention is given by:

$$C_{\text{sparse}} = \underbrace{2NPL_{\text{out}} + 2rNDBL_{\text{out}}}_{\text{compute}} + \underbrace{2INDBL_{\text{out}}}_{\text{memory}}.$$
 (8)

In practical implementations, we must also account for the overhead associated with retrieving or searching KV memory, denoted as C_{search} , which depends on the specific sparse attention algorithm \mathcal{A} . For example, in block top-k selection, the search cost is:

$$C_{\text{search}} = \underbrace{\frac{2NL_{\text{in}}DL_{\text{out}} + rNDL_{\text{out}}^2}{2\text{Block-Size}}}_{\text{compute}} + \underbrace{\frac{2IL_{\text{in}}DL_{\text{out}} + INDL_{\text{out}}^2}{2\text{Block-Size}}}_{\text{memory}}.$$
 (9)

In our work, we choose the Block-Size in such a way that C_{sparse} and C_{search} are roughly balanced, so that the sparse attention cost increases sub-linearly with generation length.

For local attention and oracle top-k attention, we assume no search overhead, i.e., $C_{\text{search}} = 0$.

Many sparse attention algorithms skip the first layer [79, 10, 101], resulting in only a minor increase in total cost. For the Qwen3 series, this additional overhead is bounded by 3.57% for the 0.6B model and by 1.56% for the 32B model.

B Dense Scaling Law

In this section, we further verify Kinetics Scaling Law for dense models proposed in Section 3 with extended experimental results of different benchmarks and model series.

B.1 Additional Benchmarks

We evaluate on AIME25 in Figures 15 and 16a to 16c and LiveCodeBench⁶ in Figures 17 and 18a to 18c (excluding the 0.6B model), following the setting described in Section 3. The empirical results support the Kinetics Scaling Law: across both benchmarks, the 0.6B and 1.7B models are consistently less effective, and the Pareto frontier is almost always dominated by the 14B models.

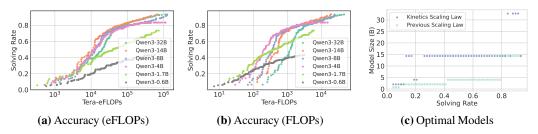


Figure 16: AIME25 Score Curve (Best-of-*N***).** We conduct the same experiments as Figures 6a to 6c.

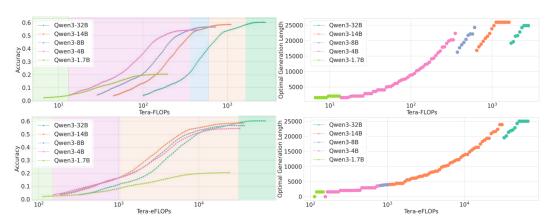


Figure 17: LiveCodeBench Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 4.

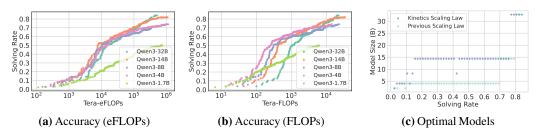


Figure 18: LiveCodeBench Score Curve (Best-of-*N***).** We conduct the same experiments as Figures 6a to 6c.

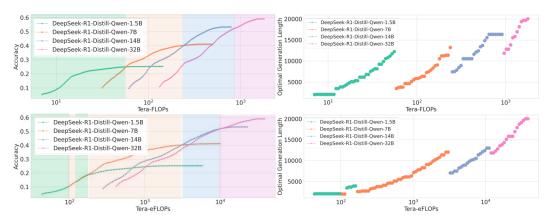


Figure 19: AIME24 Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 4 on DeepSeek Distilled Qwen series.

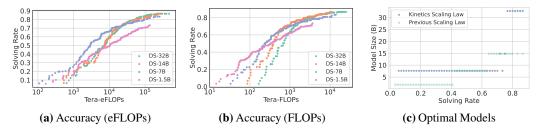


Figure 20: AIME24 Score Curve Envelope (Best-of-*N***).** We conduct the same experiments as Figures 6a to 6c on DeepSeek Distilled Owen series.

B.2 Additional Reasoning Models

In Figures 19 and 20a to 20c, we evaluate DeepSeek-R1 Distilled Qwen models (abbreviated as DS models) [30] on AIME24. The DeepSeek series models further demonstrate that previous scaling laws—those based on FLOPs—significantly overestimate the effectiveness of the 1.5B model. As predicted by the Kinetics Scaling Law, increasing the number of generated tokens for the 1.5B model is less effective than scaling up the model size, such as using the 7B or larger variants.

Interestingly, we observe a shift in the emerging model size: unlike Qwen3, where the 14B model dominates, the 7B model becomes the dominant choice in the DeepSeek series. In Figures 19, 20a and 20c, the 7B model spans most of the Pareto frontier, and Figure 19 shows that 7B models with long CoTs are more efficient and effective than 14B models with short generations. We attribute this to an architectural outlier in the DeepSeek-R1 (Qwen2.5) model series. As shown in Table 2, the DeepSeek-R1 7B model is significantly more KV memory-efficient than the Qwen3-8B model. Unlike most model series illustrated in Figure 5a, where KV cache size typically grows sublinearly with respect to model parameters, DeepSeek-R1 shows a deviation from this trend: the 14B model has approximately $3.4 \times$ more KV memory than the 7B model, while having only $2 \times$ more parameters.

Table 2: KV memory Size for Qwen3 and DeepSeek-R1 Distilled models (per 32K tokens, unit: GB).

		1	`	1 /
Qwen3	Qwen3-1.7B	Qwen3-8B	Qwen3-14B	Qwen3-32B
	3.5	4.5	6	8
DeepSeek	DS-1.5B	DS-7B	DS-14B	DS-32B
	0.875	1.75	6	8

This finding highlights the importance of concrete model architecture design, rather than focusing solely on the number of model parameters. Whether KV memory size is directly related to reasoning performance remains an open question, which we leave for future investigation.

C Sparse Scaling Law

We present additional results supporting the kinetics sparse scaling law across multiple tasks and demonstrate how these insights enable scalable test-time scaling with sparse attention.

C.1 Additional Benchmarks

Beyond AIME24, we evaluate our approach on LiveCodeBench [39] and AIME25 [60]. LiveCodeBench features complex programming problems from recent coding contests, while AIME25 consists of challenging math problems. In both cases, sparse attention—particularly oracle top-k—consistently outperforms dense attention. Block top-k attention, a tractable alternative, closely matches the performance of the oracle.

⁶For LiveCodeBench dataset, we have sampled 50 examples from the *v*5 subset consisting 167 examples. Our subset comprises 24 hard, 16 medium and 10 easy examples respectively.

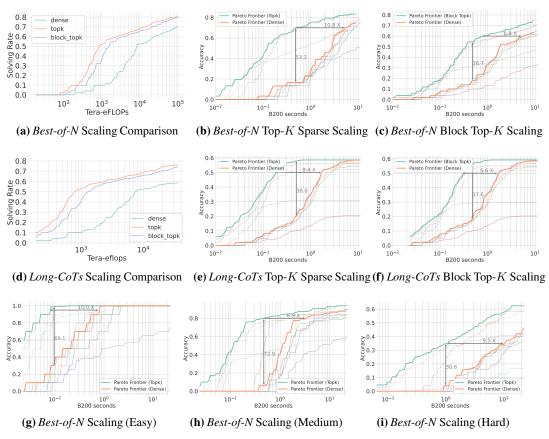


Figure 21: LiveCodeBench Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-k and block-top-k attention on the LiveCodeBench dataset. (a)(d) compare block-top-k and oracle top-k with dense scaling under Best-of-N and long-CoT TTS settings. (b)(e) show cost-accuracy trade-offs for top-k attention. (c)(f) show trade-offs for block-top-k attention. (g)(h)(i) compare the oracle top-k scaling for easy, medium and hard difficulty questions.

For LiveCodeBench, we sample 50 problems from the v5 subset (24 hard, 16 medium, 10 easy). As shown in Figure 21, oracle top-k attention can achieve $\sim 10\times$ speedup in high-accuracy regimes and improves coverage by 40-50% in low-cost regimes. Conversely, the tractable alternative, Block top-k yields $5-6\times$ speedup and 30-40% coverage gains. We further show how the benefits of sparse attention scale with problem difficulty (Figures 21g to 21i).

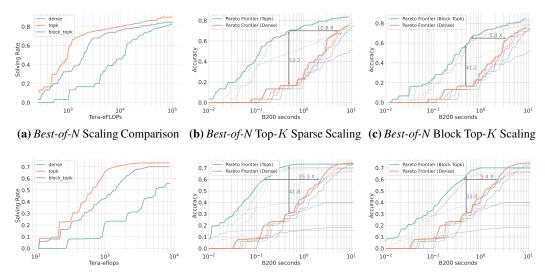
Figure 22 confirms similar trends for AIME25, with substantial gains in both accuracy and efficiency under sparse attention.

C.2 Additional Analysis

Fixing a model (e.g., Qwen3-8B), we investigate the tradeoff between generating more tokens through Best-of-N and increasing the KV budget in Figures 23a to 23d. As the figures suggest, on AIME25, each doubling of total compute cost increases the optimal KV budget by $1.13\times$, while generated tokens grow by $1.67\times$; on LiveCodeBench, these factors are $1.14\times$ and $1.89\times$, respectively. We find that although the concrete numbers depend on the types of tasks, the overall results confirm our suggestions in the main paper that allocating compute toward generating more responses is generally more effective than expanding KV budget, highlighting the scalability of sparse attention.

D Experimental Details

In this section, we explain the details about our experiments.



(d) Long-CoTs Scaling Comparison (e) Long-CoTs Top-K Sparse Scaling (f) Long-CoTs Block Top-K Scaling

Figure 22: AIME25 Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-k and block-top-k attention on the AIME25 dataset. (a)(d) compare block-top-k and oracle top-k with dense scaling under Best-of-N and long-CoT settings. (b)(e) show cost-accuracy trade-offs for oracle top-k attention. (c)(f) show trade-offs for block-top-k attention.

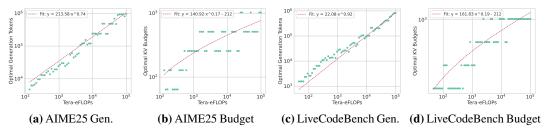


Figure 23: Tradeoff Between Generated Tokens and KV Budget. We empirically characterize the tradeoff between increasing generation length and allocating a larger KV cache budget using Qwen3-8B. For AIME25 ((a)(b)) and LiveCodeBench ((c)(d)), we identify the optimal KV budget and generated tokens (defined as number of reasoning trials times the average generated tokens per trial) to achieve the highest problem-solving rate under every cost constraint C.

D.1 Estimate Cost, Accuracy and Solving Rate

When empirically measuring cost, one major challenge is the difficulty of controlling the actual generation length. Although it is possible to set an upper bound on the number of generated tokens, there is no guarantee that the model will utilize the full budget. For instance, in our Best-of-N experiments, we set the maximum number of generated tokens to 32,768, yet the average generation length was only 14K-16K tokens.

Furthermore, it is important to model the relationship between actual inference cost and performance metrics, such as accuracy in Long-CoTs or solving rate in Best-of-N. Relying solely on the maximum allowed generation length to estimate cost can substantially underestimate the efficiency of models that solve problems with much shorter responses—an ability that \mathbf{may} reflect higher capability.

To address this challenge, we first sample S independent reasoning traces $r_1, r_2, ..., r_S$ from model M on task T, with the maximum allowed number of tokens set to n. We slightly generalize Equation (4)

as:

$$C_{\text{TTS}} = 2NP\mathbb{E}[L_{\text{out}}] + 2rNL_{\text{in}}D\mathbb{E}[L_{\text{out}}] + rND\mathbb{E}[L_{\text{out}}^{2}]$$
$$+2IL_{\text{in}}D\mathbb{E}[L_{\text{out}}] + IND\mathbb{E}[L_{\text{out}}^{2}]$$
$$= a\mathbb{E}[L_{\text{out}}] + b\mathbb{E}[L_{\text{out}}^{2}] + c, \tag{10}$$

where a, b, and c are constants determined by the model architecture and test-time strategies (e.g., the value of n). The expectations are estimated from the sampled traces, whose distribution is influenced by the model M, the token limit n, and the task T.

For Long-CoTs, we fix N=1 in Equation (10) and vary n. From the sampled traces, we estimate the accuracy (Pass@1), and compute the corresponding cost by substituting the empirical values of $\mathbb{E}[L_{\text{out}}]$ and $\mathbb{E}[L_{\text{out}}^2]$ measured under each n.

For Best-of-N, we fix n=32,768, and estimate the solving rate (Pass@K) following the methodology of Brown et al. [4]. The corresponding cost is then computed by substituting N=K into Equation (10).

Similarly, we can estimate the cost for sparse attention models using Equations (8) and (9).

Advanced control of generation lengths is an active area of research [91, 65, 57], but it is beyond the scope of this paper.

D.2 Greedy Algorithm for Optimal Resource Allocation

We describe the procedure for identifying optimal resource allocations and establishing the Pareto frontier for sparse attention models in Algorithms 1 and 2, as a supplement to Section 4.1. Given a fixed cost constraint C, we perform a grid search over key parameters: KV budgets and either reasoning trials or maximum generation lengths.

Empirically, we sweep over KV budgets {32, 64, 128, 256, 512, 1024}; reasoning trials {1, 2, 4, 8, 16, 32} (with a reduced upper limit for the 14B and 32B models to save computation time); and generation lengths {2k, 4k, 6k, 8k, 10k, 12k, 14k, 16k, 18k, 20k, 22k, 24k, 26k, 28k, 30k, 32k}.

By varying the cost constraint C in Algorithms 1 and 2, we obtain the performance of sparse attention models under optimal resource allocation, as shown in Figures 8a to 8f and 10a to 10c.

It is important to note that we do not consider inter-request resource scheduling strategies, such as early stopping or dynamic reallocation across requests [26], since we aim to ensure fairness across all inputs. Instead, the cost constraint C is interpreted as the maximum allowable cost per request (not the average), even if some requests achieve saturated accuracy below that threshold.

D.3 Top-K Attention and Block Top-K Attention

In this section, we explain the sparse attention algorithms discussed in the main paper, namely *Top-K Attention* and *Block Top-K Attention*.

During the decoding phase of a large language model (LLM), the self-attention mechanism computes a weighted average of past values as follows:

$$o = \operatorname{Softmax}\left(\frac{qK^{\top}}{\sqrt{d}}\right)V = wV, \quad q \in \mathbb{R}^{1 \times d}, \quad K, V \in \mathbb{R}^{n \times d}, \quad w \in \mathbb{R}^{1 \times n}, \tag{11}$$

where d is the head dimension and n is the context length. The key and value matrices are given by $K = [k_1, k_2, ..., k_n], \ V = [v_1, v_2, ..., v_n], \$ where each $k_i, v_i \in \mathbb{R}^{1 \times d}$ are cached from previous decoding steps.

Top-K **Attention.** Top-K Attention is a sparsification method where only the K most relevant tokens (i.e., those with the highest attention scores) are selected to compute the output. Formally, instead of computing the full softmax, we define a sparse attention weight vector:

$$w_{i} = \begin{cases} \frac{\exp(s_{i})}{\sum_{j \in \mathcal{I}_{K}} \exp(s_{j})} & \text{if } i \in \mathcal{I}_{K}, \\ 0 & \text{otherwise,} \end{cases} \quad \text{where} \quad s_{i} = \frac{qk_{i}^{\top}}{\sqrt{d}}, \quad \mathcal{I}_{K} = \text{TopK}_{K}(s), \tag{12}$$

Here, \mathcal{I}_K denotes the indices of the top K attention scores s_i . By masking out the less important positions, this approach reduces the computational and memory cost of attention from $\mathcal{O}(n)$ to $\mathcal{O}(K)$, where $K \ll n$.

Algorithm 1: Best-of-N optimal resource allocation under cost C

```
Data: Tasks \mathcal{T}, KV budgets \{B_1,...,B_j\}, trial counts \{N_1,...,N_i\}, cost limit C
    Result: Average of maximum accuracy per task under cost C
   AccumBestAcc \leftarrow 0 Count \leftarrow 0;
 2 for task T in T do
          for KV budget B_b do
 3
                Generate S \ge \max\{N_1,...,N_i\} responses using B_b for task T;
 4
                for trial count N_a do
 5
                     compute \cot c_{b,a}^{(T)};
 6
                     \begin{aligned} & \text{if } c_{b,a}^{(T)} \leq C \text{ then} \\ & \text{Compute accuracy } \operatorname{Acc}_{b,a}^{(T)} = \operatorname{Pass} @N_a; \\ & \text{if } Acc_{b,a}^{(T)} > \operatorname{BestAcc then} \\ & \text{BestAcc} \leftarrow \operatorname{Acc}_{b,a}^{(T)}; \end{aligned}
 7
 8
10
11
12
                      end if
                end for
13
          end for
14
          AccumBestAcc += BestAcc; Count += 1;
15
16 end for
17 AvgBestAcc = AccumBestAcc/Count;
18 return AvgBestAcc;
```

Block Top-K**.** Block Top-K Attention is a block-level sparse attention mechanism. Instead of selecting individual tokens based on attention scores, this method selects entire blocks of tokens, thereby reducing the number of attention computations.

Specifically, assume the full sequence of n keys is divided into $m = \frac{n}{\texttt{BLOCK_SIZE}}$ consecutive blocks, each of size BLOCK_SIZE:

$$K = [k_1, ..., k_n] \rightarrow \{K_1, K_2, ..., K_m\}, \quad K_i \in \mathbb{R}^{\texttt{BLOCK_SIZE} \times d}$$

For each block K_i , we first compute the average key vector:

$$\bar{k}_i \!=\! \frac{1}{\texttt{BLOCK_SIZE}} \sum_{j=1}^{\texttt{BLOCK_SIZE}} k_{i,j}$$

Next, we compute the attention score between the query q and each block's average key:

$$s_i = \frac{q\bar{k}_i^{\top}}{\sqrt{d}}, \quad \text{for } i = 1, 2, \dots, m$$

We then select the top $K' = \frac{K}{\text{BLOCK_SIZE}}$ blocks based on the scores s_i , denoted by the index set $\mathcal{J}_{K'} = \text{TopK}_{K'}(s)$. Attention is computed only over the tokens within the selected blocks. The sparse attention weights are defined as:

$$w_i \!=\! \begin{cases} \frac{\exp(s_i)}{\sum_{j \in \mathcal{I}_K} \exp(s_j)} & \text{if } i \!\in\! \mathcal{I}_K \subseteq \text{tokens in selected blocks}, \\ 0 & \text{otherwise} \end{cases}$$

For both algorithms, K is the KV budget. For GQA, we conduct an average pooling across all the query heads in a group, ensuring that the total number of retrieved key-value vectors does not exceed the allocated KV budget.

E Extended Related Work

Efficient Attention. Sparse attention [44, 99, 6, 10, 101, 88, 96, 67, 11, 48, 5] has been comprehensively studied to reduce the attention cost when processing long sequeces. In parallel, approaches like FlashAttention [16, 14] accelerate attention by maximizing hardware efficiency. To address the

Algorithm 2: Long-CoTs optimal resource allocation under cost C

```
Data: Tasks \mathcal{T}, KV budgets \{B_1,...,B_i\}, gen. lengths \{n_1,...,n_i\}, samples S, cost limit C
   Result: Average of maximum accuracy per task under cost C
1 AccumBestAcc \leftarrow 0 Count \leftarrow 0;
2 for task T in T do
       BestAcc \leftarrow 0:
       for gen. length n_a do
4
            for KV budget B_b do
 5
                Generate S responses using (B_b, n_a); compute cost c_{b,a}^{(T)};
 6
                if c_{b,a}^{(T)} \leq C then
 7
                     Compute accuracy Acc_{b,a}^{(T)} = Pass@1;
 8
                     if Acc_{b,a}^{(T)} > BestAcc then
\mid BestAcc \leftarrow Acc_{b,a}^{(T)};
10
11
                 end if
12
            end for
13
       end for
14
       AccumBestAcc += BestAcc; Count += 1;
15
16 end for
17 AvgBestAcc = AccumBestAcc/Count;
18 return AvgBestAcc;
```

quadratic complexity of standard attention, researchers have also explored linear attention architectures [28, 29, 43, 12]. Additionally, quantization and low-precision methods [56, 34, 52] have been broadly applied for improving inference efficiency.

Efficient Inference. Orca [95], vLLM [46], and SGLang [102] are widely adopted to enhance the efficiency of LLM serving. Our analysis builds on the practical designs and implementations of these systems. In parallel, speculative decoding [47, 7, 61, 71] has been proposed to mitigate the memory-bandwidth bottleneck during LLM decoding. Additionally, model compression and offloading [19, 51, 77, 73, 25] techniques are playing a crucial role in democratizing LLM deployment.

Efficient Test-time Strategies. Optimizing reasoning models to generate fewer tokens has been shown to directly reduce inference-time cost [80, 2, 58]. Recent work such as CoCoNut [31] and CoCoMix [78] explores conducting reasoning in a latent space, thereby reducing decoding time. Methods like ParScale [9], Tree-of-Thoughts [93], and Skeleton-of-Thoughts [68] aim to improve efficiency by enabling parallel reasoning. Architectural innovations such as CoTFormer [63] further enhance efficiency by adaptively allocating computational resources across tokens. Efficient reward-model-based [87, 74, 76] test-time scaling algorithms are also comprehensively studied.

F Limitations, Future Scope, and Broader Impact

Limitations. Our experiments primarily focus on **Qwen3** [91] and **DeepSeek-R1-Distilled-Qwen** [30], two state-of-the-art pretrained reasoning model series, evaluated from the inference perspective. However, the effects of training and post-training strategies are not fully explored and may influence the performance gaps and robustness to sparse attention mechanisms. In addition, our cost analysis assumes a cloud-based serving environment, where computational resources are typically sufficient and large batch sizes are feasible. In contrast, local deployment scenarios, such as those using Ollama⁷, often face limited VRAM where access to model parameters can dominate inference costs. Smaller models may be more appropriate in such settings, and our findings may not fully extend to these use cases.

Future Scope. Our sparse scaling law offers valuable insights for enriching the applications of sparse attention algorithms and the design space of test-time scaling strategies. On one hand, except for top-k,

⁷https://github.com/ollama/ollama

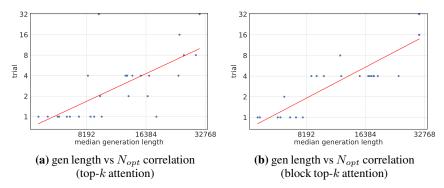


Figure 24: Correlation between Generation Length and Number of Trials. Longer generations correlate strongly with the optimal number of trials (N_{opt}) , serving as a proxy for problem difficulty. (a) shows this trend for top-k and block top-k attention on the AIME24 dataset using the Qwen3-8B model.

currently we only discuss a simple variant, i.e., block top-k, and have already demonstrated strong scalability. More advanced sparse attention algorithms [79, 10, 96, 50] are emerging these days. We do believe they can eventually push the scalability of test-time scaling to a much higher boundary. On the other hand, test-time scaling algorithms are proposed to adaptively allocate computation to tasks, or even to tokens [2, 63, 58, 57]. Extending them towards to new resource allocation problems in sparse attention is critical to reach the limit of Kinetics sparse scaling law. For instance, since generation length strongly correlates with the optimal number of trials under sparse attention (as shown in Figure 24), it can be used as a dynamic signal to adjust the number of trials and KV budget. Moreover, sparse attention drastically reduces inference cost, enabling more reasoning trials and longer generations. This unlocks greater flexibility in configuring TTS strategies within a fixed resource budget.

Broader Impact. This work aims to contribute to the understanding of efficiency and scalability challenges in the test-time scaling era, spanning model architecture, system-level implementation, and hardware design. We highlight the central role of sparsity in addressing these challenges. Our study is algorithmic in nature and does not target specific applications. While large language models can be misused in harmful ways, this work does not introduce new capabilities or risks beyond those already present in existing systems. Test-time scaling can consume a substantial amount of energy, raising concerns about the environmental sustainability of widespread deployment. By promoting sparse attention, our work hopes to help to reduce the carbon footprint and energy consumption of inference systems and support the broader goal of sustainable AI.