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Abstract

We rethink test-time scaling laws from a practical efficiency perspective, revealing
that the effectiveness of smaller models is significantly overestimated. Prior work,
grounded in compute-optimality, overlooks critical memory access bottlenecks
introduced by inference-time strategies (e.g., Best-of-V, long CoTs). Our holistic
analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics
Scaling Law that better guides resource allocation by incorporating both computation
and memory access costs. Kinetics Scaling Law suggests that test-time compute
is more effective when used on models above a threshold (14B) than smaller ones.
A key reason is that in TTS, attention, rather than parameter count, emerges as
the dominant cost factor. Motivated by this, we propose a new scaling paradigm
centered on sparse attention, which lowers per-token cost and enables longer
generations and more parallel samples within the same resource budget. Empirically,
we show that sparse attention models consistently outperform dense counterparts,
achieving over 60 point gains in low-cost regimes and over 5 point gains in
high-cost regimes for problem-solving accuracy on AIME and LiveCodeBench.
These results suggest that sparse attention is essential for realizing the full potential
of test-time scaling because, unlike training, where parameter scaling saturates,
test-time accuracy continues to improve through increased generation.
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Figure 1: (a): Pareto Frontier for Qwen3 series on AIME24. Previous test-time scaling laws [4, (74} 187]] focus
solely on compute optimality, neglecting the significant bottleneck of memory access in long-sequence generation.
This leads to suboptimal resource utilization. By incorporating memory access, the Kinetics Scaling Law reduces
resource demands by up to 3 to achieve the same accuracy. (b): Inspired by the Kinetics Scaling Law, we show
that sparse attention models scale significantly better than dense models, achieving over 50-point improvements in
AIME24 in the low-cost regime and consistently outperforming dense models in the high-cost regime, in addition
to substantial efficiency gains. B200 second represents the amount of work performed by a single B200 at full
utilization for one second.

*Equal contribution.
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Figure 2: (a) Inference cost is dominated by attention, which is 100 ~ 1000x more than model parameter
computation, sparse attention fundamentally mitigates this bottleneck. (b) Under the same resource constraint,
sparse attention can generate massive tokens out of the reach of dense models, which is proven to enhance the
effectiveness of test-time scaling. (¢) Simple block sparse attention yields substantial gains—improving accuracy
by 45 points in the low-cost regime and achieving equivalent accuracy while using 8.58 x fewer resources.

1 Introduction

Test-time scaling (TTS) has recently emerged as a powerful strategy (e.g., Best-of-/V, Long-CoT [86])
for enhancing the reasoning capabilities of large language models (LLMs) [30}[38,[81]], particularly in
scenarios where agents interact with complex environments, e.g., writing code, browsing the web [66,
92] or reinforcement learning (RL) with LLMs-in-the-loop [36}[20}[8]. These capabilities, however, in-
troduce substantial inference-time costs, making it critical to understand performance scaling in this new
paradigm. Existing scaling law studies [4}[74}[87]] primarily focus on floating-point operations (FLOPs)
while ignoring memory access costs, which are often the dominant factor in determining wall-clock
latency in TTS regimes. As shown in Figure[Ta] this gap can lead to sub-optimal deployment decisions.

In Section E], we introduce the Kinetics Scaling Law for TTS, derived from a novel cost model
that explicitly incorporates memory access costs. This new perspective reveals markedly different
conclusions about Pareto-optimal strategies for allocating test-time compute (Figure[Ta). Specifically,
we find that: (1) prior scaling laws consistently overestimate the effectiveness of small models
enhanced with inference-time strategies; and (2) computational resources are best spent first on
increasing model size - up to a critical threshold (empirically around 14B parameters) - before investing
in test-time strategies, such as Best-of-/V sampling or long CoTs. Guided by the Kinetics Scaling
Law, our approach yields up to a 3x throughput improvement on B200 hardware.

Our roofline analysis across a suite of state-of-the-art reasoning models reveals that the shift in optimal
test-time compute strategies arises because test-time strategies (e.g., long CoTs, Best-of-1V) dispropor-
tionately increase attention costs rather than parameter costs (Figure[2a)). Our Iso-cost analysis shows
that the quadratic growth of attention with generation length, combined with the disproportionate
scaling of KV memory relative to model parameters, drives a preference for scaling up model size
over generations. This imbalance is further exacerbated by MoE architectures [[72,21} 22} [1, 113401,
which reduce active parameter count without alleviating attention overhead.

Building on this analysis, in Section [d we introduce a new scaling paradigm, centered on sparse
attention, which fundamentally reshapes the scaling law and significantly enhances the scalability
of TTS (Figure[Ib). According to our Kinetics Sparse Scaling Law, computational resources are best
allocated to test-time strategies rather than reducing sparsity. As more computing is invested at test
time, higher sparsity becomes increasingly critical to fully leveraging the benefits of these strategies.
Guided by this principle, it increases problem-solving rates by up to 60 points in the low-cost regime
and over 5 points in the high-cost regime on AIME24 and LiveCodeBench, through massive generated
tokens, which is unaffordable for dense counterparts.

In Section[5] we demonstrate the practicality of the Kinetics Sparse Scaling Law using a simple block-
sparse attention mechanism built on top of paged attention. This approach achieves up to a 25x wall-
clock speedup on H200 GPUs. While sparsity has traditionally been employed either for regularization
in small models [82}164] or to reduce computation in over-parameterized networks [62}16132L15124}55],
our work introduces a fundamentally different perspective: sparsity as a central enabler of efficient
and scalable test-time inference. In contrast to pretraining — where scaling laws often exhibit dimin-
ishing returns [37] — TTS continues to benefit from increased token generation and more optimized
inference paths. We hope this study can guide and encourage future co-design of model architectures,
inference-time strategies, and hardware systems to fully unlock the next wave of scaling at deployment.



2 Related Work and Problem Settings

In this section, we first review several lines of related work
relevant to Kinetics Scaling Law. Then we introduce a cost model
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by memory access in current TTS systems.

Test-Time Scaling. Recent LLMs such as DeepSeek-R1 [30],
OpenAl-o1/03 [38], and QwQ [81] generate extended CoT rea-
soning [86] to solve complex problems, including those from
AIME [59}160]. Techniques such as parallel search through repeated sampling [4]], majority voting
(self-consistency) [I83]], and reward-model-guided inference (e.g., REBASE [87], MCTS [23,[74]]) aim
to improve reasoning accuracy. Strategies such as [26] 2} |80] and hybrid models [49}169/[84] have been
proposed to reduce the cost of test-time scaling.

Figure 3: Cost Breakdown (bsz 4K).
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access of the key-value (KV) cache during gener-
ation while maintaining strong performance. These advances form a strong and steady foundation for
our exploration of anew TTS paradigm.

2.1 Cost Model
We first calculate the inference cost for the cases where the batch size is 1, and then extend to a more
general case in TTS. Finally, we propose our cost model using equivalent FLOPs.

Computation. As discussed in [4]], the computation consists of two parts: linear modules and self-
attention, which is (we assume the model is served in BFloat16.)

Ccomp - 2F)Lout +7'(2Lin+Lout)LoutD
model parameters computation self-attention

Memory Access. Memory access also consists of two parts: model parameters and KV cache.

Cmem = 2PLout +2L1nLoutD+ LgutD
—— —— ~——

model parameter access  prompt KV cache  decoding KV cache

In real serving scenarios, a large batch size will be used [18] with growing GPU VRAM [83]] and
model parallelism [70]]. The access to the model parameter will be amortized across requests in a
batch (Figure[3]shows parameter access time is negligible when the batch size is large). Thus, we only
consider the second term (i.e., KV cache loading) in our cost function. Furthermore, in the cases that we
have N reasoning trials, the prompt cache access [41,[102] is also shared across these [V trials. Thus,

Ceomp(N)=2PN Loyt +2rN Lip Loy D+rN L2, D (1)
Cinem(N) =2Lin Lows D+ NL2,, D @



eFLOPs. We propose eFLOPs (equivalent FLOPs) to capture both compute and memory access cost,
eFLOPS = Comp+ Cnem < If] (©)
where [ is the arithmetic intensity of hardware, which reflects that modern accelerators usually have a

much larger computation capacity over memory bandwidth, and the gap is growing over the years [71].
In this work, we use I =562.5 from NVIDIA B200 [83]].

With Equations (I to (3)), we obtain the final cost model.
Crrs=  2NPLyw  +2rNL;jyDLyyi+rNDL2 4211, DLy +INDL? 4)
——

out

linear modules computation self-attention computation KV access
where P,r,D are hyper-parameters determined by model
Roofline Analysis. Our key insight is attention-related cost dominates in long CoTs. We show this

by estimating the ratio of attention-related cost to parameter-related cost ®.
d— QTLlnD'F(TD"‘ID)Lout

2P
As shown in Figure[2a] in the regime of long CoTs, where the generation length exceeds 4096 tokens,
the cost of attention surpasses that of model parameters by a factor of 100 ~ 1000.

MLA [53] reduces KV memory access by a constant factor (similar to 7 in GQA), it is insufficient for
achieving true scalability due to several limitations: (1) MLA does not reduce attention computation;
(2) the gap between FLOPs and memory bandwidth is expected to widen in the future; and (3) emerging
fine-grained MoEs [1} [13| 40] drastically reduce FLOPs in linear layers by a factor of 10 ~ 20x,
further increasing the relative cost of attention.

Under the context of long-CoTs being widely adopted, we can safely assume generated length L, >>
L, or at least proportional to L;,. Hence, the bottleneck of inference is shifted from linear term
L. P to the quadratic term L2, D ﬂ

out

Experimental Setup. In our analysis, we focus on three challenging reasoning benchmarks:
AIME24 [59]], AIME2S5 [60]], math datasets spanning algebra, combinatorics, and geometry, and
LiveCodeBench [39], which includes complex programming problems from recent coding competi-
tions. We evaluate performance across various model sizes of the Qwen3 [91]] series. More results are
shown in the Appendix. We utilize the specs from the latest and most powerful Nvidia B200 as the
basis of our theoretical studies.

3 Rethinking Test-time Scaling Law

In Section[3.1] we first introduce the Kinetics Scaling Law, derived from empirical investigations across
the Qwen3 model series. Then, we explore the underlying reasons for the divergence between Kinetics
and prior scaling laws through an Iso-Cost analysis in Section[3.2]

3.1 Kinetics Scaling Law
In this section, We study the scaling behavior of the Qwen3 [89,/90] considering the following problem:

For each fixed maximum inference budget, eFLOPs per question, what is the Pareto frontier of
achievable accuracy across different LLM configurations?

With the refined cost model in Section[2.1] we first formally formulate the objective of the test-time
scaling law, focusing on the tradeoff between model size and the number of generated tokens.

Dense Scaling Law. Given a problem instance 7" and a total inference budget C', our goal is to explore
the optimal tradeoff between two key factors: the choice of language model M, and the number of
reasoning trials /V and the maximum generation length n. More precisely,

(N,n)*,M*:arg(]\rlnagxMAcc(N,n,M;T) s.t. Crprs(Non,M;T)<C 5)

2Roofline model max(Cmmp,Cmem x I ) also works here and favor our claims more since most of the time
Crem X I dominates the cost. We choose to use an additional model because Ccomp mainly comes from linear
layers while Cnem mainly comes from the self-attention layer. The parallelization of these components during
decoding remains an active area of research [103]]. We discuss this roofline cost model in the Appendix.

3Since Lous might differ across reasoning trials, we take the expectation for E[ L] and E[L?mt].

*This is why we call ours Kinetics Scaling Law—similar to Fj = %va.
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Figure 4: AIME Pareto Frontier (Long-CoTs). We first launch evaluations for Qwen3 series models. By
controlling the maximum allowed generation lengths, we control the incurred inference cost in eFLOPs (ab for
our scaling law) or FLOPs (ed for previous scaling law) and measure the accuracy (Pass@1) in AIME24. The

optimal model is marked with different colors in (ac). The optimal generation length is presented in (bd).

Let Acc(N,n,M;T) denote the problem-solving rate of model M on task 7', using N reasoning trials,
each with a maximum reasoning length of n. We investigate two inference strategies: Best-of-N (with
fixed n) and Long-CoT (with fixed N).

In the Long CoTs scenarios, where N7 = 1, we vary nr to evaluate the model performance under
different costs. We present our results in Figure[d] Our Kinetics Scaling Law highlights two important
findings compared to the previous one, which focused on merely FLOPs.

« Efficiency of small models is overestimated. As shown in Figures and(ac), smaller models,
despite having fewer parameters, are not as efficient as commonly assumed. For example, the 14B
model outperforms both the 4B and 8B models even at low accuracy levels (e.g., below 40%), and
the 0.6B model only lies on the Pareto frontier in regions where accuracy is negligible. In contrast,
under previous scaling laws, models of all sizes span a meaningful portion of the Pareto frontier.

* Extending CoTs are more effective than enlarging parameters only for models beyond a critical
scale (empirically, 14B). The Kinetics Scaling Law reveals that under constrained compute budgets,
allocating resources to model scaling yields greater returns than increasing CoT length. As illustrated
in Figure [4] (bd), only the 14B and 32B models benefit from generating CoTs longer than 10K
tokens; for smaller models (e.g., 1.7B and 4B), switching to a larger model is more advantageous
when Ly, < 5K. This suggests that, in practice, most of the available compute should be devoted to
increasing model size rather than lengthening generations (Figure[d](d)). In contrast, previous scaling
laws assumed that longer CoTs provided consistent benefits across all model sizes, recommending
model scaling only after CoT performance gains had plateaued.

In the Best-of-N setting, we fix the maximum number of generated tokens at n, and vary the number
of reasoning trials N to evaluate the problem-solving rate (i.e., the probability that at least one trial
produces a correct answer). We have similar observations in Figures [6a] to Under the previous
scaling laws (Figure[6b), the most cost-effective strategy to achieve high accuracy is to apply repeated
sampling using smaller models. Kinetics Scaling Law Figure[6a|reveals that deploying a 14B model
with fewer reasoning trials is more efficient. We also observe a critical size of 14B. For models smaller
than 14B, increasing compute is best allocated toward model scaling rather than additional trials. For
models at or above 14B, however, further computation is more effectively spent on increasing the
number of reasoning trials, up to diminishing returns.

3.2 Iso-Cost Study

We attribute the above divergence between Kinetics and previous scaling laws to two reasons.

Disproportionation between KV memory size D and model parameters P. Smaller models tend
to require significantly more KV cache relative to their parameter size. For example, Qwen3-0.6B
demands 3.5GB of KV cache to store 32K tokens, despite the model itself occupying only 1.2GB. In
contrast, Qwen3-32B uses just 8GB of KV cache for the same sequence length. Empirically, doubling
model parameters results in only a 1.18x increase in KV cache size. As shown in Figure[5a] this
phenomenon is consistently observed across model families such as OPT [[100] (1.55x), Qwen2.5 [90]
(1.46x), and LLaMA3 [27]] (1.27%).
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Figure 5: Explanation of the New Scaling Law. Left: Analysis across four LLM families reveals a consistent
trend of disproportionately slower KV memory growth relative to model size. For the Qwen3 series in particular,
doubling model parameters results in only a 1.18 X increase in KV cache size. Middle and Right: We compare
the Iso-Cost landscapes under the proposed cost model (b) and the traditional model (c).

30 Kinetics Scaling Law
Previous Scaling Law

o
=]
o
o<}

] ] @25
£0.6 Qwen3-328 £0.6 Qwen3-328 220
= Qwen3-14B 2 Qwen3-14B )
504 Qwen3-88 504 Qwen3-88 had
3 . Qwen3-4B S Qwen3-48 210
0.2 Qwen3-1.78 0.2 Qwen3-1.78 =
P -+ Qwen3-0.68 ;o +  Qwen3-0.68
0.0 . 0.0+ 0
103 104 10° 10° 10t 102 103 104 0.0 0.2 0.4 0.6 0.8
Tera-eFLOPs Tera-FLOPs Solving Rate
(a) Accuracy (eFLOPs) (b) Accuracy (FLOPs) (¢) Optimal Models

Figure 6: AIME Score Curve Envelope (Best-of-/V). We control the incurred inference cost in eFLOPs (a) or
FLOPs (b) and measure the solving rate (Coverage) in AIME24 for various models by varying the maximum
allowed number of reasoning trials. By taking the curve envelopes, we can project the optimal models in (c).

Shift from linear to quadratic cost model. Under this revised model, increasing generation length
incurs a substantially higher cost than scaling model size; consequently, the tradeoff between model
capacity and token budget shifts meaningfully. For instance, under the linear L P model, the cost
of generating 8K tokens with a 14B model (which is usually insufficient to solve complex tasks) is
treated as equivalent to generating 24K tokens with a 4B model (sufficient to complete most tasks).
However, under the L2 D model, the same 14B @8K generation is only comparable in cost to a 4B @9K
generation. This tighter bound makes it much harder for smaller models to compensate for their limited
capacity through extended generation alone. Thus, only if the gap in model capacities is small enough
(e.g., 32B only improves the accuracy by 3% on AIME24 compared to 14B), the benefits of extending
generation length might be more effective than directly enlarging model parameters.

Figures[5bjand[5c|show an Iso-Cost analysis comparing two cost models. Under Kinetics Scaling Law,
the cost grows quadratically with L,,;, while the KV cache scales sublinearly with model parameters
P. As aresult, when total budget is low, the Iso-eFLOPs contours tend to stretch horizontally, favoring
larger model sizes over longer generation lengths. This implies that increasing model size is a more
efficient use of resources than generating longer outputs. In contrast, the traditional FLOPs-based
model leads to steeply vertical contours, encouraging longer generation before increasing model size.

4 Scale Test-time Scaling with Sparse Attention

Based on our findings in Section[3] we propose a new scaling paradigm centered on sparse attention.
We begin by presenting a simple greedy algorithm for optimal resource allocation in sparse attention
models, which we use to identify the Pareto frontier in Section We then analyze the resulting
changes in the scaling law and show that sparse attention models with massive TTS strategies lead to
significantly higher problem-solving rates Section[4.2]



4.1 Optimal Resource Allocation with Sparse Attention Models

Problem statement. Let A denote the corresponding sparsity patterns (e.g., top-k, block sparse and
local. Our goal is to explore the optimal tradeoff among three factors: model M, KV budget B, and
number of trials, and the maximum generation length (N,n). Specifically,
(N,n).,M,,B,=arg m)ax Acc(N,n,B,AM;T)

s.t. Crrs(Non,BAMT)<C ©6)
The cost function Crrs differs from the one in Equation () as it incorporates sparse attention mecha-
nisms (which makes the quadratic L? D term back to a linear term L B D). This modified cost model is
discussed in detail in the Appendix.

Greedy algorithm for optimal resource allocation: We present a method to optimally schedule
generation parameters (N,n) and the KV budget B for each task, establishing an upper bound on
achievable performance and enabling analysis of the core tradeoff between TTS strategies and sparsity.
We begin by solving the subproblem for each individual task Zﬂ

max ACC(NT,TZT,BT,A,M;T) S.t. CTTs(NT,nT,BT,A,M;T) <C @)
Empirically, we discretize the searching space. For instance, in Best-of-IN, we discretize the space of
N and B by producing a search grid:

G={Ny,Ni,....N;}®{Bo,Bn,...,B; }

For each pair (N,,By) € G, we compute the corresponding cost Cr (4 ) and accuracy Accr, (q,5). We
use (Nr,Br) € G which maximizes the accuracy under the cost constraint C' as an approximation
for Equation . By combining the optimal configurations (N7, Br) for all tasks T, we obtain a
solution to the overall problem in Equation (6). Similar discretizations also applies for Long-CoTs.
Thus we find the optimal resource allocation.

4.2 Kinetics Sparse Scaling Law

Sparse attention fundamentally reshapes the Kinetics Scaling Law in Section [3] and significantly
enhances the scalability of TTS. We present three important findings below.

Sparse attention significantly enhances problem-solving performance. As shown in Figures[8a|
to compared to dense baselines, for both of the inference strategies and models of various sizes,
sparse attention models improve problem-solving rates by up to 60 points in the low-cost regime and
over 5 points in the high-cost regime. From an efficiency perspective, dense models require over 10 x
more eFLOPs to match the same solving rate. These findings underscore sparse attention as a key
enabler for unlocking the full benefits of test-time scaling.

Sparse attention becomes increasingly valuable in high-cost scenarios. We investigate the tradeoff
between KV budget B and generation tokens (IN,n). For Long-CoT, we model the trade-offs between
KV cache size, generation length, and total cost. For Best-of-IN, we analyze how the optimal KV
budget and the number of generated tokens scale with cost across /N reasoning trials. Our analysis
reveals a consistent trend: allocating additional compute toward generating more tokens is generally
more effective than expanding the KV cache. In Best-of-N frontier, doubling the cost leads to only a
1.18x increase in KV budget, compared to a 1.74 x increase in total generated tokens. Similarly, for
Long-CoT, the KV budget grows by 1.23 x, while the number of generated tokens increases by 1.52x.
These scaling patterns imply that as the total resource budget grows, the sparsity ratio, defined as the
ratio of KV budget to total generated tokens, should decrease.

Sparse attention reshapes the Kinetics Scaling —0.7528 2038 2028 14.338 32,768
Law. As shown in Section[d.2] applying sparse Long-COT
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3For fairness, we do not schedule resources across tasks, but consider a resource upper bound for all the tasks.
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Figure 8: Sparse Attention Boosts Test-Time Scaling. In (a) and (d), we show that sparse attention models
significantly improve the cost-accuracy trade-off under both inference strategies, ultimately achieving higher
problem-solving rates at lower computational budgets. In (b)(c) and (e)(f), we analyze individual model per-
formance (8B and 32B) and observe that sparse attention provides notable gains. In low-cost regimes, it can
enhance problem-solving rates by 50-60 percentage points. Even in high-cost regimes, sparse models maintain
an advantage of around 5 points, while reaching these performance levels much earlier. For reference, a workload
of 10° Tera-eFLOPs corresponds to approximately 22 seconds of full utilization on a single B200.
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Figure 9: Tradeoff Between Generated Tokens and KV Budget. We empirically investigate how to balance
the tradeoff between generating more tokens and allocating a larger KV cache budget, which may yield more
accurate but potentially shorter outputs. Using Qwen3-8B as a representative model, we fit curves to characterize
this tradeoft. For Best-of-N, we find that for every doubling of the total compute cost, the optimal KV budget
increases by a factor of 1.18 x, while the total number of generated tokens increases by 1.74x. For Long-CoT, the
corresponding factors are 1.23 x and 1.52 X, respectively. Notably, when the KV budget is small, the computational
cost is dominated by model parameter-related computation rather than token generation or KV cache usage. We
incorporate a model-specific constant into the cost model to account for this effect.

5 Experimental Validation

In this section, we demonstrate the practicality
of our sparse scaling law through block top-£ attention. We report empirical improvements in task
throughput (number of tasks performed per unit time) using our block-sparse implementation and
conduct ablation studies with alternative sparsification strategies, such as local attention, to highlight
the importance of the KV selection mechanism.

5.1 Block Top-k Attention

While top-£ attention offers attractive theoretical scaling, it is computationally intractable in practice.
Instead, we adopt block top-k attention for two key reasons. First, it exploits temporal locality in
attention patterns [75] to retrieve semantically related key-value (KV) blocks. Second, its localized
retrieval is hardware-efficient and integrates seamlessly with paged attention [46], enabling high-
throughput decoding. In practice, we compute a representative vector for each KV block by averaging
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Figure 10: Sparse Attention Algorithms. In (a), we contrast the effectiveness of block top-k attention against
oracle top-k attention and local attention. In (b) and (c), we illustrate the optimality of block top-k sparse attention
in terms of TTS on AIME24 dataset. Although upper bounded by the oracle top-k attention performance, block
top-k achieves a good trade-off between effectiveness and tractability. Whereas, although easy to implement, the
performance of local attention is substantially poor.

its key vectors, and use these to score the relevance of blocks to each query. Importance scores are
shared across query heads within a group, following the Grouped Query Attention (GQA) scheme.

We compare block top-k with local attention in Figure[I0a] Although local attention is more efficient
due to its static sparsity pattern, it performs significantly worse. Its poor test-time scaling prevents it
from outperforming dense attention except in very low-accuracy regimes.

Implementation. We build our inference backend on Flashinfer [94], incorporating support for paged
attention [46] and continuous batching [95]]. Alongside the paged KV cache, we introduce an auxiliary
data structure to store block-level average key vectors. The KV block size is chosen such that the
memory load from the block-average vectors and the selected top-k KV blocks remains balanced. This
design enables sub-quadratic KV loading cost as the number of reasoning tokens increases.

5.2 Empirical Results

We quantify TTS efficiency using task throughput, defined as the number of tasks completed per unit
time. This metric is particularly relevant for reasoning tasks, where the utility of generation hinges
entirely on the correctness of the final output—unlike tasks such as summarization or content creation,
where partial outputs may still be useful. We illustrate the

benefit of block top-k attention across different model sizes 15.0

on 8 xH200 machines with an extremely large batch size of 125

4096. As shown in Figure[T1] block top-k attention substan- 180
tially improves task throughput, particularly for smaller
models. For instance, the Qwen3-0.6B model achieves
a 12.6x to 25X increase in throughput as the generation
length extends from 16k to 32k tokens. This improvement
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6 Conclusion and Discussion

This work introduces the Kinetics Scaling Law based on the insight that attention costs rather than
parameter counts are the dominant factor in TTS. We demonstrate that sparse attention fundamentally
reshapes the scaling landscape, enabling longer generations and significantly higher accuracy. We
envision the Kinetics Scaling Law as a foundational tool for guiding end-to-end design across LLM
serving, agent frameworks, and reinforcement learning environments. Kinetics Sparse Scaling may
signal a new paradigm, enabling continued progress even beyond pretraining plateaus. While our
analysis centers on NVIDIA GPUs, the underlying principle that scaling memory bandwidth is more
challenging and costly than scaling FLOPs applies broadly across hardware platforms. Ultimately, this
study highlights the need for co-designing model architectures, test-time inference techniques, and
hardware infrastructure as a critical step toward enabling the next wave of scalable LLM deployment.

We include discussions of limitations and broader impact in the Appendix of supplementary material.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions of this work.
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* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: We include complete assumptions and proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes].

Justification: The paper has disclosed all the information in the method and experiment part.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) Ifthe contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes].

Justification: We include our code in the supplementary material and plan to publicize the
code in the future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes].
Justification: The experimental setting is clearly described in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All evaluation is repeated four times to calculate the average accuracy. We also
evaluate our method on various settings to verify our conclusion.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes].

Justification: The compute resource information is included in the experimental setting
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conducted in the paper fully conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes] .
Justification: We discuss the broader impacts of our work in the Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA].
Justification: Our paper does not introduce any assets that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes].

Justification: We have explicitly mentioned the citations for the datasets and have ensured
that all conditions are fully respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is anonymized and provided in the supplementary materials. Docu-
mentation includes basic usage and setup instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA].
Justification: We do not include any experiments with human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

¢ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?

Answer: [NA]

Justification: This work does not involve human subjects or crowdworkers.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM to polish paper writing.
Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Cost Model

In this section, we delve into the cost models used in the Kinetics Scaling Law. We show empirically
that adopting a max cost model does not alter the scaling behavior and outline methods for calculating
the cost of sparse attention models.

A.1 Max Cost Model v.s. Additive Cost Model

Max cost model is widely used in performance modeling [97]]. It assumes that computation and memory
operations can be fully overlapped with each other and only considers the bottleneck operation for cost
measurement.

Cmax—cost - maX(CcompaCmem X I)
where Ccomp denotes the compute cost, Ciyerm the memory cost per access, and I the memory intensity.

In this section, we analyze the Kinetics Scaling Law using the max cost model. For clarity, we refer to
the cost model Ceomp + Cmem % I, which is used in the main paper, as the additive cost model.

We draw two conclusions from empirical results under the max cost model:

« Kinetics scaling law for dense models still holds. We re-plot Figure[d(a)(b) and Figure[6aJunder the
measurement of max cost models in Figures[I2]and[I3] We find except that in Long-CoTs scenarios,
large models become slightly more effective in low-cost regime (with accuracy~0.3), the overall
trends are very close to the plots with additive cost models.

* Sparse attention solves problems more cost-effectively. We re-plot Figures[8aJand[8d|in Figures[T4a]
and[I4b] Under the max cost models, in Long-CoTs, the accuracy and efficiency gaps increase
from 47.5 points and 11.21x to 52.8 points and 15.71 X, respectively. In Best-of- IV, the gaps widen
from 65 points and 10.67x to 69.4 points and 19.64 x. These results indicate that under the max
cost model, our claim that sparse attention can enhance problem-solving performance is strengthen.
Compared to dense attention models, sparse attention models tend to have more balanced memory
and compute costs. Thus omitting one of them via a max cost model will favor sparse attention
models.
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Figure 12: AIME Pareto Frontier (Long-CoTs) with Max Cost Models. (a)(b) is the original plot with the
additive cost model. (c¢)(d) is the corresponding plot using max cost models. Compared to the original plots,
the overall trend is similar except that larger models span a slightly broader region on the Pareto frontier. For
example, the 14B model now consistently outperforms the 4B model with a noticeable gap around accuracy 0.3
and maintains dominance thereafter. In contrast, under the additive cost model in Figure F_f[a), the two models
alternate in performance until accuracy exceeds 0.4. This suggests that, when evaluated using a max cost model,
larger models appear slightly more efficient relative to their performance under additive cost models.
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Figure 13: AIME Pareto Frontier (Best-of-/NV) with Max Cost Models. We re-plot Figure@using max cost
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A.2 Details about Sparse Attention Cost Model

Sparse attention models follow different cost functions due to the sparsification of KV memory access.
In this paper, we focus on algorithms that impose a uniform KV budget (denoted as B) per attention
head for each decoded token. We consider L;,, > B for the sake of simplicity. Under this setting, the
cost model for sparse attention is given by:

Csparse =2N P Loy +2r N DB Loy +2I N DB Loy;. ®)

compute memory

In practical implementations, we must also account for the overhead associated with retrieving or
searching KV memory, denoted as Cearch, Which depends on the specific sparse attention algorithm .A.
For example, in block top-k selection, the search cost is:

out

2Block-Size 2Block-Size

compute memory

2N LinDLow+rNDL2, 2ILinDLoy+INDL2, ©

Csearch =

In our work, we choose the Block-Size in such a way that Cparee and Cleqren are roughly balanced, so
that the sparse attention cost increases sub-linearly with generation length.

For local attention and oracle top-k attention, we assume no search overhead, i.e., Cseyren =0.

Many sparse attention algorithms skip the first layer [[79,110, 101, resulting in only a minor increase in
total cost. For the Qwen3 series, this additional overhead is bounded by 3.57% for the 0.6B model and
by 1.56% for the 32B model.

B Dense Scaling Law

In this section, we further verify Kinetics Scaling Law for dense models proposed in Section[3|with
extended experimental results of different benchmarks and model series.

B.1 Additional Benchmarks

We evaluate on AIME25 in Figuresandto and LiveCodeBenclﬁn Figuresandto
(excluding the 0.6B model), following the setting described in Section[3] The empirical results support
the Kinetics Scaling Law: across both benchmarks, the 0.6B and 1.7B models are consistently less
effective, and the Pareto frontier is almost always dominated by the 14B models.
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B.2 Additional Reasoning Models

In Figures[T9)and 20a]to we evaluate DeepSeek-R1 Distilled Qwen models (abbreviated as DS
models) [30] on AIME24. The DeepSeek series models further demonstrate that previous scaling
laws—those based on FLOPs—significantly overestimate the effectiveness of the 1.5B model. As
predicted by the Kinetics Scaling Law, increasing the number of generated tokens for the 1.5B model is
less effective than scaling up the model size, such as using the 7B or larger variants.

Interestingly, we observe a shift in the emerging model size: unlike Qwen3, where the 14B model
dominates, the 7B model becomes the dominant choice in the DeepSeek series. In Figures[I9] [20a]
and[20c] the 7B model spans most of the Pareto frontier, and Figure [I9]shows that 7B models with
long CoTs are more efficient and effective than 14B models with short generations. We attribute
this to an architectural outlier in the DeepSeek-R1 (Qwen2.5) model series. As shown in Table

the DeepSeek-R1 7B model is significantly more KV memory-efficient than the Qwen3-8B model.
Unlike most model series illustrated in Figure[5a] where KV cache size typically grows sublinearly
with respect to model parameters, DeepSeek-R1 shows a deviation from this trend: the 14B model has
approximately 3.4 x more KV memory than the 7B model, while having only 2 X more parameters.

Table 2: KV memory Size for Qwen3 and DeepSeek-R1 Distilled models (per 32K tokens, unit: GB).
Qwen3 Qwen3-1.7B  Qwen3-8B Qwen3-14B Qwen3-32B

3.5 4.5 6 8
DeepSeek DS-1.5B DS-7B DS-14B DS-32B
0.875 1.75 6 8

This finding highlights the importance of concrete model architecture design, rather than focusing
solely on the number of model parameters. Whether KV memory size is directly related to reasoning
performance remains an open question, which we leave for future investigation.

C Sparse Scaling Law

We present additional results supporting the kinetics sparse scaling law across multiple tasks and
demonstrate how these insights enable scalable test-time scaling with sparse attention.

C.1 Additional Benchmarks

Beyond AIME24, we evaluate our approach on LiveCodeBench [39]] and AIME25 [60]. Live-
CodeBench features complex programming problems from recent coding contests, while AIME25
consists of challenging math problems. In both cases, sparse attention—particularly oracle top-
k—consistently outperforms dense attention. Block top-k attention, a tractable alternative, closely
matches the performance of the oracle.

SFor LiveCodeBench dataset, we have sampled 50 examples from the v5 subset consisting 167 examples. Our
subset comprises 24 hard, 16 medium and 10 easy examples respectively.
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Figure 21: LiveCodeBench Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle
top-k and block-top-k attention on the LiveCodeBench dataset. (a)(d) compare block-top-k and oracle top-k
with dense scaling under Best-of-N and long-CoT TTS settings. (b)(e) show cost-accuracy trade-offs for top-k
attention. (c)(f) show trade-offs for block-top-k attention. (g)(h)(i) compare the oracle top-k scaling for easy,
medium and hard difficulty questions.

For LiveCodeBench, we sample 50 problems from the v5 subset (24 hard, 16 medium, 10 easy). As
shown in Figure[21] oracle top-k attention can achieve ~ 10x speedup in high-accuracy regimes and
improves coverage by 40-50% in low-cost regimes. Conversely, the tractable alternative, Block top-k
yields 5-6x speedup and 30-40% coverage gains. We further show how the benefits of sparse attention
scale with problem difficulty (Figures2Tg]to[2Ti).

Figure[22|confirms similar trends for AIME25, with substantial gains in both accuracy and efficiency
under sparse attention.

C.2 Additional Analysis

Fixing a model (e.g., Qwen3-8B), we investigate the tradeoff between generating more tokens through
Best-of-V and increasing the KV budget in Figures[23ato[23d] As the figures suggest, on AIME25,
each doubling of total compute cost increases the optimal KV budget by 1.13 <, while generated tokens
grow by 1.67x; on LiveCodeBench, these factors are 1.14x and 1.89 X, respectively. We find that
although the concrete numbers depend on the types of tasks, the overall results confirm our suggestions
in the main paper that allocating compute toward generating more responses is generally more effective
than expanding KV budget, highlighting the scalability of sparse attention.

D Experimental Details

In this section, we explain the details about our experiments.
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Figure 23: Tradeoff Between Generated Tokens and KV Budget. We empirically characterize the tradeoff
between increasing generation length and allocating a larger KV cache budget using Qwen3-8B. For AIME25
((a)(b)) and LiveCodeBench ((c)(d)), we identify the optimal KV budget and generated tokens (defined as number
of reasoning trials times the average generated tokens per trial) to achieve the highest problem-solving rate under
every cost constraint C.

D.1 Estimate Cost, Accuracy and Solving Rate

When empirically measuring cost, one major challenge is the difficulty of controlling the actual
generation length. Although it is possible to set an upper bound on the number of generated tokens,
there is no guarantee that the model will utilize the full budget. For instance, in our Best-of-N
experiments, we set the maximum number of generated tokens to 32,768, yet the average generation
length was only 14K-16K tokens.

Furthermore, it is important to model the relationship between actual inference cost and performance
metrics, such as accuracy in Long-CoTs or solving rate in Best-of-N. Relying solely on the maximum
allowed generation length to estimate cost can substantially underestimate the efficiency of models that
solve problems with much shorter responses—an ability that may reflect higher capability.

To address this challenge, we first sample S independent reasoning traces r1,72,...,rs from model M
on task 7', with the maximum allowed number of tokens set to . We slightly generalize Equation ()
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as:
Crrs =2N PE[Loy]+27 N Liy DE[ Low] +rNDE[L2,]
+21 Liy DE[ Loy + INDE[L?,]
=a[Louw] +bE[L2, ]+, (10)

where a, b, and c are constants determined by the model architecture and test-time strategies (e.g., the
value of n). The expectations are estimated from the sampled traces, whose distribution is influenced
by the model M, the token limit n, and the task 7'

For Long-CoTs, we fix NV =1 in Equation and vary n. From the sampled traces, we estimate the
accuracy (Pass@1), and compute the corresponding cost by substituting the empirical values of B[ Ly
and E[L2 ] measured under each n.

For Best-of-V, we fix n =32,768, and estimate the solving rate (Pass @ K) following the methodology
of Brown et al. [4]]. The corresponding cost is then computed by substituting N = K into Equation (10).

Similarly, we can estimate the cost for sparse attention models using Equations (8) and (9).

Advanced control of generation lengths is an active area of research [91, 165 57], but it is beyond the
scope of this paper.

D.2 Greedy Algorithm for Optimal Resource Allocation

We describe the procedure for identifying optimal resource allocations and establishing the Pareto
frontier for sparse attention models in Algorithms[T]and[2} as a supplement to Section[4.1] Given a fixed
cost constraint C, we perform a grid search over key parameters: KV budgets and either reasoning
trials or maximum generation lengths.

Empirically, we sweep over KV budgets {32, 64, 128, 256, 512, 1024} ; reasoning trials {1, 2, 4, 8, 16,
32} (with a reduced upper limit for the 14B and 32B models to save computation time); and generation
lengths {2k, 4k, 6k, 8k, 10k, 12k, 14k, 16k, 18k, 20k, 22k, 24k, 26k, 28k, 30k, 32k}.

By varying the cost constraint C' in Algorithms[T|and[2] we obtain the performance of sparse attention
models under optimal resource allocation, as shown in Figures[8a|to[8fland[I0a]to

It is important to note that we do not consider inter-request resource scheduling strategies, such as
early stopping or dynamic reallocation across requests [26]], since we aim to ensure fairness across all
inputs. Instead, the cost constraint C' is interpreted as the maximum allowable cost per request (not the
average), even if some requests achieve saturated accuracy below that threshold.

D.3 Top-K Attention and Block Top-K Attention

In this section, we explain the sparse attention algorithms discussed in the main paper, namely Top- K
Attention and Block Top- K Attention.

During the decoding phase of a large language model (LLM), the self-attention mechanism computes a
weighted average of past values as follows:
KT
0:Softmax<q\/g) V=wV, ¢qeR™ KVeR™ weR>", (11)
where d is the head dimension and n is the context length. The key and value matrices are given by
K = [ky,ka,....kn], V = [v1,09,...,v,], where each k;,v; € R ¥4 are cached from previous decoding
steps.

Top-K Attention. Top-K Attention is a sparsification method where only the K most relevant tokens
(i.e., those with the highest attention scores) are selected to compute the output. Formally, instead of
computing the full softmax, we define a sparse attention weight vector:
exp(s;) ip . T
= ifiel ,
w; = { 2 jezy XP(ss) 5" Where 8;= ak;

0 otherwise, Vd’

Here, Zx denotes the indices of the top K attention scores s;. By masking out the less important
positions, this approach reduces the computational and memory cost of attention from O(n) to O(K),
where K < n.

Tk =TopK g (s), (12)

31



Algorithm 1: Best-of-V optimal resource allocation under cost C
Data: Tasks 7, KV budgets { B1,...,B; }, trial counts { N1,...,N; }, cost limit C
Result: Average of maximum accuracy per task under cost C'

1 AccumBestAcc<+ 0 Count<0;

2 fortask T in'T do

3 for KV budget By, do
4 Generate S >max{Ny,..,N;} responses using By, for task T;
5 for trial count N, do
6 com (7).
pute cost Cpa >
7 ifc{") < C then
8 Compute accuracy Acc,(f;) =Pass@N,;
9 if Accé?;) > BestAcc then
10 BestAcc Accl()j;);
11 end if
12 end if
13 end for
14 end for
15 AccumBestAcc +=BestAcc; Count+=1;
16 end for

17 AvgBestAcc = AccumBestAcc/Count;
18 return AvgBestAcc;

Block Top- K. Block Top- K Attention is a block-level sparse attention mechanism. Instead of selecting
individual tokens based on attention scores, this method selects entire blocks of tokens, thereby reducing
the number of attention computations.

2 consecutive blocks, each

Specifically, assume the full sequence of n keys is divided into m = grgr'sr7m

of size BLOCK_SIZE:
K=[ky,....kn] = {K1,K5,....K,,}, K;cRE-OKSIZEXd

For each block K;, we first compute the average key vector:
1 BLOCK_SIZE

o k. -
*" BLOCK_SIZE ; “J

Next, we compute the attention score between the query ¢ and each block’s average key:

kT
8;= 2% , fori=12,...m
Vd
We then select the top K/ = }mc{ﬁ blocks based on the scores s;, denoted by the index set

Jr =TopK . (s). Attention is computed only over the tokens within the selected blocks. The sparse
attention weights are defined as:

—exp(si)  gfs .
w; = { ez xp(s5) if 1 € Zx Ctokens in selected blocks,

0 otherwise

For both algorithms, K is the KV budget. For GQA, we conduct an average pooling across all the query
heads in a group, ensuring that the total number of retrieved key-value vectors does not exceed the
allocated KV budget.

E Extended Related Work
Efficient Attention. Sparse attention [44][99116 10} 101} 88,[96} 167, [11] 148 5] has been comprehen-

sively studied to reduce the attention cost when processing long sequeces. In parallel, approaches
like FlashAttention [16,14] accelerate attention by maximizing hardware efficiency. To address the
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Algorithm 2: Long-CoTs optimal resource allocation under cost C'

Data: Tasks 7, KV budgets { B1,...,B; }, gen. lengths {n.,...,n; }, samples S, cost limit C
Result: Average of maximum accuracy per task under cost C'
AccumBestAcc <+ 0 Count < 0;
for task T in T do
BestAcc < 0;
for gen. lengthn, do
for KV budget By, do
(T)

Generate S responses using (By,n,); compute cost ¢,
if (") <C then
(T)

Compute accuracy Acc, / =Pass@1;

if Accé?;) > BestAcc then
(T).
b,a

BestAcc <+ Acc
end if
end if
end for
end for
AccumBestAcc +=BestAcc; Count+=1;
end for
AvgBestAcc = AccumBestAcc/Count;
return AvgBestAcc;

quadratic complexity of standard attention, researchers have also explored linear attention architec-
tures [128} 129,143, [12]]. Additionally, quantization and low-precision methods [56}134,|52]] have been
broadly applied for improving inference efficiency.

Efficient Inference. Orca [95], vLLM [46], and SGLang [[102] are widely adopted to enhance
the efficiency of LLM serving. Our analysis builds on the practical designs and implementations
of these systems. In parallel, speculative decoding [47, 7, 161, [71] has been proposed to mitigate
the memory-bandwidth bottleneck during LLM decoding. Additionally, model compression and
offloading [[19151}, (77,173, 125] techniques are playing a crucial role in democratizing LLM deployment.

Efficient Test-time Strategies. Optimizing reasoning models to generate fewer tokens has been
shown to directly reduce inference-time cost [80, 12, 158]]. Recent work such as CoCoNut [31] and
CoCoMix [78] explores conducting reasoning in a latent space, thereby reducing decoding time.
Methods like ParScale [9], Tree-of-Thoughts [93]], and Skeleton-of-Thoughts [68] aim to improve
efficiency by enabling parallel reasoning. Architectural innovations such as CoTFormer [63]] further
enhance efficiency by adaptively allocating computational resources across tokens. Efficient reward-
model-based [87,(74,[76] test-time scaling algorithms are also comprehensively studied.

F Limitations, Future Scope, and Broader Impact

Limitations. Our experiments primarily focus on Qwen3 [91] and DeepSeek-R1-Distilled-
Qwen [30], two state-of-the-art pretrained reasoning model series, evaluated from the inference
perspective. However, the effects of training and post-training strategies are not fully explored and
may influence the performance gaps and robustness to sparse attention mechanisms. In addition, our
cost analysis assumes a cloud-based serving environment, where computational resources are typically
sufficient and large batch sizes are feasible. In contrast, local deployment scenarios, such as those using
Ollamzﬂ often face limited VRAM where access to model parameters can dominate inference costs.
Smaller models may be more appropriate in such settings, and our findings may not fully extend to
these use cases.

Future Scope. Our sparse scaling law offers valuable insights for enriching the applications of sparse
attention algorithms and the design space of test-time scaling strategies. On one hand, except for top-k,

"https://github.com/ollama/ollama
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Figure 24: Correlation between Generation Length and Number of Trials. Longer generations correlate
strongly with the optimal number of trials (Nopt ), serving as a proxy for problem difficulty. (a) shows this trend
for top-k and block top-k attention on the AIME24 dataset using the Qwen3-8B model.

currently we only discuss a simple variant, i.e., block top-%, and have already demonstrated strong
scalability. More advanced sparse attention algorithms [[79}[10L/96}/50] are emerging these days. We do
believe they can eventually push the scalability of test-time scaling to a much higher boundary. On the
other hand, test-time scaling algorithms are proposed to adaptively allocate computation to tasks, or
even to tokens [2,[63,158,157]]. Extending them towards to new resource allocation problems in sparse
attention is critical to reach the limit of Kinetics sparse scaling law. For instance, since generation length
strongly correlates with the optimal number of trials under sparse attention (as shown in Figure[24)),
it can be used as a dynamic signal to adjust the number of trials and KV budget. Moreover, sparse
attention drastically reduces inference cost, enabling more reasoning trials and longer generations.
This unlocks greater flexibility in configuring TTS strategies within a fixed resource budget.

Broader Impact. This work aims to contribute to the understanding of efficiency and scalability
challenges in the test-time scaling era, spanning model architecture, system-level implementation,
and hardware design. We highlight the central role of sparsity in addressing these challenges. Our
study is algorithmic in nature and does not target specific applications. While large language models
can be misused in harmful ways, this work does not introduce new capabilities or risks beyond those
already present in existing systems. Test-time scaling can consume a substantial amount of energy,
raising concerns about the environmental sustainability of widespread deployment. By promoting
sparse attention, our work hopes to help to reduce the carbon footprint and energy consumption of
inference systems and support the broader goal of sustainable Al
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